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A DERIVATION OF THE OVERDAMPED LANGEVIN PATH PROBABILITY RATIO

For ease of sampling, we define the corresponding Euler-Maruyama discretization as,

Hk = Hk−1 + η∇ log qk (Hk−1) +
√
2ηϵk−1, (1)

where ϵk ∼ N (0, I). Based on results by Nilmeier et al. (2011), the backward step is realized by

Hk−1 = Hk + η∇ log qk (Hk) +
√

2ηϵ̃k−1, (2)

Thus we have,

η∇ log qk (Hk−1) +
√
2ηϵk−1 = −η∇ log qk (Hk)−

√
2ηϵ̃k−1 (3)

Then,

ϵ̃k−1 = −
√

η

2
(∇ log qk (Hk−1) +∇ log qk (Hk))− ϵk−1 (4)

Finally,

log
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(
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)
(5)

B A STOCHASTIC VARIANT OF SG-AIS

Instead of computing the gradient of the full log likelihood, we suggest to use a stochastic variant to
subsampling datasets into a mini-batch DJ with |XJ | = B, where J ⊂ {1, 2, .., N} is the indice of
any mini-batch. We can thus define an estimator of ∇ log p(X | ·) in Eq. (12) as,

∇ log p(X | ·) ≈ N

B
∇ log p(XJ | ·) (6)

In the meantime, we replace the p (X,HK) term in Eq. (7) with another estimator computed using
an independent mini-batch of indices I ⊂ {1, 2, .., N} with |XI | = B, i.e.

p (X,HK) ≈ p (HK) p (XI | HK)
N
B (7)

With jointly using the reparameterization trick and stochastic gradient descent, we finally derive a
stochastic variant of the Stochastic Unadjusted Langevin Diffusion AIS algorithm for the LVGP
models as describe in Algorithm 1.Thanks to GPU acceleration, we can extend the proposed algorithm
to larger datasets, such as image-based visual tasks.
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C RELATED WORK

In this section, we would like to clarify the differences between our approach and the recently
proposed Differentiable AIS (DAIS) method Zhang et al. (2021). DAIS was introduced to avoid
the non-differentiability issue in AIS due to the Metropolis-Hastings correction step. To achieve
differentiability and enable the use of gradient-based optimization for maximizing the marginal
likelihood as the objective function, DAIS was proposed as a variant of AIS by bypassing the
Metropolis-Hastings correction.

Furthermore, in Jankowiak & Phan (2022), DAIS was combined with variational inference for black-
box inference in probabilistic programming frameworks. However, a significant difference from
the algorithm discussed in this paper is that DAIS is not an inhomogeneous Unadjusted Langevin
Algorithm (ULA), but a perturbed Hamiltonian system. It is known that Hamiltonian mechanics
and Langevin dynamics belong to different dynamics formalisms, i.e., classical mechanics and
Langevin statistical mechanics, respectively. For example, leapfrog integration is commonly used in
Hamiltonian systems, while the ULA system is typically obtained by solving a reverse stochastic
differential equation (SDE).

Our algorithm takes inspiration from nonequilibrium statistical mechanics Nilmeier et al. (2011) and
applies it to the inference of the Bayesian Gaussian process latent variable model (GPLVM). It is
important to note that the previous two methods do not discuss the model presented in this paper but
provide preliminary evidence of the effectiveness of the method in Bayesian linear regression.

Therefore, while there are some similarities in terms of using differentiable optimization and combin-
ing variational inference with AIS, our approach utilizes nonequilibrium dynamics and is tailored for
the Bayesian GPLVM model.

D PRACTICAL GUIDELINES

Dataset Task N D Z Q LR K
Oilflow Dimensionality Reduction 1000 12 50 10 0.02 25

Wine Quailty Dimensionality Reduction 1599 11 50 9 0.02 25
Frey Face Missing Data Recovery 1965 560 50 20 0.02 25
MNIST Missing Data Recovery 2163 784 50 5 0.02 25

Table 1: Training experimental configuration where N and D denote the number of data points
and data space dimensions, Z denotes the number of inducing inputs shared across dimensions, Q
denotes the dimesionality of the latent space, LR denotes the learning rate, K denotes the length of
the transition chain in ULA-AIS and in IW K denotes the number of repetitions of sampling .

When using the Unadjusted Langevin Diffusion method for sampling, one key challenge is to
determine an appropriate step size ηk A fixed step size may work well for some samples but may be
suboptimal for others. To address this issue, we can use the Adagrad Kingma & Ba (2014) optimizer
to adaptively adjust the step size based on the historical gradient information. Specifically, for each
dimension of the sampled variables, we divide the initial step size by the square root of the sum of
squared gradient values for that dimension up to a noise. This technique can help achieve better
performance and faster convergence, especially when dealing with complex and high-dimensional
distributions where finding an appropriate step size is challenging. The adaptive step size adjustment
can be implemented in combination with other techniques, such as early stopping, to further improve
the sampling efficiency.

ηk = 0.9 ∗ ηk−1 + 0.1 ∗ η0√
Gk + ϵ

where Gk is the sum of squared gradient values up to step k in Eq. (17), ϵ is a small smoothing term
to avoid division by zero,and η0 is the initial step size.

