Under review as a conference paper at ICLR 2025

A SUPPLEMENTAL RELATED WORKS

Block coordinate descent Block Coordinate Descent (BCD) involves iteratively optimizing over
a block of coordinates while holding the others constant. The foundational work of Tseng (2001)
provides a comprehensive analysis of the convergence properties of BCD under certain conditions.
Subsequent research has explored various BCD variants (Hong et al., 2017), including randomized
BCD (Nesterov, 2012; Richtarik & Takac, 2014; Lu & Xiao, 2015), cyclic BCD (Sun & Hong,
2015), and greedy BCD (Nutini et al., 2015). Among these, the greedy variant, also known as Gauss-
Southwell BCD method, has drawn attention due to its ability to prioritize coordinates that yield the
most substantial improvement in each iteration, thereby potentially accelerating convergence.

In the realm of machine learning, BCD has also found applications (Nutini et al., 2022). For example,
Luo et al. (2024) leverages BCD to perform memory-efficient fine-tuning of LLM and Xu & Zhang
(2024) uses random masking to perform this. In federated learning, Rothchild et al. (2020) adopts
top-k momentum value unsketch rather than our top-k momentum filtering to tackle communication
bottleneck and convergence issues. In LLMs, some concurrent works propose BCD-based algorithms
leveraging task vectors to enhance fine-tuning performance (Li et al., 2024) and mitigate catastrophic
forgetting in multi-task learning (Panda et al., 2024). In a recent work (Hui et al., 2024), catastrophic
forgetting during the fine-tuning of LLMs is addressed by selectively freezing 50% of the model
parameters during training. Our approach is akin to a more efficient greedy BCD, achieving superior
performance in fine-tuning tasks and alleviating forgetting better.

18

Under review as a conference paper at ICLR 2025

B SUPPLEMENTARY ANALYSIS ON THE TOP-a% FILTER

In this section, we provide supplementary analysis on our top-a% filter, which serves as a preliminary
for proving Theorem 1 in Appendix C.

As introduced in Section D.4, the entire parameter space is divided into B parts, with the k-th part
having a dimension of d;. We assume the parameter space is R?, which can be expressed as the
product R? = R% x R% x ... x R?2. For any z € R?, we represent it as:

z= Concat(z(l), PG ,z(B)),
where z(¥) € R4 foreach1 < k < B.
Definition 1. For any z € R%, we define the top-a% filter of z as
FLT,(z) := Concat(eg),egj (B)) €RY

where

S ={i € [di] : |z§k)| ranks within the top-a% of all |z

and e(Si)

k k k
(121 12870 1280

is a dy-dimensional vector where the i-th entry is 1 if i € Sk, and 0 otherwise.

Remark 1. 7o ensure that the top-a'% filter FLT,(2) is well-defined, when multiple entries share
identical absolute values and including all of them in the set Sy, would result in exceeding the a%
threshold of set size, the construction of Sy, prioritizes the entries with the smallest indices among
those with the same absolute values.

Definition 2. For any z € RY, we define the L, top-a% Norm of z as
12]11,10p-0% = llz © FLTa(2)]1-

Proposition 1. ||-||1 up-a% is indeed a norm in RY.

Proof. By Definition 1, we get
B
k
2l op-0 = 12 © FLTa() 1 = 37 1) © el ®)
k=1

First, if ||| 1 wp-a% = 0, then by (5), |2 @ el ||, = 0forany 1 < k < B. Thus,

12| = arg max 2| < [z® @ ed[l; =0
1<i<dy

So z(%) is a zero vector for any 1 < k < B and then z is a zero vector.

Second, for any given ¢ € R, {|z |}1<Z<dk and {\cz ‘}1<l<dk have the same order. So z and
¢z share the same filter FLT,(z) and

lezll10p-a% = llez © FLTa(c2)[l1 = ¢z © FLTa(2)ll1 = ¢]l2]l1.10p-a%-
Third, for any z,y € RY, suppose that
FLT4(x) = Concat(e(s,) eg?,) . eg})) and FLT.(z+y) = Concat(eg,z,eg),, e egz)).
By the construction of S}, for any 1 < k < B, we have
lz® @ eGlly < =™ © el .
So

B
o ® FLTA(z +)l = le el <Y lle™ 0 el = o @ FLTa (@)1
k=1

Similarly, it holds that
|y ©FLTa(z +y)[l1 < ly © FLTa(y)]1-

19

Under review as a conference paper at ICLR 2025

Thus, we have

||.’[7 + ylll,top—a% = ||(:E + y) © FLTO((J; + y)Hl
= [l ®FLTa(z +y) +y O FLTa(z + y)|1
< llz @ FLTa(z + y)l1 + ly © FLTa(z + y) Iy
< |lz @ FLTa(2)[1 + ly © FLTa(y) 1
= ||z

1,top-a% + ”yHI,top—a%-

We propose a lemma which is useful for the proof of Theorem 1.
Lemma 1. For any x,y € R?, it holds that

