Supplemental material for: Explainable Spatio-Temporal Forecasting with Shape Functions

Anonymous Author(s) Affiliation Address email

A Simulation for stationary model

² We present additional simulation results of the synthetic stationary data in the section. Figure 1 shows the one simulated dataset, where the blue line indicates the testing data from time t = 300 to t = 500, and the red line shows the forecasting line. The spatial domain consists of 30 locations that have corresponding X and Y coordinates, presented in Table 1. Figure 1 and Figure 2 show that the ESTF

6 model can accurately forecast the trend of stationary spatio-temporal processes.

Data Index	X Coordinate	Y Coordinate	Data Index	X Coordinate	Y Coordinate	Data Index	X Coordinate	Y Coordinate
1	63	10	2	95	30	3	96	16
4	37	36	5	55	16	6	143	28
7	12	18	8	25	32	9	41	18
10	67	24	11	173	28	12	112	20
13	59	10	14	99	18	15	128	30
16	10	21	17	106	22	18	110	10
19	105	30	20	98	10	21	111	6
22	120	20	23	55	12	24	179	28
25	99	26	26	27	24	27	109	32
28	65	6	29	159	8	30	9	14

Table 1: The spatial domain in simulation study

Figure 1: The sample of forecasting results at one location in the stationary case.

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Figure 2: The sample of forecasting results in other random 12 locations in the stationary case.

Experiments for non-stationary model B 7

The simulation results for non-stationary simulation are presented in Figure 3 and Figure 4, where 8 the blue line indicates the testing data from time t = 450 to t = 500, and the red line shows the 9 forecasting line. The spatial domain is the same as the one in the stationary simulation study. As 10 shown in Figure 3 and Figure 4, the ESTF model can capture the trend accurately. 11

Non-Stationary Simulation

Figure 3: The sample of forecasting results in one location for the non-stationary case.

Figure 4: The sample of forecasting results for 12 random locations for the non-statioanry case.

12 C Real case study

13 C.1 Air quality data

We present the forecasting performance of the ESTF model and spatial distance-based effects in 14 the section. The spatial information of 30 locations is presented in Table 2. To train the ESTF 15 model, we apply the first 200 data as training data and make a one-step forecast for the next 165 time 16 17 points. Figure 5 and Figure 6 show the forecasting performance at one location and other 12 random locations, respectively. The model can also make accurate forecasts for the trend and daily variability. 18 The spatial network at different times is also presented in Figure 8 to Figure 11. Red lines show the 19 connection larger than 75% of maximum value of estimated shape functions while gray lines are 20 those between 50% and 75%. Locations around the Greater Los Angles, centered around 34 latitude 21 and -118 longitude, exhibit strong distance-based effects among each other. 22

Figure 5: The sample of forecasting of air quality in one location for the next 165 days.

Figure 6: The sample of forecasts for other 12 locations in the real case study.

Figure 7: The samples of estimated shape function within the next 165 testing time steps. Distances are shown every 40^{th} quantile.

- ²³ The code can be accessed from https://anonymous.4open.science/r/STVAR-F16E/. Table 2
- shows the spatial information for the 30 locations in the real case study, which include the site name,
 county code, state code, latitude, and longitude.

Data Index	Site Name	County Code	State Code	latitude	longitude
0	Chico-East Avenue	7	6	39.76168	-121.84047
1	Concord	13	6	37.936013	-122.026154
2	Fresno - Garland	19	6	36.78538	-119.77321
3	Calexico-Ethel Street	25	6	32.67618	-115.48307
4	White Mountain Research Center	27	6	37.360684	-118.330783
5	Keeler	27	6	36.487823	-117.871036
6	Bakersfield-California	29	6	35.356615	-119.062613
7	Los Angeles-North Main Street	37	6	34.06659	-118.22688
8	Reseda	37	6	34.19925	-118.53276
9	Compton	37	6	33.901389	-118.205
10	Long Beach (South)	37	6	33.79236	-118.17533
11	Long Beach-Route	37	6	33.859662	-118.200707
12	Merced-M St	47	6	37.30832	-120.480456
13	Mammoth	51	6	37.64571	-118.96652
14	Salinas 3	53	6	36.694261	-121.623271
15	Truckee-Fire Station	57	6	39.32783	-120.184592
16	Anaheim	59	6	33.83062	-117.93845
17	Quincy-N Church Street	63	6	39.939567	-120.944376
18	Portola	63	6	39.81336	-120.47069
19	29 Palms	65	6	33.71969	-116.1897
20	Indio	65	6	33.70853	-116.21537
21	Rubidoux	65	6	33.99958	-117.41601
22	Mira Loma (Van Buren)	65	6	33.99636	-117.4924
23	Sacramento-Del Paso Manor	67	6	38.613779	-121.368014
24	Sacramento-1309 T Street	67	6	38.56844	-121.49311
25	Folsom-Natoma St	67	6	38.683304	-121.164457
26	Ontario-Route 60 Near Road	71	6	34.030833	-117.61722
27	Victorville-Park Avenue	71	6	34.51096111	-117.32554
28	San Jose - Jackson	85	6	37.348497	-121.894898
29	Redding - Health Department	89	6	40.55013	-122.38092

Table 2: The sites information for Air quality data at 30 locations .

