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APPENDIX

A PROOF OF THEOREM 2

Our proof of Theorem 2 consists of three steps.

• First, we show that R is an absorbing region for GD. Here a set is regarded as an absorbing
set if the GD sequence remains within the set after its first entrance.

• Next, we show that σ1(Jt) converges to zero at a linear rate, employing an SNR argument.

• Finally, we establish the linear convergence to the global minima.

Before diving deeper, we first write down the update rules for Ut and Jt. By (9), we have

Ut+1 = Ut + ηΛrUt − ηUtX
⊤
t Xt, (18)

Jt+1 = Jt + ηΛresJt − ηJtX
⊤
t Xt, (19)

where Λr = diag(λ1, . . . , λr) and Λres = diag(λr+1, . . . , λd). Note that Σr = diag(Λr,0).

A.1 THE GD SEQUENCE REMAINS IN R

Lemma 12 shows that R is an absorbing region for GD.

Lemma 12 Suppose η ≤ ∆2

36λ3
1

and Xt ∈ R. Then Xt′ ∈ R for all t′ ≥ t.

Proof This lemma is proved by induction. Suppose Xt ∈ R.

• By Lemma 13 and σ2
1(Xt) ≤ 2λ1, we get σ2

1(Xt+1) ≤ 2λ1.

• By Lemma 14, σ2
1(Xt) ≤ 2λ1, and σ2

1(Jt) ≤ λr −∆/2, we get σ2
1(Jt+1) ≤ λr −∆/2.

• By Lemma 15 and Xt ∈ R, we get σ2
r(Ut+1) ≥ ∆/4 and thus Xt+1 ∈ R.

By induction, we conclude that Xt′ ∈ R for all t′ ≥ t.

A.1.1 TECHNICAL LEMMAS

In this section, we summarize technical lemmas used in the proof of Lemma 12.

Lemma 13 delineates the first category of absorbing sets for GD, denoted as

S1 = {X ∈ Rd×r | σ1(X) ≤ a},

valid for any a ∈ [
√
λ1, 1/

√
3η].

Lemma 13 Suppose η ≤ 1
3λ1

and a ∈ [
√
λ1, 1/

√
3η]. If σ1(Xt) ≤ a, then σ1(Xt′) ≤ a, ∀ t′ ≥ t.

Proof Lemma 16 states that if σ1(Xt) ≤ 1/
√
3η, then the following inequality holds

σ1(Xt+1) ≤ (1 + ηλ1 − ησ2
1(Xt)) · σ1(Xt).

• If
√
λ1 ≤ σ1(Xt) ≤ a, the above inequality implies that σ1(Xt+1) ≤ σ1(Xt) ≤ a.

• If σ1(Xt) ≤
√
λ1 ≤ a, it follows that

σ1(Xt+1) ≤ (1 + ηλ1 − ηλ1)
√

λ1 ≤ a.

This uses the fact that g1(s) = (1 + ηλ1 − ηs2)s is increasing on [0, 1/
√
3η].
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By induction, we have σ1(Xt′) ≤ a for all t′ ≥ t.

Lemma 14 demonstrates that if σ1(Xt) ≤
√
2λ1, σ2

1(Jt) ≤ a, and a ≥ λr+1, then σ2
1(Jt+1) ≤ a.

Combining with Lemma 13, it implies that

S2 = {X =

(
U
J

)
∈ Rd×r | σ1(X) ≤

√
2λ1, σ

2
1(J) ≤ a}

is an absorbing set for GD, provided that a ≥ λr+1 and η ≤ 1
12λ1

. Here U and J are the top r rows
and the (r + 1)-to-d-th rows of X respectively.

Lemma 14 Suppose η ≤ 1
12λ1

, σ2
1(Xt) ≤ 2λ1, and a ≥ λr+1. If σ2

1(Jt) ≤ a, then σ2
1(Jt+1) ≤ a.

Proof By Lemma 17, we have

σ1(Jt+1) ≤ (1 + η(λr+1 − σ2
1(Jt))) · σ1(Jt).

• If λr+1 < σ2
1(Jt) ≤ a, then it follows that σ2

1(Jt+1) ≤ σ2
1(Jt) ≤ a.

• If σ2
1(Jt) ≤ λr+1 ≤ a, then

σ2
1(Jt+1) ≤ (1 + η(λr+1 − λr+1))

2λr+1 ≤ a.

This uses the observation that g2(s) = (1 + η(λr+1 − s2))s is increasing on [0, 1/
√
3η].

This concludes the proof.

Lemma 15 is the last piece needed to show that region R is an absorbing set for GD.

Lemma 15 Suppose η ≤ ∆2

32λ3
1

, σ1(Xt) ≤
√
2λ1, and σ2

1(Jt) ≤ λr −∆/2. If σ2
r(Ut) ≥ ∆/4, then

σ2
r(Ut+1) ≥ ∆/4.

Proof Since η ≤ 1
32λ1

and σ2
1(Jt) ≤ λr −∆/2, by Lemma 18, we have

σ2
r(Ut+1) ≥ (1 + η∆− 2ησ2

r(Ut)) · σ2
r(Ut)− 4η2λ3

1.

Since g3(s) = (1+ η∆− 2ηs)s is increasing on (−∞, 1
4η ] and ∆

4 ≤ σ2
r(Ut) ≤ 2λ1 ≤ 1

4η , we have

σ2
r(Ut+1) ≥ (1 +

η∆

2
) · ∆

4
− 4η2λ3

1 ≥ ∆

4
,

where the last inequality uses η ≤ ∆2

32λ3
1

.

The following lemmas give certain singular value analysis that are used in prior lemmas and subse-
quent analysis. Lemma 16 establishes an upper bound for σ1(Xt+1).

Lemma 16 If σ1(Xt) ≤ 1/
√
3η, then we have

σ1(Xt+1) ≤ (1 + ηλ1 − ησ2
1(Xt)) · σ1(Xt).

Proof By the singular value inequality and (9),

σ1(Xt+1) ≤ σ1(Xt(Ir − ηX⊤
t Xt)) + ησ1(ΣXt)

≤ σ1(Xt(Ir − ηX⊤
t Xt)) + ηλ1σ1(Xt), (20)

where we use σ1(Σ) = λ1. Observe that all r singular values of Xt(Ir − ηX⊤
t Xt) are given by

(1− ησ2
i (Xt)) · σi(Xt), i = 1, . . . , r,

since ησ2
1(Xt) ≤ 1. The function g4(s) = (1− ηs2)s is increasing on [0, 1/

√
3η]. Hence, the fact

0 ≤ σi(Xt) ≤ σ1(Xt) ≤ 1/
√
3η implies that

σ1(Xt(Ir − ηX⊤
t Xt)) = (1− ησ2

1(Xt)) · σ1(Xt).