[© FLTa(2) [l = llz © FLTa(y)[l < 2[|lz = ylh-

Proof. By Proposition 1,

“|I1,top-a% is @ norm in R¢, so we have
|2 © FLTo(z)[l1 — [l © FLTa(y)ll1
=z ©FLTa(@)[1 = [y © FLTa @)l + [y © FLTa(y)]l — [z © FLTa(y)(1
= ”‘r”l,lop—a% - ”y' 1,top-a% + ”y O] FLTa(y)”l - ||;E © FLTa(y)”l
<z = ylhop-a% + [I(y — 2) © FLTa(y) 1

<z =yl +lly — =l
= 2[|lz = ylh-

20

Under review as a conference paper at ICLR 2025

C PROOF OF THEOREM 1

Our proof of Theorem 1 follows the convergence analysis of the full-batch Adam optimizer in Shi
et al. (2021), with novel adaptations to address the unique aspects of MoFO.

To maintain consistency with the notation used in MoFO (Algorithm 1 in Section D.4), we denote

= Concat(zt(l),. zt(B)),

where z represents the model parameter 6, the gradient g, the first moment estimate m, or the second
moment estimate v. Notably, each of these variables belongs to R?. Thus, for any 1 <1 < d, we can
denote z; ; as the i-th entry of 2, when z represents 6, g, m, or v.

By the update rules of the first and second moment estimates
miy = (1—p1)gie + Bimi—1, muo=0,
iy = (1= B2)gi s + Bavis—1, vio=0.

By mathematical induction, for any 1 < ¢ < d, we have

t
mie=(1-51)Y B gis (6

s=1
and

vig = (1—Ba) Zﬁt *97 -)

We will frequently use Equation (6) and (7) in the proofs of the subsequent lemmas and theorems.

Lemma 2. For the full-batch version of MoFO with hyperparameters satisfying 51 < /P2 < 1,
e = 0, it holds that

1
woil S A= Ba(1—B1/\B2)

Moreover, it holds that

|6, — 6

N - FLTo(mye);, for any coordinate 1 < i < d.

16 — 0:—1]|2 < Cne,

Vd-(a%)+B

where C' = TR B V)

Proof. When the i-th entry is not in our filter at iteration ¢, i.e. FLT,(m;); = 0, wehave 6, ; = 0, ;_1.
Then

1
it —0i1—1| =0= .
0i,t —bie—1| =0 VI=PB2(1 = B1/v/B2)

N - FLTo(my);.

When the i-th entry is in our filter, i.e. FLT,(m;); = 1, by the weight updating rule of MoFO, we
have 0; ; — 0;1—1 = —mi; ¢ /+/0ic. We first analyze m; ; and v; ;.

By Equation (6) and (7), we get

t
misl < (1= 51) > B *1gi.sl,

s=1

vt = (1— B2) Zﬁt Sg?s_ (1-=152)55 = ngs, forany 1 < s <.

21

Under review as a conference paper at ICLR 2025

So we get

i, N
e 2mi el //Vid
\ Vit 1- ﬁl

— @t _ t—s| . — — B &
ARy Sy 1l H R ﬁlﬂ > (B1/VB)*

17 ¢ —s - tl* t 1*
AL S (1= 82)BE g) A 2

101 — 0i1—1| = ‘

s=1

t—1

Mt s

< 7@ ;)(31/\/@)
Ul

= VI—=P52(1—B1/VB2)

Here, the last inequality holds because of the assumption 8; < 1/f2 < 1.

MOoFO actually choose [dy x a%] entries to update in each part k of parameters. Then for any
z € R?, we have

B

B
#{1<i<d:FLT(2)i=1} = [di- (@%)] <Y (di - (a%) +1) = d - (a%) + B.
k=1 k

—

Then for the L,-distance, we have

d
10 — 0i_1]l2 = (Z |0 — gi,t71|2 : FLT&(mt)i>

k=1

Nl=

N

i . i . 2);, =
< (v e #U <Pt ei=1)

< d-(a%)+B
S VI=B(l-5/VR) "
=Cny.

Lemma 3. Suppose that the gradient NV L is Lipschitz continuous with constant L. Suppose that
the full-batch version of MoFO has the hyperparameters satisfying 51 < +/B2 < 1, € = 0 and the
learning rate schedule n; = 1/+/t. For any iteration steps t > s > 1 and any coordinate i, it holds
that

2V2LCn(t — s
lgit — Gis] < llge — gsll2 < \/771?()

Proof. Since VL has Lipschitz constant L, we get
19it = gi,s| < llge — gsllz = IVL(Or—1) = VLOr—1)[l2 < L|0r—1 — Os—1]|2- ®)

22

Under review as a conference paper at ICLR 2025

By Lemma 2, for any ¢ > s > 1, we have

t—1 t—1
16 —1 — 0512 < Z 16 = Ou—1ll2 < cZnu

<Cnuzsf§0nuzsﬁ+f_20n2f u—1)
Cn(Vt—1—+s—1)= \/%j)_—l
< 20n(t —s) < 2Cn(t — s)
STAST S i
_ 2V20n(t —)
-
When t = s > 1, it is obvious that
21/2Cn(t — s)

