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Abstract

Stochastic approximation (SA) with multiple coupled sequences has found broad
applications in machine learning such as bilevel learning and reinforcement learning
(RL). In this paper, we study the finite-time convergence of nonlinear SA with
multiple coupled sequences. Different from existing multi-timescale analysis, we
seek for scenarios where a fine-grained analysis can provide the tight performance
guarantee for single-timescale multi-sequence SA (STSA). At the heart of our
analysis is the smoothness property of the fixed points in multi-sequence SA
that holds in many applications. When all sequences have strongly monotone
increments, we establish the iteration complexity of O(ϵ−1) to achieve ϵ-accuracy,
which improves the existing O(ϵ−1.5) complexity for two coupled sequences.
When the main sequence does not have strongly monotone increment, we establish
the iteration complexity of O(ϵ−2). We showcase the power of our result by
applying it to stochastic bilevel and compositional optimization problems, as well
as RL problems, all of which lead to improvements over their existing guarantees.

1 Introduction

Stochastic approximation (SA) is an iterative procedure used to find the zero of a function when only
the noisy estimate of the function is observed. Specifically, with the mapping v : Rd 7→ Rd, the
single-sequence SA seeks to solve for v(x) = 0 with the following iterative update:

xk+1 = xk + αk(v(xk) + ξk), (1)

where αk is the step size and ξk is a random variable. Since its introduction in [46], single-sequence
SA has received great interests because of its broad range of applications to areas including stochastic
optimization and reinforcement learning (RL) [6, 53]. The asymptotic convergence of single-sequence
SA can be established by the ordinary differential equation method; see e.g., [4]. To gain more
insights into the performance difference of various stochastic optimization algorithms, the finite-time
convergence of SA has been widely studied in recent years; see e.g., [43, 42, 30, 50, 54, 52, 41, 13].

While most of the SA studies focus on the single-sequence case, the double-sequence SA was
introduced in [3], which has been extensively applied to the RL methods involving a double-sequence
stochastic update structure [53, 32, 10]. With mappings v : Rd0 ×Rd1 7→ Rd0 and h : Rd0 ×Rd1 7→
Rd1 , the double-sequence SA seeks to solve v(x, y) = h(x, y) = 0 with the following update:

xk+1 = xk + αk(v(xk, yk) + ξk), (2a)
yk+1 = yk + βk(h(xk, yk) + ψk), (2b)

where αk, βk are the step sizes, and ξk, ψk are random variables. In (2), the update of xk and that
of yk depend on each other and thus the sequences are coupled. To deal with the coupling, a naive
thought is to stack (xk, yk) as one variable. However, it can be seen later that the convergence of
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General result Application to SBO Application to multi-level SCO
Ours TTS SA Ours TTSA ALSET ALSET-AC Ours α-TSCGD SG-MRL

SM O(ϵ−1) O(ϵ−1.5) Õ(ϵ−1) Õ(ϵ−1.5) ~ ~ O(ϵ−1) O(ϵ−
N+5

4 ) ~
N-SM O(ϵ−2) ~ Õ(ϵ−2) Õ(ϵ−2.5) Õ(ϵ−2) O(ϵ−2) O(ϵ−2) O(ϵ−

N+8
4 ) O(ϵ−4)

Merit ~ Rate ↑ ~ Rate ↑ Relax Relax ~ Rate ↑ Rate ↑

Table 1: Comparisons with TTS SA [12], TTSA [26], ALSET and ALSET-AC [8], α-TSCGD
[61] and SG-MRL [14]. Strongly-monotone (SM) and non-strongly-monotone (N-SM) respectively
represents the case where the main sequence has strongly-monotone and non-strongly-monotone
increments. Rows of SM/N-SM are for the complexity and the row of Merit is for the improvements
of this work over the existing work (“Rate ↑” stands for faster rate; “Relax” for relaxed assumptions).

the resulting update requires assumptions violated in the applications. Thus due to the coupling, the
double-sequence SA is more challenging to analyze than its single-sequence counterpart.

Prior art on double-sequence SA. Many recent analyses of the double-sequence SA focus on the
linear case where v(x, y) and h(x, y) are linear mappings; see e.g., [34, 11, 25, 29]. The key idea
here is to use the so-called two-time-scale (TTS) step sizes: One sequence is updated in the faster
time scale while the other is updated in the slower time scale; that is limk→∞ αk/βk = 0. By doing
so, the two sequences are shown to decouple asymptotically, which allows us to leverage the analysis
of the single-sequence SA. In particular, [29] proves an iteration complexity of O(ϵ−1) to achieve
ϵ-accuracy for the TTS linear SA, which is shown to be tight. With similar choice of the step sizes, the
TTS nonlinear SA was analyzed in [39, 12]. In [39], the finite-time convergence rate of TTS nonlinear
SA was established under an assumption that the two sequences converge asymptotically. Later,
[12] alleviates this assumption and shows that TTS nonlinear SA achieves an iteration complexity of
O(ϵ−1.5). However, this iteration complexity is larger than O(ϵ−1) of the TTS linear SA.

The gap between the complexities of nonlinear and linear SA motivates an interesting question:

Q1: Is it possible to prove a faster rate for the nonlinear SA with two coupled sequences?
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Figure 1: Solving (3) with double-
sequence nonlinear SA (2). The single
time-scale nonlinear SA converges with
a rate of O(k−1), which is faster than
the theoretical O(k−

2
3 ) rate in [12].

We first conduct an experiment to examine the possibility.

Experiment. Figure 1 shows the performance of using the
double-sequence SA (2) to solve the following problem

max
x∈R

− 1

2

(
x2 +

1

1 + e−y∗(x)

)
s.t. y∗(x) = argmin

y∈R

1

2
(y − x)2. (3)

We use the double-sequence SA (2) to solve (3), where

v(x, y) = −x− e−y

(1 + e−y)2
, h(x, y) = x− y (4)

and ζk, ξk are independent Gaussian random variables
with zero mean and standard deviations of 0.15. It is easy
to check that (4) satisfies the assumptions in the existing
TTS-SA analysis [12]. Therefore, we can use the two
time-scale step sizes and achieve the iteration complexity
of O(ϵ−1.5). However, as suggested by Figure 1, the
iterates still converge with step sizes in a single time-scale
(αk = Θ( 1k ), βk = Θ( 1k )). In this case, the iteration complexity is O(ϵ−1), which is the same as that
of double-sequence linear SA [29]. This suggests that existing analysis of double-sequence SA might
not be tight, at least for the class of updates similar to (4). Indeed, as we will show later, the iterates
generated by (4) will converge with the iteration complexity of O(ϵ−1).

