
Learning latent causal graphs via mixture oracles
Supplementary Material

A Preliminaries

We say that a distribution P(𝑉) satisfies the Markov property with respect to a DAG 𝐺 = (𝑉,𝐸) if

P(𝑉) =
∏︁
𝑣∈𝑉

P(𝑣 | pa𝐺(𝑣)). (8)

An important consequence of the Markov property is that it allows one to read off conditional
independence relations from the graph 𝐺. More specifically, we have the following [see 53, 71, for
details]:

• For each 𝑣 ∈ 𝑉 , 𝑣 is independent of its non-descendants, given its parents.
• For disjoint subsets 𝑉1, 𝑉2, 𝑉3 ⊂ 𝑉 , if 𝑉1 and 𝑉2 are 𝑑-separated given 𝑉3 in 𝐺, then
𝑉1 ⊥⊥ 𝑉2 |𝑉3 in P(𝑉).

The concept of 𝑑-separation (see §3.3.1 in [53] or §2.3.4 in [71]) gives rise to a set of independence
relations, often denoted by ℐ(𝐺). The Markov property thus implies that ℐ(𝐺) ⊂ ℐ(𝑉), where ℐ(𝑉)
is the collection of all valid conditional independence relations over 𝑉 . When the reverse inclusion
holds, we say that P(𝑉) is faithful to 𝐺 (also that 𝐺 is a perfect map of 𝑉). Although the concepts of
faithfulness and 𝑑-separation will not be needed in the sequel, we have included this short discussion
for completeness and context (cf. Section 3).

For convenience, we also recall some standard definitions and notation from graphical models.

• The parents of a node 𝑣 ∈ 𝑉 are denoted by pa(𝑣) = {𝑢 ∈ 𝑉 : (𝑢, 𝑣) ∈ 𝐸};
• The children of a node 𝑣 ∈ 𝑉 are denoted by ch(𝑣) = {𝑢 ∈ 𝑉 : (𝑣, 𝑢) ∈ 𝐸};
• The neighborhood of a node 𝑣 ∈ 𝑉 is denoted by ne(𝑣) = pa(𝑣) ∪ ch(𝑣).

Throughout the paper and in these appendices, we adopt the convention that 𝐻 is identified with the
indices [𝑚] = {1, . . . ,𝑚}, and similar 𝑋 is identified with [𝑛] = {1, . . . , 𝑛}. In particular, we use
pa(𝑖) and pa(𝐻𝑖) interchangeably when the context is clear.

B Non-identifiability if Assumption 2.4 is violated

In this appendix we are going to show that Assumptions 2.2 and 2.3 on the graph 𝐺 are not sufficient
for identifiability, and therefore additional assumptions on the distribution of 𝐻 over Ω are required
as well.
Definition B.1. For distributions 𝐷1, 𝐷2, let 𝐷1 ⊗𝐷2 denote the product of the distributions 𝐷1

and 𝐷2.

That is, if 𝑋 ∼ 𝐷1 and 𝑌 ∼ 𝐷2 are independent, then their joint distribution is 𝐷1 ⊗𝐷2.

The following example illustrates an important case of non-identifiability and motivates the need for
Assumption 2.4.
Example B.2. Let 𝑁0, 𝑁1, 𝑁

′
0, 𝑁

′
1 be independent Gaussian distributions with distinct parameters

(means and variances). Consider

(𝑋1, 𝑋2) ∼ 1

2
𝑁0 ⊗𝑁 ′

0 +
1

4
𝑁1 ⊗𝑁 ′

0 +
1

4
𝑁1 ⊗𝑁 ′

1 (9)

We claim that (𝑋1, 𝑋2) is consistent with (i.e., satisfies Markov property with respect to) each of the
following three models below. Here, in the model 𝑆3 the hidden variable 𝐻1 can take three values
{0, 1, 2}, and in models 𝐴 and 𝐵, hidden variables take values in {0, 1}.

16

𝐻1

𝑋1

𝐻2

𝑋2

Model 𝐴

𝐻1

𝑋1

𝐻2

𝑋2

Model 𝐵

𝑋2𝑋1

𝐻1

Model 𝑆3

Note that all these models satisfy “no-twins” Assumption 2.2 and minimality Assumption 2.3, while
Assumptions 2.4 are violated by models 𝐴 and 𝐵.

1. Consistency with 𝑆3. Let 𝐻1 be a random variable that takes values 0, 1, 2 with probabilities
(1/2, 1/4, 1/4). Then

(𝑋1, 𝑋2) ∼
∑︁

𝑗∈{0,1,2}

P(𝑋|𝐻1 = 𝑗)P(𝐻1 = 𝑗), where

P(𝑋|𝐻1 = 0) = 𝑁0 ⊗𝑁 ′
0, P(𝑋|𝐻1 = 1) = 𝑁1 ⊗𝑁 ′

0, P(𝑋|𝐻1 = 2) = 𝑁1 ⊗𝑁 ′
1

2. Consistency with 𝐴. Let 𝐻1 and 𝐻2 be i.i.d random variables that take values 0, 1 with
probabilities (1/2, 1/2). Then

(𝑋1, 𝑋2) ∼
∑︁

𝑖∈{0,1}

∑︁
𝑗∈{0,1}

P(𝑋|𝐻1 = 𝑖,𝐻2 = 𝑗)P(𝐻1 = 𝑖)P(𝐻2 = 𝑗), where

P(𝑋|𝐻1 = 0) = 𝑁0 ⊗𝑁 ′
0, P(𝑋|𝐻1 = 1, 𝐻2 = 0) = 𝑁1 ⊗𝑁 ′

0,

P(𝑋|𝐻1 = 1, 𝐻2 = 1) = 𝑁1 ⊗𝑁 ′
1

3. Consistency with 𝐵. Let 𝐻1 be a random variable that takes values 0, 1 with probabilities
(1/2, 1/2). Let 𝐻2 be a dependent random variable that takes values 0, 1 with probabilities
(1, 0), if 𝐻1 = 0, and with probabilities (1/2, 1/2), if 𝐻1 = 1.

(𝑋1, 𝑋2) ∼
∑︁

𝑖∈{0,1}

∑︁
𝑗∈{0,1}

P(𝑋1|𝐻1 = 𝑖)P(𝑋2|𝐻2 = 𝑗)P(𝐻1 = 𝑖)P(𝐻2 = 𝑗|𝐻1 = 𝑖),

where
P(𝑋1|𝐻1 = 0) = 𝑁0, P(𝑋1|𝐻1 = 1) = 𝑁1,

P(𝑋2|𝐻2 = 0) = 𝑁 ′
0, P(𝑋2|𝐻2 = 1) = 𝑁 ′

1

Remark B.3. Observe that among the models 𝐴,𝐵 and 𝑆3, only 𝑆3 satisfies Assumption 2.4.
Observe that the model 𝐴 satisfies part (a), but not (b), and the model 𝐵 satisfies part (b), but
not (a), of Assumption 2.4. This shows that only one of these assumptions is still not sufficient for
identifiability of a latent causal model.

C Reconstructing bipartite part Γ. Proofs for Sections 4

Recall that (cf. Section 4.2), that for 𝑤(𝐻𝑖) = log(dim(𝐻𝑖)) and every subset 𝑆 ⊆ 𝑋 the parameters
of the latent DAG satisfy

log(𝑘(𝑆)) =
∑︁

𝐻𝑖∈pa(𝑆)

𝑤(𝐻𝑖). (10)

Recall also the definitions of sne and Wsne in (4), reproduced here for ease of reference:

sneΓ(𝑆) =
⋂︁
𝑥∈𝑆

neΓ(𝑥) and WsneΓ(𝑆) =
∑︁

𝑣∈sneΓ(𝑆)

𝑤(𝑣).