16i—1 — Os_1]j]2 =0 <

Vit

Combining it with (8), for any ¢ > s > 1, we have

2V2LCn(t — s
1git — Gis] <9t — gsll2 < \/771?()

Lemma 4. Under the assumptions in Lemma 3, for any iteration step t > 1 and any coordinate 1, it

holds that
LCn
i

—— 2v/25; 4
N Ul,t b <|gi’t| - l(l “BR -5

Proof. By Lemma 3, we get

5 QﬁLCn(t—s)‘ ¥
s \/E gl,t .

: |gi,t — Yi,s >

Git9is = 9iv — 9i(git — Girs) > Gy — |95,

Then we have

t
giwmie = (1= B1) Y B gi1gis
s=1

i W2LC ¢
zgﬁt-(l—ﬁl)ZB?S—w%J (1-51) Zﬁ “(t—s) 9)
s=1 s=1
! W2LC =1
>t (=50 351 - 22 (- 50 T
s=0 s=1

Since we have
t—1
1
S __
251 1
s=0

it holds that

t—1 o
s— S= B :
2P 2 e (Zﬂl>_ <1—151)‘<1—ﬂ1>2’

(10)

2\[[3111077

gi.xm; ¢ > RHS of (9) > (1 Bl) (1_&)\/

|9i,¢- (11)

23

Under review as a conference paper at ICLR 2025

For the second moment estimate, we have

Vit = (1= fa) Zﬁt *97s < (1=) Zﬁg (l9e.t] + 191,s — 9i.t])?

. 2V2LCn(t — s ’ R 2v/2LCns
S(l—ﬂz)Zﬁz <|gi,t|+j;)> (1-) ;52 (g”|+ ﬂ”>

t—1
= [gidl* - (1= B2) (Z 52) + 193l - 4\[;077(1 — B2) <Z 555)
s=1
2,2, 2
+ 2) (Z /3) .
s=1
Since we have

1
262 52_1*527

t—1 00

(12)

M
V2]
N
N
A
]
.S?T
-
QL
&=
N
M8
=
N—————
|
| &

(=)=
B \T=5) ~ T=p)?

dosBTI <Y B (ZS<S—1 >+Z‘95
s=0
P (S L (1 :
:52'd6%<§ﬁ2>+(15) AT <1ﬁz>+(152>2
282 1
=3P (=B
_ 148
(1= B)%

it holds that

4v/28,LCn + 8(1+ B2) 52 L2C?n?

(1- B2Vt (1—pB2)%t
8LCn n 16L2C?n?

(1= Ba)Vt (1—P2)%

= (|9i,t| + aZiLﬁ(/:)?\/Z)Q

vis < RHS of (12) < [gie|* + |git] -

< |giel® + |gil -

Thus, we get

4LCn

\/’LT,t S ‘gi,t| + m

24

Under review as a conference paper at ICLR 2025

Recalling (11), we have

w2 1)l + 7 517) (' S —25% S v T %?ﬂ)
L) ((1 L+ e ﬁ>
> (1-81) (gi,t| + %) (' S Qﬁfmzm o 4Lg>7\/i>
> (1 8) /s <|gm| G _Qﬁffff(’z) v ﬁ> |

Therefore,

tig V1B mi m<gul(2V26LCy 4LOy)

gi,t\/m: l—ﬁt Gi,t ﬁ 1—ﬁf)(1_51)\/£ (1—ﬁ2)\/1E

2v/25; 4 LCry
>4/1— | — + .
= 62 (g’t,t| [(1 _ 51)2 1 — 52 \/i
O
Lemma S. Under the assumptions in Lemma 3, for any iteration step t > 1 and any coordinate 1, it
holds that
H my g 2[51[LC’77
— g <22
1-pi 1 (1-pB1)2VE
Proof. Recalling (6), we get
t
my = (1—f1) Zﬁiisgm
s=1
and
t
— (L= BNge = (1= B1)>_ B (gt — gs)-
s=1
By Lemma 3 and Equation (10) in the proof of Lemma 4, we get
t
m —s —s
H gl < 81l gl £ 32 8l —ul
1-p 2
2[2LC 2\/ 2LC
< 1 Z B3t - & Z 5P
\f
< 2[51L077
T (1-61)2Vi
By Cauchy-Schwarz’s inequality, we have
H my g 2\[51ch77
ot — gl <22
1-p1 o (1=p)2ViE
O

Now we will complete the proof of Theorem 1.