Furthermore, existing works on TTS SA mainly focus on the double-sequence case. While in
cases such as the multi-level stochastic optimization; see e.g., [61], more than two sequences
are involved. This necessitates the use of the multi-sequence SA. Specifically, with mappings
v : Rd0 × Rd1 · · · × RdN 7→ Rd0 , hn : Rdn−1 × Rdn 7→ Rdn , we consider
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(STSA) ynk+1 = ynk + βk,n
(
hn(yn−1

k , ynk ) + ψn
k

)
, n = 1, 2, ..., N (5a)

xk+1 = xk + αk

(
v(xk, y

1
k, y

2
k, . . . , y

N
k ) + ξk

)
(5b)

where αk, βk,1, ..., βk,N are the step sizes, and ξk, ψ1
k, . . . , ψ

N
k are random variables. For conciseness,

we have used y0k := xk here. Our goal is to find the unique fixed-points x∗, y1,∗, . . . , yN,∗ such that

v(x∗, y1,∗, . . . , yN,∗) = 0, h1(x∗, y1,∗) = 0, . . . , hN (yN−1,∗, yN,∗) = 0. (6)

Observing that in (5), for every n, the sequence of ynk is coupled with that of yn−1
k and is ultimately

coupled with the main sequence xk. Meanwhile the update of xk also depends on {ynk }Nn=1. Since
all sequences in (5) are coupled, (5) is more challenging to analyze than the double-sequence SA.

Prior art related to multi-sequence SA. The multilevel stochastic optimization problem [49] and
the multilevel SCO problem [1, 58, 63, 47, 65] are closely related to the multi-sequence SA. To
tackle the multi-level structure, these recent methods have modified the vanilla multi-sequence SA
update to achieve the state-of-the-art complexity and thus their updates are no longer in the form of
(5). In contrast, we focus on the multi-sequence SA update in (5). To the best of our knowledge, the
only analysis for (5) is [61] where the TTS technique is generalized to multi-time-scale. In [61], the
iteration complexity will get worse as the number of sequences N increases.

This gives rise to another interesting question:

Q2: Is it possible to establish convergence rate independent of the number of sequences?

In this work, we give affirmative answers to both Questions Q1 and Q2.

Our contributions. Specially, by exploiting the smooth assumption that can be satisfied in many
applications, we show that the vanilla nonlinear SA can run in a single time scale! We further prove
that the order of the convergence rate is independent of the number of sequences N ! Intuitively, this
is possible because when the fixed point yn,∗ is smooth in x, the ynk -update converges fast enough
such that its fixed-point residual after one-step update is at the same order as the drift of yn,∗.

In the context of prior art, our contributions can be summarized as follows (see Table 1).

C1) Single-timescale analysis for multi-sequence SA. Different from existing two-timescale analysis
[39, 5], we establish a unifying Single-Timescale analysis for SA with multiple coupled sequences that
we term STSA. When all the sequences have strongly-monotone increments, we improve the O(ϵ−1.5)
iteration complexity for multi-sequence TTS-SA in [12] to O(ϵ−1). When the main sequence does not
have the strongly-monotone increment, we provide the O(ϵ−2) iteration complexity. It is worth noting
that though the single time-scale step sizes were also explored in [37, 44], the key enabler in those
works is the decrease of variance which is a result of variance-reduction update or increasing batch
size. While this work and those in Table 1 focus on the case where the variance is non-decreasing.

C2) STSA for stochastic bilevel optimization (SBO). When applying our generic results to the
SBO problem with double-sequence SA, for strongly-concave objective functions, we improve the
best-known sample complexity Õ(ϵ−1.5) of TTSA in [26] to Õ(ϵ−1). For the non-concave objective
function, we achieve the same sample complexity O(ϵ−2) of ALSET while relaxing the bounded
upper-level gradient assumption made in [8].

C3) STSA for stochastic compositional optimization (SCO). When applying our results to the multi-
level SCO problems, we improve the level-dependent sample complexities O(ϵ−

N+5
4 ) and O(ϵ−

N+8
4 )

of multi-sequence SA based α-TSCGD method in [61] to the level-independent complexities Õ(ϵ−1)
and O(ϵ−2), under the strongly-concave and non-concave objective functions, respectively.

C4) STSA for policy optimization in RL problems. Moreover, applying our results to the actor-
critic method achieves the same O(ϵ−2) sample complexity of ALSET-AC in [8] while relaxing the
unverifiable assumption on the stationary distribution of Markov chains; applying our results to the
meta policy gradient improves the O(ϵ−4) sample complexity of SG-MRL in [14] to O(ϵ−2).
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2 Main Results: Convergence of Single-timescale Multi-sequence SA

Before introducing the main results, we will first make some standard assumptions. Throughout the
discussion, we define [N ] := {1, 2, ..., N}, [K] := {1, 2, ...,K} and y0 := x for conciseness.

Assumption 1 (Smoothness of the fixed points) For any n ∈ [N ] and yn−1 ∈ Rdn−1 , there exists
a unique yn,∗(yn−1) ∈ Rdn such that hn(yn−1, yn,∗(yn−1)) = 0. Moreover, there exist constants
Ly,n and Ly′,n such that for any yn−1, ȳn−1 ∈ Rdn−1 , the following inequalities hold

∥yn,∗(yn−1)− yn,∗(ȳn−1)∥ ≤ Ly,n∥yn−1 − ȳn−1∥, (7a)

∥∇yn,∗(yn−1)−∇yn,∗(ȳn−1)∥ ≤ Ly′,n∥yn−1 − ȳn−1∥. (7b)

Due to the change of yn−1
k at each iteration, the solution of hn(yn−1

k , yn) = 0 with respect to (w.r.t.)
yn, that is yn,∗(yn−1

k ), is drifting over consecutive iterations. Given yn−1
k , since only one-step of ynk

update is performed at each iteration, one can only hope to establish convergence of ynk if the drift
of its optimal solution is controlled in some sense. Assumption 1 ensures both the zeroth-order and
first-order drifts are controlled in the same scale of the change of yn−1

k . This assumption is satisfied
in linear SA [29] and other applications which will be shown later.

Define v(x) := v
(
x, y1,∗(x), y2,∗(y1,∗(x)), . . . , yN,∗(. . . y2,∗(y1,∗(x)) . . . )

)
. With y1:N as a con-

cise notation for (y1, ..., yN ), we make the following assumption.