Substituting this equality into (20), we conclude the proof.

Lemma 17 gives an upper bound for σ1(Jt+1).

13
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Lemma 17 Suppose η ≤ 1
12λ1

and σ1(Xt) ≤
√
2λ1, then we have

σ1(Jt+1) ≤ (1 + η(λr+1 − σ2
1(Jt)− σ2

r(Ut))) · σ1(Jt).

Proof The update rule (19) of Jt+1 can be decomposed as follows:

Jt+1 =
1

2
Jt − ηJtJ

⊤
t Jt︸ ︷︷ ︸

B

+(
1

4
Id−r + ηΛres)Jt︸ ︷︷ ︸

C

+Jt(
1

4
Ir − ηU⊤

t Ut)︸ ︷︷ ︸
D

.

By the singular value inequality,

σ1(Jt+1) ≤ σ1(B) + σ1(C) + σ1(D).

Observe that all singular values of B are given by

σi(Jt)/2− ησ3
i (Jt), i = 1, . . . , d− r.

Since g5(s) = s/2 − ηs3 is increasing on [0, 1/
√
6η], the condition σi(Jt) ≤ σ1(Jt) ≤

√
2λ1 ≤

1/
√
6η implies that

σ1(B) = σ1(Jt)/2− ησ3
1(Jt).

For the second term C, it follows from the singular value inequality that

σ1(C) ≤ σ1(
1

4
Id−r + ηΛres)σ1(Jt) ≤ (1/4 + ηλr+1)σ1(Jt),

where the second inequality uses ησ1(Λres) ≤ ηλ1 ≤ 1/4. For the third term D, since ησ2
1(Ut) ≤

2ηλ1 ≤ 1/4, we have

σ1(D) ≤ (1/4− ησ2
r(Ut))σ1(Jt).

Finally, we conclude the proof by combining the analysis of B,C, and D.

Lemma 18 provides an lower bound for σ2
r(Ut+1).

Lemma 18 Suppose η ≤ 1
32λ1

and σ1(Xt) ≤
√
2λ1, then we have

σ2
r(Ut+1) ≥ (1 + 2η(λr − σ2

1(Jt)− σ2
r(Ut))) · σ2

r(Ut)− 4η2λ3
1.

Proof Substituting the update rule (18) of Ut+1 into Ut+1U
⊤
t+1, we get

Ut+1U
⊤
t+1 = (Ut − ηUtX

⊤
t Xt + ηΛrUt) · (Ut − ηUtX

⊤
t Xt + ηΛrUt)

⊤

= B +C − η2R1 + η2R

where

B = Ut(
1

2
Ir − 2ηX⊤

t Xt)U
⊤
t ,

C = (
1√
2
Ir +

√
2ηΛr)UtU

⊤
t (

1√
2
Ir +

√
2ηΛr),

R1 = 2ΛrUtU
⊤
t Λr,

R = (ΛrUt −UtX
⊤
t Xt)(ΛrUt −UtX

⊤
t Xt)

⊤.

Here B is positive semi-definite (PSD) since 2ησ2
1(Xt) ≤ 4ηλ1 ≤ 1/2 and C,R1,R are all PSD.

By the eigenvalue inequality and the equivalence between eigenvalues and singular values of a PSD
matrix, we have

σ2
r(Ut+1) ≥ σr(B) + σr(C)− η2σ1(R1) + η2σr(R)

≥ σr(B) + σr(C)− η2σ1(R1). (21)
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For the first term B, we decompose it into two terms:

B = Ut((
1

2
− 2ησ2

1(Jt)) · Ir − 2ηU⊤
t Ut)U

⊤
t︸ ︷︷ ︸

B1

+2η ·Ut(σ
2
1(Jt) · Ir − J⊤

t Jt)U
⊤
t︸ ︷︷ ︸

B2

.

The inequality 2η(σ2
1(Jt)+σ2

1(Ut)) ≤ 8ηλ1 ≤ 1/2 implies that B1 is PSD. Since B2 is also PSD,
we have σr(B) ≥ σr(B1). To determine σr(B1), we write the singular values of B1 as

(
1

2
− 2ησ2

1(Jt)) · σ2
i (Ut)− 2ησ4

i (Ut), i = 1, . . . , r.

Since 1/2 − 2ησ2
1(Jt) ≥ 1/4, the function g6(s) = (1/2 − 2ησ2

1(Jt))s − 2ηs2 is increasing on
(−∞, 1

16η ]. Then the inequality σ2
i (Ut) ≤ σ2

1(Ut) ≤ 2λ1 ≤ 1
16η implies that

σr(B1) = (
1

2
− 2η(σ2

1(Jt) + σ2
r(Ut))) · σ2

r(Ut).

For the second term C, we have

σr(C) ≥ σ2
r(

1√
2
Ir +

√
2ηΛr)σ

2
r(Ut) ≥ (

1

2
+ 2ηλr)σ

2
r(Ut).

For the third term R1, since σ2
1(Xt) ≤ 2λ1, we have

σ1(R1) ≤ 4λ3
1.

Finally, substituting the analysis of B,C,R1 into (21) gives the desired result.

A.2 σ1(Jt) CONVERGES TO ZERO LINEARLY VIA AN SNR ARGUMENT

Lemma 19 shows that if X0 ∈ R, then σ1(Jt) will diminish to zero at a geometric rate. A key step
of the analysis is to examine the SNR σ2

r(Ut)

σ2
1(Jt)

. Our analysis extends the rank-one case in Section 2
to a general rank scenario.

Lemma 19 Suppose η ≤ ∆2/(32λ3
1) and X0 ∈ R. Then, for all t ≥ 0, we have

σ2
1(Jt+1)

σ2
r(Ut+1)

≤ (1− η∆/3) · σ
2
1(Jt)

σ2
r(Ut)

.

Hence, σ2
1(Jt) ≤ 8λ2

1(1− η∆/3)t/∆ for all t and σ2
1(Jt) < ϵ after

T ϵ
J = O

(
3

η∆
log

8λ2
1

ϵ∆

)
iterations.