25

Under review as a conference paper at ICLR 2025

Proof of Theorem 1. By the descent lemma, since V L is Lipschitz with constant L, we have

L
L(0;) — L(Op—1) < VL(O—1)" (0 — O1—1) + §||9t — 013

13)
L
< g{ (0 —0:-1) + §Het — O l3-
By Lemma 2 and Lemma 4, we have
" 2,2
L(0:) — L(6;—1) < RHS of (13) < Ut<§:%t -FLTqo(m))4—L07h
=1 ’Ui’t 2
Lo ZW gl — | 220y A VIO),
> 2 Git (B) 1_B2 \/i [t)i
VI=P5s - 2v261v/T = 4 C| LCn?
:_ﬁ?ngt@mmmt)uﬁ (fl Wﬁu] Bl CENCSI !
V1=02-1 2V261VT =B 4 C| LCw?(d- (a%) + B)
< Y- = 7 — .
A I Y R

(14)

gt ® FLT, (,’ntt>
lfﬂl 1

By Lemma 1 and Lemma 5, we have

19: © FLTa(g)ll = [lg: © FLTa(me) |1 = llgr © FLTa(ge)[l1 —

my
< _ ot
= 2 gt 1 _ﬁi)
4[51\[LC'77
T (=Bt
Thus,
VI="F2-1 2V261V1 = P 4 C| LCn*(d- (a%) + B)
<Y 2 g OFLT, - + + -
= \/E ||gt (gt)”l (1 . Bl)Q M
+ 44281V dLCn?
(1 Bo)3t
Cl C2 Cl 02
= \[HgtHltopa%"'T S_%lglgrp”gtnltopa%"'?v
(15)
where

Cl = 1_62'777
) :LCUQ_HzﬂﬁW -8 4 C

(d- (%) + B) +

(1—p1)? +\/1—32+5 (1-p2)2

4N281Vd }

Taking the summation of (14) from 1 to 7', we get

L*— L(6y) < L(07) — Z/: (0,) — L(6;—1)

T T
1 . 1
e (z ﬁ) RN AT o)

26

Under review as a conference paper at ICLR 2025

Since
T T T
S oy 2 S oIV =2VT 1),
t=1 t t=1 \/i + t + 1 t=1
T 1 T-1 1 T-1 t41 T 1
doo=1+ S+ / —du§1+/ —du=1+logT,
t=1 t t=1 t+ t=1 7t w 1 U
we get
) o <)
omin [VLO) oo = min flgilloc < min [lg:110p-0%
* T *
_ Ll0o) = £+ Cy St ~ L(00) — £+ Cy(1 +10gT)
S, % 20, (VT +1-1)
logT
=0 .
()

27

Under review as a conference paper at ICLR 2025

D IMPLEMENTATION DETAILS

D.1 DATASETS FOR FINE-TUNING.

MetaMathQA (Yu et al., 2024b). This dataset comprises 395K math question-answer pairs. Nu-
merous studies indicate that LLMs significantly enhance performance metrics on mathematical
benchmarks such as GSM8K after fine-tuning on this dataset. We randomly select 10% of this dataset
for training LLMs, which includes 39.5K question-answer pairs.

PMC-LLaMA-Instructions (Wu et al., 2024). This dataset comprises 514K instruction-response
pairs. Fine-tuning LL.Ms on this dataset has been shown to enhance performance on medical NLP
tasks, such as PubMedQA (Jin et al., 2019), MedMCQA (Pal et al., 2022), and MedQA (Jin et al.,
2021). We randomly sampled 51K instances with prompt lengths less than 750 characters for training
our models.

TRACE benchmark dataset (Wang et al., 2023b). TRACE benchmark is designed with a com-
prehensive set of 8 distinct tasks across various domains, including domain-specific knowledge,
multilingual proficiency, code generation, and mathematical reasoning.

D.2 EVALUATION METRICS FOR INSTRUCTION FINE-TUNING

We employ a comprehensive suite of widely used benchmarks to assess the performance and potential
catastrophic forgetting effects on the general capabilities of LLMs after instruction fine-tuning. The
benchmarks are as follows:

* Factual knowledge (MMLU): We use the Massive Multitask Language Understanding
(MMLU) benchmark (Hendrycks et al., 2021) to evaluate factual knowledge across 57 di-
verse subjects, ranging from STEM fields and the humanities to social sciences. Evaluations
are performed using 8-bit precision with the open-instruct implementation, and by following
the setup of (Hui et al., 2024), we report the O-shot accuracy.

* Common sense reasoning (CommonSense): To measure the commonsense reasoning
capabilities of LLMs, we employ the widely recognized benchmarks ARC-Challenge, ARC-
Easy (Clark et al., 2018), and HellaSwag (Zellers et al., 2019), collectively referred to as the
Commonsense benchmark. We use the average of their metrics as the evaluation, conducting
assessments using the LM Eval Harness framework (Gao et al., 2023) and reporting the
0-shot accuracy based on the "acc_norm, none" metric.

* Mathematical Reasoning (GSMS8K): We assess mathematical reasoning capability using
GSMSK (Cobbe et al., 2021), which consists of 8.5K high-quality grade school math
problems. Evaluations are conducted on the test set using the LM Eval Harness framework
prompting in a 5-shot setting, reporting the "exact_match, flexible-extract" metric.

* Code Generation (HumanEval): We adopt HumanEval (Chen et al., 2021), comprising
164 unique programming problems, to evaluate the coding capabilities of LLMs. For chat
experiments, we use the VLLM framework with the open-instruct implementation and report
the pass@ 10 performance.

