
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A SUPPLEMENTAL RELATED WORKS

Block coordinate descent Block Coordinate Descent (BCD) involves iteratively optimizing over
a block of coordinates while holding the others constant. The foundational work of Tseng (2001)
provides a comprehensive analysis of the convergence properties of BCD under certain conditions.
Subsequent research has explored various BCD variants (Hong et al., 2017), including randomized
BCD (Nesterov, 2012; Richtárik & Takáč, 2014; Lu & Xiao, 2015), cyclic BCD (Sun & Hong,
2015), and greedy BCD (Nutini et al., 2015). Among these, the greedy variant, also known as Gauss-
Southwell BCD method, has drawn attention due to its ability to prioritize coordinates that yield the
most substantial improvement in each iteration, thereby potentially accelerating convergence.

In the realm of machine learning, BCD has also found applications (Nutini et al., 2022). For example,
Luo et al. (2024) leverages BCD to perform memory-efficient fine-tuning of LLM and Xu & Zhang
(2024) uses random masking to perform this. In federated learning, Rothchild et al. (2020) adopts
top-k momentum value unsketch rather than our top-k momentum filtering to tackle communication
bottleneck and convergence issues. In LLMs, some concurrent works propose BCD-based algorithms
leveraging task vectors to enhance fine-tuning performance (Li et al., 2024) and mitigate catastrophic
forgetting in multi-task learning (Panda et al., 2024). In a recent work (Hui et al., 2024), catastrophic
forgetting during the fine-tuning of LLMs is addressed by selectively freezing 50% of the model
parameters during training. Our approach is akin to a more efficient greedy BCD, achieving superior
performance in fine-tuning tasks and alleviating forgetting better.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B SUPPLEMENTARY ANALYSIS ON THE TOP-α% FILTER

In this section, we provide supplementary analysis on our top-α% filter, which serves as a preliminary
for proving Theorem 1 in Appendix C.

As introduced in Section D.4, the entire parameter space is divided into B parts, with the k-th part
having a dimension of dk. We assume the parameter space is Rd, which can be expressed as the
product Rd ∼= Rd1 × Rd2 × · · · × RdB . For any z ∈ Rd, we represent it as:

z = Concat(z(1), z(2), . . . , z(B)),

where z(k) ∈ Rdk for each 1 ≤ k ≤ B.

Definition 1. For any z ∈ Rd, we define the top-α% filter of z as

FLTα(z) := Concat(e
(1)
S1

; e
(2)
S2

; . . . ; e
(B)
SB

) ∈ Rd,

where

Sk = {i ∈ [dk] : |z(k)i | ranks within the top-α% of all |z(k)|’s entries (|z(k)1 |, |z(k)2 |, . . . , |z(k)dk
|)}

and e
(k)
Sk

is a dk-dimensional vector where the i-th entry is 1 if i ∈ Sk, and 0 otherwise.

Remark 1. To ensure that the top-α% filter FLTα(z) is well-defined, when multiple entries share
identical absolute values and including all of them in the set Sk would result in exceeding the α%
threshold of set size, the construction of Sk prioritizes the entries with the smallest indices among
those with the same absolute values.

Definition 2. For any z ∈ Rd, we define the L1,top-α% norm of z as

∥z∥1,top-α% := ∥z ⊙ FLTα(z)∥1.

Proposition 1. ∥·∥1,top-α% is indeed a norm in Rd.

Proof. By Definition 1, we get

∥z∥1,top-α% = ∥z ⊙ FLTα(z)∥1 =

B∑
k=1

∥z(k) ⊙ e
(k)
Sk

∥1. (5)

First, if ∥z∥1,top-α% = 0, then by (5), ∥z(k) ⊙ e
(k)
Sk

∥1 = 0 for any 1 ≤ k ≤ B. Thus,

∥z(k)∥∞ = argmax
1≤i≤dk

|z(k)i | ≤ ∥z(k) ⊙ e
(k)
Sk

∥1 = 0.

So z(k) is a zero vector for any 1 ≤ k ≤ B and then z is a zero vector.

Second, for any given c ∈ R+, {|z(k)i |}1≤i≤dk
and {|cz(k)i |}1≤i≤dk

have the same order. So z and
cz share the same filter FLTα(z) and

∥cz∥1,top-α% = ∥cz ⊙ FLTα(cz)∥1 = c∥z ⊙ FLTα(z)∥1 = c∥z∥1,top-α%.

Third, for any x, y ∈ Rd, suppose that

FLTα(x) = Concat(e
(1)
S′
1
; e

(2)
S′
2
; . . . ; e

(B)
S′
B
) and FLTα(x+ y) = Concat(e

(1)
S′′
1
; e

(2)
S′′
2
; . . . ; e

(B)
S′′
B
).

By the construction of S′
k, for any 1 ≤ k ≤ B, we have

∥x(k) ⊙ e
(k)
S′′
k
∥1 ≤ ∥x(k) ⊙ e

(k)
S′
k
∥1.

So

∥x⊙ FLTα(x+ y)∥1 =

B∑
k=1

∥x(k) ⊙ e
(k)
S′′
k
≤

B∑
k=1

∥x(k) ⊙ e
(k)
S′
k
= ∥x⊙ FLTα(x)∥1.

Similarly, it holds that
∥y ⊙ FLTα(x+ y)∥1 ≤ ∥y ⊙ FLTα(y)∥1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Thus, we have

∥x+ y∥1,top-α% = ∥(x+ y)⊙ FLTα(x+ y)∥1
= ∥x⊙ FLTα(x+ y) + y ⊙ FLTα(x+ y)∥1
≤ ∥x⊙ FLTα(x+ y)∥1 + ∥y ⊙ FLTα(x+ y)∥1
≤ ∥x⊙ FLTα(x)∥1 + ∥y ⊙ FLTα(y)∥1
= ∥x∥1,top-α% + ∥y∥1,top-α%.

