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HOI-Diff: Text-Driven Synthesis of 3D Human-Object Interactions using
Diffusion Models

Supplementary Material

A. Additional Details of Methodology791

In Sec. 3 of our main paper, we presented the foundational792
design of each key component in our HOI-Diff pipeline.793
Here, we delve into an elaborate explanation of model archi-794
tecture, learning objectives and additional details associated795
with each crucial component.796

A.1. Dual-branch diffusion model (DBDM)797

The Communication Module (CM) in DBDM is based on798
the cross attention mechanism. Formally,799

f̃h = MLP(Attn(fhWQ,f
oWK ,foWV )), (8)800

801

f̃o = MLP(Attn(foWQ,f
hWK ,fhWV )), (9)802

where MLP(·) denotes fully-connected layers, Attn(·) is803
the attention block [54], and WQ,WK ,WV are learned804
projection matrices for query, key, and value, respectively.805

The training objective of this full model is based on re-806
construction loss807

Lhoi = Et∼[1,T ]∥Mθ(xt, t, c)− x0∥22, (10)808

where x0 is the ground truth of the HOI sequence.809

A.2. Affordance prediction diffusion model810
(APDM).811

Model architecture. The affordance prediction diffusion812
model comprises eight Transformer layers for the encoder813
with a PointNet++ [38] to encode the object’s point clouds.814
The training objective of this diffusion model is also based815
on reconstruction loss816

Laff = Et∼[1,T ]∥Aθ(yt, t,p,d)− y0∥22, (11)817

where y0 is the ground-truth affordance data. p and d denote818
object point cloud and text description (prompt), respectively.819
Aθ represents the affordance prediction diffusion model.820

Inferring object state with GPT-3.5-turbo in APDM. To821
infer the state of an object, we directly leverage the strong822
prior knowledge of large language models to derive the re-823
sult. Specifically, we utilize the GPT-3.5-turbo [34] API by824
inputting specific instructions, allowing it to infer the result825
directly based on the input HOI text description. The prompt826
template for instruction is shown in Figure 6.827

A.3. Affordance-guided interaction correction. 828

During the inference stage, it’s found that the predicted ob- 829
ject contact positions may occasionally be inaccurately posi- 830
tioned, residing either inside or outside the object. To rectify 831
this, we implement post-processing steps that replace these 832
predicted contact points, denoted as yo

0 , with their nearest 833
neighbors from the object’s point clouds. This adjustment 834
aims to enhance the accuracy of the updated contact points, 835
aligning them more closely with their actual positions on the 836
object’s surface. However, employing these updated contact 837
points directly for contact constraints, particularly in the 838
absence of detailed human shape information, introduces 839
a new challenge. It can potentially lead to penetration is- 840
sues within the contact area while reconstructing the human 841
mesh in the final stage. To mitigate contact penetration, we 842
adopt a method that recalculates points at a specified dis- 843
tance outward, perpendicular to the normal, originating from 844
the object’s contact points. This process can formulated as: 845
ỹ0o = ŷo

0 + vin ∗d, where i ∈ {1, 2} indicates the ith object 846
contact points, vin denotes the normal vector at that point 847
and d = 0.05 is a contact distance threshold. 848

As for smoothness term, we formulate it as 849

Gsmo =

L−1∑
l=1

∥xo
0(l + 1)− xo

0(l)∥
2
, (12) 850

where xo
0(l) is the predicted 6DoF pose of the object in the 851

l-th frame. 852

Figure 6. Prompt template for inferring object state.
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Algorithm 1 Affordance-guided Interaction Correction
Require: Input c = (d,p) consisting of a textual description d and

object point cloud p, HOI-Diff model Mθ, objective function
G(µh

t ,µ
o
t ,y0), and estimated affordance y0 = (yh

0 ,y
o
0,y

s
0).