17

C.1 Learning a bipartite graph with a hidden part from an additive score

We start our discussion of the proof of results in Section 4 by reducing learning of the causal graph Γ
to a more general learning problem.

Let Γ = (𝑋 ∪ 𝐻,𝐸) be a (not necessarily directed) bipartite graph on parts 𝑋 and 𝐻 , and let
𝑤 : 𝐻 → (0,∞) be an arbitrary function that defines weights of variables in 𝐻 .

Recall that for a weight function 𝑤 and subset 𝑆 ⊆ 𝑋 we define

𝑊Γ(𝑆) =
∑︁

𝑣∈neΓ(𝑆)

𝑤(𝑣) (11)

Problem C.1. Assume that the vertices in 𝐻 and the weight function 𝑤 are unknown.

Input: Values (𝑊Γ(𝑆) | 𝑆 ∈ ℱ) indexed by a family of known subsets ℱ ⊆ 2𝑋

Goal: Reconstruct the number of unknown vertices 𝐻 , the graph Γ between 𝐻 and 𝑋 (up to an
isomorphism), and the weight function 𝑤 from the input.

Whether it is possible to reconstruct Γ and 𝑤 from the input may depend on the family ℱ or some
additional assumptions about the structure of the graph Γ. To account for weights 𝑤, we slightly
modify Definition 4.1 as follows:
Definition C.2. We say that (Γ, 𝑤) is ℱ-recoverable if (Γ, 𝑤) can be uniquely recovered from 𝑋
and the sequence (𝑊Γ(𝑆) | 𝑆 ∈ ℱ).

In the sequel, we use this modified definition.

The most natural regime is when ℱ contains the sets whose size is bounded:

Definition C.3. We say that (Γ, 𝑤) is 𝑡-recoverable if (Γ, 𝑤) is
(︀
𝑋
≤𝑡

)︀
-recoverable, where

(︀
𝑋
≤𝑡

)︀
denotes

the collection of subsets of 𝑋 of size at most 𝑡.

C.2 Reconstructing Γ with full information about 𝑊

In this section we study Problem C.1, when full information about 𝑊Γ(·) is provided, i.e. ℱ = 2𝑋 .

Although the algorithm considered here will have exponential in |𝑋| runtime, it sheds light on the
minimal theoretical assumptions we need for proving identifiability of Γ. We will consider more
efficient algorithms in later sections.

We start by proving Observation 4.3, which notes that if neΓ(𝐻𝑖) = neΓ(𝐻𝑗) for 𝐻𝑖 ̸= 𝐻𝑗 , then
(Γ, 𝑤) is not 2𝑋 -recoverable.

Proof of Observation 4.3. Consider the graph Γ′ obtained from Γ by replacing 𝐻1 and 𝐻2 with a
single variable 𝐻* and by connecting 𝐻* by an edge to all vertices in 𝑋 that are adjacent with 𝐻1 or
𝐻2 in Γ. Define 𝑤(𝐻*) = 𝑤(𝐻1) + 𝑤(𝐻2). Then 𝑊Γ(𝑆) = 𝑊Γ′(𝑆) for any 𝑆 ⊆ 𝑋 .

Corollary C.4. Let ℱ ⊆ 2𝑋 . If there is a pair of distinct variables 𝐻𝑖, 𝐻𝑗 ∈ 𝐻 such that neΓ(𝐻1) =
neΓ(𝐻2), then (Γ, 𝑤) is not ℱ-recoverable.

We now prove that in the case ℱ = 2𝑋 , this is the only obstacle. We start by showing that certain
neighborhoods of hidden variables can be identified using Wsne(·).

As explained in Section 4.2, in the case when ne(𝐻𝑖) ̸⊂ ne(𝐻𝑗) for all 𝐻𝑗 , we expect Wsne(·)
to have a clear “signature” of 𝐻𝑖. We make this intuition precise in the definition and lemma that
follows.
Definition C.5. We say that a set 𝑆 of observed variables 𝑋 is a maximal neighborhood block if
Wsne(𝑆) ̸= 0, but for any superset 𝑆′ of 𝑆 we have Wsne(𝑆′) = 0.
Lemma C.6. A set 𝑆 ⊆ 𝑋 is a maximal neighborhood block if and only if there exists a hidden
vertex 𝐻𝑖 ∈ 𝐻 such that neΓ(𝐻𝑖) = 𝑆 and for any other 𝐻𝑗 ∈ 𝐻 we have 𝑆 ̸⊆ neΓ(𝐻𝑗).

Proof. Assume that 𝑆 ⊆ 𝑋 is a maximal neighborhood block. Since Wsne(𝑆) > 0 the set of
common neighbours sneΓ(𝑆) is non-empty. If sneΓ(𝑆) contains a hidden vertex 𝐻𝑗 that is connected

18

to a vertex 𝑥 /∈ 𝑆 then, 𝐻𝑗 ∈ sneΓ(𝑆 ∪{𝑥}), and WsneΓ(𝑆 ∪{𝑥}) ≥ 𝑤(𝐻𝑗) > 0 which contradicts
the assumption that 𝑆 is a maximal neighborhood block. Therefore, for every 𝐻𝑗 in sneΓ(𝑆), we
have neΓ(𝐻𝑗) ⊂ 𝑆. Therefore, there exists a variable 𝐻𝑖 such that neΓ(𝐻𝑖) = 𝑆 and for any other
𝐻𝑗 ∈ 𝐻 we have 𝑆 ̸⊆ neΓ(𝐻𝑗).

The opposite implication can be verified in a similar way.

Theorem C.7 (Theorem 4.2, part (a)). Let Γ be a bipartite graph with parts 𝑋 and 𝐻 . Assume that
no pair of vertices in 𝐻 has the same set of neighbours (in 𝑋). Then Γ is 2𝑋 -recoverable.

Proof. We prove the claim of the theorem by induction on |𝐻|. The statement for the base case
|𝐻| = 0 immediately follows from the fact that 𝑊 (𝑆) = 0 for all 𝑣 ∈ 𝑋 if and only if |𝐻| = 0 since
𝑤(·) > 0. Assume that we proved the claim for all Γ with |𝐻| = 𝑡 that satisfy the assumptions of the
theorem. Let Γ be a graph with |𝐻| = 𝑡 + 1 that satisfies the assumptions of the theorem.

Using Lemma 4.6, compute values WsneΓ(𝑆) for every 𝑆 ⊆ 𝑋 . Using values of Wsne(·) we can
find a maximal neighborhood block 𝑌 ⊆ 𝑋 . By Lemma C.6, there exists a hidden vertex 𝐻𝑖 such
that {𝐻𝑖} = sneΓ(𝑌). Note that 𝑤(𝐻𝑖) = Wsne(𝑌).

Denote by Γ′ the graph obtained from Γ by deleting 𝐻𝑖.

Now we verify that Γ′ satisfies the assumptions of the theorem. There is nothing to check if the
set of hidden vertices of Γ′ is empty. Assume that Γ′ has a non-empty set of hidden vertices. First,
note that all hidden vertices in Γ′ still have distinct sets of neighbors. Second, note that (cf. (11))
𝑊Γ′(𝑆) = 𝑊Γ(𝑆) if 𝑆 ∩ 𝑌 = ∅ (i.e. 𝐻𝑖 /∈ neΓ(𝑆)), and

𝑊Γ′(𝑆) = 𝑊Γ(𝑆) − 𝑤(𝐻𝑖) = 𝑊Γ(𝑆) − WsneΓ(𝑌)

if 𝑆 ∩ 𝑌 is not empty. Thus, we can compute 𝑊Γ′ from the values of 𝑊Γ.