We propose a lemma which is useful for the proof of Theorem 1.
Lemma 1. For any x, y ∈ Rd, it holds that

∥x⊙ FLTα(x)∥1 − ∥x⊙ FLTα(y)∥1 ≤ 2∥x− y∥1.

Proof. By Proposition 1, ∥·∥1,top-α% is a norm in Rd, so we have

∥x⊙ FLTα(x)∥1 − ∥x⊙ FLTα(y)∥1
= ∥x⊙ FLTα(x)∥1 − ∥y ⊙ FLTα(y)∥1 + ∥y ⊙ FLTα(y)∥1 − ∥x⊙ FLTα(y)∥1
= ∥x∥1,top-α% − ∥y∥1,top-α% + ∥y ⊙ FLTα(y)∥1 − ∥x⊙ FLTα(y)∥1
≤ ∥x− y∥1,top-α% + ∥(y − x)⊙ FLTα(y)∥1
≤ ∥x− y∥1 + ∥y − x∥1
= 2∥x− y∥1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C PROOF OF THEOREM 1

Our proof of Theorem 1 follows the convergence analysis of the full-batch Adam optimizer in Shi
et al. (2021), with novel adaptations to address the unique aspects of MoFO.

To maintain consistency with the notation used in MoFO (Algorithm 1 in Section D.4), we denote

zt = Concat(z(1)t , . . . , z
(B)
t),

where z represents the model parameter θ, the gradient g, the first moment estimate m, or the second
moment estimate v. Notably, each of these variables belongs to Rd. Thus, for any 1 ≤ i ≤ d, we can
denote zi,t as the i-th entry of zt when z represents θ, g, m, or v.

By the update rules of the first and second moment estimates

mi,t = (1− β1)gi,t + β1mi,t−1, mi,0 = 0,

vi,t = (1− β2)g
2
i,t + β2vi,t−1, vi,0 = 0.

By mathematical induction, for any 1 ≤ i ≤ d, we have

mi,t = (1− β1)

t∑
s=1

βt−s
1 gi,s (6)

and

vi,t = (1− β2)

t∑
s=1

βt−s
2 g2i,s. (7)

We will frequently use Equation (6) and (7) in the proofs of the subsequent lemmas and theorems.

Lemma 2. For the full-batch version of MoFO with hyperparameters satisfying β1 <
√
β2 < 1,

ϵ = 0, it holds that

|θi,t − θi,t−1| ≤
1√

1− β2(1− β1/
√
β2)

· ηt · FLTα(mt)i, for any coordinate 1 ≤ i ≤ d.

Moreover, it holds that

∥θt − θt−1∥2 ≤ Cηt,

where C =

√
d·(α%)+B√

1−β2(1−β1/
√
β2)

.

Proof. When the i-th entry is not in our filter at iteration t, i.e. FLTα(mt)i = 0, we have θi,t = θi,t−1.
Then

|θi,t − θi,t−1| = 0 =
1√

1− β2(1− β1/
√
β2)

· ηt · FLTα(mt)i.

When the i-th entry is in our filter, i.e. FLTα(mt)i = 1, by the weight updating rule of MoFO, we
have θi,t − θi,t−1 = −ηtm̂i,t/

√
v̂i,t. We first analyze mi,t and vi,t.

By Equation (6) and (7), we get

|mi,t| ≤ (1− β1)

t∑
s=1

βt−s
1 |gi,s|,

vi,t = (1− β2)

t∑
s=1

βt−s
2 g2i,s ≥ (1− β2)β

t−s
2 g2i,s, for any 1 ≤ s ≤ t.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

So we get

|θi,t − θi,t−1| =

∣∣∣∣∣−ηt
m̂i,t√
v̂i,t

∣∣∣∣∣ = ηt

√
1− βt

2

1− βt
1

|mi,t|/
√
vi,t

≤ ηt

√
1− βt

2

1− βt
1

t∑
s=1

(1− β1)β
t−s
1 |gi,s|√

(1− β2)β
t−s
2 |gi,s|

= ηt
1− β1

1− βt
1

√
1− βt

2

1− β2

t∑
s=1

(β1/
√
β2)

t−s

≤ ηt√
1− β2

t−1∑
s=0

(β1/
√

β2)
s

≤ ηt√
1− β2(1− β1/

√
β2)

.

Here, the last inequality holds because of the assumption β1 <
√
β2 < 1.

MoFO actually choose ⌈dk × α%⌉ entries to update in each part k of parameters. Then for any
z ∈ Rd, we have

#{1 ≤ i ≤ d : FLTα(z)i = 1} =

B∑
k=1

⌈dk · (α%)⌉ ≤
B∑

k=1

(dk · (α%) + 1) = d · (α%) +B.

Then for the L2-distance, we have

∥θt − θt−1∥2 =

(
d∑

k=1

|θi,t − θi,t−1|2 · FLTα(mt)i

) 1
2

≤
(

η2t
(
√
1− β2(1− β1/

√
β2))2

·#{1 ≤ i ≤ d : FLTα(z)i = 1}
) 1

2

≤
√
d · (α%) +B√

1− β2(1− β1/
√
β2)

· ηt

= Cηt.

Lemma 3. Suppose that the gradient ∇L is Lipschitz continuous with constant L. Suppose that
the full-batch version of MoFO has the hyperparameters satisfying β1 <

√
β2 < 1, ϵ = 0 and the

learning rate schedule ηt = η/
√
t. For any iteration steps t ≥ s ≥ 1 and any coordinate i, it holds

that

|gi,t − gi,s| ≤ ∥gt − gs∥2 ≤ 2
√
2LCη(t− s)√

t
.