1: xh
T ,x

o
T ← sample from N (0, I)

2: K = 1
3: for all t from T to 1 do
4: xh

0 ,x
o
0 ← Mθ(x

h
t ,x

o
t , t, c) # Get µh

t ,µ
o
t according to Eq.(2)

with Σt

5: if t = 1 then
6: K = 100
7: end if
8: for all k from K to 1 do # Separately perturb
9: µh

t ← µh
t − τ1Σt∇µh

t
G(µh

t ,µ
o
t ,y0), µo

t ← µo
t −

τ2Σt∇µo
t
G(µh

t ,µ
o
t ,y0)

10: end for
11: xh

t−1 ∼ N (µh
t ,Σt), xo

t−1 ∼ N (µo
t ,Σt)

12: end for
13: return xh

0 ,x
o
0

853

B. Implementation Details854

Both our DBDM and APDM are built on the Transformer855
[54] architecture. Similar to MDM [51], we employ the856
CLIP model to encode text prompts, adhering to a classifier-857
free generation process. Our models are trained using858
PyTorch [35] on 1 NVIDIA A5000 GPU. We set con-859
trol strength of guidance as τ1 = 1, τ2 = 100, and Σt =860
min(Σt, 0.01). Both the DBDM and APDM are trained on861
the same data for 20k steps.862

Both the DBDM and APDM architectures of HOI-Diff863
are based on Transformers with 4 attention heads, a latent864
dimension of 512, a dropout of 0.1, a feed-forward size of865
1024, and the GeLU activation [15]. The number of learned866
parameters for each model is stated in Table 4.867

Our training setting involves 20k iterations for the DBDM868
and 10k iterations for the APDM model. These iterations uti-869
lize a batch size of 32 and employ the AdamW optimizer [30]870
with a learning rate set at 10−4. We use T=1000 and N=500871
diffusion steps in DBDM and APDM, respectively.872

C. Additional Details of Baselines873

• MDMfinetuned: We finetune MDM [51] on BEHAVE874
dataset without considering the object motion.875

• MDM*: We extend the original feature dimensions of876
the input and output processing in MDM [51] from Dh877
to Dh +Do, enabling support for HOIs sequences. The878
model is trained from scratch on BEHAVE dataset [4].879

• PriorMDM*: The proposed approach for dual-person mo-880
tion generation employs paired fixed MDMs [51] per in-881
dividual to ensure uniformity within generated human882
motion distributions. This design leverages a singular883
ComMDM to coordinate between the two branches of884
fixed MDM instances, streamlining training and maintain-885
ing consistency across generated motions. Given that both886
branches are based on MDM that pretrained on human mo-887
tion datasets, direct utilization of them for human-object in-888

Figure 7. Effect of different total numbers of perturbations
in the whole denoising process. (a) Perturb one time in each
denoising step (in total T = 1000). (b) Perturb one time in first
T − 1 denoising steps, and repeatedly perturb 10 times in the final
denoising step. (c) Perturb one time in first T − 1 denoising steps,
and repeatedly perturb 100 times in the final denoising step.

teractions in our task is infeasible. We maintain one branch 889
dedicated to humans, leveraging pre-trained weights, while 890
adapting the input and output processing of another branch 891
specifically for generating object motion. Following this, 892
we fine-tune the human MDM branch while initiating the 893
learning of object motion from scratch within the object 894
branch. Eventually, we integrate ComMDM to facilitate 895
communication and coordination between these distinct 896
branches handling human and object interactions. 897

• InterDiff: InterDiff [61] is originally designed for a pre- 898
diction task rather than text-driven HOIs generation. To 899
tailor it to our task, we replace its Transformer encoder 900
with a CLIP encoder and modify its feature dimensions of 901
the input and output layers. 902

To ensure fair comparisons, all the above baselines as 903
well as our own models are all trained on BEHAVE and 904
OMOMO datasets for 20k steps. 905

D. Additional Details of Evaluation Metrics 906

For detailed information regarding metrics employed in hu- 907
man motion generation, including FID, R-Precision, and 908
Diversity, we refer readers to [13, 51] for comprehensive 909
understanding. 910