In the context of Annealed Importance Sampling (AIS), choosing an optimal temperature schedule
βk is a challenging task. We often use a linear schedule, where the temperature values are fixed and

2



Under review as a conference paper at ICLR 2024

Table 2: Comparison of running time among MF, IW, and AIS algorithms in one epoch

Datasets Method Time
Frey Faces MF 0.32s

IW 1.46s (K=5) 2.85s(K=10) 4.06s(K=15) 5.45s(K=20) 7.03s(K=25)
AIS(Ous) 1.53s (K=5) 2.65s (K=10) 3.79s(K=15) 4.80s(K=20) 5.93s (K=25)

Figure 1: The graphical models of IW and our method. Unlike IW mehtod, only one sampling of
latent variables to data is required for our AIS method.

regularly spaced between 0 and 1. However, this approach may not always work well in practice, as
the search space is complex and high-dimensional.

Alternatively, we can try to learn the temperature values βk directly as additional inference parameters
ϕ. This can be done using various techniques, such as gradient-based optimization . By doing so, we
can obtain a temperature schedule that is tailored to the specific problem at hand and achieve better
sampling performance. Additional experimental information can be seen in Table 1 1.

E RUNTIME ANALYSIS.

In our experiments, we observed that the time complexity of Importance-weighted (IW) VI and
SG-AIS almost linearly increases with K as K increases.

In the IW algorithm, the time complexity mainly stems from the K repeated samplings of latent
variables to data, which is determined by the time complexity of the GPLVM model itself, O(nm2).
As a result, as we increase the number of samples K, the frequency of repeated samplings increases,
leading to a linear increase in time complexity.

In the AIS algorithm, only one sampling of latent variables to data is required, while the intermediate
variable sampling is allocated to the annealing procedure, specifically the computation of Langevin
stochastic flow. This sampling process is relatively less complex compared to the time complexity of
the GPLVM model itself. As depicted in Fig 5.

Therefore, on Frey Faces dataset, as depicted in Table 4, compared to IW, the time complexity of AIS
becomes lower as K reaches a certain threshold.

1We test all of our experiments on NVIDIA A100
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Figure 2: Dimensional Reduction Results for MF method

F DETAILS FOR IMPLEMENTING ON MISSING DATA TASKS

Specially, our training procedure leverages the marginalisation principle of Gaussian distributions
and the fact that the data dependent terms of the ELBO factorise across data points and dimensions.
This means we can trivially marginalise out the missing dimensions xa, because each individual data
point x is modelled as a joint Gaussian. Consider a high-dimensional point x which we split into
observed, xo and unobserved xa dimensions,∫ ∏

d∈a

∏
d∈o

p (xa,xo | fd,H) dxa =
∏
d∈o

p (xo | fd,H) (8)

In this formula, the indices of missing and observed dimensions are denoted by a and o respectively,
where D = a ∪ o represents all dimensions in the data. The marginal distributions fd ∈ RN are
defined in Eq. (4).The latent variables hn for each data point are informed only by the observed
dimensions. Furthermore, we can easily reconstruct the missing dimensions during training by
constructing a variational latent distribution q(H), as described in Section 4. This approach enables
us to efficiently handle missing dimensions in high-dimensional datasets without requiring major
modifications to the overall training process.

G ADDITIONAL RESULTS

In this section, we will demonstrate the visual effects of the MF and IW methods on three datasets:
Oilflow, MINIST, and Frey Faces. These visualizations will be used for comparison with the main
text. There results can be seen in Fig. 6, Fig.7, Fig.8, Fig.9, Fig.10, Fig.11.

H LIMITATIONS

There are limitations to our method. Firstly, it increases the time complexity by a factor of K,
making it slower for larger datasets such as RGB images. Secondly, our method requires more
hyperparameter tuning based on the data, such as the choice of annealing schedule, transition kernel,
step size adjustment, and the length K of the transition chain. Without additional prior information,
tuning these parameters can be challenging and lead to suboptimal results.

I CODE CONTRIBUTIONS

We have packaged the full code of this paper in the supplementary materials.
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Figure 3: Dimensional Reduction Results for IW method.

Figure 4: Missing Data Recovery Results for MF method. The bottom row represents the ground
truth data and the top row showcases the reconstructions from the 20-dimensional latent distribution
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Figure 5: Missing Data Recovery Results for IW method. The bottom row represents the ground
truth data and the top row showcases the reconstructions from the 20-dimensional latent distribution
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Figure 6: Missing Data Recovery Results for MF method. The top row represents the ground truth
data and the bottom row showcases the reconstructions from the 5-dimensional latent distribution
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Figure 7: Missing Data Recovery Results for IW method. The top row represents the ground truth
data and the bottom row showcases the reconstructions from the 5-dimensional latent distribution

8


	Derivation of the Overdamped Langevin Path Probability Ratio
	A stochastic variant of SG-AIS
	Related work
	Practical Guidelines
	Runtime analysis.
	Details for Implementing on Missing Data Tasks
	Additional Results
	Limitations
	Code Contributions