Proof By Lemma 12, we have Xt ∈ R for all t ≥ 0. Then by Lemma 17,

σ2
1(Jt+1) ≤ (1 + 2η(λr+1 − σ2

1(Jt)− σ2
r(Ut)) + 16η2λ2

1) · σ2
1(Jt)

≤ (1− η∆/2 + 2η(λr −∆/2− σ2
1(Jt)− σ2

r(Ut))) · σ2
1(Jt),

where the second inequality follows from η ≤ ∆
32λ2

1
. By Lemma 18,

σ2
r(Ut+1) ≥ (1 + η∆+ 2η(λr −∆/2− σ2

1(Jt)− σ2
r(Ut))) · σ2

r(Ut)− 4η2λ3
1

≥ (1 + η∆/2 + 2η(λr −∆/2− σ2
1(Jt)− σ2

r(Ut))) · σ2
r(Ut),

where we use σ2
r(Ut) ≥ ∆/4 and η ≤ ∆2

32λ3
1

in the second inequality. A combination of the above
two inequalities gives that

σ2
1(Jt+1)

σ2
r(Ut+1)

≤ 1− η∆/2 + 2η(λr −∆/2− σ2
1(Jt)− σ2

r(Ut))

1 + η∆/2 + 2η(λr −∆/2− σ2
1(Jt)− σ2

r(Ut))
· σ

2
1(Jt)

σ2
r(Ut)

.

15
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Since the function g7(s) =
1−η∆/2+s
1+η∆/2+s is increasing on [−1/2, 1/2], the condition −1/2 ≤ 2η(λr −

∆/2− σ2
1(Jt)− σ2

r(Ut)) ≤ 1/2 implies that

σ2
1(Jt+1)

σ2
r(Ut+1)

≤ 3/2− η∆/2

3/2 + η∆/2
· σ

2
1(Jt)

σ2
r(Ut)

≤ (1− η∆/3) · σ
2
1(Jt)

σ2
r(Ut)

.

By deduction, we have

σ2
1(Jt) ≤ (1− η∆/3)t · σ2

r(Ut)
σ2
1(J0)

σ2
r(U0)

≤ (1− η∆/3)t · 8λ
2
1

∆
,

where the second inequality follows from σ2
r(Ut) ≤ 2λ1, σ2

1(J0) ≤ λ1, and σ2
r(U0) ≥ ∆/4.

Therefore, for any ϵ > 0, it takes at most T ϵ
J = O( 3

η∆ log
8λ2

1

ϵ∆ ) iterations to have σ2
1(Jt) ≤ ϵ.

A.3 FINAL CONVERGENCE

For the convergence of XtX
⊤
t to Σr, It remains to show that UtU

⊤
t converges to Λr fast, where

Λr = diag(λ1, . . . , λr). Equivalently, it suffices to show that σ1(Pt) converges to zero linearly,
where Pt = Λt −UtU

⊤
t . This is established in Lemma 20.

Lemma 20 Suppose η ≤ ∆2/(36λ3
1) and X0 ∈ R. Then, for all t ≥ 0, we have

σ1(Pt+1) ≤
100λ2

1

η∆2
(1− η∆/4)t+1.

Hence, for any ϵ > 0, it takes T ϵ
P = O

(
4
η∆ log

100λ2
1

η∆2ϵ

)
iterations to reach σ1(Pt) ≤ ϵ.

Proof By Lemma 12, Xt ∈ R for all t ≥ 0. Using the notation of Pt, (18) can be rewritten as

Ut+1 = Ut + ηPtUt − ηUtJ
⊤
t Jt.

By direct calculation, we have

Pt+1 = (Ir − ηUtU
⊤
t )Pt(Ir − ηUtU

⊤
t )− η2(PtUtU

⊤
t Pt +UtU

⊤
t PtUtU

⊤
t ) +Rt,

where

Rt = η(Ir + ηPt)UtJ
⊤
t JtU

⊤
t + ηUtJ

⊤
t JtU

⊤
t (Ir + ηPt)− η2Ut(J

⊤
t Jt)

2U⊤
t .

By the singular value inequality,

σ1(Pt+1) ≤ ((1− η∆/4)2 + 8η2λ2
1) · σ1(Pt) + σ1(Rt)

≤ (1− η∆/4) · σ1(Pt) + σ1(Rt),

where we use ∆/4 ≤ σ2
r(Ut) ≤ σ2

1(Ut) ≤ 2λ1 in the first inequality and η ≤ ∆
36λ2

1
in the second

inequality. For the remainder term Rt, by the singular value inequality and the condition η ≤ ∆2

36λ3
1

,
we have

σ1(Rt) ≤ σ2
1(Jt) ≤ (1− η∆/3)t · 8λ

2
1

∆
,

where the last inequality follows from Lemma 19. Then by deduction, we have

σ1(Pt+1)

(1− η∆/4)t+1
≤ σ1(Pt)

(1− η∆/4)t
+

(
1− η∆/3

1− η∆/4

)t
8λ2

1

(1− η∆/4)∆

≤ σ1(P0) +

t∑
i=1

(
1− η∆/3

1− η∆/4

)i
8λ2

1

(1− η∆/4)∆

≤ σ1(P0) +
96λ2

1

η∆2
≤ 100λ2

1

η∆2
,

where the last inequality follows from σ1(P0) ≤ 2λ1. Therefore, it takes T ϵ
P = O( 4

η∆ log
100λ2

1

η∆2ϵ )

iterations to achieve σ1(Pt) ≤ ϵ.
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A.4 PROOF OF THEOREM 2

By combining Lemma 19 and Lemma 20, we can prove Theorem 2.

Proof Observe that

∥Σr −XtX
⊤
t ∥F ≤ ∥Pt∥F + 2∥JtX

⊤
t ∥F ≤ rσ1(Pt) + 2r

√
2λ1σ1(Jt), ∀Xt ∈ R,

where we use the fact that ∥A∥F ≤ rσ1(A) for any rank-r matrix A. Let

T ϵ = max
{
T

ϵ2/(32r2λ1)
J , T

ϵ/(2r)
P

}
.

Then, ∥Σr −XtX
⊤
t ∥F ≤ ϵ for all t ≥ T ϵ. Theorem 2 follows from T ϵ = O( 6

η∆ log
200rλ2

1

η∆2ϵ ).