Contact Distance. Expanding on the concept of Contact 911
Distance, we utilize the chamfer distance metric to quantify 912
the closeness between human body joints and the object 913
surface. This computation leverages ground-truth affordance 914
data that includes human contact labels and object contact 915
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points,916

ContactDistance =
1

L

L∑
l

CD(x̂h
l , p̂l), (13)917

where x̂h
l represents two human contact joints at the l-th918

frame, indexed according to ground-truth contact labels.919
Additionally, p̂l denotes two object contact points derived920
from the object motion xo

l at frame l, also indexed based on921
ground-truth information. CD denotes the chamfer distance.922

Penetration Score. We followed the Li et al. [26] to com-923
pute the penetration score (Pene), each vertex of the body924
(Vi) is queried against the precomputed Signed Distance925
Field (SDF) of the object. This process yields a correspond-926
ing distance value for each vertex. The penetration score is927
then formalized as:928

Pene =
1

n

n∑
i=1

|min(di, 0)|, (14)929

measured in centimeters (cm).930

E. Inference Time931

In Table 5, we provide the inference times for both base-932
lines and our full method, including its key components. All933
measurements were conducted using an NVIDIA A5000934
GPU. Training an additional model for affordance informa-935
tion and using classifier guidance for interaction correction936
do contribute to increased inference costs. However, de-937
spite the longer inference time, our complete method notably938
enhances the accuracy of 3D HOIs generation.939

Params (M) FID ↓ R-precision (Top-3) ↑
MDM∗ 49.85 6.98 0.36
Ours (Full) 47.74 1.62 0.46

Table 6. With comparable model size, the performance results of
MDM∗ and Ours (Full).

F. Additional Ablation Studies940

Different perturbing times in classifier guidance. As941
discussed in Sec. 3.4, in the later stage of classifier guidance,942
diffusion models tend to strongly attenuate the introduced943
signals. Therefore, we iteratively perturb the predicted mean944
of motion for K times at the final denoising step. In Figure 7,945
we present the ablation results, illustrating the impact of946
different numbers of perturbations. Notably, we observe that947
employing 100 perturbations leads to re-convergence and948
yields the desired results.949

Different guidance strength. As detailed in Sec. 3.4, we950
employ distinct control strengths for classifier guidance, con-951
sidering the varying feature densities in predicted human952

and object motion. Rather than employing equal control 953
strengths, we opt to assign a higher control strength to ob- 954
ject motion, allowing it to closely align with human contact 955
joints, as illustrated in Figure 8. 956

Different model with comparable model size. Although 957
our method involves a slightly larger number of model pa- 958
rameters, our model is specifically designed for HOI genera- 959
tion. As seen in the Table 6, if we attempt to scale MDM* 960
to the same model size, its performance remains subpar. 961

G. User Study 962

For each method, we select 15 prompts from the BEHAVE 963
dataset and 10 prompts from the OMOMO dataset, covering 964
various interaction types and object items. We sample twice 965
with each prompt to gather a total of 50 results. 40 partic- 966
ipants are asked to choose their most preferred generation 967
results from these samples. This user study requires pairwise 968
comparisons of our method with other baseline on generated 969
interaction quality, as shown in Figure 15. The results in Fig- 970
ure 9 indicate strong preference for our method: it is favored 971
over the baselines in 89.6% (Ours vs. MDM*), 73.8% (Ours 972
vs. PriorMDM*) and 95.3% (Ours vs. Interdiff). 973

H. Additional Qualitative Results 974

In this section, we present additional qualitative results show- 975
casing the model’s performance evaluated on the OMOMO 976
dataset, and the effectiveness of APDM. 977

Qualitative results on OMOMO dataset. We present addi- 978
tional qualitative results on the OMOMO dataset, rendered 979
with SMPL [29] shapes, as shown in Figure 11. It is evident 980
that our method can generalizes effectively to unseen objects 981
and produce realistic 3D human-object interactions. 982