Assumption 2 (Lipschitz continuity of increments) For any n ∈ [N ], x, x̄ ∈ Rd0 and yn, ȳn ∈
Rdn , there exist constants Lv , Lv,y and Lh,n such that the following inequalities hold

∥v(x)− v(x̄)∥≤Lv∥x− x̄∥, ∥v(x, y1:N )−v(x, ȳ1:N )∥≤Lv,y

N∑
n=1

∥yn−ȳn∥, (8a)

∥hn(yn−1, yn)−hn(yn−1, ȳn)∥≤Lh,n∥yn − ȳn∥. (8b)

Define Fk as the σ-algebra generated by the random variables in {xi, y1:Ni }ki=1 and Fn
k as the

σ-algebra generated by {xi, y1:Ni }ki=1 ∪ {ynk+1}. We make the following assumption on the noises.

Assumption 3 (Bias and variance) There exist constants {cn, σn}Nn=0 such that ∀k, n,
∥E[ξk|F1

k ]∥2 ≤ c20αk and ∥E[ψn
k |F

n+1
k ]∥2 ≤ c2nβk,n; E[∥ξk∥2|F1

k ] ≤ σ2
0 and E[∥ψn

k ∥|F
n+1
k ] ≤ σ2

n.

Here we define FN+1
k := Fk. Assumption 3 is a generalized version of the bias and variance

assumption in stochastic programming [19] or the noise assumption in single-sequence SA [30] to
multi-sequence case. Similar assumption has also been made in the double-sequence SA [26]. As
will be shown later, when applying STSA to the stochastic optimization problems, the conditional
independence between samples of different levels given Fk along with the small bias and bounded
variance condition will guarantee this assumption.

Assumption 4 (Monotonicity of h) For n ∈ [N ], hn(yn−1, yn) is one-point strongly monotone on
yn,∗(yn−1) given any yn−1; that is, there exists constant λn > 0 such that (cf. hn(yn−1, yn,∗) = 0)〈

yn−yn,∗(yn−1), hn(yn−1, yn)
〉
≤−λn∥yn−yn,∗(yn−1)∥2, ∀yn ∈ Rdn . (9)

Assumption 4 is implied by the standard regularity assumptions in the previous works on TTS linear
SA [34, 29], and has also been exploited in the TTS nonlinear SA works; see e.g. [39, 12].

2.1 The strongly-monotone case

We first consider the case when the main sequence xk has strongly-monotone increment.

Assumption 5 (Monotonicity of v) Suppose v(x) is one-point strongly monotone on x∗; that is,
there exists a positive constant λ0 such that (cf. v(x∗) = 0)〈

x− x∗, v(x)
〉
≤ −λ0∥x− x∗∥2, ∀x ∈ Rd0 . (10)
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Same as Assumption 4, Assumption 5 is standard in the previous works on TTS SA [39, 12]. This
assumption is a regularity assumption in the case of TTS linear SA; see e.g., [34, Assumption 2.3].
Or in the case of bilevel optimization which will be discussed later, this assumption is satisfied when
the objective function is strongly-concave.

Due to space limitation, we directly present the result below and defer the proof to Appendix B.

Theorem 1 Consider the sequences generated by (5). Suppose Assumptions 1–5 hold. Select step
sizes αk = Θ( 1k ) and βk,n = Θ( 1k ). It holds for any k that

E∥xk−x∗∥2 +
N∑

n=1

E∥ynk − yn,∗(yn−1
k )∥2=O

(1
k

)
(11)

where O(·) hides constants in the polynomial of N , and we have used y0k = xk for convenience.
Moreover, for any n ∈ [N ] we have

lim
k−→∞

∥xk − x∗∥2 = 0 almost surely (a.s.), lim
k−→∞

∥ynk − yn,∗(yn−1
k )∥2 = 0 a.s. (12)

It is worth noting that with (7a), Theorem 1 also implies the same convergence result for the error
metric ∥xk − x∗∥2 +

∑N
n=1 ∥ynk − yn,∗∥2, the formal justification of which is deferred to the proof

of Theorem 1. It is worth noting that the order of convergence in Theorem 1 is independent of N ,
which is in contrast to the convergence rate that gets worse as N increases [12, 61].

Remark 1 (Comparison with prior art in multi-sequence SA) Theorem 1 bridges the gap be-
tween the convergence rates of double-sequence linear and nonlinear SA by improving over the
O(k−

2
3 ) rate shown in [12] with the additional assumption (7b). As will be shown later, this assump-

tion is satisfied in various applications. Theorem 1 also generalizes the O( 1k ) convergence rate in the
double-sequence linear SA analysis (e.g., [29]) to the multi-sequence nonlinear SA case.

2.2 The non-strongly-monotone case

Some applications of multi-sequence nonlinear SA such as the actor-critic method [32], Assumption
5 does not hold. This motivates us to consider a more general setting in this subsection where v(x) is
non-strongly-monotone. Throughout this subsection, we make the following assumption.

Assumption 6 Suppose there exists a mapping F : Rd0 7→ R such that ∇F (x) = v(x). The
sequence of {xk} is contained in an open set over which F (x) is upper bounded; e.g. F (x) ≤ CF .

As will be shown later, F (x) can be chosen as the objective function when applying SA to maximiza-
tion problems. Then assumption 6 is standard to ensure the convergence of xk; see e.g. [6].

The following theorem gives the general finite-time convergence result of the nonlinear SA when the
main sequence has the non-strongly-monotone increment. The proof is deferred to Appendix C.

Theorem 2 Consider the sequences generated by (5) for k=[K]. Suppose Assumptions 1–4 & 6
hold. Select αk = Θ( 1√

K
), βk,n = Θ( 1√

K
) with properly chosen initial step sizes, then it holds that

1

K

K∑
k=1

(
E∥∇F (xk)∥2 +

N∑
n=1

E∥ynk − yn,∗(yn−1
k )∥2

)
= O

( 1√
K

)
, (13)

where O(·) hides problem dependent constants of a polynomial of N , and we have used y0k = xk.

Theorem 2 implies a finite-time convergence rate of O(ϵ−2), which is independent of the number
of sequences N . The error metric ∥∇F (xk)∥ used in Theorem 2 is of interest since it is a general
measure of the convergence of xk widely adopted in many applications of SA, especially when the
increment of xk is not strongly-monotone. Moreover, although we have assumed the existence and
uniqueness of x∗ in (6), the proof of Theorem 2 does not utilize this fact and thus the theorem applies
to the more general case where x∗ is not unique or even does not exist.
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Remark 2 (Comments on stacking all the variables) One naive way to establish the convergence
of a multi-sequence update is to stack all the variables and view it as one sequence. However, the
stacked sequence requires stronger assumptions that are violated in the applications to converge.
For one, we would need v, h1, ..., hN to be jointly lipschitz continuous w.r.t. the stacked variable
(x, y1, ..., yN ). This condition is violated in, e.g., the application of actor-critic (Section 3.2). The
upper-bounded function F can also be difficult to find. As it can be seen later in, e.g., Section 3 that
such a F only exists for x and might not exist for the stacked variable (x, y).