Proof. Since ∇L has Lipschitz constant L, we get

|gi,t − gi,s| ≤ ∥gt − gs∥2 = ∥∇L(θt−1)−∇L(θt−1)∥2 ≤ L∥θt−1 − θs−1∥2. (8)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

By Lemma 2, for any t > s ≥ 1, we have

∥θt−1 − θs−1∥2 ≤
t−1∑
u=s

∥θu − θu−1∥2 ≤ C

t−1∑
u=s

ηu

≤ Cη

t−1∑
u=s

1√
u
≤ Cη

t−1∑
u=s

2√
u− 1 +

√
u
≤ 2Cη

t−1∑
u=s

(
√
u−

√
u− 1)

= 2Cη(
√
t− 1−

√
s− 1) =

2Cη(t− s)√
t− 1 +

√
s− 1

≤ 2Cη(t− s)√
t− 1

≤ 2Cη(t− s)√
t/2

=
2
√
2Cη(t− s)√

t
.

When t = s > 1, it is obvious that

∥θt−1 − θs−1∥2 = 0 ≤ 2
√
2Cη(t− s)√

t
.

Combining it with (8), for any t ≥ s ≥ 1, we have

|gi,t − gi,s| ≤ ∥gt − gs∥2 ≤ 2
√
2LCη(t− s)√

t
.

Lemma 4. Under the assumptions in Lemma 3, for any iteration step t ≥ 1 and any coordinate i, it
holds that

gi,t
m̂i,t√
v̂i,t

≥
√
1− β2

(
|gi,t| −

[
2
√
2β1

(1− β1)2
+

4

1− β2

]
LCη√

t

)
.

Proof. By Lemma 3, we get

gi,tgi,s = g2i,t − gi,t(gi,t − gi,s) ≥ g2i,t − |gi,t| · |gi,t − gi,s| ≥ g2i,t −
2
√
2LCη(t− s)√

t
|gi,t|.

Then we have

gi,tmi,t = (1− β1)

t∑
s=1

βt−s
1 gi,tgi,s

≥ g2i,t · (1− β1)

t∑
s=1

βt−s
1 − 2

√
2LCη√
t

|gi,t| · (1− β1)

t∑
s=1

βt−s
1 · (t− s)

≥ g2i,t · (1− β1)

t−1∑
s=0

βs
1 −

2
√
2LCη√
t

|gi,t| · (1− β1)

t−1∑
s=1

sβs
1.

(9)

Since we have
t−1∑
s=0

βs
1 =

1− βt
1

1− β1
,

t−1∑
s=1

sβs−1
1 ≤

∞∑
s=1

sβs−1
1 =

d

dβ1

(∞∑
s=1

βs
1

)
=

d

dβ1

(
β1

1− β1

)
=

1

(1− β1)2
,

(10)
it holds that

gi,tmi,t ≥ RHS of (9) ≥ (1− βt
1)g

2
i,t −

2
√
2β1LCη

(1− β1)
√
t
|gi,t|. (11)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

For the second moment estimate, we have

vi,t = (1− β2)

t∑
s=1

βt−s
2 g2i,s ≤ (1− β2)

t∑
s=1

βt−s
2 (|gi,t|+ |gi,s − gi,t|)2

≤ (1− β2)

t∑
s=1

βt−s
2

(
|gi,t|+

2
√
2LCη(t− s)√

t

)2

= (1− β2)

t−1∑
s=0

βs
2

(
|gi,t|+

2
√
2LCηs√

t

)2

= |gi,t|2 · (1− β2)

(
t−1∑
s=0

βs
2

)
+ |gi,t| ·

4
√
2LCη√
t

(1− β2)

(
t−1∑
s=1

sβs
2

)

+
8L2C2η2

t
(1− β2)

(
t−1∑
s=1

s2βs
2

)
.

(12)
Since we have

t−1∑
s=0

βs
2 =

1− βt
2

1− β2
≤ 1

1− β2
,

t−1∑
s=0

sβs−1
2 ≤

∞∑
s=0

sβs−1
2 =

d

dβ2

(∞∑
s=0

βs
2

)
=

d

dβ2

(
1

1− β2

)
=

1

(1− β2)2
,

t−1∑
s=0

s2βs−1
2 ≤

∞∑
s=0

s2βs−1
2 = β2

(∞∑
s=0

s(s− 1)βs−2
2

)
+

∞∑
s=0

sβs−1
2

= β2 ·
d2

dβ2
2

(∞∑
s=0

βs
2

)
+

1

(1− β2)2
= β2 ·

d2

dβ2
2

(
1

1− β2

)
+

1

(1− β2)2

=
2β2

(1− β2)3
+

1

(1− β2)2

=
1 + β2

(1− β2)3
,

it holds that

vi,t ≤ RHS of (12) ≤ |gi,t|2 + |gi,t| ·
4
√
2β2LCη

(1− β2)
√
t
+

8(1 + β2)β2L
2C2η2

(1− β2)2t

≤ |gi,t|2 + |gi,t| ·
8LCη

(1− β2)
√
t
+

16L2C2η2

(1− β2)2t

=

(
|gi,t|+

4LCη

(1− β2)
√
t

)2

.

Thus, we get

√
vi,t ≤ |gi,t|+

4LCη

(1− β2)
√
t
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Recalling (11), we have

gi,tmi,t ≥ (1− βt
1)

(
|gi,t|+

4LCη

(1− β2)
√
t

)(
|gi,t| −

2
√
2β1LCη

(1− βt
1)(1− β1)

√
t
− 4LCη

(1− β2)
√
t

)

+ (1− βt
1) ·

4LCη

(1− β2)
√
t

(
2
√
2β1LCη

(1− βt
1)(1− β1)

√
t
+

4LCη

(1− β2)
√
t

)

≥ (1− βt
1)

(
|gi,t|+

4LCη

(1− β2)
√
t

)(
|gi,t| −

2
√
2β1LCη

(1− βt
1)(1− β1)

√
t
− 4LCη

(1− β2)
√
t

)

≥ (1− βt
1)
√
vi,t

(
|gi,t| −

2
√
2β1LCη

(1− βt
1)(1− β1)

√
t
− 4LCη

(1− β2)
√
t

)
.