Qualitative results of APDM. To verify the accuracy of esti- 983
mated contact points on object surface, we provide additional 984
visual results in Figure 13. It can be seen that our method 985
can predict realistic and practical contact points based on 986
text descriptions. With APDM, we even can generate dif- 987
ferent interactions with the same object based on the input 988
description, as shown in the Figure 14. 989

Generalization capability. To verify the model’s general- 990
ization capability, except of unseen object test on OMOMO 991
dataset, we also downloaded several objects from Sketch- 992
fab3, adjusted them to a reasonable scale, and used them 993
as inputs. As shown in Figure 12, our model successfully 994
establishes reasonable HOI contact with these previously 995
unseen objects. 996

3https://sketchfab.com/
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Model DBDM APDM
Parameters (·106) 8.82 38.92

Table 4. Model Parameters. The number of learned parameters of
our two core architectures.

Method MDM* PriorMDM* Ours (Full)
Time (s) 32.3 38.6 118.0

Component APDM DBDM Interaction Correction
Time (s) 24.2 46.4 47.4

Table 5. Inference Time (on NVIDIA A5000 GPU). We report
the inference time for baselines, our full method, and its key com-
ponents.

Figure 8. Effect of different control strengths for classifier guid-
ance. (a) We use equal strengths of τ1 = 1, τ2 = 1 to perturb the
predicted mean of human motion and object motion, respectively.
(b) We use different strengths of τ1 = 1, τ2 = 100 for the pertur-
bation. We can see that different strengths work better.

I. Annotation for BEHAVE Dataset997

Text Annotating Process. Initially, we manually annotate998
the interaction types and the specific human body parts in-999
volved, delineating actions like “lift” associated with the1000
“left hand” or “hold” involving “two hands”. Subsequently,1001
to generate complete sentences, we leverage the capabili-1002
ties of GPT-3.5 to assist in formulating the entirety of the1003
description.1004

Examples of Annotated Textual Descriptions. In Table 7,1005
we showcase a selection of our annotated textual descriptions1006
for the BEHAVE dataset [4].1007

Analysis of Annotated Textual Descriptions. All text de-1008
scriptions encompass 36 distinct interaction verbs associated1009
with 20 different objects. Figure 16 illustrates the frequency1010
of each verb, indicating their respective occurrences.1011

Affordance Data. Our affordance data includes 8-1012
dimensional human contact labels and object contact points.1013
We employ chamfer distance to measure the distance be-1014
tween all human body joints and object surface points. Fol-1015
lowing a predefined distance threshold γ = 0.12, we identify1016
the 8 contact points on the object surface corresponding to1017
the 8 primary human body joints. Subsequently, we derive1018
the human contact labels by encoding the indexes of contact1019
joints into an 8-dimensional vector represented by binary1020
values.1021

Object Textual Descriptions

backpack
A person is carrying the backpack in front.
The person is raising a backpack with his

right hand.
The person at the front presently has control

over the backpack.

chairwood
A person is using the chairwood for sitting.

(wooden chair) The person is propelling the chairwood on the
ground.

Someone is hoisting a chairwood by his left
hand.

tablesquare

A person is lifting the tablesquare, utilizing
his left hand.

(square table) Someone is clutching onto a tablesquare from
the front.

An individual is moving the tablesquare back
and forth.

boxlong

A person is gripping the boxlong from the
front.

(long box) A person is raising the boxlong using his left
hand.

Someone hoists the boxlong with his left
hand.

toolbox
Someone is grasping the toolbox upfront.
The person has a firm hold on the toolbox

with his right hand.
A person is gripping the toolbox with his left

hand.

yogaball

A person is shifting a yogaball back and forth
on the floor using his hands.

The person is occupying a yogaball.
A person is employing an yogaball to engage

in an upper body game.