Next we will showcase how the results can be applied to optimization and RL problems.

3 Applications to Stochastic Bilevel Optimization

With mappings f : Rd0 × Rd1 7→ R and g : Rd0 × Rd1 7→ R, consider the following formulation of
the bilevel optimization problem:

max
x∈Rd0

F (x) := f(x, y∗(x)) := Eζ

[
f(x, y∗(x); ζ)

]
s.t. y∗(x) := arg min

y∈Rd1

g(x, y) := Eφ

[
g(x, y;φ)

]
(14)

where ζ and φ are two random variables.

3.1 Reduction from the generic STSA results

A popular approach to solving (14) is the gradient-based method [21, 26, 27, 8]. Under some
conditions that will be specified later, the gradient of F (x) takes the following form [21]:

∇F (x) = ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))[∇2

yyg(x, y
∗(x))]−1∇yf(x, y

∗(x)). (15)

Computing (15) requires y∗(x), which is often unknown in practice. Instead, one can iteratively
update yk to approach y∗(xk) while using yk in place of y∗(xk) during the computation of (15)
[26, 8]. This leads to an update same as that in (5) with N=1, where the mappings are defined as

h(x, y) = −∇yg(x, y), ψk=−h(xk, yk)−∇yg(xk, yk;φk), (16a)

v(x, y) = ∇xf(x, y)−∇2
xyg(x, y)[∇yyg(x, y)]

−1∇yf(x, y), (16b)

ξk = −v(xk, yk) +∇xf(xk, yk; ζk)−∇2
xyg(xk, yk;φ

′
k)H

yy
k ∇yf(xk, yk; ζk). (16c)

Since we only have two sequences, that is N=1, we omit the index n to simplify notations. In (16),
ζk is a random variable with the same distribution as that of ζ , and φk, φ′

k have the same distribution
as that of φ. Here Hyy

k is a stochastic approximation of the Hessian inverse [∇yyg(xk, yk)]
−1. Given

xk, when yk reaches the optimal solution y∗(xk), it follows from (15) that v(xk, y∗(xk)) = ∇F (xk).
As being discussed below Assumption 1, the lower-level optimal solution y∗(xk) is drifting at each
iteration. Under the Lipschitz continuity assumption of y∗(x), the drifting ∥y∗(xk+1) − y∗(xk)∥
scales with ∥xk+1 − xk∥ which ultimately scales with ∥∇F (xk)∥. To control the drift scale, former
analysis heavily relies on the condition that ∥∇F (xk)∥ can be bounded for any k. In SBO, this means
to either make a strong assumption on the Lipschitz continuity of f(x, y) w.r.t. (x, y), which leads to
the Lipschitz continuity of F (x) and the boundedness of ∥∇F (xk)∥ [8]; or to introduce projection in
(16) to forcibly confine xk in a compact set [26], all of which greatly narrow the range of application.
We will show that neither of these the conditions is needed by applying our generic results to SBO.

Lemma 1 (Verifying assumptions of STSA) Consider the following conditions

(a) For any x ∈ Rd1 , g(x, y) is strongly convex w.r.t. y with modulus λ1 > 0.

(b) There exist constants Lxy, lxy, lyy such that ∇yg(x, y) is Lxy-Lipschitz continuous w.r.t.
x; ∇yg(x, y) is Lh-Lipschitz continuous w.r.t. y. ∇xyg(x, y), ∇yyg(x, y) are respectively
lxy-Lipschitz and lyy-Lipschitz continuous w.r.t. (x, y).

(c) There exist constants lfx, lfy, l′fy, ly such that ∇xf(x, y) and ∇yf(x, y) are respectively
lfx and lfy Lipschitz continuous w.r.t. y; ∇yf(x, y) is l′fy-Lipschitz continuous w.r.t. x;
f(x, y) is ly-Lipschitz continuous w.r.t. y.
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(d) F (x) satisfies the restricted secant inequality: There exists a constant λ0 > 0 such that
⟨∇F (x), x− x∗⟩ ≤ −λ0∥x− x∗∥2, where x∗ := argmaxx∈Rd1 F (x).

(e) For any k, there exist constants c0, c1 such that ∥E[ξk|F1
k ]∥2 ≤ c20αk and ∥E[ψk|Fk]∥2 ≤

c21βk; there exist constants σ0, σ1 such that E[∥ξk∥2|F1
k ] ≤ σ2

0 and E[∥ψk∥2|Fk] ≤ σ2
1 .

(f) There exists a constant CF such that F (x) ≤ CF .

We use a⇒ b to indicate that a is a sufficient condition of b. Then we have

(a)&(b) ⇒ Assumption 1; (a)− (c) ⇒ Assumption 2; (e) ⇒ Assumption 3;
(a) ⇒ Assumption 4; (d) ⇒ Assumption 5; (f) ⇒ Assumption 6.

The conditions listed above are commonly adopted in the literature [21, 26, 8]. It is worth noting
that Lemma 1 does not need the Lxy-Lipschitz continuity condition of f(x, y) w.r.t. (x, y). This
Lipschitz condition along with the Ly-Lipschitz continuity of y∗(x), which is implied by the standard
conditions in Lemma 1, further leads to the Lipschitz continuity of F (x):

|F (x)− F (x′)| ≤ Lxy(∥x− x′∥+ ∥y∗(x)− y∗(x′)∥) ≤ Lxy(Ly + 1)∥x− x′∥. (17)

Although it is rather restrictive, this condition has been used in the previous work when F (x) is not
strongly-concave. While our analysis does not need this condition. Lastly, condition (e) is guaranteed
by using independent samples in the upper and lower level along with [21, Algorithm 3] to obtain a
good Hyy

k , which takes Ω(− logαk) samples per iteration. With Lemma 1, we have the following
corollary regarding the convergence of (16).