Therefore,

gi,t
m̂i,t√
v̂i,t

=

√
1− βt

2

1− βt
1

gi,t
mi,t√
vi,t

≥
√
1− βt

2

(
|gi,t| −

2
√
2β1LCη

(1− βt
1)(1− β1)

√
t
− 4LCη

(1− β2)
√
t

)

≥
√
1− β2

(
|gi,t| −

[
2
√
2β1

(1− β1)2
+

4

1− β2

]
LCη√

t

)
.

Lemma 5. Under the assumptions in Lemma 3, for any iteration step t ≥ 1 and any coordinate i, it
holds that ∥∥∥∥ mt

1− βt
1

− gt

∥∥∥∥
1

≤ 2
√
2β1

√
dLCη

(1− β1)2
√
t

.

Proof. Recalling (6), we get

mt = (1− β1)

t∑
s=1

βt−s
1 gs,

and

mt − (1− βt
1)gt = (1− β1)

t∑
s=1

βt−s
1 (gt − gs).

By Lemma 3 and Equation (10) in the proof of Lemma 4, we get∥∥∥∥ mt

1− βt
1

− gt

∥∥∥∥
2

≤ 1− β1

1− βt
1

t∑
s=1

βt−s
1 ∥gt − gs∥2 ≤

t∑
s=1

βt−s
1 ∥gt − gs∥2

≤ 2
√
2LCη√
t

t∑
s=1

βt−s
1 (t− s) =

2
√
2LCη√
t

t−1∑
s=0

sβs
1

≤ 2
√
2β1LCη

(1− β1)2
√
t
.

By Cauchy-Schwarz’s inequality, we have∥∥∥∥ mt

1− βt
1

− gt

∥∥∥∥
1

≤
√
d

∥∥∥∥ mt

1− βt
1

− gt

∥∥∥∥
2

≤ 2
√
2β1

√
dLCη

(1− β1)2
√
t

.

Now we will complete the proof of Theorem 1.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Proof of Theorem 1. By the descent lemma, since ∇L is Lipschitz with constant L, we have

L(θt)− L(θt−1) ≤ ∇L(θt−1)
⊤(θt − θt−1) +

L

2
∥θt − θt−1∥22

≤ g⊤t (θt − θt−1) +
L

2
∥θt − θt−1∥22.

(13)

By Lemma 2 and Lemma 4, we have

L(θt)− L(θt−1) ≤ RHS of (13) ≤ −ηt

(
d∑

i=1

gi,t
m̂i,t√
v̂i,t

· FLTα(mt)i

)
+

LC2η2t
2

≤ LC2η2

2t
− η√

t

d∑
i=1

√
1− β2

(
|gi,t| −

[
2
√
2β1

(1− β1)2
+

4

1− β2

]
LCη√

t

)
· FLTα(mt)i

= −
√
1− β2 · η√

t
∥gt ⊙ FLTα(mt)∥1 +

[
2
√
2β1

√
1− β2

(1− β1)2
+

4√
1− β2

+
C

2

]
LCη2

t
· ∥FLTα(mt)∥1

≤ −
√
1− β2 · η√

t
∥gt ⊙ FLTα(mt)∥1 +

[
2
√
2β1

√
1− β2

(1− β1)2
+

4√
1− β2

+
C

2

]
LCη2(d · (α%) +B)

t
.

(14)

By Lemma 1 and Lemma 5, we have

∥gt ⊙ FLTα(gt)∥1 − ∥gt ⊙ FLTα(mt)∥1 = ∥gt ⊙ FLTα(gt)∥1 −
∥∥∥∥gt ⊙ FLTα

(
mt

1− βt
1

)∥∥∥∥
1

≤ 2

∥∥∥∥gt − mt

1− βt
1

∥∥∥∥
1

≤ 4
√
2β1

√
dLCη

(1− β2)2
√
t

.

Thus,

L(θt)− L(θt−1) ≤ RHS of (14)

≤ −
√
1− β2 · η√

t
∥gt ⊙ FLTα(gt)∥1 +

[
2
√
2β1

√
1− β2

(1− β1)2
+

4√
1− β2

+
C

2

]
LCη2(d · (α%) +B)

t

+
4
√
2β1

√
dLCη2

(1− β2)
3
2 t

= −C1√
t
∥gt∥1,top-α% +

C2

t
≤ −C1√

t
min

1≤t≤T
∥gt∥1,top-α% +

C2

t
,

(15)
where

C1 =
√
1− β2 · η,

C2 = LCη2 ·

{[
2
√
2β1

√
1− β2

(1− β1)2
+

4√
1− β2

+
C

2

]
(d · (α%) +B) +

4
√
2β1

√
d

(1− β2)
3
2

}
.

Taking the summation of (14) from 1 to T , we get

L∗ − L(θ0) ≤ L(θT)− L(θ0) =
T∑

t=1

L(θt)− L(θt−1)

≤ −C1

(
T∑

t=1

1√
t

)
· min
1≤t≤T

∥gt ⊙ FLTα(gt)∥1 + C2

T∑
t=1

1

t
.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Since
T∑

t=1

1√
t
≥

T∑
t=1

2√
t+

√
t+ 1

=

T∑
t=1

2(
√
t+ 1−

√
t) = 2(

√
T + 1− 1),

T∑
t=1

1

t
= 1 +

T−1∑
t=1

1

t+ 1
≤ 1 +

T−1∑
t=1

∫ t+1

t

1

u
du ≤ 1 +

∫ T

1

1

u
du = 1 + log T,

we get

min
0≤t≤T−1

∥∇L(θt)∥∞ = min
1≤t≤T

∥gt∥∞ ≤ min
1≤t≤T

∥gt∥1,top-α%

≤
L(θ0)− L∗ + C2

∑T
t=1

1
t

C1

∑T
t=1

1√
t

≤ L(θ0)− L∗ + C2(1 + log T)

2C1(
√
T + 1− 1)

= O
(
log T√

T

)
.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D IMPLEMENTATION DETAILS

D.1 DATASETS FOR FINE-TUNING.