Table 7. Examples of our annotated textual descriptions for the
BEHAVE dataset rephrased by GPT-3.5 [34].

J. Additional Details of OMOMO Dataset 1022

The OMOMO dataset comprises data captured for a total of 1023
15 objects. Adhering to their official split strategy depicted 1024
in [27](Figure 5), we allocate 10 objects for training and 5 1025
objects for testing. This split allows us to further evaluate 1026
the model’s generalization ability to new objects. Notably, 1027
the OMOMO dataset itself provides text annotation, and we 1028
use GPT-3.5 to add subjects to it and embellish it appropri- 1029
ately. For affordance data, we preprocess it the same way 1030
we handle BEHAVE. 1031
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Figure 9. Perceptual User Study. Most participants prefer our
method over the baselines.

Figure 10. Visual results of different variants of our model in
ablation studies.

Figure 11. Additional qualitative evaluation on OMOMO dataset. Given object geometry and text description, our method can generate
high-quality human-object interactions even for the unseen objects (tripod, smalltable, suitcase).

Figure 12. Additional qualitative evaluation on unseen objects.

K. Common Questions1032

Why use Skeletal Pose Representation rather than SMPL1033
parameters? Most state-of-the-art text-to-motion meth-1034
ods adopt the skeletal pose representation proposed by Guo1035
et al. [13], demonstrating excellent performance and stability.1036
While some works [2] argue that SMPL parameters [29] con-1037
tains shape and global information, it does not generate as1038
smooth motions as skeletal-based approaches. Consequently,1039
we adopt the skeletal pose representation and aim to lever-1040
age strong pose priors from the pretrained text-to-motion1041

model [51] to ensure the authenticity of generated human 1042
motion. 1043

Can we handle multi-phase interactions between humans 1044
and objects? Due to the lack of fine-grained textural descrip- 1045
tions in the current 3D HOI dataset, we primarily consider 1046
only one interaction phase. However, we have found that an 1047
LLM can still reason well for multiple phases given a tem- 1048
plate such as: You will be given a sentence that describes an 1049
interaction between a person and an object across multiple 1050
phases. Your task is to divide the interaction into phases 1051
based on the state of the object and determine the state for 1052
each phase. If the object is being moved by the person dur- 1053
ing a phase, output the number 0. If the object remains 1054
stationary during a phase, output the number 1. 1055

For example, given the text description: The box is on 1056
the ground. A person is picking up the box and holding it 1057
forward, then putting the box towards the table. The box is 1058
on the table" The result from GPT-3.5-turbo: "Phase 1: The 1059
box is on the ground - State: 1 (stationary); Phase 2: The 1060
person is picking up the box and holding it forward - State: 1061
0 (moved); Phase 3: The person is putting the box towards 1062
the table - State: 0 (moved); Phase 4: The box is on the 1063
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Figure 13. Visual results of estimated contact points. Our APDM,
trained on the BEHAVE dataset, can accurately estimating contact
positions for objects based on textual descriptions. Furthermore,
it showcases the capability to generalize to unseen objects in the
OMOMO dataset, as demonstrated in the last row.

Figure 14. Leveraging the power of the APDM module, our method
can generate diverse HOIs for the same object using different con-
tacting body parts and contact points.

table - State: 1 (stationary). We will address the generation1064
of multiple phases of 3D HOI in future work.1065

Can we generate hand motion with articulated fingers?1066
The BEHAVE and OMOMO datasets do not capture and1067
provide raw hand parameters, despite utilizing SMPLH and1068
SMPLX models to fit human body meshes for rendering.1069
Consequently, in this paper, we focus solely on whole-body1070
human motion, excluding articulated hand and finger move-1071
ments.1072

Figure 15. An example question for our text-to-hoi user study.

Figure 16. Analysis of word frequency We count the occurrences
of each interaction verb from all text descriptions to illustrate their
respective frequencies.