By the induction hypothesis (Γ′, 𝑤|Γ′) is uniquely recoverable from 𝑊Γ′(𝑆). Let Γ* be the graph
obtained from Γ′ by adding a new variable 𝐻𝑌 of weight WsneΓ(𝑌) and edges between 𝐻𝑌 and 𝑌 .
Then Γ* is isomorphic to Γ, and so Γ is 2𝑋 -recoverable.

C.3 Efficient 𝑡-recovery of Γ for 𝑡 ≥ 3

The approach proposed in Appendix C.2 is exponential in the number of observed variables in the
worst case, since we need to compute the scores of all subsets of 𝑋 . In this section, we show that
with a mild additional assumption, there is an efficient algorithm to learn the bipartite graph between
hidden and observed variables.

As before, let Γ = (𝑋 ∪𝐻,𝐸) be the bipartite graph between hidden and observed variables.

Recall, that we defined 𝐴 to be the |𝑋| × |𝐻| adjacency matrix of Γ (with 0, 1 entries) and 𝑎𝑖 to
denote the 𝑖-th column of 𝐴.

For a sequence of indices 𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑡) ⊆ [𝑛] define

WsneΓ(𝐼) =
∑︁
𝑗∈𝐻

𝑤(𝑗) (𝑎𝑗)𝑖1(𝑎𝑗)𝑖2 . . . (𝑎𝑗)𝑖𝑡⏟ ⏞
𝑡

=
(︁ ∑︁

𝑗∈𝐻

𝑤(𝑗) 𝑎𝑗 ⊗ 𝑎𝑗 ⊗ . . .⊗ 𝑎𝑗⏟ ⏞
𝑡

)︁
(𝐼)

. (12)

Recall, that as pointed out in Remark 4.7, for any 𝑆 ⊆ 𝑋 with |𝑆| ≤ 𝑡 the value WsneΓ(𝑆) can
be computed from the {𝑊Γ(𝑆) | 𝑆 ⊆ 𝑋, |𝑆| ≤ 𝑡} using Lemma 4.6. Therefore, we can make the
following observation.
Observation C.8. All entries of the the tensor 𝑀𝑡 =

∑︀
𝑗∈𝐻

𝑤(𝑗)(𝑎𝑗 ⊗ 𝑎𝑗 ⊗ . . .⊗ 𝑎𝑗⏟ ⏞
𝑡

) can be computed

as 𝑀𝑡(𝐼) = WsneΓ(𝐼) in 𝑂(2𝑡𝑛𝑡) time and space assuming access to {𝑊Γ(𝑆) | 𝑆 ⊆ 𝑋, |𝑆| ≤ 𝑡}.

For fixed 𝑡 this is a poly-time computation. Furthermore, in the settings we consider in Secrion 4 the
values of 𝑊Γ can be computed from MixOracle using Observation 2.7.

Now we want to recover the vectors 𝑎𝑗 from 𝑀𝑡. Since 𝑎𝑗 are the columns of the adjacency matrix
of Γ this is equivalent to recovering the adjacency matrix of Γ or Γ itself up to an isomorphism.

19

Definition C.9. For an order-𝑡 tensor 𝑀𝑡 its rank is defined as the smallest 𝑟 such that 𝑀𝑡 can be
written as

𝑀𝑡 =

𝑟∑︁
𝑗=1

𝑐𝑗

𝑡⨂︁
𝑖=1

𝑥
(𝑖)
𝑗 . (13)

Such decomposition of 𝑀 with precisely 𝑟 components is called a minimum rank decomposition or a
CP-decomposition.
Lemma C.10. If the decomposition

𝑀𝑡 =
∑︁
𝑗∈𝐻

𝑤(𝑗) 𝑎𝑗 ⊗ 𝑎𝑗 ⊗ . . .⊗ 𝑎𝑗⏟ ⏞
𝑡

is the unique minimum rank decomposition, then (Γ, 𝑤) is 𝑡-recoverable.

Proof. In order to recover Γ and 𝑤 we compute 𝑀𝑡 using {𝑊Γ(𝑆) | 𝑆 ⊆ 𝑋, |𝑆| ≤ 𝑡}. Then 𝑎𝑗 and
𝑤(𝑗) can be uniquely (up to permutation) identified from minimum rank decomposition of 𝑀 .

The following simplified version of Kruskal’s condition was proposed by Lovitz and Petrov.
Theorem C.11 ([44, Theorem 2]). Let 𝑚 ≥ 2 and 𝑡 ≥ 3 be integers. Let 𝑉 = 𝑉1 ⊗ 𝑉2 ⊗ . . .⊗ 𝑉𝑡

be a multipartite vector space over a field F and let

{𝑥(1)
𝑗 ⊗ 𝑥

(2)
𝑗 ⊗ . . .⊗ 𝑥

(𝑡)
𝑗 | 𝑗 ∈ [𝑚]} ⊂ 𝑉 }

be a set of 𝑚 rank-1 (product) tensors. For a subset 𝑆 ⊆ [𝑚] with |𝑆| ≥ 2 and 𝑗 ∈ [𝑡] define

𝑑𝑖(𝑆) = dim span{𝑥(𝑖)
𝑗 | 𝑗 ∈ 𝑆}.

If 2|𝑆| ≤
𝑡∑︀

𝑖=1

(𝑑𝑖(𝑆) − 1) + 1 for every such 𝑆, then∑︁
𝑗∈[𝑚]

𝑥
(1)
𝑗 ⊗ 𝑥

(2)
𝑗 ⊗ . . .⊗ 𝑥

(𝑡)
𝑗

constitutes a unique minimal rank decomposition.

In our settings the sufficient condition for having the unique minimal rank decomposition takes the
following form.
Corollary C.12. Assume that for every 𝑆 ⊆ 𝐻 with |𝑆| ≥ 2 we have

dim span{𝑎𝑗 | 𝑗 ∈ 𝑆} ≥ 2

𝑡
|𝑆| + 1,

then the decomposition 𝑀𝑡 =
∑︀
𝑗∈𝐻

𝑤(𝑗) 𝑎𝑗 ⊗ 𝑎𝑗 ⊗ . . .⊗ 𝑎𝑗⏟ ⏞
𝑡

is the unique minimum rank decomposi-

tion and so (Γ, 𝑤) is 𝑡-recoverable.

Proof. Take F = R, then the result follows from C.11 for 𝑥(1)
𝑗 = 𝑤(𝑗)𝑎𝑗 and 𝑥

(𝑖)
𝑗 = 𝑎𝑗 .

Proof of Theorem 4.2 part (b). Follows by combining Corollary C.12 and Lemma C.10.

Learning the components of the minimum rank decomposition is a very well-studied problem
for which a variety of algorithms have been proposed in the literature (see the survey [76] or the
book [49]). We can use Jennrich’s algorithm [34] (see also [49, 76] and the references therein) as an
efficient algorithm with guarantees:

Theorem C.13 (Jennrich’s algorithm [34]). Assume that the components of the tensor 𝒯 =
𝑟∑︀

𝑖=1

𝑎𝑖 ⊗

𝑏𝑖 ⊗ 𝑐𝑖 satisfy the following conditions. The vectors {𝑎𝑖 | 𝑖 ∈ [𝑟]} are linearly independent, the
vectors {𝑏𝑖 | 𝑖 ∈ [𝑟]} are linearly independent, and no pair of vectors 𝑐𝑖, 𝑐𝑗 is linearly dependent for
𝑖 ̸= 𝑗. Then the components of the tensor can be uniquely recovered in 𝑂(𝑛3) space and 𝑂(𝑛4) time.

20

Remark C.14. Note that if all vectors 𝑎𝑖 are linearly independent, then the assumptions of Corol-
lary C.12 are satisfied.