B ANALYSIS OF LARGE INITIALIZATION

In this section, we will prove Theorem 6 as well as the results in Section 5.1. Before delving further,
we first write down the update rules of uk,t and Kk,t. Recall that uk,t and Kk,t are the k-th and
(k + 1)-to-d-th rows of Xt. The update rules are given by

uk,t+1 = uk,t + ηλkuk,t − ηuk,tX
⊤
t Xt, (22)

Kk,t+1 = Kk,t + ηΓkKk,t − ηKk,tX
⊤
t Xt, (23)

where Γk = diag(λk+1, . . . , λd). We also remind readers that uk,t ∈ R1×r is a row vector. More-
over, we let Πuk,t denote the projection matrix associated with uk,t, that is,

Πuk,t
= u⊤

k,t(uk,tu
⊤
k,t)

−1uk,t ∈ Rr×r.

Also, we let Gk,t denote the first k rows of Xt.

B.1 PROOFS FOR SECTION 5.1: RANK-TWO MATRIX APPROXIMATION

In this section, we collect proofs related to the rank-two matrix approximation.

B.1.1 PROOF OF LEMMA 8

Proof Note that tinit,1 ≤ T1 + TK , where

T1 = min{t ≥ 0 | σ2
1(Xt) ≤ 2λ1}

is the first time when σ2
1(Xt) is smaller than 2λ1, and

TK = min{t ≥ 0 | σ2
1(Kk,t+T1

) ≤ λk − 3∆

4
,∀k ≤ r}.

To prove the lemma, it suffices to analyze T1 and TK separately.

First, we analyze T1 as follows.

• If σ2
1(X0) ≤ 2λ1, then T1 = 0.

• If 2λ1 < σ2
1(X0) < 1/(3η), then by Lemma 13, σ2

1(Xt) ≤ 1/(3η) for all t. Furthermore,
it follows from Lemma 16 that

σ1(Xt+1) ≤ (1 + ηλ1 − ησ2
1(Xt)) · σ1(Xt)

≤ (1− ηλ1) · σ1(Xt), ∀t < T1,

where the second inequality uses σ2
1(Xt) > 2λ1 for all t < T1. It implies that

σ1(Xt) ≤ (1− ηλ1)
t · σ1(X0)

for all t ≤ T1 and

T1 = O
(

1

ηλ1
log

σ1(X0)√
2λ1

)
.

17
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By Lemma 13, we have σ2
1(Xt) ≤ 2λ1 for all t ≥ T1.

Next, we analyze TK and the following quantities

TKk
= min{t ≥ 0 | σ2

1(Kk,t+T1
) ≤ λk − 3∆

4
}.

Recall that Kk,t is the (k + 1)-to-d-th rows of Xt. Then by (23), we have

Kk,t+1 = Kk,t + ηΓkKk,t − ηKk,tX
⊤
t Xt

=
1

2
Kk,t − ηKk,tK

⊤
k,tKk,t︸ ︷︷ ︸

B

+(
1

4
Id−k + ηΓk)Kk,t︸ ︷︷ ︸

C

+Kk,t(
1

4
Ik − ηG⊤

k,tGk,t)︸ ︷︷ ︸
D

,

where Γk = diag(λk+1, . . . , λd) and Gk,t ∈ Rk×r is the first k rows of Xt. By the singular value
inequality, we obtain

σ1(Kk,t+1) ≤ σ1(B) + σ1(C) + σ1(D).

For the first term B, similar to Lemma 17, we can show that

σ1(B) = σ1(Kk,t)/2− ησ3
1(Kk,t), ∀t ≥ T1.

For the second term C, by the singular value inequality,

σ1(C) ≤ (
1

4
+ ηλk+1) · σ1(Kk,t).

For the third term D, since G⊤
k,tGk,t is PSD and ησ2

1(Gk,t) ≤ 1
4 for all t ≥ T1, we have

σ1(D) ≤ σ1(Kk,t)/4, ∀t ≥ T1.

Combining,

σ1(Kk,t+1) ≤ (1 + ηλk+1 − ησ2
1(Kk,t)) · σ1(Kk,t), ∀t ≥ T1, ∀k ≤ r. (24)

Since λk+1 ≤ λk −∆ for k ≤ r, (24) implies that

σ1(Kk,t+T1+1) ≤ (1− η∆/4) · σ1(Kk,t+T1
), ∀t < TKk

, ∀k ≤ r.

Hence, σ1(Kk,t+T1
) ≤ (1− η∆/4)t · σ1(Kk,T1

) for all t ≤ TKk
. In particular,

TKk
= O

(
2

η∆
log

σ2
1(Kk,T1

)

λk − 3∆
4

)
and TK = O

(
2

η∆
log

8λ1

∆

)
,

where we use σ2
1(Kk,T1

) ≤ 2λ1 and λk − 3∆
4 ≥ ∆

4 .

Finally, similar to Lemma 13 and 14, for any a ≥ λk+1, if σ2
1(Kk,t+T1

) ≤ a, then σ2
1(Kk,t′+T1

) ≤
a for all t′ ≥ t. This implies that σ2

1(Kk,t+T1) ≤ λk − 3∆
4 for all t ≥ TK for k ≤ r.

B.1.2 PROOF OF LEMMA 9

Proof This lemma is a special case of Lemma 21, where we take k = 1 and tinit = tinit,1. Notice
that G0,t = 0 and Xt ∈ S for all t ≥ tinit,1 by Lemma 8. Thus, the conditions in Lemma 21
trivially hold. Then Lemma 9 immediately follows from Lemma 21.

B.1.3 PROOF OF LEMMA 10

Proof The lemma is a special case of Lemma 22 and Lemma 23. In Lemma 22, we take k = 1 and
tinit = tinit,1 + Tu1 . In Lemma 23, we take k = 1 and tinit = tinit,1 + Tu1 + t∗.

B.1.4 PROOF OF LEMMA 11

Proof This lemma is a special case of Lemma 21, where we take k = 2 and tinit = t1 + t∗1.

18
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B.2 PROOF OF THEOREM 6

Proof The first property follows from Lemma 8.

To prove the remaining properties in this theorem, we will use an inductive argument. Our induction
hypotheses are listed below:

H(k, 1) σ1(uk,tG
⊤
k−1,t) ≤

√
∆
8 min{σ1(uk,tinit,k),

√
∆
2 } · (1− η∆/6)t−tinit,k for all t ≥ tinit,k.

H(k, 2) Tuk
= O

(
4
η∆ log ∆

2σ2
1(uk,tinit,k

)

)
and σ2

1(uk,t) ≥ ∆
2 for all t ≥ tinit,k + Tuk

.

H(k, 3) σ1(uk,tK
⊤
k,t) ≤ (1− η∆/6)t−tk for all t ≥ tk.