Corollary 1 (STSA for SBO) Consider the STSA sequences with the update in (16). Under Condi-
tions (a)–(e), Theorem 1 holds; that is, with αk = Θ( 1k ) and βk = Θ( 1k ) we have

E∥xk − x∗∥2 + E∥yk − y∗(xk)∥2=O
(1
k

)
, (18a)

lim
k−→∞

∥xk − x∗∥2 = 0 and lim
k−→∞

∥yk − y∗(xk)∥2 = 0 a.s. (18b)

Under Conditions (a)–(c), (e) and (f), Theorem 2 holds; i.e., with αk=Θ( 1√
K
), βk=Θ( 1√

K
), we have

1

K

K∑
k=1

(
E∥∇F (xk)∥2 + E∥yk − y∗(xk)∥2

)
= O

( 1√
K

)
. (19)

Remark 3 (Comparison with prior art in SBO) When F (x) is strongly concave, Corollary 1 im-
plies the sample complexity of O(ϵ−1log ϵ−1) , which improves over the best-known sample complex-
ity O(ϵ−1.5 log ϵ−1) in [26]. Different from [26], we do not need the projection of xk to a compact
set. When F (x) is non-concave, corollary 1 suggests a sample complexity of O(ϵ−2 log ϵ−1), which
is the same as the state-of-art complexity established in [8]. Corollary 1 improves the result in [8] in
two major aspects: 1) it relaxes the Lipschitz continuity assumption on f(x, y); and, 2) an alternating
update is adopted in [8] to ensure stability, while some applications of SBO only allow simultaneous
updates. Corollary 1 applies to those cases and thus has a broader range of application.

3.2 Application to advantage actor-critic

RL problems are often modeled as a MDP described by M = {S,A,P, r, γ}, where S is the state
space, A is the action space; P(s′|s, a) is the probability of transitioning to s′∈S given (s, a)∈S×A;
r(s, a) ∈ [0, 1] is the reward associated with (s, a); and γ ∈ (0, 1) is a discount factor. A policy π
maps S to a distribution over A, and we use π(a|s) to denote the probability of choosing a under s.
Given a policy π, we define the value functions as Vπ(s) := Eπ

[∑∞
t=0 γ

tr(st, at) | s0=s
]
, where

Eπ is taken over the trajectory (s0, a0, s1, a1, . . .) generated under policy π and transition kernel P .
With ρ denoting the initial state distribution, the discounted visitation distribution induced by policy
π is defined via dπ(s, a) = (1−γ)

∑∞
t=0 γ

tPrπ(st = s | s0 ∼ ρ)π(a|s). To overcome the difficulty
of learning a function, we parameterize the policy with x ∈ Rd0 , and solve

max
x∈Rd0

F (x) := (1− γ)Es∼ρ[Vπx
(s)]. (20)
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To solve for (20), a popular method is the actor-critic (AC) method [32]. The actor-critic algorithm
with linear critic function is a special case of (5). Specifically, the critic variable y is updated with

h(x, y) = Es∼µπx ,a∼πx,s′∼P [ϕ(s)(γϕ(s
′)− ϕ(s))⊤]y + Es∼µπx ,a∼πx

[r(s, a)ϕ(s)],

ψk = −h(xk, yk) + ϕ(sk)(γϕ(s
′
k)− ϕ(sk))

⊤y + r(sk, ak)ϕ(sk), (21)

where µπx
is the stationary distribution of the Markov chain induced by πx, ϕ(s)∈Rd1 is the feature

vector encoding state s and the sample (sk, ak, s
′
k) is returned by some sampling protocol. Under

some regularity conditions, it is known that there exists a unique y∗(x) such that h(x, y∗(x)) = 0 [2].
The actor variable x is then updated with

v(x, y)=Es,a∼dπx ,s
′∼P [(r(s, a)+(γϕ(s′)−ϕ(s))⊤y)∇ log πx(a|s)],

ξk = −v(xk, yk) + r(s̄k, āk) + γ(ϕ(s̄′k)− ϕ(s̄k))
⊤yk∇ log πxk

(āk|s̄k). (22)

For the AC update in (21) and (22), Assumption 2–4 and 6 or their sufficient conditions have been
explored in the RL context by previous works [57]. However, the smoothness of y∗(x) in Assumption
1, which is the key condition leading to a faster convergence rate, has yet been verified. With the
same conditions as those adopted in [57], we prove that y∗(x) is indeed smooth.

Lemma 2 Consider the AC update in (21)-(22). Under the standard conditions specified in Appendix
E, y∗(x) is differentiable and there exists Ly′ > 0 such that ∥∇y∗(x)−∇y∗(x′)∥ ≤ Ly′∥x− x′∥.

As a comparison, the above condition was directly assumed in [8], while we provide a formal
justification for Lemma 2 in this work. With detailed verification of all assumptions deferred to
Appendix E, we then directly present the theorem regarding the convergence of AC.

Theorem 3 (Complexity of AC) Consider the AC update (21)-(22). Under the standard conditions
specified in Appendix E, Theorem 2 holds; that is, with αk=Θ( 1√

K
) and βk=Θ( 1√

K
), we have

1

K

K∑
k=1

(
E∥∇F (xk)∥2 + E∥yk − y∗(xk)∥2

)
= O

( 1√
K

)
. (23)

In [8, 57], the projection step is adopted in the yk update to ensure that ∥yk∥ < ∞,∀k. Since the
projection radius is unknown in practice, adopting the projection is essentially assuming that ∥yk∥
can be bounded for any k, which is quite strong. Theorem 3 holds without this projection.

4 Applications to Stochastic Compositional Optimization

Define mappings fn : Rdn 7→ Rdn+1 for n = 0, 1, ..., N with dN+1 = 1. The multi-level stochastic
compositional problem can be formulated as

max
x∈Rd0

F (x) := fN (fN−1(. . . f0(x) . . . ) with fn(x) :=Eζn [fn(x; ζn)] , n = 0, 1, ..., N (24)

where ζ0, ζ1, . . . , ζN are random variables. Here we slightly overload the notation and use fn(x; ζn)
to represent the stochastic version of the mapping.