Remark C.15. A similar problem for 𝑡-recovery (for weighted hypergraphs) arose in a completely
different context [5]. While in both papers the problem is reduced to recovering the minimum rank
decomposition of a carefully constructed tensor, we give better recovery guarantees for this problem
by using more recent uniqueness guarantees [44].

D Reconstruction of the probability distribution on 𝐻 . Proofs for Section 5

In this section we discuss how one may reconstruct the hidden probability distribution on P(𝐻) from

• the bipartite graph Γ, and
• the function 𝐿 : [𝐾] → [𝑘1] × · · · × [𝑘𝑛], and
• the mixture weights (probabilities) {𝜋(𝑋, 𝑖) | 𝑖 ∈ [𝑘(𝑋)]} = {P(𝑍 = 𝑖) | 𝑖 ∈ [𝑘(𝑋)]}

D.1 A key lemma

Below we formulate the key lemma that allows us to relate the structure present in the map 𝐿 with
the causal structure in 𝐺.

Given a state 𝐻 = (ℎ1, . . . , ℎ𝑚) and its corresponding component 𝑃 (𝑋 |𝐻1 = ℎ1, . . . ,𝐻𝑚 = ℎ𝑚),
we want to identify the components 𝑃 (𝑋 |𝐻1 = ℎ′

1, 𝐻2 = ℎ2, . . . ,𝐻𝑚 = ℎ𝑚) that result from
changing just the first hidden variable while keeping every other hidden variable fixed. The next
lemma says that we can identify such components by looking into the distribution of the observed
variables that are not children of 𝐻1.
Lemma D.1. Let 𝐻𝑖 be a hidden variable and let 𝐶(𝑋 ∖ neΓ(𝐻𝑖), 𝑗) be an arbitrary mixture
component observed in a marginal mixture distribution over the variables in 𝑋 ∖ neΓ(𝐻𝑖). Let
𝐶(𝑗1), 𝐶(𝑗2), . . . 𝐶(𝑗𝑡) be all the mixture components in the distribution of 𝑋 whose marginal
distribution over 𝑋 ∖ neΓ(𝐻𝑖) is equal to 𝐶(𝑋 ∖ neΓ(𝐻𝑖), 𝑗). In other words, 𝐿(𝑗𝑠)𝑖 = 𝑗 for all
𝑠 ∈ [𝑡]. Then 𝑡 = dim(𝐻𝑖) and every 𝐶(𝑗𝑠) for 𝑠 ∈ [𝑡] corresponds to a distinct value of 𝐻𝑖.

Proof. Observe that Assumption 3.1 implies that neΓ(𝑋 ∖ neΓ(𝐻𝑖)) = 𝐻 ∖ {𝐻𝑖}. Therefore, by
Assumption 2.4(b), 𝑝(𝑋 ∖ neΓ(𝐻𝑖) | 𝐻 = ℎ1) ∼ 𝑝(𝑋 ∖ neΓ(𝐻𝑖) | 𝐻 = ℎ2), if and only if ℎ1 and
ℎ2 differ only in the value of 𝐻𝑖.

D.2 Examples

Prior to presenting our algorithm in full generality we show how it works on Example 5.2 from Sec-
tion 5. The basic idea is the following: We start by arbitrarily assigning a component 𝐶(𝑋, 𝑖)—and
hence its corresponding probability 𝜋(𝑋, 𝑖) to some hidden state ℎ* = (ℎ1, . . . , ℎ𝑚). This assign-
ment amounts to declaring P(𝐻1 = ℎ1, . . . ,𝐻𝑚 = ℎ𝑚) = 𝜋(𝑋, 𝑖) and P(𝑋 |𝐻1 = ℎ1, . . . ,𝐻𝑚 =
ℎ𝑚) = 𝐶(𝑋, 𝑖). The choice of initial state ℎ* here is immaterial; this can be done without loss of
generality since the values of the hidden variables can be relabeled without changing anything. From
here we proceed inductively by considering hidden states that differ from the previously identified
states by in exactly one coordinate. In the example below, we start with ℎ* = (0, . . . , 0) and then use
this as a base case to identify ℎ* + 𝑒𝑖 for each 𝑖 = 1, . . . ,𝑚, where

(𝑒𝑖)𝑗 =

{︂
1 𝑖 = 𝑗

0 𝑖 ̸= 𝑗.

Note that ℎ* and 𝑒𝑖 differ in exactly one coordinate. We then repeat this process until all states have
been exhausted. The following example illustrates the procedure and explains how Lemma D.1 helps
to resolve the ambiguity regarding the assignment of components to hidden states in each step.
Example D.2. Consider the DAG 𝐺 in Fig. 4. It has 3 hidden variables, each of which takes values
in {0, 1}. By Assumption 2.4 every observed variable is a mixture of 4 components, while the

21

𝐻1

𝑋1

𝐻2 𝐻3

𝑋2 𝑋3

?

?

?

A bipartite graph Γ

Figure 4: Example of P(𝐻) learning

distribution on 𝑋 is a mixture of 8 components. Note that the anchor word assumption is violated
here, while SSC (Assumption 3.1) is satisfied. The map 𝐿 : [8] → [4] × [4] × [4] can be written as:

𝑖 : 1 2 3 4 5 6 7 8
𝐿(𝑖) : (2, 4, 3), (4, 3, 4), (4, 4, 2), (3, 2, 4), (2, 3, 1), (1, 1, 3), (3, 1, 2), (1, 2, 1)

We want to find the correspondence between ℎ ∈ Ω = {0, 1}3 and 𝑖 ∈ [8].

We start by picking an arbitrary component, say 1, and assign it to (𝐻1, 𝐻2, 𝐻3) = (0, 0, 0). Next,
we make use of Lemma D.1. Since we know Γ, we know ch(𝐻𝑖) for each 𝑖. In particular, for the
hidden variable 𝐻1, we know ch(𝐻1) = {𝑋1, 𝑋2}. This implies that if 𝐻2, 𝐻3 are fixed while 𝐻1

changes its value, then the component of 𝑋3 is unchanged. It follows that the third coordinate of 𝐿 is
also unchanged. This gives us a way to pair up the components that have the same third coordinate
𝐿(𝑖)3; the pairs are (1, 6), (2, 4), (3, 7) and (5, 8). By our previous observation, these pairs are
in one-to-one correspondence with unique states of (𝐻1, 𝐻2) = (ℎ1, ℎ2), and each pair identifies
the pair of components (𝑃 (𝑋 |𝐻1 = 0, 𝐻2 = ℎ2, 𝐻3 = ℎ3), 𝑃 (𝑋 |𝐻1 = 1, 𝐻2 = ℎ2, 𝐻3 = ℎ3)).
Note that at this stage, there is still ambiguity as to which coordinate of each pair corresponds to
which component.

Similarly, we can pair up the components that correspond to assignments of hidden variables that
differ only in the value of 𝐻2. The pairs are (1, 3), (2, 5), (4, 8) and (6, 7). Finally, for 𝐻3 the pairs
are (1, 5), (2, 3), (4, 7) and (6, 8).

Since component 1 is assigned to (𝐻1, 𝐻2, 𝐻3) = (0, 0, 0) we can deduce that

(𝐻1, 𝐻2, 𝐻3) : (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1)
𝑐𝑜𝑚𝑝.# : 1 6 3 ? 5 ? ? ?

Assume that we know which components correspond to the hidden variable state (𝐻1, 𝐻2, 𝐻3) =
(ℎ1, ℎ

′
2, ℎ3) and (𝐻1, 𝐻2, 𝐻3) = (ℎ′

1, ℎ2, ℎ3), with ℎ1 ̸= ℎ′
1 and ℎ2 ̸= ℎ′

2. Then we can use the
information above to deduce which components correspond to the hidden state (ℎ′

1, ℎ
′
2, ℎ3) since it

differs from them in just 1 position. Hence, we can deduce

(𝐻1, 𝐻2, 𝐻3) : (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1)
𝑐𝑜𝑚𝑝.# : 1 6 3 7 5 8 2 ?