Note that H(1,1) trivially holds because G0,t = 0. Then we prove H(k, 1), H(k, 2), H(k, 3), H(k +
1, 1) successively until H(r, 3).

• {H(j, ·)}j<k + H(k, 1) → H(k, 2)

This follows from Lemma 21, where we take tinit = tinit,k.

• {H(j, ·)}j<k + H(k, 1) + H(k, 2) → H(k, 3)

This follows from Lemma 22, where we take tinit = tinit,k + Tuk
.

• {H(j, ·)}j≤k → H(k + 1, 1)

By {H(j, 3)}j≤k,

σ1(uk+1,tG
⊤
k,t) ≤

∑
j≤k

σ1(uj,tK
⊤
j,t) ≤ r(1− η∆/6)t−tk ,

for all t ≥ tk. By definition of t∗k, we have

r(1− η∆/6)t
∗
k ≤

√
∆

8
min{σ1(uk,tk+t∗k

),

√
∆

2
}.

Then H(k + 1, 1) follows from the definition tinit,k+1 = tk + t∗k.

By induction, H(k, ·) holds for all k ≤ r.

For all t ≥ tk, (16) follows from Lemma 23, where tinit is taken as tk.

For all t ≥ tinit,r + Tur , we have σ2
1(uk,t) ≥ ∆

2 for all k ≤ r. Simultaneously,∑
j≤r

σ1(uj,tK
⊤
j,t) ≤ r(1− η∆/6)t−(tinit,r+Tur+t∗)

holds for all t ≥ tinit,r + Tur
+ t∗. Let Ut be the first r rows of Xt. Viewing UtU

⊤
t as the sum of

diagonal elements and off-diagonal elements, we find that

σ2
r(Ut) ≥ ∆/2− r(1− η∆/6)t−(tinit,r+Tur+t∗)

for all t ≥ tinit,r + Tur
+ t∗. Hence, σ2

r(Ut) ≥ ∆/4 for all t ≥ tinit,r + Tur
+ t∗ + t♯, where

t♯ =
log(∆/(4r))

log(1− η∆/6)
.

This implies that Xt ∈ R for t ≥ tinit,r + Tur
+ t∗ + t♯.

The sixth property is merely an application of Theorem 2.

The seventh property immediately follows from the previous six properties.
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B.3 TECHNICAL LEMMAS

This section collects technical lemmas that are used in previous sections. Let us recall that uk,t and
Kk,t are the k-th and the (k + 1)-to-d-th rows of Xt respectively. The projection matrix associated
with uk,t is denoted by

Πuk,t = u⊤
k,t(uk,tu

⊤
k,t)

−1uk,t.

The first k rows of Xt are denoted by Gk,t, and G0,t = 0 by definition.

B.3.1 DYNAMICS

This subsection contains lemmas describing the dynamics of the GD sequence.

Lemma 21 shows that when σ1(uk,tG
⊤
k−1,t) is sufficiently small, the signal term σ2

1(uk,t+1) can
rise above ∆/2 quickly. Moreover, as shown in Lemma 21, the term σ2

1(uk,t+1) will remain larger
than ∆/2.

Lemma 21 Suppose η ≤ 1
12λ1

, Xt ∈ S, and for some tinit ≥ 0 and k ≤ r, the condition

σ1(uk,tG
⊤
k−1,t) ≤

√
∆

8
min{σ1(uk,tinit),

√
∆

2
} · (1− η∆/6)t−tinit

holds for all t ≥ tinit. Then σ2
1(uk,t) ≥ ∆

2 for all t ≥ tinit + Tuk
, where

Tuk
= O

(
4

η∆
log

∆

2σ2
1(uk,tinit)

)
.

In addition, for all t ≥ tinit, we have

σ2
1(uk,t+1) ≥ (1 + 2ηλk − η∆/4− 2ησ2

1(uk,t)− 2ησ2
1(Kk,tΠuk,t))) · σ2

1(uk,t), (25)

where Πuk,t = u⊤
k,t(uk,tu

⊤
k,t)

−1uk,t is the projection matrix associated with uk,t.

Proof First, we show that σ2
1(uk,t) ≥ min{σ2

1(uk,tinit),
∆
2 } for all t ≥ tinit by induction.

This is true when t = tinit. Now suppose σ2
1(uk,t) ≥ min{σ2

1(uk,tinit),
∆
2 } for some t ≥ tinit. By

assumption, σ2
1(uk,tG

⊤
k−1,t) ≤ ∆

8 min{σ2
1(uk,tinit),

∆
2 } ≤ ∆

8 σ
2
1(uk,t). Then by Lemma 24 and

Xt ∈ S, we have

σ2
1(uk,t+1) ≥ (1 + 2ηλk − 2ησ2

1(uk,t)− 2ησ2
1(Kk,tΠuk,t))) · σ2

1(uk,t)−
η∆

4
σ2
1(uk,t) (26)

≥ (1 + 5η∆/4− 2ησ2
1(uk,t)) · σ2

1(uk,t). (27)

Then we consider two cases.

• If σ2
1(uk,t) ≤ 5∆

8 , then σ2
1(uk,t+1) ≥ σ2

1(uk,t) ≥ min{σ2
1(uk,tinit),

∆
2 }.

• If σ2
1(uk,t) ≥ 5∆

8 , then

σ2
1(uk,t+1) ≥ (1 +

5η∆

4
− 5η∆

4
) · 5∆

8
=

5∆

8

≥ min{σ2
1(uk,tinit),

∆

2
},

where the first inequality uses the fact that g8(s) = (1 + 5η∆
4 − 2ηs)s is increasing on

(−∞, 1/4η].

In both cases, we have σ2
1(uk,t+1) ≥ min{σ2

1(uk,init),
∆
2 }. The claim then follows by induction.

Furthermore, the above analysis shows that inequalities 26 and 27 hold for all t ≥ tinit, which leads
to the inequality 25.
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Let

Tuk
= min{t ≥ 0 | σ2

1(uk,t+tinit) ≥
∆

2
}.

Then for t < Tuk
, we have σ2

1(uk,t+tinit) <
∆
2 and by inequality 27,

σ2
1(uk,t+1+tinit) ≥ (1 + η∆/4) · σ2

1(uk,t+tinit).

Hence, for all t ≤ Tuk
, we have

σ2
1(uk,t+tinit) ≥ (1 + η∆/4)t · σ2

1(uk,tinit),

and

Tuk
= O

(
4

η∆
log

∆

2σ2
1(uk,tinit)

)
.