4.1 Reduction from the generic STSA results

To solve the problem in (24), a natural scheme is to use the stochastic gradient descent method with
the gradient given by

∇F (x)=∇f0(x)∇f1(f0(x))...∇fN (fN−1(...f0(x)...)) (25)

where we use ∇fn(fn−1(. . . f0(x) . . . )) = ∇fn(x)|x=fn−1(...f0(x)... ). To obtain a stochastic
estimator of ∇F (x), we will need to obtain the stochastic estimators for ∇fn(fn−1(...f0(x)...)) for
each n. For example, when n = 1, one will need the estimator of ∇f1(Eζ0 [f0(x; ζ0)]). However,
due to the possible non-linearity of ∇f1(·), the natural candidate ∇f1(f0(x; ζ0)) is not an unbiased
estimator of ∇f1(Eζ0 [f0(x; ζ0)]). To tackle this issue, a popular method is to directly approximate
the mean Eζn [fn(·; ζn)] with a tracking variable yn ∈ Rdn for n = 0, 1, ..., N , see e.g., [61].
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The update of yn is then a special case of the SA update in (5) with the generic mapping defined as

hn(yn−1, yn) = fn−1(yn−1)− yn, ψn
k = −hn(yn−1

k , ynk ) + fn−1(yn−1
k ; ζn−1

k )− ynk (26)

where ζ0k , . . . , ζ
N
k have the same distributions as that of ζ0, . . . , ζN respectively. It is then clear that

each ynk has a unique fixed-point yn,∗k = fn−1(yn−1
k ), and thus ynk can be viewed as an approximation

of fn(yn−1
k ). With these approximations, variable x is updated in the form of (5) by defining

v(x, y1, . . . , yN ) = ∇f0(x)∇f1(y1)...∇fN (yN ),

ξk=−v(xk, y1k, . . . , yNk ) +∇f0(xk; ζ̂0k) · · · ∇fN (yNk ; ζNk ) (27)

where ζ̂0k has the same distribution as that of ζ0. It is clear that when every ynk reaches its fixed-point
yn,∗k , it follows from (25) that v(xk, y

1,∗
k , ..., yN,∗

k ) = ∇F (xk), which indicates that the expected
update direction of xk in (27) is ∇F (xk).
Next we provide a lemma that summarizes the sufficient conditions of Assumption 1–6. The listed
conditions are standard in the literature [61, 7].

Lemma 3 (Verifying assumptions of STSA) Consider the following conditions

(g) Given any n ∈ {0, 1, . . . , N}, there exist positive constants Ly,n and Ly′,n such that the
mapping fn(·) is Ly,n-Lipschitz continuous and Ly′,n-smooth.

(h) Given Fk, for any n ∈ [N ]: fn(yn−1
k ; ζnk ) and ∇fn(yn−1

k ; ζnk ) are respectively the un-
biased estimators of fn(yn−1

k ) and ∇fn(yn−1
k ) with bounded variance; f0(xk; ζ̂0k) and

∇f0(xk; ζ̂0k) are respectively the unbiased estimators of f0(xk) and ∇f0(xk) with bounded
variance.

(i) At each iteration k, ζ̂0k , ζ
0
k , ζ

1
k , . . . , ζ

N
k are conditionally independent of each other given

Fk.

(j) Function F (x) satisfies the restricted secant inequality: There exists a constant λ0 > 0 such
that ⟨∇F (x), x− x∗⟩ ≤ −λ0∥x− x∗∥2, where x∗ := argmaxx∈Rd1 F (x).

(k) There exists a constant CF such that F (x) ≤ CF .

We use a⇒ b to indicate that a is a sufficient condition of b. Then we have

(g) ⇒ Assumption 1 and 2; (h) and (i) ⇒ Assumption 3; (j) ⇒ Assumption 5;
(k) ⇒ Assumption 6; Assumption 4 holds for (26).

With Lemma 3, we can directly arrive at the following corollary on the convergence of the stochastic
compositional optimization method.

Corollary 2 (STSA for multi-level SCO) Consider the STSA sequences generated by (26)-(27).
Under Conditions (g)–(j), Theorem 1 holds. Under Conditions (g)–(i) and (k), Theorem 2 holds.

Remark 4 (Comparison with prior art in SCO) Corollary 2 establishes the sample complexity of
O(ϵ−1) for the strongly monotone case and the complexity of O(ϵ−2) for the non-monotone case,
which are both independent of N . This improves over the O(ϵ−

N+5
4 ) complexity for the strongly

concave case and the O(ϵ−
N+8

4 ) complexity for the non-concave case shown in [61]. There are other
works that establish the same complexity as that in Corollary 2, but they require modification to the
basic SA update (26) and (27) to achieve acceleration; see e.g., [7, 1, 47].

4.2 Application to model-agnostic meta policy gradient

Consider a set of MDPs {Mi}Mi=1 with Mi = {S,A,Pi, ri, γ}. The MDPs model a set of RL
tasks that share the same state-action space while having different transition kernels Pi and reward
functions ri. To better compare with the previous work [14], we consider the finite-horizon objective
function with the policy π parametrized by x ∈ Rd0 : Fi(x) := Eζ∼πx

[∑H
t=0 γ

tri(st, at)|ρi,Pi

]
,

where H ∈ N+ is the horizon, and Eζ∼πx
is taken over the trajectory ζ := (s0, a0, s1, a1, ..., sH , aH)

generated under policy πx, initial distribution ρi and transition kernels Pi.
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The goal of MAMPG is to find an initial policy πx that can achieve good performance in new tasks
by performing a few policy gradient steps [15, 14]. In the case where N steps of gradient update are
performed, the problem of finding an initial policy parameter x can be formulated as

max
x∈Rd0

F (x) :=
1

M

M∑
i=1

Fi(x̃
N
i (x)) with x̃n+1

i = x̃ni + η∇Fi(x̃
n
i ), n = 0, 1, ..., N−1, (28)

where x is the shared initial policy parameter, i.e. x̃0i = x for any task i and x̃Ni (x) is the parameter
after running N steps of gradient ascent with respect to Fi starting from x.

Solving (28) with SCO method. The MAMPG problem in (28) can be solved by the stochastic com-
positional optimization method introduced before. In order to get ∇F (x), one will need ∇Fi(x̃

N
i (x))

for each task i. Observe that Fi(x̃
N
i (x)) can be written as a compositional function:

Fi(x̃
N
i (x)) = fNi (fN−1

i (. . . f0i (x) . . . )) with fni (x) := x+ η∇Fi(x), n = 0, ..., N−1, (29)

where fNi (x) = Fi(x). In order to approximate ∇Fi(x̃
N
i (x)), we can follow the discussion in

Section 4 and introduce tracking variables yni ∈ Rd0 for n ∈ [N ] which are updated as follows

ynk+1,i = ynk,i − βk,n(y
n
k,i − fn−1

i (yn−1
k ; ζn−1

k,i )), n = 0, 1, ..., N−1 (30)

where we define fni (·; ζ) as a stochastic approximation of fni (·) with random trajectory ζ. Then we
estimate ∇Fi(x̃

N
i (x)) by ∇̂Fi,k defined as

∇̂Fi,k :=∇f0i (x; ζ̂0k,i)∇f1i (y1k,i; ζ1k,i) · · · ∇fNi (yNk,i; ζ
N
k,i). (31)

To obtain an estimation of ∇F (x), we need ∇̂Fi,k for each i ∈ {1, 2, ...,M}. Thus we do (30) for
each i. With {∇̂Fi,k}Mi=1, the initial policy is updated as xk+1=xk+αk

1
M

∑M
i=1 ∇̂Fi,k.