* Medical Question Answering (MedQ): To assess medical knowledge, we utilize three
benchmarks—PubMedQA (Jin et al., 2019), MedMCQA (Pal et al., 2022), and MedQA
(Jin et al., 2021). Evaluations are performed using the LM Eval Harness framework. For
PubMedQA, we report the "acc, none" metric; for MedMCQA and MedQA, we report the
"acc_norm, none" metric.

¢ Instruction Following (IFEval): We evaluate the instruction-following ability of LLMs
using the IFeval benchmark. Evaluations are conducted with the LM Eval Harness imple-
mentation, and we report the "inst_level_strict_acc, none" metric.

All benchmarks—including CommonSense, GSM8K, PubMedQA, MedMCQA, MedQA, and IFe-

val—are evaluated using the LM Eval Harness framework (Gao et al., 2023), following their default
settings unless specified otherwise.

28

Under review as a conference paper at ICLR 2025

D.3 HYPERPARAMETER CONFIGURATIONS

Instruction fine-tuning. In our instruction fine-tuning experiments, we follow the implementation of
Ivison et al. (2023). For instruction fine-tuning, we set the maximum sequence length to 1024, the
global batch size to 128, and we train the model for 2 epochs. For the Llama-2-7B model, we use a
learning rate of 2e-5, with a cosine decay learning rate scheduler. The learning rate is set to 2e-5 for
fine-tuning both the Llama-2-7B-Chat model on the MetaMathQA dataset and the Gemma-2B-IT
model, while a learning rate of le-5 is used for fine-tuning the Llama-2-7B-Chat model on the
PMC-LLaMA-Instruct dataset; all these settings employ a warm-up ratio of 0.03 and a cosine decay
learning rate scheduler. For LoORA, we set the learning rate as 1e-4. The other hyperparameters in the
experiments are as follows.

Fine-tuning Llama-2-7B on MetaMathQA.

* Learning rate: 2e-5.

« Update fraction of MoFO: a% = 15%.

* LoRA: r = 4,16, 64, 256. We report the best-performing hyperparameter configuration for
the fine-tuning task in Table 1, which, in this case, is 7 = 256.

Fine-tuning Llama-2-7B-Chat on PMC-LLaMA -Instruct.

* Learning rate: le-5.

« Update fraction of MoFO: a% = 10%.

* LoRA: r = 16, 256. We report the best-performing hyperparameter configuration for the
fine-tuning task in Table 5, which, in this case, is r = 256.

Fine-tuning Llama-2-7B-Chat on MetaMathQA.

* Learning rate: 2e-5.
« Update fraction of MoFO: a% = 15%.

* LoRA: r = 16, 256. We report the best-performing hyperparameter configuration for the
fine-tuning task in Table 7, which, in this case, is r = 256.

Fine-tuning Gemma-2B-IT on MetaMathQA.

* Learning rate: 2e-5.
« Update fraction of MoFO: a% = 5%.

* LoRA: r = 16, 256, 512. We report the best-performing hyperparameter configuration for
the fine-tuning task in Table 6, which, in this case, is r = 512.

Hyperparameters in the Pareto comparison. To provide a comprehensive comparison, we explore
various hyperparameter settings for A;, A2, LORA’s rank, and the update fraction «% in MoFO in
Figure 4. Specifically, we set \; as le-4, le-5, 1e-6, le-7, while), is set as le-2, 5e-3, le-3, S5e-4,
and le-4. The update fraction a% in MoFO is set as 5%, 10%, 15%, 20%, 40%, 80%. The rank of
LoRA is set as 4, 16, 64, 256.

Continual fine-tuning. In our continual fine-tuning experiments, we follow the default settings of the
TRACE benchmark. We sequentially train TinyLlama-1.1B on the TRACE benchmark datasets: C-
STANCE, FOMC, MeetingBank, Py150, ScienceQA, NumGLUE-cm, NumGLUE-ds, and 20Minuten
for5,3,7,5,3,5,5, and 7 epochs, respectively. We use a learning rate of 1e-5 with a cosine decay
schedule and a batch size of 64. The parameter update fraction for MoFO is set to 5%.

All experiments are conducted on four A800 (80GB) GPUs.

D.4 MORE EXPLANATION ON THE PARTITIONING AND CALCULATION OF DISTANCE

Partitioning. We use the default partitioning scheme in PyTorch’s Transformer implementation.
Different types of parameters within the Transformer, such as query (Q), key (K), value (V) weights

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

for attention heads, and feed-forward network (FFN) weights, are divided into separate partitions.
Notably, in the default PyTorch implementation, within a layer, the query (Q) weights of all attention
heads are grouped into a single partition. The same applies to the key (K) and value (V) weights. Our
momentum-based filtering mechanism is applied to each partition individually.

Calculation of distance. Following the notation in Section , we suppose that the parameter parameters
are partitioned into

0=(0W,02 . 0B,
Denote the pre-trained model by 6, and the fine-tuned model by 6.