Note that since (1, 1, 1) differs from the four states identified in the first step in two entries, this
has not been determined yet. However, repeating this argument a third time we can deduce that
component 4 corresponds to (𝐻1, 𝐻2, 𝐻3) = (1, 1, 1).

To illustrate how algorithm works in the case of non-binary latent variables we provide one more
example.
Example D.3. Assume that P(𝑉) is Markov with respect to the DAG 𝐺 in Figure 5 where we make
no assumption about causal relation between 𝐻1 and 𝐻2. Assume that dim(𝐻1) = dim(𝐻2) = 3.

22

𝐻1 𝐻2

𝑋2 𝑋3 𝑋4𝑋1

?

Figure 5: A bipartite graph Γ in Example D.3

Suppose that the map 𝐿 : [9] → [9] × [3] × [3] × [3] is given by:

𝑖 : 1 2 3 4 5
𝐿(𝑖) : (1, 2, 1, 3), (3, 3, 3, 1), (4, 1, 2, 2), (2, 2, 1, 1), (7, 2, 1, 2),
𝑖 : 6 7 8 9

𝐿(𝑖) : (5, 1, 2, 1), (9, 1, 2, 3), (8, 3, 3, 3) (6, 3, 3, 2)

We want to find the correspondence between ℎ ∈ Ω = {0, 1, 2}2 and 𝑖 ∈ [9].

As in the previous example, in order to see which components correspond to the states of latent
variables where 𝐻2 is fixed and 𝐻1 takes all values in {0, 1, 2} we group together the components
that have the same value of 𝐿 on 𝑋 ∖ ch(𝐻1) = {𝑋4}. We get the following groups (1, 7, 8), (2, 4, 6)
and (3, 5, 9).

Similarly, by comparing the values of 𝐿 on 𝑋 ∖ ch(𝐻2) = {𝑋2, 𝑋3} we get that the following groups
correspond to a fixed value of 𝐻1, while 𝐻2 vary: (1, 4, 5), (2, 8, 9) and (3, 6, 7).

Since values of 𝐻𝑖 are determined up to relabeling we can arbitrarily assign a component, say
1, to (𝐻1 = 0, 𝐻2 = 0). Now, using Lemma D.1, we know that components that correspond to
(𝐻1 = 1, 𝐻2 = 0) and (𝐻1 = 2, 𝐻2 = 0) are 7 and 8, and again because values of 𝐻𝑖 can be
relabeled, at this point the choice is arbitrary. Using the similar argument for 𝐻2, we can deduce the
following correspondence:

(𝐻1, 𝐻2) : (0, 0), (1, 0), (2, 0) (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)
𝑐𝑜𝑚𝑝.# : 1 7 8 4 ? ? 5 ? ?

At this point the labeling of the values of hidden variables is fixed. Now let us consider an index of
hamming weight 2, say (1, 1). We know that the component, that corresponds to this state of latent
variables, differs from the component 4, that corresponds to (0, 1), only due to the change of 𝐻1.
Hence, the component that corresponds to (1, 1) is in the set {2, 4, 6}. At the same time, we know
that it differs from the component 7 that corresponds to (1, 0) only due to the change of 𝐻2. Hence,
the desired component is in the set {3, 6, 7}. By taking the intersection of sets {2, 4, 6} and {3, 6, 7}
we deduce that the value that corresponds to (1, 1) is 6. Similarly we can determine the rest of the
values.

(𝐻1, 𝐻2) : (0, 0), (1, 0), (2, 0) (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)
𝑐𝑜𝑚𝑝.# : 1 7 8 4 6 2 5 3 9

D.3 Proof of Theorem 5.4

The algorithm described in the previous examples can be used to prove Theorem 5.4. For this, we
present a general algorithm to recover the correspondence Ω ∋ ℎ ↔ 𝑖 ∈ [𝐾] using Lemma D.1.

Proof of Theorem 5.4. Without loss of generality, we may assume that 𝐻𝑖 takes values from Ω𝑖 =
{0, 1, . . . ,dim(𝐻𝑖) − 1} for every 𝑖.

Recall that the Hamming weight of a vector is the number of non-zero coordinates of this vector.
Denote by Ω(𝑡) the set of elements of Ω = Ω1 × Ω2 × . . .× Ω𝑘 of the Hamming weight at most 𝑡.

We start by recovering the entries of the tensor that correspond to the indicies in Ω(1).

23

𝐻1

𝑋1

𝐻2

𝑋2

Model 𝐴

𝐻1

𝑋1

𝐻2

𝑋2

Model 𝐵

Figure 6: An example of the causal latent models that cannot be distinguished from observed data
since Assumption 3.1 is violated

Let us pick an arbitrary mixture component 𝐶 that participates in the observed mixture model and let
us put it in correspondence to ℎ = (0, 0, . . . 0). We assign the probability of observing 𝐶 to the cell
𝐽(0, 0, . . . , 0).

Take any 𝑖 ∈ [𝑚]. Consider the set of 𝑑(𝐻𝑖) mixture components {𝐶𝑖,𝑎 | 𝑎 ∈ Ω𝑖}, guaranteed by
Lemma D.1, that have the same distribution as 𝐶 in coordinates 𝑋 ∖ ch(𝐻𝑖) (here we take arbitrary
indexing by 𝑎). Assign 𝐶𝑖,𝑎 to the vector ℎ𝑖,𝑎 ∈ Ω(1) of Hamming weight 1, that has unique non-zero
value 𝑎 in coordinate 𝑖. And let 𝐽(ℎ𝑖,𝑎) be the probability of observing 𝐶𝑖,𝑎.

Next, we claim that the (valid) correspondence Ω ∋ ℎ ↔ 𝑖 ∈ [𝐾] for ℎ ∈ Ω(𝑡) can be uniquely
extended to the (valid) correspondence Ω ∋ ℎ ↔ 𝑖 ∈ [𝐾] for ℎ ∈ Ω(𝑡+1) for any 𝑡 = 1, . . . ,𝑚− 1.

Indeed, let ℎ ∈ Ω(𝑡+1) and let 𝑖 and 𝑗 be a pair of distinct non-zero coordinates of ℎ. Let ℎ𝑖 and ℎ𝑗

be the vectors obtained by changing the 𝑖-th and 𝑗-th coordinates of ℎ to 0. Let 𝐶𝑖 and 𝐶𝑗 be the
mixture components that correspond to ℎ𝑖 and ℎ𝑗 .

Using Lemma D.1, for 𝑠 ∈ {𝑖, 𝑗} we can find a set 𝑀𝑢 of dim(𝐻𝑢) mixture components that are
equally distributed with 𝐶𝑠 over 𝑋 ∖ neΓ(𝐻𝑠). We put into correspondence with ℎ the unique
component in the intersection of 𝑀𝑖 and 𝑀𝑗 . We define 𝐽(ℎ) to be the probability of observing this
component.

Next we show that our algorithm works in time that is almost linear in the output size (recall that
𝐾 ≥ 2𝑚 and 𝐾 is the size of the output).
Observation D.4. The algorithm described in Theorem 5.4 works in 𝑂((𝑛𝑚 + max𝑖 𝑘𝑖)𝐾) time.

Proof. First, the algorithm in Theorem 5.4 computes the equivalence classes of components that
correspond to states of latent variables that differ just in the value of 𝐻𝑗 . Having access to Γ and 𝐿,
computing these equivalence classes takes at most 𝑂(𝑛𝑚𝐾) time (for each of the 𝑚 hidden variables
we need to compare vectors of values of 𝐿 of length 𝑛 for 𝐾 components).