Reduction from the generic results. Let yn ∈ RdnM be a concatenation of yni for i ∈ {1, 2, ...,M}.
With ζnk := {ζnk,i}Mi=1, let fn(ynk ; ζ

n
k ) be a concatenation of fni (y

n
k,i; ζ

n
k,i) for i ∈ {1, 2, ...,M}. Then

we can write the tracking variable update of all tasks jointly in the form of (5a), that is

hn(yn−1, yn) = fn−1(yn−1)− yn, ψn
k = −hn(yn−1

k , ynk ) + fn−1(yn−1
k ; ζn−1

k )− ynk . (32)

The initial policy update is a special case of (5b), that is

v(x, y1, ..., yN )=
1

M

M∑
i=1

∇f0i (x)...∇fNi (yNi ), ξk=−v(xk, y1k, . . . , yNk )+
1

M

M∑
i=1

∇̂Fi,k. (33)

Due to space limitation, we directly give the result below and defer the proof to Appendix G.

Theorem 4 (Complexity of MAMPG) Consider the STSA sequences generated by the MAMPG
update in (32) and (33). Under some standard conditions specified in Appendix G, Theorem 2 holds.

Theorem 4 implies a sample complexity of O(ϵ−2) to achieve the ϵ-stationary initial policy, which
improves over the O(ϵ−4) sample complexity in [14]. Moreover, Theorem 4 holds for any N ≥ 1 in
(28), while the method in [14] only applies to the case N = 1.

5 Conclusions

In this work, we consider the general nonlinear SA with multiple coupled sequences, and study its
non-asymptotic performance. Different from the dominating two-timescale SA analysis, we are
particularly interested in under which conditions, single-timescale analysis can be applied to nonlinear
SA with multiple coupled sequences. When all the sequences have strongly monotone increments,
we establish the iteration complexity of O(ϵ−1). When the main sequence is not strongly-monotone,
we establish the iteration complexity of O(ϵ−2). We then apply our generic SA analysis to stochastic
bilevel and compositional optimization and improve their existing results. Specifically, we improve
the state-of-the-art convergence rate of: 1) the SBO method and its application to the AC method;
and, 2) the multi-level SCO method and its application to the MAMPG method.
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A Additional related works

In this section, we review the prior art on the applications of multi-sequence SA.

Gradient-based bilevel optimization. The bilevel optimization was first introduced in [51]. Recently,
the gradient-based bilevel optimization methods have gained growing popularity [48, 16, 22, 38].
The finite-time convergence of the double-loop bilevel optimization methods has been studied in
some previous works; see e.g., [21, 27]. Later, [26] proved the finite-time convergence rate for the
single-loop two time-scale bilevel optimization method, which was then improved by [8] to the
optimal rate with additional assumptions and a more refined analysis. There are also other works
that incorporate momentum to accelerate the convergence; see e.g., [31, 24, 60]. After our initial
conference submission, we have also noticed some concurrent works that are relavant to this work
[9, 23, 36]. Specifically, [9] proposed a SBO method with the variance-reduction technique and
achieved optimal rate. And [23] proposed a SBO method that achieves the optimal rate without
warm-start. The algorithms in [9, 23] are not a case of the SA update discussed in this work and thus
its analysis is not applicable to our problem. Lastly, [36] proposed a single-loop SBO method without
Hessian inverse, but it required the bounded-gradient assumption which is not needed in this work.

Actor-critic method. After its frist introduction in [33], the finite-sample guarantee for the AC
algorithm has been established in [62, 35, 17] with i.i.d. sampling. In [45], the finite-time convergence
rate has been established for the nested-loop AC under the Markovian setting, which was later
improved improved by [59]. On the other hand, the finite-time convergence of two-timescale AC has
been studied in [57] under Markovian sampling and [26, 8] under i.i.d. sampling.

Gradient-based stochastic compositional optimization. The two time-scale stochastic composi-
tional optimization method was proposed in [55, 56]. Due to the two time-scale step sizes choice,
the convergence rate of [55, 56] is slower than that of the SGD. In order to achieve acceleration,
[20, 7, 47, 1] have modified the basic update in [55, 61] and successfully established the convergence
rate same as that of SGD. Concurrent to this work, [28] proposed a variance-reduced SCO method
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that achieved the optimal rate under variance-reduction. While this work focuses on establishing an
optimal rate for the SA update without having diminishing variance. Due to the difference in update
scheme, their analysis is not directly applicable to our case.

B Proof of Theorem 1

B.1 Analysis of the lower-level sequences

For brevity, we define the shorthand notations yn,∗k := yn,∗(yn−1
k ) with y1,∗k := y1,∗(xk). Also, we

write E[·|Fk] as Ek[·] for brevity.

One-step contraction of lower-level sequences. With y0k = xk, it holds for any n ∈ [N ] that

Ek∥ynk+1−y
n,∗
k ∥2=∥ynk − yn,∗k ∥2+2βk,nEk⟨ynk−y

n,∗
k , hn(yn−1

k , ynk )+ψ
n
k ⟩+Ek∥ynk+1−ynk ∥2.

(34)
The second term in (34) can be bounded as
Ek⟨ynk − yn,∗k , hn(yn−1

k , ynk ) + ψn
k ⟩ = ⟨ynk − yn,∗k , hn(yn−1

k , ynk ))⟩+ ⟨ynk − yn,∗k ,Ek[ψ
n
k ]⟩

≤ −λn∥ynk − yn,∗k ∥2 + ∥ynk − yn,∗k ∥∥Ek[ψ
n
k ]∥

≤ −λn∥ynk − yn,∗k ∥2 + λn
4
∥ynk − yn,∗k ∥2 + 1

λn
∥Ek[ψ

n
k ]∥2

≤ −3λn
4

∥ynk − yn,∗k ∥2 + c2n
λn
βk,n, (35)

where the first inequality follows from the strong monotonicity of h(yn−1, yn) in Assumption 4, the
second inequality follows from the Young’s inequality, and the last inequality follows from the bias
of the increment ψn

k in Assumption 3.