GRS
]
Second, we compute the distance from the pre-trained model 6 to the fine-tuned model 6 by averaging

the relative changes across all partitions, defined as:

XSRS ol ket i ||.
Bz e

First, we calculate the relative change of parameters in each partition k € {1,2,..., B}.

30

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXPERIMENTS

E.1 IMPACT OF THE UPDATE FRACTION

In this section, we first investigate the impact of the update fraction of parameters in the MoFO
algorithm at each iteration, and then explore the effects of different update strategies within MoFO.

50 fomm ¢ v — —

30 . — = — /‘_—.—
~ 4
2 2
& 25 =40
© —e— MoFO 9 a5 —e— MoFO © —o— MoFO
220 = = Pre-trained model i — = Pre-trained model 230 = = Pre-trained model
3 =+ Default SFT 240 =+ Default SFT 2 =+ Default SFT
3 g3 2
<10 < 220

30
5% 10% 20% 40% 80% 5% 10% 20% 40% 80% 5% 10% 20% 40% 80%
Parameter update fraction Parameter update fraction Parameter update fraction
(a) Llama-3.2-1B (b) Llama-3.2-3B (c) Llama-2-7B

Figure 6: The performance of LLMs with different sizes on the math reasoning task (GSM8K) after
fine-tuning on MetaMathQA using MoFO with different update fractions (a%) of parameters. Results
show that across models of different sizes, setting the fraction a% to approximately 20% allows
MOoFO to reach fine-tuning performance similar to the default FT (with up to 3% performance drop).

g OfF———— e P \\ P
1]) v
o = o
c E Of=—— e ———— <
© © ©
= = =
[S) o o
§ —o— MoFO g_l —e— MoFO §
5 = = Pre-trained model 5 = = Pre-trained model 5
g-4 — - Default SFT 8 — - Default SFT 8
- -

& g2 g _,| = moro
o ° e = = Pre-trained model
S - $ | —- DefaurtsFr
z -3 L HLC L S -

5% 10% 20% 40% 80% 5% 10% 20% 40% 80% 5% 10% 20% 40% 80%

Parameter update fraction Parameter update fraction Parameter update fraction
(a) Llama-3.2-1B (b) Llama-3.2-3B (c) Llama-2-7B

Figure 7: Average accuracy changes on MMLU, HumanEval, Commonsense Reasoning benchmarks
compared to the pre-trained LLMs of different sizes after fine-tuning on MetaMathQA using MoFO
with different update fractions (a%) of parameters. Larger LLMs tend to retain their pre-training
knowledge more effectively when fine-tuned with MoFO, even when using smaller fractions of
parameter updates.

Impact of update fraction of parameters in MoFO. Following the setting in Section 4.2, we
fine-tune Llama-3.2-1B, Llama-3.2-3B, and Llama-2-7B on the MetaMathQA dataset using MoFO
with varying update fractions of parameters at each iteration for 2 epochs. The experimental results
of math reasoning (GSMS8K) and average general capability performance changes are presented in
Figure 6 and Figure 7.

The parameter update fraction affects the fine-tuning performance. Figure 6 shows that larger
update fractions can improve MoFO’s optimization effectiveness. Furthermore, in Llama-2-7B and
Llama-3.2-3B, MoFO with a 5% parameter update fraction is sufficient to achieve nearly 90% of the
performance of Default FT. Besides, experimental results show that setting the update fraction as «
to approximately 20% enables MoFO to attain fine-tuning performance comparable to the default FT
across various model sizes.

The parameter update fraction also affects the preservation of general capabilities. Figure 7 indicates
that larger LLMs effectively maintain their pre-training knowledge when fine-tuned with MoFO,
especially when using update fraction « less than 10%. Beyond the threshold of 20%, further
increases in the parameter update fraction lead to a decline in general capabilities. Despite this,
MOoFO still forgets significantly less than Default FT in larger LLMs.

31

Under review as a conference paper at ICLR 2025

2.0
2.023 ‘ * Pre-trained model

% Fine-tuned model (MoFO)
1354 1.5 ® Fine-tuned model (Adam) 2636

+* Pre-trained model
% Fine-tuned model (MoFO)
® Fine-tuned model (Adam)

2.841

0.684 2.432

2.228
0.015
2.024
—0.655
1.819

-1.324 1.615

~1.993 1.411

1.207
—2.663

. 1.003
-0.4 -0.2 0.0 0.2 0.4 0.5 0.7 -0.4 -0.2 0.0 0.2 0.4 0.5 0.7

(a) Loss landscape on fine-tuning dataset (b) Loss landscape on pre-training dataset

Figure 8: The loss landscapes of Pythia-160m after fine-tuning on a subset of the FLAN dataset using
Adam optimizer and MoFO. We plot the loss landscapes on (a) the fine-tuning dataset and (b) the
pre-training dataset (Pile). A logarithmic scale is applied to the loss values for better visualization.
We find that MoFO, reaching a closer point to the pre-trained model, has minimal fine-tuning loss
and lower pre-training loss, compared to Adam.

