
A Visualization of Q-Landscape446

Figure 5 shows the visualization of learned policies (actions given different states) and Q values in447

TD3 during training in the Pendulum-v0 environment, where the state space is 3-dim and action space448

is 1-dim. The red lines indicates the selected action by the current policy. The learned Q function are449

always non-convex and locally convex. As a consequence, in many states the TD3 is not able to find450

globally optimal solution and local gradient information may be misleading in finding actions with451

the highest Q values.452

Figure 5: Landscape of learned value function of TD3 in the Pendulum-v0 environment (control task
with 1-dim action space so that the state-action values can be easily visualized.)

B Missing Proofs in Section 4.2453

Proof of Lemma 1. By the properties of Euclidean metric, we have the following lemma.454

Lemma 2. Let A ⇢ Rd with Euclidean metric. Any a 2 A, kxk2 k. Then there exists a set
{a1, . . . , aN} that is a 2k

p
d

N1/d -covering of N . In other words, for all a 2 A, 9i 2 [N],

ka� aik2
2k

p
d

N1/d
.

Define Ai as the set of all the actions that is closest to ai:

Ai
�
=

(
a 2 A : i = min{argmin

j2[N]
kaj � ak2}

)
.

Let P (·) be the probability measure of uniform distribution over A We have P (Ai) � 1/(2N). Now455

since we have n uniform samples from set A. Let N = n/ log2(n/�).456

Lemma 3 (Coupon Collector’s problem). It takes O(N log2(N/�)) rounds of random sampling to457

see all N distinct options with a probability at least 1� �.458

Proof. Consider a general sampling problem: for any finite set N with |N | = N . For any n, whose
sampling probability is p(c), with a probability at least 1� �, it requires at most

log(1/�)

log(1 + p(n)
1�p(n))

for n to be sampled.

13

Since log(1 + x) � x�
1
2x

2 for all x > 0, we have

log(1/�)

log(1 + p(n)
1�p(n))

 log(1/�)
1

p(n)
1�p(n) �

p(n)2

2(1�p(n))2

= O(log(1/�)
1� p(n)

p(n)
).

Searching the whole space N with each new element being found with probability N�i
N at round i, it

requires at most

O(
NX

i=1

log(
N

�
)

N

N � i
) = O(log2(

N

�
)N),

with a probability at most 1� �.459

By Lemma 3 We have with a probability at least 1� �, there exists a sample in each Ai described460

above. To proceed, we apply the Lipschitz of the Q function, Lemma 1 follows.461

Proof of Theorem 1. Now we proceed to show Theorem 1. We denote 2k
p
dL log1/d(n/�)

n1/d by �2.462

Our global policy network gives a prediction from a linear model. Let our dataset be {st, a
+
t }

T
t=1.463

Let ✏t = a+t � a⇤t . Let S = (s1, . . . , sT)T and a+,a⇤, ✏ be the corresponding vector for464

(a+t)
T
t=1, (a

⇤
t)

T
t=1, (✏t)

T
t=1. We have any ✏i, ✏j are independent for i 6= j. We further make an465

assumption that E[✏t] = 0. Then we immediately have E[✏i✏j] = 0 as well. This assumption is just466

for simplifying the proof, we can show similar results without assume the unbiasedness as the bias467

can be bounded.468

To proceed, let ✓⇤ = argmin✓ EsksT ✓ � a⇤(s)k22.469

Since the ERM solution is simply OLS (ordinary least square). We have the estimate

✓̂ = (STS)�1STa+.

We have

✓̂ � ✓⇤ = (STS)�1ST (a⇤
� S✓⇤) + (STS)�1ST ✏.

Since k✏tk2 �2, we have Var(✏t) �2. We observe that

Var((STS)�1ST ✏) �2((STS)�1) = O(�2p/T).