Acc (%) ↑ Time (s) ↓
GPT-3.5 95.6 0.518
Gemini-1.5-Pro-Exp-0801 99.4 0.259
Gemma-2-27B 98.6 0.522
LLaMA-2-13B 99.4 0.259
APDM + MLP 79.5 2.420

Table 8. LLMs’ inference accuracy (Acc) and average inference
time (Time) on object state prediction.

Why do we use large language models (LLMs) to predict 1073
object state based on the input description? We aim to 1074
leverage LLMs for inferring object states, and our results 1075
demonstrate that they perform efficiently and effectively. As 1076
shown in the Table 8, we evaluated the performance of object 1077
state prediction with GPT-3.5-turbo [34] and obtained an av- 1078
erage precision of 95.6% on the validation set, with an aver- 1079
age response time of 0.518 seconds. The results suggest that 1080
GPT-3.5-turbo is sufficiently accurate without adding signifi- 1081
cant overhead. We also evaluated the prediction performance 1082
using other LLMs, including Gemini-1.5-Pro-Exp-0801 [41] 1083
(99.4%, 0.259s), Gemma-2-27B [50] (98.6%, 0.522s), and 1084
LLaMA-2-13B [53] (94.4%, 0.521s), the latter two being 1085
publicly available. 1086

To further validate the effectiveness of the LLM module, 1087
we modified the APDM module by adding an MLP head 1088
to predict the object status. The newly added MLP takes 1089
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in the features consisting of object geometry information1090
and CLIP embeddings. We used an MSE loss. We got1091
average precision 79.5% and average time 2.42s for this1092
design on the validation set, which is significantly worse1093
than the results of GPT-3.5-turbo (95.6%, 0.518s), Gemma-1094
2-27b (98.6%, 0.522s), Gemini-1.5-Pro-Exp-0801 (99.4%,1095
0.259s) and LLaMA-2-13B (4.4%, 0.521s).1096

In future work, we believe the LLM can play a more im-1097
portant role in 3D HOI, e.g. providing high-level instruction1098
for more complex human-object interactions, and our initial1099
use of the LLM offers insights into its potential applications1100
and how it can be effectively utilized.1101

L. Supplementary Video1102

Beyond the qualitative results presented in the main paper,1103
our supplementary materials offer comprehensive demos1104
that provide an in-depth visualization of our task, further1105
showcasing the effectiveness of our approach.1106

In these demonstrations, we highlight the better perfor-1107
mance of our method, HOI-Diff, in producing diverse and1108
realistic 3D HOIs while maintaining adherence to physical1109
validity. Notably, the visualizations show that HOI-Diff1110
consistently generates smooth, vivid interactions, accurately1111
capturing human-object contacts.1112

Additionally, we present the visual ablation results1113
and emphasize the significance and effectiveness of our1114
affordance-guided interaction correction, underscoring its1115
substantial impact on improving the overall performance and1116
quality of the generated 3D HOIs.1117

M. Limitations1118

The existing datasets for 3D HOIs are limited in terms of1119
action and motion diversity, posing a challenge for synthe-1120
sizing long-term interactions in our task. Furthermore, the1121
effectiveness of our model’s interaction correction compo-1122
nent is contingent on the precision of affordance estimation.1123
Despite simplifying this task, achieving accurate affordance1124
estimation remains a significant challenge, impacting the1125
overall performance of our model. A promising direction1126
for future research involves integrating a sophisticated affor-1127
dance model pre-trained on an extensive 3D object dataset,1128
along with text prompts. Such an advancement could signif-1129
icantly enhance the realism and accuracy of human-object1130
contact in our model, leading to more natural and precise1131
HOIs synthesis.1132

N. Social Impacts1133

On the positive side, it may offers the research community1134
valuable insights into understanding human behaviors. On1135
the negative side, it remains uncertain whether individuals1136
can be identified solely based on their poses and movements.1137
However, compared to traditional input images of people,1138
this method poses a lower risk of invading personal privacy.1139
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