Finally, by inequality 27, we have for any a ≤ 5∆
8 , if σ2

1(uk,t) ≥ a, then σ2
1(uk,t+1) ≥ a. Thus, by

induction, σ2
1(uk,t) ≥ ∆

2 for all t ≥ tinit + Tuk
.

Lemma 22 shows that when the noise terms σ1(uj,tK
⊤
j,t) converge linearly to zero for all j < k and

the k-th signal term σ2
1(uk,t) ≥ ∆

2 , the noise term σ1(uk,tK
⊤
k,t) will also converge linearly to zero.

The key component is to analyze the SNR σ2
1(uk,t)

σ1(uk,tK⊤
k,t)

.

Lemma 22 Suppose η ≤ ∆
100λ2

1
, Xt ∈ S, and for some tinit ≥ 0 and k ≤ r, the conditions

σ1(uj,tK
⊤
j,t) ≤ (1− η∆/6)t−tinit , ∀j < k, (28)

σ1(uk,tG
⊤
k−1,t) ≤

∆

4
(1− η∆/6)t−tinit , (29)

σ2
1(uk,t) ≥

∆

2
(30)

hold for all t ≥ tinit. Then we have

σ1(uk,tK
⊤
k,t) ≤ (1− η∆/6)t−tinit−t∗

for all t ≥ tinit + t∗, where

t∗ = log

(
∆2

8λ3
1 + 144r2λ1

)
/ log(1− η∆/6).

Proof By condition 29, we can apply Lemma 21 to obtain

σ2
1(uk,t+1) ≥ (1 + 2ηλk − η∆/4− 2ησ2

1(uk,t)− 2ησ2
1(Kk,tΠuk,t))) · σ2

1(uk,t)

for all t ≥ tinit. By Lemma 25, we have

σ1(uk,t+1K
⊤
k,t+1)

≤ (1 + ηλk + ηλk+1 − 2ησ2
1(uk,t)− 2ησ2

1(Kk,tΠuk,t) + 25η2λ2
1) · σ1(uk,tK

⊤
k,t)

+ 3ησ1(uk,tG
⊤
k−1,t)σ1(Kk,tG

⊤
k−1,t)

for all t ≥ tinit. Divide both sides of the inequality by σ2
1(uk,t+1). By Lemma 26 and σ2

1(uk,t+1) ≥
∆
2 , we have

σ1(uk,t+1K
⊤
k,t+1)

σ2
1(uk,t+1)

≤ (1− η∆/6)
σ1(uk,tK

⊤
k,t)

σ2
1(uk,t)

+
6η

∆
σ1(uk,tG

⊤
k−1,t)σ1(Kk,tG

⊤
k−1,t) (31)

for all t ≥ tinit. Observe that by condition 28 and definitions of uk,t,Kk,t, and Gk−1,t, we have

max{σ1(uk,tG
⊤
k−1,t), σ1(Kk,tG

⊤
k−1,t)} ≤

∑
j<k

σ1(uk,tK
⊤
k,t) ≤ r(1− η∆/6)t−tinit (32)
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for all t ≥ tinit. Combining (31) and (32),

σ1(uk,t+1K
⊤
k,t+1)

σ2
1(uk,t+1)

≤ (1− η∆/6)
σ1(uk,tK

⊤
k,t)

σ2
1(uk,t)

+
6ηr2

∆
(1− η∆/6)2(t−tinit)

for all t ≥ tinit. Therefore, for all t ≥ tinit,

Qt+1 ≤ (1− η∆/6) ·Qt,

where the quantity Qt is given by

Qt =
σ1(uk,tK

⊤
k,t)

σ2
1(uk,t)

+
36r2

∆2
(1− η∆/6)2(t−tinit)−1.

By induction, we have

σ1(uk,tK
⊤
k,t)

σ2
1(uk,t)

≤ (1− η∆/6)t−tinit

(
σ1(uk,tinitK

⊤
k,tinit

)

σ2
1(uk,tinit)

+
36r2

∆2
(1− η∆/6)−1

)
.

This implies that

σ1(uk,tK
⊤
k,t) ≤

8λ3
1 + 144r2λ1

∆2
· (1− η∆/6)t−tinit ,

where we use 1 − η∆/6 ≥ 1/2, σ2
1(Xt) ≤ 2λ1, and σ2

1(uk,t) ≥ ∆
2 for all t ≥ tinit. By definition

of t∗, we have (1− η∆/6)t
∗ ≤ ∆2

8λ3
1+144r2λ1

. Hence, for all t ≥ tinit + t∗, we have

σ1(uk,tK
⊤
k,t) ≤ (1− η∆/6)t−tinit−t∗ ,

which concludes the proof.

Let pk,t = λk − σ2
1(uk,t) be the error term associated with the k-th signal. Lemma 23 shows that

when the noise terms σ1(uj,tK
⊤
j,t) converge linearly to zero for all j ≤ k and the k-th signal term

σ2
1(uk,t) ≥ ∆

2 , this signal term will converge fast to λk. Specifically, the error term |pk,t| will
converge to zero at a linear rate. The analysis is similar to Lemma 20.

Lemma 23 Suppose η ≤ ∆
100λ2

1
, Xt ∈ S, and for some tinit ≥ 0 and k ≤ r, the conditions

σ1(uj,tK
⊤
j,t) ≤ (1− η∆/6)t−tinit , ∀j ≤ k, (33)

σ2
1(uk,t) ≥

∆

2
(34)

hold for all t ≥ tinit. Then for all t ≥ tinit, we have

|pk,t| ≤ (2λ1 +
24r

η∆
) · (1− η∆/8)t−tinit ,

where pk,t = λk − σ2
1(uk,t).

Proof Using the notation of pk,t, (22) can be rewritten as

uk,t+1 = uk,t + ηpk,tuk,t − ηuk,tWt.

where

Wt = G⊤
k−1,tGk−1,t +K⊤

k,tKk,t.

By direction calculation, we have

pk,t+1 = pk,t · ((1− ησ2
1(uk,t))

2 + η2λkσ
2
1(uk,t)) + rest

where

rest = 2η(1 + ηpk,t)uk,tWtu
⊤
k,t − η2uk,tW

2
t u

⊤
k,t.
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By the singular value inequality, for all t ≥ tinit, we have

|pk,t+1| ≤ |pk,t| · ((1− ησ2
1(uk,t))

2 + η2λkσ
2
1(uk,t)) + |rest|

≤ |pk,t| · ((1− η∆/2)2 + 2η2λ2
1) + |rest|

≤ |pk,t| · (1− η∆/2) + |rest|, (35)

where the second inequality uses ∆/2 ≤ σ2
1(uk,t) ≤ 2λ1 and the third inequality use η ≤ ∆

100λ2
1

.