The generalization error is given by470

Esks
T ✓̂ � a⇤(s)k22

 Esks
T ✓̂ � sT ✓⇤k22 + Esks

T ✓⇤ � a⇤(s)k22

= O

✓
�2p

T
+ Esks

T (STS)�1ST (a⇤
� S✓⇤)k22 + Esks

T ✓⇤ � a⇤(s)k22

◆

= Õ

✓
�2p

T
+ Esks

T ✓⇤ � a⇤(s)k22

◆
.

14

C One-step Zeroth-Order Optimization with Consistent Iteration471

Algorithm 3 One-step Zeroth-Order Optimization with Consistent Iteration
Require
Objective function Q, domain A, current point a0, number of local samples n1, number of global
samples n2, local scale ⌘ > 0 and step size h, number of steps m.
for t = 1, . . . n2 do

Globally sampling
Sample a point uniformly in the entire space by

at0 ⇠ UA

where UA is the uniform distribution over A.
for i = 1, . . . ,m do

Locally sampling
Sample n1 points around at,i�1 by

ãj = at,i�1 + µej for ej ⇠ N (0, Id), j = 1, . . . n1,

where N (0, Id) is the standard normal distribution centered at 0.
Update
Set at,i = at,i�1 + h(argmaxa2{ãj} Q(a)� at,i�1)

end for
end for
return maxa2{atm}n2

t=1
Q(a).

D Implementation Details472

D.1 Network Structure And Hyper-Params473

In our experiments, we follow [8] to use a 3-layer MLP with 256 hidden units for both critic and474

actor networks. We also follow [8] to use 25000 timesteps for worm-up and use a batch-size of475

256 : 1 training-interaction proportion during training.476

D.2 Mixture Density Networks477

Our implementation of ZOSPI with MDN is based on neural network with multiple outputs. For478

MDN with K Gaussian mixture outputs, the neural network has 3 ⇥ K-dim output. The first K-479

dim units are normalized with softmax activation as the probability of selecting the Gaussians, the480

following K-dim units are corresponding K mean values of the Gaussians, and the last K-dim units481

are standard deviation of the K Gaussians. In our experiments, we use Diracs instead of Gaussians482

for parameterization. Therefore, our networks output 2⇥K-dim units for each action dimension,483

where the first K-dimensions denote the probabilities and the latter K-dimensions denote the mean484

values. In our experiments, we use K = 1 for Hopper, HalfCheetah and Ant, K = 5 for Walker2d,485

and K = 5 for Humanoid. (K = 5 and K = 10 achieve on-par performance for the Humanoid486

environment, though the K = 10 setting spend roughly one more time computational expense).487

More implementation details are provided with the code in the supplementary material.488

D.3 Running Time of ZOSPI489

We conduct our experiments with 8 GTX TITAN X GPUs and 32 Intel(R) Xeon(R) E5-2640 v3 @490

2.60GHz CPUs. The wall clock time of our proposed method is roughly 3-times slower than running491

TD3, without application of MDNs (i.e., NoD = 1). It takes roughly 20 hours to train Hopper with492

10 seeds, and takes about 120 hours to train Humanoid when NoD = 10 with 10 seeds.493

15

E Better Exploration with Bootstrapped Networks494

Sample efficient RL requires algorithms to balance exploration and exploitation. One of the most495

popular way to achieve this is called optimism in face of uncertainty (OFU) [15, 44–46], which gives496

an upper bound on Q estimates and applies the optimal action corresponding to the upper bound. The497

optimal action at is given by the following optimization problem:498

argmax
a

Q+(st, a), (6)

where Q+ is the upper confidence bound on the optimal Q function. A guaranteed exploration499

performance requires both a good solution for (6) and a valid upper confidence bound.500

While it is trivial to solve (6) in the tabular setting, the problem can be intractable in a continuous501

action space. Therefore, as shown in the previous section, ZOSPI adopts a local set to approximate502

policy gradient descent methods in the local region and further applies a global sampling scheme to503

increase the potential chance of finding a better maxima.504

As for the requirement of a valid upper confidence bound, we use bootstrapped Q networks to address505

the uncertainty of Q estimates as in [47–50, 14]. Specifically, we keep K estimates of Q, namely506

