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Supplementary Materials: Appendix

A LOSS FUNCTION DETAILS
In order to enable better learning of global information, the BCE

loss between the saliency map 𝑈𝑔 obtained through the global

information module and the downsampled ground truth𝐺𝑔 , which

has the same size as𝑈𝑔 , can be calculated as follows [28]:

𝐿𝑔 = −
𝑁∑︁
𝑖=1

𝑃𝑔𝑖∑︁
𝑗=1

(𝐺𝑔𝑖 𝑗 ∗ 𝑙𝑜𝑔(𝑈𝑔𝑖 𝑗 ) + (1 −𝐺𝑔𝑖 𝑗 ) ∗ (1 − 𝑙𝑜𝑔(𝑈𝑔𝑖 𝑗 ))),

(8)

where 𝑃𝑔𝑖 is the total number of pixels in the 𝑖-th𝑈𝑔 .

The BCE loss between the final predicted saliency map𝑈𝑓 and

𝐺 is computed as follows:

𝐿𝑓 = 𝐿(𝑈𝑓 ,𝐺), (9)

Furthermore, to attain region consistency and achieve clearer

edges, the RGBT-SOD model incorporates a smoothness loss as a

constraint. This smoothness loss term utilizes the first-order deriva-

tives of the saliency map, formulated as follows [35]:

𝐿𝑠 = −
𝑁∑︁
𝑖=1

𝑃𝑖∑︁
𝑗=1

∑︁
𝑑∈ ®𝑥, ®𝑦

Ψ( |𝜕𝑑𝑈𝑓𝑖 𝑗 |𝑒
−𝜁 |𝜕𝑑𝐺𝑖 𝑗 | ), (10)

Ψ(𝜂) =
√︃
𝜂2 + 0.0012, (11)

where 𝜕𝑑 represents the partial derivatives on ®𝑥 and ®𝑦 directions,

and 𝜁 controls the weight of the edge, which is set to 10.

B PROOF OF LEMMA 1
The following is the proof of Lemma 1.

Proof. It is known that a trigger of size 𝑎×𝑏 becomes 𝑎′ ×𝑏′ in
the final convolution layer of the encoder after a series of encoder’s

processing steps, such as resizing, convolution, and pooling. The

encoder’s image reduction ratio is thus 𝑎/𝑎′ and 𝑏/𝑏′, respectively.
Since the model convolution kernels are all 𝑘 × 𝑘 , and the convolu-

tion on the smallest feature map we described above has the longest

influence range in the output saliency map and thus dominates the

expansion of trigger’s influence range. We can approximate the

influence range by the influence range of the convolutional filter

on the smallest feature map, i.e., the last convolutional layer of the

encoder. The trigger size in this feature map is 𝑎′ × 𝑏′. After the
convolution, the trigger’s influence expands by (2𝑘 − 2) × (2𝑘 − 2)
pixels, to the size of (2𝑘 − 2+𝑎′) × (2𝑘 − 2+𝑏′), which is equivalent

to the size of (𝑎 + (2𝑘 − 2) × (𝑎/𝑎′)) × (𝑏 + (2𝑘 − 2) × (𝑏/𝑏′)) at the
SOD model’s output salient map. Thus the trigger’s influence range

is approximately (𝑎+ (2𝑘−2) × (𝑎/𝑎′)) × (𝑏+ (2𝑘−2) × (𝑏/𝑏′)) rect-
angular range with the center of this trigger as the midpoint. □

C DATASETS AND MODELS
In our experimental evaluation, the selected datasets are as follows:

• VT821: This dataset comprises 821 RGBT image pairs man-

ually registered, resulting in some blank areas in the ther-

mal infrared images.

• VT1000: Consisting of 1000 RGBT image pairs, this dataset

contains relatively simple scenes and well-aligned images.

• VT5000: With 5000 aligned RGBT image pairs, this dataset

encompasses more complex scenes and a diverse range of

objects.

The selected models are as follows:

• MIDD-VGG16 [28]: This model employs VGG as the back-

bone network for feature extraction from the two modal-

ities. It adopts a step-by-step interaction method to fuse

features from the RGB and thermal infrared modalities and

the global background multiple times.

• MIDD-ResNet50 [28]: Utilizing ResNet50 for feature ex-

traction, this model includes one additional layer of feature

interaction compared to MIDD-VGG16.

• ADF [29]: ADF employs a series of attention modules to

extract weighted features from RGB and thermal infrared

modalities. It then captures salient objects through a pyra-

mid pooling module and a feature aggregation module.

D DETAILS OF EVALUATION METRICS
𝐹𝛽 is defined as follows:

𝐹𝛽 =
(1 + 𝛽2) ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
, (12)

where 𝛽2 = 0.3 emphasizes the importance of precision, as sug-

gested by [1].

𝑀𝐴𝐸𝑖 is defined as follows:

𝑀𝐴𝐸𝑖 =
1

𝑤 ∗ ℎ

𝑤∑︁
𝑥=1

ℎ∑︁
𝑦=1

|𝑈𝑖 (𝑥,𝑦) −𝐺𝑖 (𝑥,𝑦) |, (13)

where𝑈𝑖 is the predicted saliency map and𝐺𝑖 is the corresponding

GT.𝑤 and ℎ are the width and height of𝑈𝑖 .