Table 4: Pythia-160m’s performance on common sense tasks, after being fine-tuned with the Adam
optimizer and MoFO. The results indicate that MoFO significantly mitigates catastrophic forgetting.
Bold values denote the best results among these optimizers.

HellaSwag ARC-easy ARC-challenge Average

Pythia-160m 30.1 39.6 23.8 31.2
Adam 28.3 374 221 293
MoFO 29.9 42.0 22.9 31.6

In summary, MoFO can preserve pre-training knowledge and significantly enhance fine-tuning
performance by choosing a moderate update fraction, avoiding the extremes of too small or too large
fractions.

E.2 VALIDATING MOFQO’S IMPACT ON PRESERVING PRE-TRAINING KNOWLEDGE THROUGH
PROXIMITY

In this section, we empirically examine whether MoFO achieves its intended goal of converging to a
minimum closer to the pre-trained model and mitigating forgetting mentioned in Section 3.

Our exploratory experiment shows that MoFO indeed converges to a minimum closer to the pre-
training model. As shown in Figure 8(a), both MoFO and the Adam optimizer achieve minimal
fine-tuning loss, indicating that switching from Adam to MoFO does not lead to performance
degradation. Moreover, the distance from the pre-trained model to the minimum reached by MoFO is
approximately 20% of that reached by the default Adam optimizer.

Our experiment demonstrates that the reduced parameter movement achieved by MoFO effectively
mitigates the forgetting of pre-training knowledge. As shown in Figure 8(b), the fine-tuned model
using MoFO experiences a smaller increase in pre-training loss. Additionally, Table 4 shows that
MoFO achieves higher accuracy on commonsense reasoning tasks, indicating less forgetting.

E.3 MORE EXPERIMENTAL RESULTS IN INSTRUCTION FINE-TUNING

Results of fine-tuning on PMC-LLaMA-Instruct. We fine-tune Llama-2-7B-Chat on the PMC-
LLaMA-Instructions dataset using various baseline methods and present the experimental results on
medical question answering (MedQ) and general capabilities in Table 5. Since the MMLU benchmark

32

Under review as a conference paper at ICLR 2025

Table 5: The performance on the fine-tuning task (medical QA task), measured by MedQ, and general
capability scores of Llama-2-7B-Chat after fine-tuning on the PMC-LLaMA-Instruct dataset. The
figure on the right visualizes both MedQ accuracy and general capability scores. The results show
that MoFO achieves comparable performance in the MedQ while significantly mitigating forgetting
of general capabilities. Bold values denote the best results among these methods.

General Capability
Method MedQ .
CR IFEval HumanEval Avg. :
0.55 1
Llama-2-7B-Chat 49.8 65.6 414 243 43.8 IR o
O 0.53
Default FT 543 646 321 206 390 g°°%] m DefautFr |
= HFT
0.50 12-7b-chat -
HFT 544 652 335 23.1 40.6 ® LoRA o
LoRA 542 644 339 235 406 048] @ MOFo i
MOoFO 543 655 411 24.1 43.6 0.375 0400 0.425 0.450

General capability

already contains medical-related instances (Hendrycks et al., 2021), which may lead to improved
performance after fine-tuning, we instead use IFEval to assess general capabilities.

MOoFO performs well on the fine-tuning task of medical QA. It achieves compatible performance
compared to Default FT and HFT. In terms of general capabilities, MoFO demonstrates the least
degradation compared to other baselines, with an average accuracy reduction of only 0.2%. Specifi-
cally, on the IFEval benchmark, our method only exhibits a minor reduction of 0.3%, while Default
FT, HFT, and LoRA experience significant degradations ranging from 7.5% to 9.3%. On code
generation (HumanEval) tasks and commonsense reasoning (CR) benchmarks, our method also only
exhibits a minor reduction less than 0.2%.

Table 6: The performance of the fine-tuning task (math), measured by GSMS8K, and the general
capability scores of Gemma-2B-IT after fine-tuning on the MetaMathQA dataset. The figure on the
right visualizes both GSMS8K accuracy and general capability scores. The results show that MoFO
achieves comparable performance in the fine-tuning task, while significantly mitigating forgetting of
general capabilities. Bold values denote the best results among these methods.

General Capabilit ,
Method GSMSK eeral -apabity >04 ™ *® :
CR IFeval HumanEval Avg. © B Default FT :
3

Gemma-2B-IT 114 576 336 315 409 §0.37 HFT !
1
Default FT 420 521 243 20.6 323 Fo, ® LoRA :
2021 @ MOFO !
%5} 1
HFT 415 539 241 212 318 | Gemma- 28T __ 1.
LoRA 406 544 261 29.8 36.8 0135 0.350 0.375 0.400

MoFO 421 550 287 29.1 37.6 General capability

Results of Gemma-2B-IT fine-tuning on MetaMathQA. We also explore how MoFO performs
in other LLMs. Specifically, we fine-tune Gemma-2B-IT on MetaMathQA using various baseline
methods and present the experimental results on mathematical reasoning (GSM8K) and general
capabilities in Table 6. The experimental results demonstrate that MoFO achieves comparable
performance of the fine-tuning task to Default FT and HFT across different models. In terms of
general capabilities, MoFO exhibits significantly less forgetting compared to other baselines. This
result demonstrates the versatility of the MoFO algorithm.