Q1, . . . QK with bootstrapped samples from the replay buffer. Let Q = 1
K

P
k Qk(s, a). An upper507

bound Q+ is508

Q+(s, a) = Q+ �

s
1

K

X

k

[Qk(s, a)�Q]2, (7)

where � is the hyper-parameter controlling the failure rate of the upper bound. Another issue is on the
update of bootstrapped Q networks. Previous methods [49] usually update each Q network with the
following target rt + �Qk (st+1,⇡✓t(st+1)) , which violates the Bellman equation as ⇡✓t is designed
to be the optimal policy for Q+ rather than Qk. Using ⇡✓t also introduces extra dependencies among
the K estimates. We instead employ a global random sampling method to correct the violation as

rt + � max
i=1,...n

Qk (st+1, ai) , a1, . . . an ⇠ UA.

The correction also reinforces the argument that a global random sampling method yields a good509

approximation to the solution of the optimization problem (6). The detailed algorithm is provided in510

Algorithm 4 in Appendix E.1.511

E.1 Algorithm 4: ZOSPI with Bootstrapped Q networks512

F Gaussian Processes for Continuous Control513

Different from previous policy gradient methods, the self-supervised learning paradigm of ZOSPI514

permits it to learn both its actor and critic with a regression formulation. Such a property enables the515

learning of actor in ZOSPI to be implemented with either parametric models like neural networks516

or non-parametric models like Gaussian Processes (GP). Although plenty of previous works have517

discussed the application of GP in RL by virtue of its natural uncertainty capture ability, most of these518

works are limited to model-based methods or discrete action spaces for value estimation [51–56]. On519

the other hand, ZOSPI formulates the policy optimization in continuous control tasks as a regression520

objective, therefore empowers the usage of GP policy in continuous control tasks.521

As a first attempt of applying GP policies in continuous control tasks, we simply alter the actor522

network with a GP to interact with the environment and collect data, while the value approximator is523

still parameterized by a neural network. We leave the investigation of better consolidation design in524

future work.525

G Experiments on the Four-Solution-Maze.526

The Four-Solution-Maze (FSM) environment is a diagnostic environment where four positive reward527

regions with a unit side length are placed in the middle points of 4 edges of a N ⇥N map. An agent528

starts from a uniformly initialized position in the map and can then move in the map by taking actions529

according to the location observations (current coordinates x and y). Valid actions are limited to530

16

Algorithm 4 ZOSPI with UCB Exploration
Require

• The number of epochs M , the size of mini-batch N , momentum ⌧ > 0 and the number of Bootstrapped
Q-networks K.

• Random initialized policy network ⇡✓1 , target policy network ⇡✓01
, ✓01 ✓1.

• K random initialized Q networks, and corresponding target networks, parameterized by wk,1, w
0
k,1,

w0
k,1 wk,1 for k = 1, . . . ,K.

for iteration = 1, 2, ... do
for t = 1, 2, ..., T do

Interaction
Run policy ⇡✓0t

, and collect transition tuples (st, at, s
0
t, rt,mt).

for epoch j = 1, 2, ...,M do
Sample a mini-batch of transition tuples Dj = {(s, a, s0, r,m)i}

N
i=1.

Update Q
for k = 1, 2, ...,K do

Calculate the k-th target Q value yki = ri +maxl Qw0
k,t

(s0i, a
0
l), where a0

l ⇠ UA.