Once these equivalence classes are computed, the algorithm in Theorem 5.4 sequentially fills in
the joint probability table. If the entries with indices of Hamming weight 𝑡 are filled in, in order to
determine the value of a cell with an index of hamming weight 𝑡+1, we explore at most 2 max𝑖∈[𝑚] 𝑘𝑖
elements of the corresponding equivalence classes. Since eventually we explore all 𝐾 cells of the
joint probability table, the total runtime of this phase is bounded by 𝑂(max𝑖∈[𝑚] 𝑘𝑖)𝐾.

D.4 Proof of Observation 5.5

Finally, we prove the impossibility claim in Observation 5.5.

Proof of Observation 5.5. We claim that if Assumption 3.1 is violated, then P(𝐻) cannot be recov-
ered and moreover 𝐺 is not identifiable. Consider a pair of models on Figure 6, where variables
𝐻1 and 𝐻2 are binary, i.e., they take values {0, 1}. Let 𝑁0, 𝑁1, 𝑁2, 𝑁3 and 𝑁 ′

0, 𝑁
′
1 be independent

Gaussian distributions with distinct means and variances.

24

Suppose that the observed distribution is equal to

(𝑋1, 𝑋2) ∼ 1

9
𝑁0 ⊗𝑁 ′

0 +
2

9
𝑁1 ⊗𝑁 ′

1 +
2

9
𝑁2 ⊗𝑁 ′

0 +
4

9
𝑁3 ⊗𝑁 ′

1 (14)

Now we show that this distribution can be realized by both models A and B.

1. Consistency with A. Let 𝐻1, 𝐻2 be independent random variables that take values {0, 1}
with probabilities (1/3, 2/3).

(𝑋1, 𝑋2) ∼
∑︁

𝑖∈{0,1}

∑︁
𝑗∈{0,1}

P(𝑋2|𝐻1 = 𝑖,𝐻2 = 𝑗)P(𝐻1 = 𝑖)P(𝐻2 = 𝑗), where

P(𝑋1|𝐻1 = 0, 𝐻2 = 0) = 𝑁0, P(𝑋1|𝐻1 = 0, 𝐻2 = 1) = 𝑁1,

P(𝑋1|𝐻1 = 1, 𝐻2 = 0) = 𝑁2, P(𝑋1|𝐻1 = 1, 𝐻2 = 1) = 𝑁3,

P(𝑋2|𝐻2 = 0) = 𝑁 ′
0, P(𝑋2|𝐻2 = 1) = 𝑁 ′

1

2. Consistency with B. Let 𝐻1, 𝐻2 be binary random variables with the following distribution

P(𝐻2 = 0) = 1/3 ,P(𝐻1 = 0|𝐻2 = 0) = 1/3, P(𝐻1 = 1|𝐻2 = 0) = 2/3,

P(𝐻2 = 0) = 2/3, P(𝐻1 = 0|𝐻2 = 1) = 2/3, P(𝐻1 = 1|𝐻2 = 1) = 1/3
(15)

Define components of the mixture distribution to be

(𝑋1, 𝑋2) ∼
∑︁

𝑖∈{0,1}

∑︁
𝑗∈{0,1}

P(𝑋2|𝐻1 = 𝑖,𝐻2 = 𝑗)P(𝐻1 = 𝑖,𝐻2 = 𝑗), where

P(𝑋1|𝐻1 = 0, 𝐻2 = 0) = 𝑁0, P(𝑋1|𝐻1 = 0, 𝐻2 = 1) = 𝑁3,

P(𝑋1|𝐻1 = 1, 𝐻2 = 0) = 𝑁2, P(𝑋1|𝐻1 = 1, 𝐻2 = 1) = 𝑁1,

P(𝑋2|𝐻2 = 0) = 𝑁 ′
0, P(𝑋2|𝐻2 = 1) = 𝑁 ′

1

Since both models 𝐴 and 𝐵 realize distribution P(𝑋), we get that 𝐺 and P(𝐻) are not identifiable.
Observe that Assumption 3.1 is not satisfied for both 𝐴 and 𝐵, while Assumptions 2.2, 2.3 and 2.4
are satisfied for each of 𝐴 and 𝐵.

E Proof of Theorem 3.2

Finally, we collect our results into a proof of the main theorem.

Proof of Theorem 3.2. Suppose that Assumptions 2.2, 2.3 and 2.4 hold, then by Theorem 4.2(a), Γ
and dim(𝐻𝑖), for all 𝑖, can be recovered from P(𝑋). If additionally, the columns of the |𝑋| × |𝐻|
adjacency matrix 𝐴 are linearly independent, then by Theorem 4.8 (see Corollary C.12, Theorem C.13
and Observation C.8), Γ and dim(𝐻𝑖), for all 𝑖, can be reconstructed efficiently in 𝑂(𝑛4) time.

Now, suppose that Assumption 3.1 holds. We can extract the map 𝐿 from the MixOracle (by
taking appropriate projections of component distributions). Therefore, since we have Γ, dim(𝐻𝑖),
{𝜋(𝑋, 𝑖)}𝑖∈[𝐾] and 𝐿, by Theorem 5.4 and Observation D.4, we can reconstruct P(𝐻) efficiently.

F Algorithms

In this section we describe the full pipeline1 for learning 𝐺 from samples of the observed data 𝑋 . As
input we receive a set of samples and as output we return an estimated causal graph 𝐺 and a joint
probability distribution over 𝐻 . The pipeline consists of the following blocks:

(Step a) Learning number of components. Estimates the number of components for all subsets of
observed variables of size at most 3.

• Input: Samples from the distribution P(𝑋)

1The code used to run the experiments can be found at https://github.com/30bohdan/latent-dag

25

https://github.com/30bohdan/latent-dag

• Output: Estimated number of mixture components 𝑘(𝑆) in P(𝑆) for all 𝑆 ⊆ 𝑋 ,
|𝑆| ≤ 3.

(Step b) Reconstruction of the bipartite graph. Implements the algorithm of Theorem 4.8 for
learning the bipartite causal graph Γ.

• Input: The number of mixture components 𝑘(𝑆) in P(𝑆) for all 𝑆 ⊆ 𝑋 , |𝑆| ≤ 3.
• Output: Estimated bipartite graph Γ and sizes of the domains of hidden variables

dim(𝐻𝑖).
(Step c) Learning the projection map 𝐿.

• Input: Samples from the distribution P(𝑋) and the numbers of components 𝑘(𝑋) and
𝑘(𝑋𝑖) for every 𝑖 ∈ [𝑛].

• Output: Estimated projection map 𝐿.
(Step d) Learning the distribution P(𝐻). In this step we implement the algorithm described in

Theorem 5.4, see also Algorithm 1.
• Input: 𝐿, Γ and dim(𝐻𝑖) for all 𝑖 ∈ [𝑚] and weights 𝜋(𝑋, 𝑗) of 𝑘(𝑋) mixture

components.
• Output: Estimated joint probability table of P(𝐻).

We take 𝐿, Γ and dim(𝐻𝑖) for all 𝑖 as an input and return the joint probability table for
P(𝐻) as an output.

(Step e) Learning latent DAG Λ. In this step we estimate the causal graph over latent variables.
• Input: The joint probability table of P(𝐻).
• Output: Estimated causal graph Λ over 𝐻 .

In this paper, we prove theoretical guarantees for Steps (b) and (d), which invoke the mixture
oracle MixOracle. Step (a) implements MixOracle, and Steps (c) and (e) are intermediate steps of
the pipeline. As long as the oracle is correct, Step (c) is guaranteed to output the correct graph.
The correctness of Step (e) depends on the structure learning algorithm used. A nice feature of
our algorithm is its modularity, if a better algorithm is developed for one of the steps, it can be
incorporated without influencing other parts.