We also fine-tune the Llama-2-7B-Chat on the MetaMathQA dataset. The results are presented in
Table 7. The results demonstrate that our approach achieves performance comparable to Default FT
and HFT while exhibiting less forgetting compared to baseline methods.

In summary, our MoFO algorithm shows competitive performance in instruction fine-tuning while
preserving the general capabilities, effectively alleviating forgetting.

33

Under review as a conference paper at ICLR 2025

Table 7: The performance of the fine-tuning task (math), measured by GSM8K, and the general
capability scores of Llama-2-7B-chat after fine-tuning on the MetaMathQA dataset. The figure on the
right visualizes both GSM8K accuracy and general capability scores. The results show that MoFO
achieves comparable performance in the fine-tuning task, while significantly mitigating forgetting of
general capabilities. Bold values denote the best results among these methods.

o
&)

General Capability

Method GSMSK > V o© :
CR IFeval HumanEval Avg. g 0.4{ @ Default FT !
Llama-2-7B-Chat 13.7 65.6 414 24.3 438 § V HFT H
S031 @ LorA !
Default FT 48.4 62.8 30.7 15.6 364 % H
s ® MOFO H
HFT 46.9 63.4 31.8 20.0 38.4 & 0.2 1
—-Llama-2-7B-Chat___
LoRA 45.3 63.9 35.6 21.0 40.2 0375 0400 0425
MoFO 47.1 64.0 37.1 21.7 40.9 General capability

E.4 TRANING PROCESS OF MOFO

In this subsection, we analyze the differences between the training processes of MoFO and the default
SFT.

0.5

0]

m

é 0.4

c

o

> 0.3

O

©

5 =@=Full sft
0 0.2

g == MoFO 15%

"0 10 20 30 40 50 60 70 80 90100
Training Process (%)

Figure 9: The GSM8K accuracy achieved during the fine-tuning of Llama-2-7B on the MetaMathQA
dataset. The update fraction of MoFO is a% = 15%.

Following the setting in Section 4.2, we present the GSM8K accuracy achieved during the fine-
tuning of Llama-2-7B on the MetaMathQA dataset with different methods in Figure 9. The results
demonstrate that the MoFO method can achieve training effectiveness comparable to the default
fine-tuning approach.

E.5 COMPARISON WITH MORE FINE-TUNING METHODS

In this subsection, we compare our proposed method with the Heterogeneous Model Averaging
(HMA) (Lin et al., 2024). HMA approach evenly divides the LLM into three parts—the input part,
the middle part, and the output part—and averages these parts with different ratios. To facilitate a
comprehensive comparison, following the setting in Section 4.2, we evaluate the fine-tuning and
forgetting mitigation performance for different HMA strategies. We select 15 different combinations
of averaging ratios for different parts as follows: {(0.05, 0.2, 0.35), (0.1, 0.2, 0.3), (0.2, 0.2, 0.2), (0.3,
0.2,0.1), (0.35, 0.2, 0.05), (0.3, 0.5, 0.7), (0.4, 0.5, 0.6), (0.5, 0.5, 0.5), (0.6, 0.5, 0.4), (0.7, 0.5, 0.3),
(0.65, 0.8, 0.95), (0.7, 0.8, 0.9), (0.8, 0.8, 0.8), (0.9, 0.8, 0.7), (0.95, 0.8, 0.65)}. We plot the results to
construct a Pareto front in Figure 10.

Results show that our proposed method, MoFO achieves a more effective Pareto front compared to
the baselines.

34

Under review as a conference paper at ICLR 2025

0.40 4
0.35 1 Default FT i
HFT

Ly-regularization
Ly-regularization

MOFO

LoRA

HMA

0.15 4 Llama-2-7B

GSM8K

0.30 A

0.25 4

soxdam

.

T T T T
0.63 0.64 0.65 0.66
CR

Figure 10: The performance on the math task (GSM8K) and the scores in Commonsense Reasoning
of Llama-2-7B after fine-tuning on the MetaMathQA dataset. The results show that the MoFO
algorithm achieves a better Pareto front. The pink triangle represents the model obtained through
HMA.

35

	Supplemental Related Works
	Supplementary Analysis on the Top-% Filter
	Proof of Theorem 1
	Implementation Details
	Datasets for Fine-Tuning.
	Evaluation Metrics for Instruction Fine-Tuning
	Hyperparameter Configurations
	More Explanation on the partitioning and Calculation of distance

	Additional Experiments
	Impact of the Update Fraction
	Validating MoFO's Impact on Preserving Pre-training Knowledge through Proximity
	More Experimental Results in Instruction Fine-Tuning
	Traning Process of MoFO
	Comparison with more fine-tuning methods