Figure 8: The distance-based effect among all 30 locations at time t = 50. Red lines show the connection larger than 75% of maximum value of estimated shape functions while gray lines are those between 50% and 75%.

Figure 9: The distance-based effect among all 30 locations at time t = 150. Red lines show the connection larger than 75% of maximum value of estimated shape functions while gray lines are those between 50% and 75%.

Figure 10: The distance-based effect among all 30 locations at time t = 250. Red lines show the connection larger than 75% of maximum value of estimated shape functions while gray lines are those between 50% and 75%.

Figure 11: The distance-based effect among all 30 locations at time t = 350. Red lines show the connection larger than 75% of maximum value of estimated shape functions while gray lines are those between 50% and 75%.

26 C.2 SO₂ data

- ²⁷ The spatial information where the SO_2 data collected is list in Table 3. From the table we can obtain the name and econdinates for each site
- 28 the name and coordinates for each site.

Data Index	Site Name	County Code	State Code	latitude	longitude
0	Calaveras Lake	29	48	29.275381	-98.311692
1	San Antonio Gardner Road	29	48	29.352911	-98.332814
2	Dallas Hinton	113	48	32.820061	-96.860117
3	Midlothian OFW	139	48	32.482083	-97.026899
4	El Paso Chamizal	141	48	31.765685	-106.455227
5	Fairfield FM 2570 Ward Ranch	161	48	31.797813	-96.1031
6	Texas City Ball Park	167	48	29.385234	-94.93152
7	Longview	183	48	34.06659	-118.22688
8	Houston-The Woodlands-Sugar Land, TX	201	48	29.623889	-95.474167
9	Park Place	201	48	29.686389	-95.294722
10	Clinton	201	48	29.733726	-95.257593
11	Houston Deer Park 2	201	48	29.670025	-95.128508
12	Hallsville Red Oak Road	203	48	32.470228	-94.481595
13	Big Spring Midway	227	48	32.280422	-101.407137
14	Borger FM 1559	233	48	35.6762	-101.4401
15	Beaumont Downtown	245	48	30.036422	-94.071061
16	Port Arthur West	245	48	29.897516	-93.991084
17	Port Arthur West 7th Street Gate 2	245	48	29.8442	-93.9652
18	Kaufman	257	48	32.564968	-96.317687
19	Waco Mazanec	309	48	31.653086	-97.070704
20	Corsicana Airport	349	48	32.031934	-96.399141
21	Richland Southeast 1220 Road	349	48	31.9041	-96.352
22	Corpus Christi West	355	48	27.76534	-97.434262
23	Corpus Christi Tuloso	355	48	27.832413	-97.555387
24	Corpus Christi Huisache	355	48	27.804489	-97.431553
25	Orange 1st Street	361	48	30.153675	-93.725897
26	Amarillo 24th Avenue	375	48	35.236736	-101.787405
27	Amarillo Xcel El Rancho	375	48	35.3165	-101.7418
28	Franklin Oak Grove	395	48	31.168889	-96.481944
29	Tatum CR 2181d Martin Creek Lake	401	48	32.277929	-94.570851
30	Cookville FM 4855	449	48	33.0752	-94.8474
31	Austin North Hills Drive	453	48	30.354944	-97.761803

Table 3: The sites information for SO_2 data at 31 locations.

29 We obtain the first 200 steps for training and perform forecasting for the next 165 steps. All models

- $_{30}$ are trained for 100 epochs using Adam optimizer at a learning rate of 0.01 and batch size of 50. The
- 31 forecasting performance in Figure 12 and Figure 13. Figure 14 show the estimated shape functions.
- ³² The dynamics of distance-based effects are presented in Figure 15, Figure 16 and Figure 17.

³³ The Houston cluster is centered at the location with latitude 30 and longitude -94, while the Dallas

cluster gathers around the site with latitude 32 and longitude -95. The results show that there exist

interaction within each cluster. Interestingly we can see there are also some connection between the

two main cluster at some times. The most strongest that larger than given threshold is denoted in red, which represent the significant distance-based effect at given time.

Figure 12: The sample of forecasting of SO_2 in one location for the next 165 days.

Figure 13: The sample of forecasts for other 12 locations.

Figure 14: The samples of estimated shape function within the next 165 testing time steps. Distances are shown every 40^{th} quantile.

Figure 15: The distance-based effect among all 31 locations at time t = 1. Red lines show the connection larger than 75% of maximum value of estimated shape functions while gray lines are those between 50% and 75%.

Figure 16: The distance-based effect among all 31 locations at time t = 20. Red lines show the connection larger than 75% of maximum value of estimated shape functions while gray lines are those between 50% and 75%.

Figure 17: The distance-based effect among all 31 locations at time t = 120. Red lines show the connection larger than 75% of maximum value of estimated shape functions while gray lines are those between 50% and 75%.