Using η ≤ ∆
100λ2

1
and σ2

1(Xt) ≤ 2λ1, we have

|rest| ≤
∑
j≤k

σ1(uk,tK
⊤
k,t) ≤ r(1− η∆/6)t−tinit

for all t ≥ tinit. Substituting this into (35), we obtain

|pk,t+1| ≤ |pk,t| · (1− η∆/2) + r(1− η∆/6)t−tinit

≤ |pk,t| · (1− η∆/8) + r(1− η∆/6)t−tinit .

This implies that for all t ≥ tinit,

Qt+1 ≤ Qt +
r

1− η∆/8

(
1− η∆/6

1− η∆/8

)t−tinit

,

where

Qt =
|pk,t|

(1− η∆/8)t−tinit
.

By induction, for all t ≥ tinit, we have

Qt ≤ Qtinit
+

r

1− η∆/8

t−1−tinit∑
i=0

(
1− η∆/6

1− η∆/8

)i

≤ |pk,tinit
|+ 24r

η∆

≤ 2λ1 +
24r

η∆
.

Hence, for all t ≥ tinit, we have

|pk,t| ≤ (2λ1 +
24r

η∆
) · (1− η∆/8)t−tinit ,

which concludes the proof.

B.3.2 TECHNICAL CALCULATIONS

The following lemmas provide calculations related to an SNR argument, where the SNR refers to
the ratio σ2

1(uk,t)

σ1(uk,tK⊤
k,t)

. Recall that uk,t is the k-th row of Xt and Kk,t represents the (k+1)-to-d-th

rows of Xt. Moreover, we recall that

Πuk,t = u⊤
k,t(uk,tu

⊤
k,t)

−1uk,t

is the projection matrix associated with uk,t. Gk,t collects the first k rows of Xt.

Lemma 24 provides a lower bound on σ2
1(uk,t+1) in terms of the preceding iteration.

Lemma 24 For any k and t ≥ 0, we have

σ2
1(uk,t+1) ≥ (1 + 2ηλk − 2ησ2

1(uk,t)− 2ησ2
1(Kk,tΠuk,t)) · σ2

1(uk,t)− 2ησ2
1(uk,tG

⊤
k−1,t).
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Proof Substituting (22) into σ2
1(uk,t+1) gives that

σ2
1(uk,t+1) = uk,t+1u

⊤
k,t+1

= uk,t(Ir + ηλkIr − ηX⊤
t Xt)

2u⊤
k,t

= uk,t(Ir + 2ηλkIr − 2ηX⊤
t Xt)u

⊤
k,t + η2Rk,t

= uk,t(Ir + 2ηλkIr − 2ησ2
1(uk,t)Ir − 2ησ2

1(Kk,tΠuk,t)Ir − 2ηG⊤
k−1,tGk−1,t)u

⊤
k,t

+ 2ηR′
k,t + η2Rk,t,

where Rk,t and R′
k,t are non-negative real numbers given by

Rk,t = uk,t(λkIr −X⊤
t Xt)

2u⊤
k,t,

R′
k,t = uk,t(σ

2
1(Kk,tΠuk,t)Ir −Πuk,tK

⊤
k,tKk,tΠuk,t)u

⊤
k,t.

It then follows that

σ2
1(uk,t+1) ≥ (1 + 2ηλk − 2ησ2

1(uk,t)− 2ησ2
1(Kk,tΠuk,t)) · σ2

1(uk,t)− 2ησ2
1(uk,tG

⊤
k−1,t),

which concludes the proof.

Lemma 25 provides an upper bound on σ1(uk,t+1K
⊤
k,t+1) in terms of the preceding iteration.

Lemma 25 Suppose η ≤ 1
12λ1

and σ2
1(Xt) ≤ 2λ1. For any k ≤ r, if σ2

1(uk,t) > 0, then we have

σ1(uk,t+1K
⊤
k,t+1)

≤
(
1 + ηλk + ηλk+1 − 2ησ2

1(uk,t)− 2ησ2
1(Kk,tΠuk,t) + 25η2λ2

1

)
· σ1(uk,tK

⊤
k,t)

+ 3ησ1(uk,tG
⊤
k−1,t)σ1(Kk,tG

⊤
k−1,t).

Proof Substituting (22) and (23) into uk,t+1K
⊤
k,t+1 gives that

uk,t+1K
⊤
k,t+1 = uk,tK

⊤
k,t + ηλkuk,tK

⊤
k,t + ηuk,tK

⊤
k,tΓk − 2ηuk,tX

⊤
t XtK

⊤
k,t + η2E,

= B +C − 2ηD + η2E,

where

B = uk,tK
⊤
k,t

(
1

2
Id−k − 2ηKk,tΠuk,t

K⊤
k,t

)
C = uk,tK

⊤
k,t

(
1

2
Id−k + ηλkId−k − 2ησ2

1(uk,t)Id−k + ηΓk − 2ηKk,t(Ir −Πuk,t)K
⊤
k,t

)
,

D = uk,tG
⊤
k−1,tGk−1,tK

⊤
k,t,

E = λkuk,tK
⊤
k,tΓk − uk,tX

⊤
t XtK

⊤
t Γk − λkuk,tX

⊤
t XtK

⊤
k,t + uk,t(X

⊤
t Xt)

2K⊤
k,t.

By the singular value inequality,

σ1(uk,t+1K
⊤
k,t+1) ≤ σ1(B) + σ1(C) + 2ησ1(D) + η2σ1(E).

For the first term B, observe that

(uk,tu
⊤
k,t)

−1/2B = (uk,tu
⊤
k,t)

−1/2uk,tK
⊤
k,t

(
1

2
Id−k −Kk,tΠuk,tK

⊤
k,t

)
=
(
1/2− σ2

1((uk,tu
⊤
k,t)

−1/2uk,tK
⊤
k,t

)
· (uk,tu

⊤
k,t)

−1/2uk,tK
⊤
k,t

=
(
1/2− σ2

1(Kk,tΠuk,t)
)
· (uk,tu

⊤
k,t)

−1/2uk,tK
⊤
k,t.

where we use the equality σ1(Kk,tΠuk,t) = σ1((uk,tu
⊤
k,t)

−1/2uk,tK
⊤
k,t). Thus,

σ1(B) = (1/2− σ2
1(Kk,tΠuk,t)) · σ1(uk,tK

⊤
k,t).
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For the second term C, by the singular value inequality,

σ1(C)

≤ σ1

(
1

2
Id−k + ηλkId−k − 2ησ2

1(uk,t)Id−r + ηΓk − 2ηKk,t(Ir −Πuk,t)K
⊤
k,t

)
· σ1(uk,tK

⊤
k,t)

≤ (1/2 + ηλk − 2ησ2
1(uk,t) + ηλk+1) · σ1(uk,tK

⊤
k,t).