Below we discuss various implementation details for these steps.

Details of Step (a): Our implementation of Step (a) uses the following strategy.

1. We estimate the upper bound 𝑘𝑚𝑎𝑥 on the number of components involved in the mixtures
of single variables (this can be done using the silhouette score).

2. For every observed variable 𝑋𝑖 we train 𝐾-means clustering with 𝑘 = 𝑘𝑚𝑎𝑥. After this, we
perform agglomerative clustering for every 𝑡 ∈ [2, 𝑘𝑚𝑎𝑥], and record the silhouette score for
every 𝑡. We pick 5 values of 𝑡 with the best silhouette score.

3. We use the divisibility condition to compute the sets 𝑆𝑋𝑖,𝑋𝑗
of possible numbers of com-

ponents we expect to see over the pairs of variables 𝑋𝑖, 𝑋𝑗 . We use the best 5 predictions
from the previous step for every variable 𝑋𝑖 and include the candidate for the number of
components into 𝑆𝑋𝑖,𝑋𝑗 if it is divisible by one of the top-5 candidates for 𝑋𝑖 and for 𝑋𝑗 .
This step is mainly needed for computational purposes in order to restrict the number of
candidates for the number of components observed over the pairs of variables.

4. Next we learn the mixture of 𝑘 components for every 𝑘 ∈ 𝑆𝑋𝑖,𝑋𝑗
over the pairs (𝑋𝑖, 𝑋𝑗)

of observed variables. Similarly as in 2., we train 𝐾-means for the largest candidate and
perform agglomerative clustering after that.

5. We use divisibility and means voting (discussed in Sec. 6) to decide the best number of
components for the single variables and the pairs of variables. In order to do this we make
the predicted numbers of components for a pair 𝑋𝑖, (𝑋𝑖, 𝑋𝑗) to vote for each other if they
satisfy the divisibility or means projection condition. We count the vote with the weight
proportional to the silhouette score of the predicted number of components. For every 𝑋𝑖,
and every pair (𝑋𝑖, 𝑋𝑗), we take the component with the largest amount of votes as our best
prediction.

26

6. We use means of the components predicted for pairs of variables (𝑋𝑖, 𝑋𝑗) to estimate the
locations of the means for the triples of observed variables. Instead of using 𝐾-means with
the fresh start we initialize it with predicted locations. This improves the running time. We
use 𝐾-means and silhouette score to predict the number of components for the triples of
observed variables.

Details of Step (b): In this step we use Corollary 4.4, Eq. (6) and Lemma 4.6 to compute entries
of the tensor 𝑀3 using the output of Step (a). After this we apply Jennrich’s algorithm to learn
the components of the tensor. As discussed in Appendix C.3 this is sufficient to reconstruct Γ
and dim(𝐻𝑖). In case Jennrich’s algorithm did not successfully execute due to numerical issues,
alternating least squares (ALS) was used as a failsafe. In this case, the number of hidden variables 𝑚
was used as input.2

Details of Step (c): We use Γ and dim(𝐻𝑖) to compute the number of components we expect to
observe in P(𝑋𝑖) for every observed variable 𝑋𝑖 and the number of components in the distribution
P(𝑋) over the entire set of observed variables. After this we use 𝐾-means to learn the components
in the mixture distribution over every variable 𝑋𝑖 and over the entire set of observed variables. For
every 𝑖, and for every mixture component of P(𝑋), we project its mean into the subspace over which
𝑋𝑖 is defined. We use the closest in 𝐿2 distance mean of the components in P(𝑋𝑖) as a prediction for
the projected component.

Details of Step (d): We implement the algorithm described in Theorem 5.4. See Algorithm 1 for
details.

Details of Step (e): Once we obtain the estimated joint probability table, we run the Fast Greedy
Equivalence Search [57] to learn the edges of the Latent graph 𝐻 , where we used the Discrete BIC
score. FGES returns a CPDAG by default, so some edges may be undirected. We accordingly report
both the Structural Hamming Distance (SHD) and the Unoriented Correct Edges (UCE) as metrics
for our experiments. We remark that this step may be improved by using other algorithms such as PC
[69] or other scores, which is an interesting direction for future work.

G Experiment details

Data generation For each experiment, the data generation process was as follows:

• (𝑚,𝑛): Chosen from among (1, 3), (2, 5), (3, 7), (3, 8), (4, 7), (4, 8) in the ratio 1 : 2 : 2 :
3 : 1 : 1

• Domain sizes |Ω𝑖|: Sampled from {2, 3, 4, 5, 6}. If |Ω| = |Ω1| . . . |Ω𝑚| > 50, we skip the
experiment.

• P(𝐻): Generated via the Markov property. For each variable 𝐻𝑖, conditioned on its parents
𝐻pa(𝑖), a discrete distribution supported on Ω𝑖 is chosen as follows: For each element 𝑖
in Ω𝑖, a random integer 𝑐𝑖 is picked from [1, 4] and distribution picks 𝑖 with probability
proportional to 𝑐𝑖.

• Λ: Choose an arbitrary topological order uniformly at random and sample each directed
edge independently with probability 0.6.

• Γ: Sample each directed edge from 𝐻 to 𝑋 with probability 0.5. Enforce assumption 3.1
and linear independence of the columns 𝑎𝑗 of the adjacency matrix 𝐴.

• Components: We generate Gaussian components for every 𝑋𝑖 in R5 with random means
and covariances. We take the means of the components to be sampled uniformly at random
from the unit sphere. We take random symmetric diagonally dominant covariance matrices
with the largest eigenvalue being 0.01. (Note that for 50 points on a unit 5-dimensional
sphere, we expect to observe a pair of points at distance of the same order of magnitude).

• Samples: We generate samples from the mixture components generated on the previous step
with probabilities defined by P(𝐻).

2This can easily be avoided by running ALS for multiple values of 𝑚 and choosing the best fit. Since this
issue arose in only a minority of cases, we did not implement this feature.

27

Algorithm 1: Learning P(𝐻)

Input:
• A bijective map 𝐿 : [𝑘(𝑋)] → [𝑘(𝑋1)] × [𝑘(𝑋2)] × . . .× [𝑘(𝑋𝑛)];
• A bipartite graph Γ between 𝑋 and 𝐻

• Values dim(𝐻𝑖) for 𝑖 ∈ 𝐻 .
• Values P(𝑍 = 𝑖) for 𝑖 ∈ [𝑘(𝑋)] (the probabilities of observing the mixture components)

Output: An dim(𝐻1) × . . .× dim(𝐻𝑚) tensor such that 𝐽 ∼= P(𝐻)
// Phase 1: use Lemma D.1 to compute the sets of components that

correspond to a change in a single hidden variable
1 arrows = {}
2 for 𝐻𝑖 ∈ 𝐻 do
3 S = 𝑋 ∖ 𝑛𝑒Γ(𝐻𝑖)
4 for 𝑐1, 𝑐2 ∈ [𝑘(𝑋)] do
5 if (𝐿(𝑐2)𝑆 == 𝐿(𝑐1)𝑆) and 𝑐1 ̸= 𝑐2 then
6 arrows[𝐻𝑖][𝑐1].append(𝑐2)

// Phase 2: initialize 𝑇 "along the edges"
7 𝐴(0, . . . 0) = 0, 𝑇 (0, . . . 0) = P(𝑍 = 0)
8 for 𝐻𝑖 ∈ 𝐻 and 𝑡 ∈ dim(𝐻𝑖) do
9 𝐴(0, . . . , 𝑡, . . . 0) = 𝑎𝑟𝑟𝑜𝑤𝑠[𝐻𝑖][0][𝑡] // Note that an order does not matter

