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In the supplemental document, we elaborate on the training settings (Appendix A), the broader impact
of our work (Appendix B), limitation and future work (Appendix C), descriptions of the utilized
datasets (Appendix D), experiments on facial landmark localization (Appendix E), comparison
between the learned distribution of soft-argmax and sampling-argmax(Appendix F), and qualitative
results (Appendix G).

A Training Details

2D Human Pose Estimation from RGB We adopt SimplePose [ 7] for experiments. The model is
trained and evaluated on COCO Keypoint [13]. ResNet-50 [9] is adopted as the backbone network.
The input image is resized to 256 x 192. The learning rate is set to 1 x 1073 at first and reduced by a
factor of 10 at the 90th epoch and the 120th epoch. We use the Adam solver and train for 140 epochs,
with a mini-batch size of 32 per GPU and 8 1080Ti GPUs in total. For comparison with the auxiliary
losses, we set the target variance o7 to 4, the loss weight of variance regularization to 1, and the loss
weight of distributions regularization to 0.1 to achieve the best results after tuning.

3D Human Pose Estimation from RGB We follow the model architecture of Integral Pose [16].
ResNet-50 [9] is adopted as the backbone network. The input image is resized to 256 x 256. The
learning rate is set to 1 x 10~ at first and reduced by a factor of 10 at the 90th and 120th epoch. We
use the Adam solver and train for 140 epochs, with a mini-batch size of 16 per GPU and 8 1080Ti
GPUs in total. Following the settings of previous works [16, 4], we mix Human3.6M and MPII [&]
data for training. Each mini-batch consists of half 2D and half 3D samples. Five subjects (S1, S5, S6,
S7, S8) are used for training and two subjects (S9, S11) for evaluation. We set the target variance o2
to 4, the loss weight of variance regularization to 1, and the loss weight of distributions regularization
to 0.1 to achieve the best results after tuning.

Retina Segmentation from OCT We follow the model architecture of [10]. The input image is
resized to 128 x 1024. The learning rate is set to 1 x 10~% at first and reduced by a factor of 10 at
the 10th and the 20th epoch. We use the Adam solver and train for 30 epochs, with a mini-batch size
of 2 and 1 GPU. The split of training, validation and test sets follows the settings of the previous
method [10]. We set the target variance o7 to 4, the loss weight of variance regularization to 1, and
the loss weight of distributions regularization to 1 to achieve the best results after tuning.

Supervised Object Keypoint Estimation from Point Clouds We adopt PointNet++ [15] as the
backbone network. The output of the last layer is a per-point probability map for each keypoint. The
input point cloud consists of 2048 points represented by their Euclidean coordinates sampled from
a normalized object, and the indexes of keypoints are given. The learning rate is set to 1 x 1073
and halved every 10 epochs. We use Adam solver and train for 100 epochs with a mini-batch size
of 8 on one GPU for each category. We set the target variance o? to 4, the loss weight of variance
regularization to 1, and the loss weight of distributions regularization to 0.01 to achieve the best
results after tuning.
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Unsupervised Object Keypoint Estimation from Point Clouds The learning rate is set to 1 x 103
and halved every 10 epochs. We use the Adam solver and train for 50 epochs, with a mini-batch size
of 8 and one GPU for each category. We set the target variance o2 to 4, the loss weight of variance
regularization to 1, and the loss weight of distributions regularization to 0.01 to achieve the best
results after tuning.

Facial Landmark Localization from RGB ResNet-18 [9] is adopted as the backbone network.
The head network consists of 3 deconvolution layers and a 1 x 1 convolution layer. The input image
is resized to 256 x 256. The learning rate is set to 1 x 10~3 at first and reduced by a factor of 10 at
the 10th and 20th epoch. We use the Adam solver and train for 30 epochs, which a mini-batch size of
32 and 4 GPUs in total. We set the target variance o2 to 4, the loss weight of variance regularization
to 1, and the loss weight of distributions regularization to 0.1 to achieve the best results after tuning.

B Broader Impact

In this work, we propose sampling-argmax to improve the ability of machines to understand target
positions in input data. Current methods usually adopt computationally expensive models to improve
the localization accuracy, which could cost many financial and environmental resources. We partly
alleviate this issue by presenting a simple yet effective method.

Furthermore, our method is an improvement of existing capabilities but does not introduce a radically
new capability in machine learning. Thus our contribution is unlikely to facilitate misuse of technology
that is already available to anyone.

C Limitation and Future Work

In our method, the underlying density function of the target position is approximated by a mixture of
sub-distributions. By comparing the performance of the three proposed bases, we see that a more
accurate reconstruction of the underlying function leads to better results. Theoretically, the underlying
density function cannot be perfectly reconstructed since the proposed basis distributions are fixed. To
address this limitation, learnable sub-distributions could be adopted in future works. For example,
normalizing flow models can be leveraged to predict sub-distribution at each position according to
the corresponding features. In this way, the sub-distributions are no longer fixed, and the mixture
distribution has the potential to precisely reconstruct the underlying distribution and further improve
the model performance.

D Data Acquisition

In our experiments, we use five different datasets, including COCO Keypoint [13], Human3.6M [12],
MSHC [11], KeypointNet [18] and MTFL [19]. These public datasets do not contain personally
identifiable information or offensive content.

COCO Keypoint COCO Keypoint dataset is licensed under the Creative Commons Attribution
4.0 License [2]. The images and annotations are publicly available. We download the images and
annotations from its official website [1].

Human3.6M Human3.6M dataset is licensed under [5]. To obtain the data, we register and
download it from its official website [4].

MSHC MSHC dataset is publicly available, and no license is specified. We download the data from
its official website [7].

KeypointNet KeypointNet dataset is publicly available, and no license is specified. We download
the data from its official website [0].

MTFL MTFL dataset is publicly available, and no license is specified. We download the data from
its official website [3].



E Facial Landmark Localization from RGB

We further evaluate the proposed sampling-argmax on the facial landmark localization dataset
MTFL [19]. Absolute error and relative error (normalized by the two-eye distance) are adopted as
evaluation metrics. Quantitative results are reported in Table 1. Consistent with the experiments on
other tasks, sampling-argmax provides performance improvement to facial landmark localization.

Table 1: Quantitative results on MTFL dataset.

Soft Soft w/ VR. Soft w/ D.R. Samp. Uni. Samp. Tri. Samp. Gau.

Abs. Err | 3.18 3.16 3.15 3.00 2.98 2.94
Rel. Err | 7.25 7.22 7.20 6.86 6.82 6.96

F Visualization of learned probability maps

We show the predicted probability maps of soft-argmax and sampling-argmax in Figure 1. It shows
that soft-argmax is prone to predict multi-modal distribution, while the proposed sampling-argmax
predicts better-calibrated probability maps.

G Qualitative Results

Qualitative results on six tasks are shown in Figure 2, 3,4, 5, 6 and 7.
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Figure 1: Visualization of the learned distribution. Left: Soft-Argmax. Right: Sampling-Argmax.



Figure 2: Qualitative results of 2D human pose estimation on COCO Keypoint.

Figure 3: Qualitative results of 3D human pose estimation on Human3.6M.
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Figure 7: Qualitative results of facial landmark localization on MTFL.
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