For the third term D, σ1(D) ≤ σ1(uk,tG
⊤
k−1,t)σ1(Kk,tG

⊤
k−1,t). For the fourth term E, since

σ2
1(Xt) ≤ 2λ1, we have

σ1(E) ≤ 25λ2
1σ1(uk,tKk,t) + 8λ1σ1(uk,tG

⊤
k−1,t)σ1(Kk,tG

⊤
k−1,t).

Combining, we prove the lemma.

Lemma 26 provides an upper bound on a specific ratio, which is used in the proof of Lemma 22. It
serves as a new variant of the SNR argument.

Lemma 26 Suppose η ≤ ∆
100λ2

1
, σ2

1(Xt) ≤ 2λ1, and λk+1 ≤ λk −∆. Let

ratio :=
1 + ηλk + ηλk+1 − 2ησ2

1(uk,t)− 2ησ2
1(Kk,tΠuk,t) + 25η2λ2

1

1 + 2ηλk − η∆/4− 2ησ2
1(uk,t)− 2ησ2

1(Kk,tΠuk,t)
.

Then ratio ≤ 1− η∆/6.

Proof Since η ≤ ∆
100λ2

1
and λk+1 < λk −∆, we have

ratio ≤ 1− η∆/4 + s0
1 + η∆/4 + s0

,

where

s0 = 2ηλk − η∆/2− 2ησ2
1(uk,t)− 2ησ2

1(Kk,tΠk,t) ∈ [−1/2, 1/2].

Since the function g9(s) =
1−η∆/4+s
1+η∆/4+s is increasing on [−1/2, 1/2], we have

ratio ≤ 1− η∆/4 + 1/2

1 + η∆/4 + 1/2
≤ 1− η∆/6,

which concludes the proof.

C PROOF OF PROPOSITION 7

Proof Consider X with σ1(X) ≤ 1√
3η

. Let Xt be the GD sequence initialized by X . By Corollary
2 of Lee et al. (2019), we know GD sequence almost surely avoids the strict saddle points. By Zhu
et al. (2021), we know all the saddle points are strict and all the local minima are global minima.
Therefore, we conclude that the GD sequence converges to the global minima almost surely.

Now it remains to show that Assumption 4 must hold if the GD sequence converges to the global
minima. Indeed, if we suppose Assumption 4 does not hold, then the GD sequence will converge
with limt→∞ σ1(uk,t) = 0 for some k ≤ r. This means the GD sequence converges to a saddle
point, since any stationary point with some uk,t = 0 (k ≤ r) is a saddle point, rather than a global
minimum. This leads to the contradiction.

D ADDITIONAL EXPERIMENTS

In this section provide additional experiments to support and illustrate our theoretical results.
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D.1 RANK-TWO MATRIX APPROXIMATION

Our first extended experiment examines rank-two matrix approximation with varying dimension d
and initial magnitude ϖ. Specifically, we will choose d from the set {1000, 2000, 4000} and choose
ϖ from the set {0.001, 0.5, 2}. For each d, we set Σ = diag(a, e), where a ∈ Rr is a decreasing
arithmetic sequence starting from 1 to 0.5 and e ∈ Rd−r is an arithmetic sequence transitioning
from 0.3 to zero. Let X0 = ϖN0 with the entries of N0 independently drawn from N (0, 1

d ). We
compute the GD sequence Xt with a step size of 0.1 and evaluate the errors ∥Σr−XtX

⊤
t ∥F, where

Σr = diag(a,0) is the best rank-r approximation to Σ. The error curves of GD for different settings
are displayed in Figure 2.

Figure 2 demonstrate that all the error curves exhibit the similar behaviors. The only differences lie
on the first stage.

• When we use a small ϖ = 0.001, the error does not rapidly change at the beginning. This
is because ∥Xt∥F is close to zero and the error ∥Σr −XtXt∥F is approximately ∥Σr∥F.
This period of time corresponds to the second property of Theorem 6.

• When we use ϖ = 2, we find the error first drops rapidly from a large value to ∥Σr∥. This
corresponds to the Lemma 8 and the first property in Theorem 6.

• When we use ϖ = 0.5, the first stage nearly disappears. This means that Tu1 in Theorem
6 is small, especially compared with the case where ϖ = 0.001.

In addition, we want to mention that if we use ϖ = 10 to initialize the algorithm and keep other
settings unchanged, then the GD sequence will diverge. This serves as a supplementary to the above
experimental results.

D.2 GENERAL RANK MATRIX APPROXIMATION

Our second experiment examines general rank matrix approximation, where we fix dimension d =
1000 and vary the rank r across {2, 6, 10}. In addition, for each setting, we examine different initial
magnitudes ϖ ∈ {0.001, 0.5, 2}. Our setting for Σ is the same as before, that is, Σ = diag(a, e)
with a ∈ Rr and ed−r being two arithmetic sequences. We initialize GD using x0 = ϖN0 and we
compute the GD sequence and the errors ∥Σr −XtXt∥F. The results are displayed in Figure 3.

As the results demonstrate, the effects of ϖ is similar to the one in Section D.1. Moreover, we
observe another interesting phenomenon that may need additional explanations. Figure 3 shows that
the error curve for larger rank r is smoother than the one for smaller rank r. Our explanation is
that for larger rank r, the differences between successive eigenvalues are smaller. Thus, it is harder
to distinguish the associated eigenvectors, and all the eigenvectors may be learned together. As a
result, the error curve remains decreasing along the iterations.
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Figure 2: Error curves of GD, measured by ∥Σr −XtX
⊤
t ∥F, for rank-two matrix approximation.

The columns represent different initial magnitudes ϖ = 0.001, 0.5, 2. The rows represent different
dimensions d = 1000, 2000, 4000.
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Figure 3: Error curves of GD, measured by ∥Σr −XtX
⊤
t ∥F, for general rank matrix approxima-

tion. The dimension d is set as 1000. Different rows represent different rank r. Different columns
represent different initial magnitudes ϖ.
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