MetaMathQA (Yu et al., 2024b). This dataset comprises 395K math question-answer pairs. Nu-
merous studies indicate that LLMs significantly enhance performance metrics on mathematical
benchmarks such as GSM8K after fine-tuning on this dataset. We randomly select 10% of this dataset
for training LLMs, which includes 39.5K question-answer pairs.

PMC-LLaMA-Instructions (Wu et al., 2024). This dataset comprises 514K instruction-response
pairs. Fine-tuning LLMs on this dataset has been shown to enhance performance on medical NLP
tasks, such as PubMedQA (Jin et al., 2019), MedMCQA (Pal et al., 2022), and MedQA (Jin et al.,
2021). We randomly sampled 51K instances with prompt lengths less than 750 characters for training
our models.

TRACE benchmark dataset (Wang et al., 2023b). TRACE benchmark is designed with a com-
prehensive set of 8 distinct tasks across various domains, including domain-specific knowledge,
multilingual proficiency, code generation, and mathematical reasoning.

D.2 EVALUATION METRICS FOR INSTRUCTION FINE-TUNING

We employ a comprehensive suite of widely used benchmarks to assess the performance and potential
catastrophic forgetting effects on the general capabilities of LLMs after instruction fine-tuning. The
benchmarks are as follows:

• Factual knowledge (MMLU): We use the Massive Multitask Language Understanding
(MMLU) benchmark (Hendrycks et al., 2021) to evaluate factual knowledge across 57 di-
verse subjects, ranging from STEM fields and the humanities to social sciences. Evaluations
are performed using 8-bit precision with the open-instruct implementation, and by following
the setup of (Hui et al., 2024), we report the 0-shot accuracy.

• Common sense reasoning (CommonSense): To measure the commonsense reasoning
capabilities of LLMs, we employ the widely recognized benchmarks ARC-Challenge, ARC-
Easy (Clark et al., 2018), and HellaSwag (Zellers et al., 2019), collectively referred to as the
Commonsense benchmark. We use the average of their metrics as the evaluation, conducting
assessments using the LM Eval Harness framework (Gao et al., 2023) and reporting the
0-shot accuracy based on the "acc_norm, none" metric.

• Mathematical Reasoning (GSM8K): We assess mathematical reasoning capability using
GSM8K (Cobbe et al., 2021), which consists of 8.5K high-quality grade school math
problems. Evaluations are conducted on the test set using the LM Eval Harness framework
prompting in a 5-shot setting, reporting the "exact_match, flexible-extract" metric.

• Code Generation (HumanEval): We adopt HumanEval (Chen et al., 2021), comprising
164 unique programming problems, to evaluate the coding capabilities of LLMs. For chat
experiments, we use the vLLM framework with the open-instruct implementation and report
the pass@10 performance.

• Medical Question Answering (MedQ): To assess medical knowledge, we utilize three
benchmarks—PubMedQA (Jin et al., 2019), MedMCQA (Pal et al., 2022), and MedQA
(Jin et al., 2021). Evaluations are performed using the LM Eval Harness framework. For
PubMedQA, we report the "acc, none" metric; for MedMCQA and MedQA, we report the
"acc_norm, none" metric.

• Instruction Following (IFEval): We evaluate the instruction-following ability of LLMs
using the IFeval benchmark. Evaluations are conducted with the LM Eval Harness imple-
mentation, and we report the "inst_level_strict_acc, none" metric.

All benchmarks—including CommonSense, GSM8K, PubMedQA, MedMCQA, MedQA, and IFe-
val—are evaluated using the LM Eval Harness framework (Gao et al., 2023), following their default
settings unless specified otherwise.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D.3 HYPERPARAMETER CONFIGURATIONS

Instruction fine-tuning. In our instruction fine-tuning experiments, we follow the implementation of
Ivison et al. (2023). For instruction fine-tuning, we set the maximum sequence length to 1024, the
global batch size to 128, and we train the model for 2 epochs. For the Llama-2-7B model, we use a
learning rate of 2e-5, with a cosine decay learning rate scheduler. The learning rate is set to 2e-5 for
fine-tuning both the Llama-2-7B-Chat model on the MetaMathQA dataset and the Gemma-2B-IT
model, while a learning rate of 1e-5 is used for fine-tuning the Llama-2-7B-Chat model on the
PMC-LLaMA-Instruct dataset; all these settings employ a warm-up ratio of 0.03 and a cosine decay
learning rate scheduler. For LoRA, we set the learning rate as 1e-4. The other hyperparameters in the
experiments are as follows.

Fine-tuning Llama-2-7B on MetaMathQA.

• Learning rate: 2e-5.

• Update fraction of MoFO: α% = 15%.

• LoRA: r = 4, 16, 64, 256. We report the best-performing hyperparameter configuration for
the fine-tuning task in Table 1, which, in this case, is r = 256.

Fine-tuning Llama-2-7B-Chat on PMC-LLaMA-Instruct.

• Learning rate: 1e-5.

• Update fraction of MoFO: α% = 10%.

• LoRA: r = 16, 256. We report the best-performing hyperparameter configuration for the
fine-tuning task in Table 5, which, in this case, is r = 256.

Fine-tuning Llama-2-7B-Chat on MetaMathQA.

• Learning rate: 2e-5.

• Update fraction of MoFO: α% = 15%.

• LoRA: r = 16, 256. We report the best-performing hyperparameter configuration for the
fine-tuning task in Table 7, which, in this case, is r = 256.