Update wk,t with loss
PN

i=1 mik(yki �Qw0
k,t

(si, ai))
2.

end for
Update ⇡
Calculate the predicted action a0 = ⇡✓0t

(si)
Sample actions al ⇠ UA
Select a+

2 {al} [{a0} as the action with maximal Q+(st, a) defined in (7).
Update policy network with Eq.(2).

end for
✓0t+1 ⌧✓t + (1� ⌧)✓0t.
w0

k,t+1 ⌧wk,t + (1� ⌧)w0
k,t.

wk,t+1 wk,t; ✓t+1 ✓t.
end for

end for

[�1, 1] for both x and y axes. Each game consists of 2N timesteps for the agent to navigate in the531

map and collect rewards. In each timestep, the agent will receive a +10 reward if it is inside one of532

the 4 reward regions or a tiny penalty otherwise. For simplicity, there are no obstacles in the map,533

the optimal policy thus will find the nearest reward region, directly move towards it, and stay in the534

region till the end. Figure 6(a) visualizes the environment and the ground-truth optimal solution.535

Although the environment is simple, we found it extremely challenging due to existence of multiple536

sub-optimal policies that only find some but not all four reward regions. We do not conduct grid537

search on hyper-parameters of the algorithms compared in our experiments but set them to default538

setting across all experiments. Though elaborated hyper-parameter tuning may benefit for certain539

environment.540

On this environment we compare ZOSPI to on-policy and off-policy SOTA policy gradient methods541

in terms of the learning curves, each of which is averaged by 5 runs. The results are presented in542

Figure 6(b). And learned policies from different methods are visualized in Figure 6(c)-6(i). For each543

method we plot the predicted behaviors of its learned policy at grid points using arrows (although544

the environment is continuous in the state space), and show the corresponding value function of its545

learned policy with a colored map. All policies and value functions are learned with 0.3M interactions546

except for SAC whose figures are learned with 1.2M interactions as it can find 3 out of 4 target547

regions when more interactions are provided.548

We use 4 bootstrapped Q networks for the upper bound estimation in consideration of both better549

value estimation and computational cost for ZOSPI with UCB. And in ZOSPI with GP, a GP model is550

used to replace the actor network in data-collection, i.e.,exploration. The sample efficiency of ZOSPI551

is much higher than that of other methods. Noticeably ZOSPI with UCB exploration is the only552

method that can find the optimal solution, i.e., a policy directs to the nearest region with a positive553

reward. All other methods get trapped in sub-optimal solutions by moving to only part of reward554

regions they find instead of moving toward the nearest one.555

17

+10

+10

+10

+10

(a) Env. and the optimal policy (b) Performance comparison (c) PPO

(d) DDPG (e) TD3 (f) SAC

(g) ZOSPI (h) ZOSPI-UCB (i) ZOSPI-GP

Figure 6: Visualization of learned policies on the FSM environment. (a) the FSM environment and
its optimal solution, where the policy should find the nearest reward region and move toward it; (b)
learning curves of different approaches; (c)-(i) visualize the learned policies and corresponding value
functions. We run multiple repeat experiments and show the most representative and well-performing
learned value function and policy of each method.

18

	Introduction
	Related Work
	Policy Gradient Methods
	RL by Supervised Learning
	Zeroth-Order Methods

	Preliminaries
	Markov Decision Processes
	Mixture Density Networks

	Zeroth-Order Supervised Continuous Control
	Zeroth-Order Supervised Policy Improvement
	Analyses on the Benefits of Global Sampling
	Multi-Modal Continuous Control with ZOSPI

	Experiments
	ZOSPI on the MuJoCo Locomotion Tasks.
	Ablation Study

	Conclusion
	Visualization of Q-Landscape
	Missing Proofs in Section 4.2
	One-step Zeroth-Order Optimization with Consistent Iteration
	Implementation Details
	Network Structure And Hyper-Params
	Mixture Density Networks
	Running Time of ZOSPI

	Better Exploration with Bootstrapped Networks
	Algorithm 4: ZOSPI with Bootstrapped Q networks

	Gaussian Processes for Continuous Control
	Experiments on the Four-Solution-Maze.