𝑆𝛼 is used to evaluate the similarity of spatial structure. It com-

bines the regional perceptual structure similarity 𝑆𝑟 and the object

perceptual structure similarity 𝑆𝑜 as follows:

𝑆𝛼 = 𝛼 ∗ 𝑆𝑜 + (1 − 𝛼) ∗ 𝑆𝑟 , (14)

where 𝛼 = 0.5 is used in our evaluation, and more details can be

found in [8].

𝐸 is an enhanced alignment metric that jointly captures image-

level statistical information and pixel-level matching information

[9].

E ADDITIONAL EXPERIMENTAL
EVALUATION OF ATTACK PERFORMANCE

E.1 Evaluation of Trigger Sizes
We investigate the impact of trigger sizes on the attack performance.

Using the default settings outlined in Section 5.1.2, we adjust the

length and width of the trigger in equal proportions. The exper-

imental results are summarized in Table 5. We observe that the

attack performance remains effective and consistent across triggers

of varying sizes. However, excessively large triggers may become vi-

sually noticeable, while overly small triggers can present challenges

during physical implementation. Thus, determining the appropri-

ate trigger size should consider both effectiveness and practical

constraints.
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Figure 9: Experimental results of Grad-Cam.

Table 5: Experimental results with different trigger sizes.

Trigger Size 𝐸 𝑆𝛼 𝐹𝛽 𝑀𝐴𝐸 𝐴𝑆𝑅(%)

20 × 14 0.894 0.867 0.795 0.045 99.96

40 × 28 0.895 0.867 0.797 0.044 100.00

60 × 42 0.897 0.867 0.798 0.044 100.00

80 × 56 0.900 0.869 0.801 0.043 100.00

E.2 Different Combinations of Dual-modality
Triggers

We explore the impact of dual-modality triggers with various combi-

nations of single-modality triggers on attack performance. Employ-

ing the default settings described in Section 5.1.2, we create dual-

modality triggers using different combinations of RGB and thermal

triggers. The experimental results are summarized in Table 6. Re-

markably, these different combinations of single-modality triggers

achieve similar performance, consistently achieving a 100.00% ASR.

Table 6: Experimental results of different combinations
of single-modality triggers. ‘EXIT’ represents the "EXIT"
Sticker, ‘White’ represents the White Sticker, ‘EH’ represents
the Electric Heater, and ‘HP’ represents the Heating Patch.

Trigger Combination 𝐸 𝑆𝛼 𝐹𝛽 𝑀𝐴𝐸 𝐴𝑆𝑅(%)

EXIT + EH 0.896 0.868 0.797 0.044 100.00

EXIT + HP 0.899 0.869 0.801 0.043 100.00

White + EH 0.898 0.868 0.799 0.043 100.00

White + HP 0.896 0.868 0.798 0.043 100.00

F EXPERIMENTAL RESULTS OF POTENTIAL
COUNTERMEASURES

The experimental results of pruning and fine-pruning are shown in

Table 7, while the experimental results of Grad-CAM are shown in

Figure 9.

Table 7: Experimental results of Pruning and Fine-Pruning.

Pruned

Layer

Pruning

Rate

𝐸 𝑆𝛼 𝐹𝛽 𝑀𝐴𝐸 𝐴𝑆𝑅(%)

53-62

0.2 0.899 0.868 0.801 0.044 99.96

0.4 0.903 0.867 0.811 0.048 100.00

0.6 0.250 0.430 0.000 0.424 0.00
0.8 0.250 0.430 0.000 0.424 0.00

43-62

0.2 0.896 0.868 0.794 0.045 99.96

0.4 0.898 0.862 0.802 0.053 100.00

0.6 0.250 0.430 0.000 0.424 0.00

0.8 0.250 0.430 0.000 0.424 0.00

33-62

0.2 0.894 0.866 0.790 0.046 99.96

0.4 0.896 0.820 0.810 0.067 99.92

0.6 0.250 0.430 0.000 0.424 0.00

0.8 0.250 0.430 0.000 0.424 0.00

(a) Pruning

Pruned

Layer

Pruning

Rate

𝐸 𝑆𝛼 𝐹𝛽 𝑀𝐴𝐸 𝐴𝑆𝑅(%)

53-62

0.2 0.890 0.863 0.792 0.047 99.32

0.4 0.887 0.860 0.788 0.048 99.64

0.6 0.887 0.860 0.788 0.048 99.72

0.8 0.894 0.863 0.800 0.047 99.72

43-62

0.2 0.887 0.860 0.791 0.049 99.76

0.4 0.881 0.858 0.783 0.050 99.56

0.6 0.893 0.863 0.795 0.047 99.60

0.8 0.891 0.860 0.793 0.048 94.80

33-62

0.2 0.894 0.862 0.797 0.047 99.00

0.4 0.887 0.861 0.788 0.048 99.60

0.6 0.888 0.858 0.788 0.049 98.24

0.8 0.890 0.860 0.791 0.048 99.24

(b) Fine Pruning
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