Fine-tuning Gemma-2B-IT on MetaMathQA.

• Learning rate: 2e-5.

• Update fraction of MoFO: α% = 5%.

• LoRA: r = 16, 256, 512. We report the best-performing hyperparameter configuration for
the fine-tuning task in Table 6, which, in this case, is r = 512.

Hyperparameters in the Pareto comparison. To provide a comprehensive comparison, we explore
various hyperparameter settings for λ1, λ2, LoRA’s rank, and the update fraction α% in MoFO in
Figure 4. Specifically, we set λ1 as 1e-4, 1e-5, 1e-6, 1e-7, while λ2 is set as 1e-2, 5e-3, 1e-3, 5e-4,
and 1e-4. The update fraction α% in MoFO is set as 5%, 10%, 15%, 20%, 40%, 80%. The rank of
LoRA is set as 4, 16, 64, 256.

Continual fine-tuning. In our continual fine-tuning experiments, we follow the default settings of the
TRACE benchmark. We sequentially train TinyLlama-1.1B on the TRACE benchmark datasets: C-
STANCE, FOMC, MeetingBank, Py150, ScienceQA, NumGLUE-cm, NumGLUE-ds, and 20Minuten
for 5, 3, 7, 5, 3, 5, 5, and 7 epochs, respectively. We use a learning rate of 1e-5 with a cosine decay
schedule and a batch size of 64. The parameter update fraction for MoFO is set to 5%.

All experiments are conducted on four A800 (80GB) GPUs.

D.4 MORE EXPLANATION ON THE PARTITIONING AND CALCULATION OF DISTANCE

Partitioning. We use the default partitioning scheme in PyTorch’s Transformer implementation.
Different types of parameters within the Transformer, such as query (Q), key (K), value (V) weights

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

for attention heads, and feed-forward network (FFN) weights, are divided into separate partitions.
Notably, in the default PyTorch implementation, within a layer, the query (Q) weights of all attention
heads are grouped into a single partition. The same applies to the key (K) and value (V) weights. Our
momentum-based filtering mechanism is applied to each partition individually.

Calculation of distance. Following the notation in Section , we suppose that the parameter parameters
are partitioned into

θ = (θ(1), θ(2), . . . , θ(B)).

Denote the pre-trained model by θ0 and the fine-tuned model by θ.

First, we calculate the relative change of parameters ∥θ(k)−θ
(k)
0 ∥

∥θ(k)
0 ∥

in each partition k ∈ {1, 2, . . . , B}.

Second, we compute the distance from the pre-trained model θ0 to the fine-tuned model θ by averaging
the relative changes across all partitions, defined as:

D(θ, θ0) =
1

B

B∑
k=1

∥θ(k) − θ
(k)
0 ∥

∥θ(k)0 ∥
.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXPERIMENTS

E.1 IMPACT OF THE UPDATE FRACTION

In this section, we first investigate the impact of the update fraction of parameters in the MoFO
algorithm at each iteration, and then explore the effects of different update strategies within MoFO.

5% 10% 20% 40% 80%
Parameter update fraction

10

15

20

25

30

Ac
cu

ra
cy

 o
n

GS
M

8K

MoFO
Pre-trained model
Default SFT

(a) Llama-3.2-1B

5% 10% 20% 40% 80%
Parameter update fraction

30

35

40

45

50

55

60

Ac
cu

ra
cy

 o
n

GS
M

8K

MoFO
Pre-trained model
Default SFT

(b) Llama-3.2-3B

5% 10% 20% 40% 80%
Parameter update fraction

20

30

40

50

Ac
cu

ra
cy

 o
n

GS
M

8K

MoFO
Pre-trained model
Default SFT

(c) Llama-2-7B

Figure 6: The performance of LLMs with different sizes on the math reasoning task (GSM8K) after
fine-tuning on MetaMathQA using MoFO with different update fractions (α%) of parameters. Results
show that across models of different sizes, setting the fraction α% to approximately 20% allows
MoFO to reach fine-tuning performance similar to the default FT (with up to 3% performance drop).

5% 10% 20% 40% 80%
Parameter update fraction

6

4

2

0

Av
er

ag
e

ac
cu

ra
cy

 c
ha

ng
es

MoFO
Pre-trained model
Default SFT

(a) Llama-3.2-1B

5% 10% 20% 40% 80%
Parameter update fraction

3

2

1

0

Av
er

ag
e

ac
cu

ra
cy

 c
ha

ng
es

MoFO
Pre-trained model
Default SFT

(b) Llama-3.2-3B

5% 10% 20% 40% 80%
Parameter update fraction

4

2

0

2

Av
er

ag
e

ac
cu

ra
cy

 c
ha

ng
es

MoFO
Pre-trained model
Default SFT

(c) Llama-2-7B

Figure 7: Average accuracy changes on MMLU, HumanEval, Commonsense Reasoning benchmarks
compared to the pre-trained LLMs of different sizes after fine-tuning on MetaMathQA using MoFO
with different update fractions (α%) of parameters. Larger LLMs tend to retain their pre-training
knowledge more effectively when fine-tuned with MoFO, even when using smaller fractions of
parameter updates.

Impact of update fraction of parameters in MoFO. Following the setting in Section 4.2, we
fine-tune Llama-3.2-1B, Llama-3.2-3B, and Llama-2-7B on the MetaMathQA dataset using MoFO
with varying update fractions of parameters at each iteration for 2 epochs. The experimental results
of math reasoning (GSM8K) and average general capability performance changes are presented in
Figure 6 and Figure 7.

The parameter update fraction affects the fine-tuning performance. Figure 6 shows that larger
update fractions can improve MoFO’s optimization effectiveness. Furthermore, in Llama-2-7B and
Llama-3.2-3B, MoFO with a 5% parameter update fraction is sufficient to achieve nearly 90% of the
performance of Default FT. Besides, experimental results show that setting the update fraction as α
to approximately 20% enables MoFO to attain fine-tuning performance comparable to the default FT
across various model sizes.