10 𝐽(0, . . . , 𝑡, . . . 0) = P(𝑍 = 𝑎𝑟𝑟𝑜𝑤𝑠[𝐻𝑖][0][𝑡])

// Phase 3: reconstruct all other entries of the tensor
11 𝑟 = 1
12 while 𝑟 < 𝑚 do
13 for 𝑖𝑛𝑑 ∈ dim(𝐻1) × . . . dim(𝐻𝑟) do
14 for 𝑗 = 𝑟 + 1, . . . ,𝑚 and 𝑡 ∈ dim(𝐻𝑡) do
15 Let 𝑖 be the smallest index at which 𝑖𝑛𝑑 is non-zero.
16 Let 𝑖𝑛𝑑′ be an index obtained from 𝑖𝑛𝑑 by changing 𝑗-th entry from 0 to 𝑡
17 Let 𝑖𝑛𝑑′′ be obtained from 𝑖𝑛𝑑′ by changing 𝑖-th entry to 0.
18 Let 𝑥 be the unique entry in the intersection of arrows[𝐻𝑖][𝐴(𝑖𝑛𝑑′′)] and

arrows[𝐻𝑡][𝐴(𝑖𝑛𝑑)].
19 𝐴(𝑖𝑛𝑑′) = 𝑥
20 𝐽(𝑖𝑛𝑑′) = P(𝑍 = 𝑥)

21 return 𝑇

We do not enforce minimum probability sizes or cluster sizes. As a result, the data generating process
is likely to generate models which are extremely difficult to learn (e.g. if a randomly generated
probability is very small, a mixture component will have few samples, which makes learning difficult).
As a result, some random configurations may fail. We ran a total of 724 experiments; out of these,
8.3% failed in the oracle learning phase and another 8.8% failed to produce a graph because of very
high domain sizes or unfeasible 𝐿. In the cases when the Jennrich algorithm failed due to numerical
issues, this was caught and replaced with ALS for practical purposes as described in Step (b) above.
These errors are conveniently caught during runtime and can be attributed to either the data generation
process or the finite sample size as described above. Fig. 3 reports the metrics for the remaining
600 experiments: 300 experiments each for 𝑁 = 10000 samples and 𝑁 = 15000 samples. The
experiments were run on a single node of an internal cluster.

Experiments with smaller sample size. The number of samples in the experiments discussed
above is chosen so that every cluster component has approximately 20 samples. We also explored
the behaviour of our algorithms when the number of samples is much smaller. We ran a total of 136
experiments for 𝑁 = 1000 samples, with (𝑚,𝑛) chosen from (1, 3), (2, 5), (3, 7), (4, 7), (3, 8) in
proportion 1 : 2 : 1 : 1 : 1. Out of these, 4.4% failed in the oracle learning phase and another 8.8%
failed to produce a graph because of very high domain sizes or unfeasible 𝐿. Furthermore, out of

28

(1, 3) (2, 5) (3, 7) (3, 8) (4, 7) (4, 8)
(m, n)

0

1

2

3

4

5

6

10000 samples

Metric
SHD
UCE

(1, 3) (2, 5) (3, 7) (3, 8) (4, 7) (4, 8)
(m, n)

0

1

2

3

4

5

6

15000 samples

Metric
SHD
UCE

(1, 3) (2, 5) (3, 7) (3, 8) (4, 7)
(m, n)

0

1

2

3

4

5

6

1000 samples

Metric
SHD
UCE

Box plots of Structural Hamming Distance (SHD) and Unoriented Correct Edges (UCE)

Figure 7: Average Structural Hamming distance for recovery of 𝐺, where 𝑚 = |𝐻| and 𝑛 = |𝑋|.

all failures, 25% happen for (𝑚,𝑛) = (4, 7) and other 37.5% happen for (𝑚,𝑛) = (3, 8). We report
the metrics on Fig. 7.

We mention, that with 𝑁 = 1000 samples, we were able to recover 𝐻 and Ω even in the cases when
several latent states had fewer than five observations. Also, for comparison, to give an example where
we were not able to recover 𝐻 and Ω exactly: the mixture model had 48 components with 1, 2, 2, 3,
3, 5, 5, 5, 6 . . . , 53, 55 samples per component. This is clearly an extremely challenging setup: Some
states had only a few observations and the true number of components is unknown to the procedure.

Choice of parameters for learning Λ. Once we have recovered the estimated joint probability
table of 𝐻 , to learn Λ, we use the Fast Greedy Equivalence Search algorithm [57] with the Discrete
BIC score. We use the PyCausal library [77]. We used the default parameters (no hyperparameter
tuning) and in particular, we did not assume faithfulness.

29

Approximate Runtime The average runtimes for each experiment are in the following table.

Table 1: Average runtime in seconds

(m, n) 10000 samples 15000 samples
(1, 3) 30.64 s 53.06 s
(2, 5) 89.03 s 148.81 s
(3, 7) 288.25 s 385.27 s
(3, 8) 320.25 s 616.86 s
(4, 7) 297.32 s 400.04 s
(4, 8) 361.28 s 604.14 s

Average number of edges For our experiments, the average total number of edges in Λ,Γ (also
known as NNZ of 𝐺) are in the following table.

Table 2: Average number of edges for different settings

(m, n) Number of Samples Average number of edges in 𝐺 = (Λ,Γ)

(1, 3) 10000 3.0
(1, 3) 15000 3.0
(1, 3) 1000 3.0
(2, 5) 10000 7.15
(2, 5) 15000 6.95
(2, 5) 1000 6.98
(3, 7) 10000 13.52
(3, 7) 15000 13.2
(3, 7) 1000 13.7
(3, 8) 10000 15.27
(3, 8) 15000 15.16
(3, 8) 1000 15.3
(4, 7) 10000 17.43
(4, 7) 15000 18.17
(4, 7) 1000 18.35
(4, 8) 10000 19.87
(4, 8) 15000 20.13

Scatter plots The scatter plots for the Structural Hamming distance (SHD) versus the total number
of edges |𝐸(𝐺)| in 𝐺 and that of the unoriented correct edges (UCE) vs |𝐸(𝐺)| is given in Fig. 8.

30

5 10 15 20 25
|E(G)|

0

1

2

3

4

5

6

SH
D

SHD for 10000 samples

(m, n)
(1, 3)
(2, 5)
(3, 7)
(3, 8)
(4, 7)
(4, 8)

5 10 15 20 25
|E(G)|

0

1

2

3

4

5

6

SHD for 15000 samples

(m, n)
(1, 3)
(2, 5)
(3, 7)
(3, 8)
(4, 7)
(4, 8)

5 10 15 20
cur_nnz

SHD for 1000 samples

(m, n)
(1, 3)
(2, 5)
(3, 7)
(3, 8)
(4, 7)

5 10 15 20 25
|E(G)|

0

1

2

3

4

5

6

U
C

E

UCE for 10000 samples

(m, n)
(1, 3)
(2, 5)
(3, 7)
(3, 8)
(4, 7)
(4, 8)

5 10 15 20 25
|E(G)|

0

1

2

3

4

5

6

UCE for 15000 samples

(m, n)
(1, 3)
(2, 5)
(3, 7)
(3, 8)
(4, 7)
(4, 8)

5 10 15 20
cur_nnz

UCE for 1000 samples

(m, n)
(1, 3)
(2, 5)
(3, 7)
(3, 8)
(4, 7)

Scatter plots for SHD vs |E(G)| and UCE vs |E(G)|

Figure 8: Scatterplots where 𝑚 = |𝐻| and 𝑛 = |𝑋|.

31