The parameter update fraction also affects the preservation of general capabilities. Figure 7 indicates
that larger LLMs effectively maintain their pre-training knowledge when fine-tuned with MoFO,
especially when using update fraction α less than 10%. Beyond the threshold of 20%, further
increases in the parameter update fraction lead to a decline in general capabilities. Despite this,
MoFO still forgets significantly less than Default FT in larger LLMs.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

-0.4 -0.2 0.0 0.2 0.4 0.5 0.7
1.0

0.5

0.0

0.5

1.0

1.5

2.0

dAdam = 5.5dMOFO

dMOFO

Pre-trained model
Fine-tuned model (MoFO)
Fine-tuned model (Adam)

2.663

1.993

1.324

0.655

0.015

0.684

1.354

2.023

(a) Loss landscape on fine-tuning dataset

-0.4 -0.2 0.0 0.2 0.4 0.5 0.7
1.0

0.5

0.0

0.5

1.0

1.5

2.0

dAdam = 5.5dMOFO

dMOFO

Pre-trained model
Fine-tuned model (MoFO)
Fine-tuned model (Adam)

1.003

1.207

1.411

1.615

1.819

2.024

2.228

2.432

2.636

2.841

(b) Loss landscape on pre-training dataset

Figure 8: The loss landscapes of Pythia-160m after fine-tuning on a subset of the FLAN dataset using
Adam optimizer and MoFO. We plot the loss landscapes on (a) the fine-tuning dataset and (b) the
pre-training dataset (Pile). A logarithmic scale is applied to the loss values for better visualization.
We find that MoFO, reaching a closer point to the pre-trained model, has minimal fine-tuning loss
and lower pre-training loss, compared to Adam.

Table 4: Pythia-160m’s performance on common sense tasks, after being fine-tuned with the Adam
optimizer and MoFO. The results indicate that MoFO significantly mitigates catastrophic forgetting.
Bold values denote the best results among these optimizers.

HellaSwag ARC-easy ARC-challenge Average

Pythia-160m 30.1 39.6 23.8 31.2

Adam 28.3 37.4 22.1 29.3

MoFO 29.9 42.0 22.9 31.6

In summary, MoFO can preserve pre-training knowledge and significantly enhance fine-tuning
performance by choosing a moderate update fraction, avoiding the extremes of too small or too large
fractions.

E.2 VALIDATING MOFO’S IMPACT ON PRESERVING PRE-TRAINING KNOWLEDGE THROUGH
PROXIMITY

In this section, we empirically examine whether MoFO achieves its intended goal of converging to a
minimum closer to the pre-trained model and mitigating forgetting mentioned in Section 3.

Our exploratory experiment shows that MoFO indeed converges to a minimum closer to the pre-
training model. As shown in Figure 8(a), both MoFO and the Adam optimizer achieve minimal
fine-tuning loss, indicating that switching from Adam to MoFO does not lead to performance
degradation. Moreover, the distance from the pre-trained model to the minimum reached by MoFO is
approximately 20% of that reached by the default Adam optimizer.

Our experiment demonstrates that the reduced parameter movement achieved by MoFO effectively
mitigates the forgetting of pre-training knowledge. As shown in Figure 8(b), the fine-tuned model
using MoFO experiences a smaller increase in pre-training loss. Additionally, Table 4 shows that
MoFO achieves higher accuracy on commonsense reasoning tasks, indicating less forgetting.

E.3 MORE EXPERIMENTAL RESULTS IN INSTRUCTION FINE-TUNING

Results of fine-tuning on PMC-LLaMA-Instruct. We fine-tune Llama-2-7B-Chat on the PMC-
LLaMA-Instructions dataset using various baseline methods and present the experimental results on
medical question answering (MedQ) and general capabilities in Table 5. Since the MMLU benchmark

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 5: The performance on the fine-tuning task (medical QA task), measured by MedQ, and general
capability scores of Llama-2-7B-Chat after fine-tuning on the PMC-LLaMA-Instruct dataset. The
figure on the right visualizes both MedQ accuracy and general capability scores. The results show
that MoFO achieves comparable performance in the MedQ while significantly mitigating forgetting
of general capabilities. Bold values denote the best results among these methods.

Method MedQ
General Capability

CR IFEval HumanEval Avg.

Llama-2-7B-Chat 49.8 65.6 41.4 24.3 43.8

Default FT 54.3 64.6 32.1 20.6 39.1

HFT 54.4 65.2 33.5 23.1 40.6

LoRA 54.2 64.4 33.9 23.5 40.6

MoFO 54.3 65.5 41.1 24.1 43.6 0.375 0.400 0.425 0.450
General capability

0.48

0.50

0.53

0.55

M
ed

Q

Llama2-7b-chat

Default FT
HFT
LoRA
MOFO

already contains medical-related instances (Hendrycks et al., 2021), which may lead to improved
performance after fine-tuning, we instead use IFEval to assess general capabilities.

MoFO performs well on the fine-tuning task of medical QA. It achieves compatible performance
compared to Default FT and HFT. In terms of general capabilities, MoFO demonstrates the least
degradation compared to other baselines, with an average accuracy reduction of only 0.2%. Specifi-
cally, on the IFEval benchmark, our method only exhibits a minor reduction of 0.3%, while Default
FT, HFT, and LoRA experience significant degradations ranging from 7.5% to 9.3%. On code
generation (HumanEval) tasks and commonsense reasoning (CR) benchmarks, our method also only
exhibits a minor reduction less than 0.2%.

Table 6: The performance of the fine-tuning task (math), measured by GSM8K, and the general
capability scores of Gemma-2B-IT after fine-tuning on the MetaMathQA dataset. The figure on the
right visualizes both GSM8K accuracy and general capability scores. The results show that MoFO
achieves comparable performance in the fine-tuning task, while significantly mitigating forgetting of
general capabilities. Bold values denote the best results among these methods.

Method GSM8K
General Capability

CR IFeval HumanEval Avg.

Gemma-2B-IT 11.4 57.6 33.6 31.5 40.9

Default FT 42.0 52.1 24.3 20.6 32.3

HFT 41.5 53.9 24.1 21.2 33.1

LoRA 40.6 54.4 26.1 29.8 36.8

MoFO 42.1 55.0 28.7 29.1 37.6
0.325 0.350 0.375 0.400

General capability
0.1

0.2

0.3

0.4

GS
M

8K
 A

cc
ur

ac
y

Gemma-2B-IT

Default FT
HFT
LoRA
MOFO

Results of Gemma-2B-IT fine-tuning on MetaMathQA. We also explore how MoFO performs
in other LLMs. Specifically, we fine-tune Gemma-2B-IT on MetaMathQA using various baseline
methods and present the experimental results on mathematical reasoning (GSM8K) and general
capabilities in Table 6. The experimental results demonstrate that MoFO achieves comparable
performance of the fine-tuning task to Default FT and HFT across different models. In terms of
general capabilities, MoFO exhibits significantly less forgetting compared to other baselines. This
result demonstrates the versatility of the MoFO algorithm.

We also fine-tune the Llama-2-7B-Chat on the MetaMathQA dataset. The results are presented in
Table 7. The results demonstrate that our approach achieves performance comparable to Default FT
and HFT while exhibiting less forgetting compared to baseline methods.

In summary, our MoFO algorithm shows competitive performance in instruction fine-tuning while
preserving the general capabilities, effectively alleviating forgetting.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 7: The performance of the fine-tuning task (math), measured by GSM8K, and the general
capability scores of Llama-2-7B-chat after fine-tuning on the MetaMathQA dataset. The figure on the
right visualizes both GSM8K accuracy and general capability scores. The results show that MoFO
achieves comparable performance in the fine-tuning task, while significantly mitigating forgetting of
general capabilities. Bold values denote the best results among these methods.

Method GSM8K
General Capability

CR IFeval HumanEval Avg.

Llama-2-7B-Chat 13.7 65.6 41.4 24.3 43.8

Default FT 48.4 62.8 30.7 15.6 36.4

HFT 46.9 63.4 31.8 20.0 38.4

LoRA 45.3 63.9 35.6 21.0 40.2

MoFO 47.1 64.0 37.1 21.7 40.9
0.375 0.400 0.425

General capability

0.2

0.3

0.4

0.5

GS
M

8K
 A

cc
ur

ac
y

Llama-2-7B-Chat

Default FT
HFT
LoRA
MOFO

E.4 TRANING PROCESS OF MOFO

In this subsection, we analyze the differences between the training processes of MoFO and the default
SFT.

0 10 20 30 40 50 60 70 80 90100
Training Process (%)

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

 o
n

GS
M

8k

Full sft
MoFO 15%

Figure 9: The GSM8K accuracy achieved during the fine-tuning of Llama-2-7B on the MetaMathQA
dataset. The update fraction of MoFO is α% = 15%.

Following the setting in Section 4.2, we present the GSM8K accuracy achieved during the fine-
tuning of Llama-2-7B on the MetaMathQA dataset with different methods in Figure 9. The results
demonstrate that the MoFO method can achieve training effectiveness comparable to the default
fine-tuning approach.

E.5 COMPARISON WITH MORE FINE-TUNING METHODS

In this subsection, we compare our proposed method with the Heterogeneous Model Averaging
(HMA) (Lin et al., 2024). HMA approach evenly divides the LLM into three parts—the input part,
the middle part, and the output part—and averages these parts with different ratios. To facilitate a
comprehensive comparison, following the setting in Section 4.2, we evaluate the fine-tuning and
forgetting mitigation performance for different HMA strategies. We select 15 different combinations
of averaging ratios for different parts as follows: {(0.05, 0.2, 0.35), (0.1, 0.2, 0.3), (0.2, 0.2, 0.2), (0.3,
0.2, 0.1), (0.35, 0.2, 0.05), (0.3, 0.5, 0.7), (0.4, 0.5, 0.6), (0.5, 0.5, 0.5), (0.6, 0.5, 0.4), (0.7, 0.5, 0.3),
(0.65, 0.8, 0.95), (0.7, 0.8, 0.9), (0.8, 0.8, 0.8), (0.9, 0.8, 0.7), (0.95, 0.8, 0.65)}. We plot the results to
construct a Pareto front in Figure 10.

Results show that our proposed method, MoFO achieves a more effective Pareto front compared to
the baselines.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0.63 0.64 0.65 0.66
CR

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

GS
M

8K Default FT
HFT
L1-regularization
L2-regularization
MOFO
LoRA
HMA
Llama-2-7B

Figure 10: The performance on the math task (GSM8K) and the scores in Commonsense Reasoning
of Llama-2-7B after fine-tuning on the MetaMathQA dataset. The results show that the MoFO
algorithm achieves a better Pareto front. The pink triangle represents the model obtained through
HMA.

35

	Supplemental Related Works
	Supplementary Analysis on the Top-% Filter
	Proof of Theorem 1
	Implementation Details
	Datasets for Fine-Tuning.
	Evaluation Metrics for Instruction Fine-Tuning
	Hyperparameter Configurations
	More Explanation on the partitioning and Calculation of distance

	Additional Experiments
	Impact of the Update Fraction
	Validating MoFO's Impact on Preserving Pre-training Knowledge through Proximity
	More Experimental Results in Instruction Fine-Tuning
	Traning Process of MoFO
	Comparison with more fine-tuning methods