The third term in (34) can be bounded as
Ek∥ynk+1 − ynk ∥2 ≤ 2β2

k,n

(
∥hn(yn−1

k , ynk )∥2 + σ2
n

)
≤ 2L2

h,nβ
2
k,n∥ynk − yn,∗k ∥+ 2σ2

nβ
2
k,n (36)

where the last inequality follows from Assumption 2 which gives

∥hn(yn−1
k , ynk )∥ = ∥hn(yn−1

k , ynk )− hn(yn−1
k , yn,∗k (yn−1

k ))︸ ︷︷ ︸
=0

∥ ≤ Lh,n∥ynk − yn,∗k (yn−1
k )∥. (37)

Collecting the upper bounds in (35) and (36) yields

Ek∥ynk+1 − yn,∗k ∥2 ≤ (1− 3

2
λnβk,n + 2L2

h,nβ
2
k,n)∥ynk − yn,∗k ∥2 + 2(σ2

n+c
2
nλ

−1
n )β2

k,n

≤ (1− λnβk,n)∥ynk − yn,∗k ∥2 + 2(σ2
n+c

2
nλ

−1
n )β2

k,n, (38)

where the last inequality is due to the choice of step size that satisfies 2L2
h,nβ

2
k,n ≤ λn

2 βk,n.

Bounding the drifting optimality gap. For any n ≥ 1, we have
∥ynk+1 − yn,∗k+1∥

2 = ∥ynk+1 − yn,∗k ∥2 + 2⟨yn,∗k − ynk+1, y
n,∗
k+1 − yn,∗k ⟩+ ∥yn,∗k − yn,∗k+1∥

2. (39)

(1) When n ≥ 2. By the mean-value theorem, for some ŷn−1
k+1 = ayn−1

k + (1− a)yn−1
k+1 , a ∈ [0, 1],

the second term in (39) can be rewritten as
⟨yn,∗k − ynk+1, y

n,∗
k+1 − yn,∗k ⟩ = ⟨yn,∗k − ynk+1,∇yn,∗(ŷn−1

k+1 )
⊤(yn−1

k+1 − yn−1
k )⟩

= ⟨yn,∗k − ynk+1, βk,n−1∇yn,∗(ŷn−1
k+1 )

⊤hn−1(yn−2
k , yn−1

k )⟩
+ ⟨yn,∗k − ynk+1, βk,n−1∇yn,∗(ŷn−1

k+1 )
⊤ψn−1

k ⟩. (40)
The first term in the right-hand side (RHS) of (40) can be bounded as

⟨yn,∗k − ynk+1, βk,n−1∇yn,∗(ŷn−1
k+1 )

⊤hn−1(yn−2
k , yn−1

k )⟩
≤ Ly,nβk,n−1∥yn,∗k − ynk+1∥∥hn−1(yn−2

k , yn−1
k )∥

≤ Ly,nLh,n−1βk,n−1∥yn,∗k − ynk+1∥∥yn−1
k − yn−1,∗

k ∥

≤
2L2

y,nL
2
h,n−1

λn−1
βk,n−1∥yn,∗k − ynk+1∥2 +

λn−1

8
βk,n−1∥yn−1

k − yn−1,∗
k ∥2 (41)
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where the second inequality follows from

∥hn−1(yn−2
k , yn−1

k )∥ = ∥hn−1(yn−2
k , yn−1

k )− hn−1(yn−2
k , yn−1,∗

k )∥
≤ Lh,n−1∥yn−1

k − yn−1,∗
k ∥. (42)

The second term in the RHS of (40) can be further decomposed into

⟨yn,∗k − ynk+1, βk,n−1∇yn,∗(ŷn−1
k+1 )

⊤ψn−1
k ⟩

= ⟨yn,∗k − ynk+1, βk,n−1(∇yn,∗(ŷn−1
k+1 )−∇yn,∗(yn−1

k ))⊤ψn−1
k ⟩

+ ⟨yn,∗k − ynk+1, βk,n−1∇yn,∗(yn−1
k )⊤ψn−1

k ⟩. (43)

Taking expectation on the first term in the RHS of (43) leads to

Ek⟨yn,∗k − ynk+1, βk,n−1

(
∇yn,∗(ŷn−1

k+1 )−∇yn,∗(yn−1
k )

)⊤
ψn−1
k ⟩

≤ Ly′,nβk,n−1Ek

[
∥yn,∗k − ynk+1∥∥ŷn−1

k+1 − yn−1
k ∥∥ψn−1

k ∥
]

(a)

≤ Ly′,nβk,n−1Ek

[
∥yn,∗k − ynk+1∥∥yn−1

k+1 − yn−1
k ∥∥ψn−1

k ∥
]

(b)

≤ Ly′,nβ
2
k,n−1

(
Ek

[
∥yn,∗k − ynk+1∥∥hn−1(yn−2

k , yn−1
k )∥∥ψn−1

k ∥
]
+ Ek

[
∥yn,∗k − ynk+1∥∥ψn−1

k ∥2
])

= Ly′,nβ
2
k,n−1

(
Ek

[
∥yn,∗k − ynk+1∥∥hn−1(yn−2

k , yn−1
k )∥E[∥ψn−1

k ∥|Fn
k ]
]
+ Ek

[
∥yn,∗k − ynk+1∥∥ψn−1

k ∥2
])

(c)

≤ Ly′,nβ
2
k,n−1

(
σn−1Ek

[
∥yn,∗k − ynk+1∥∥hn−1(yn−2

k , yn−1
k )∥

]
+ σ2

n−1Ek∥yn,∗k − ynk+1∥
)

≤Ly′,nβ
2
k,n−1

(
σn−1Ek

[
∥yn,∗k −ynk+1∥∥hn−1(yn−2k , yn−1k )∥

]
+
σ2
n−1
2

Ek∥yn,∗k −ynk+1∥2 +
σ2
n−1
2

)
(d)

≤ Ly′,nσn−1β
2
k,n−1

(Lh,n−1+σn−1
2

Ek∥ynk+1−y
n,∗
k ∥2 + Lh,n−1

2
∥yn−1k −yn−1,∗k ∥2 + σn−1

2

)
, (44)

where (a) is due to

∥ŷn−1
k+1 − yn−1

k ∥ = (1− a)∥yn−1
k − yn−1

k+1∥ ≤ ∥yn−1
k − yn−1

k+1∥, (45)

then (b) is due to

∥yn−1
k+1 − yn−1

k ∥ ≤ βn−1
k

(
∥hn−1(yn−2

k , yn−1
k )∥+ ∥ψn−1

k ∥
)

(46)

and (c) follows from Assumption 3 and Jensen’s inequality:

E[∥ψn
k ∥] = E[

√
∥ψn

k ∥2] ≤
√

E∥ψn
k ∥2 ≤ σn, (47)

the (d) follows from (42) and one-step Young’s inequality:

∥yn,∗k −ynk+1∥∥hn−1(yn−2k , yn−1k )∥
(42)
≤ Lh,n−1∥yn,∗k −ynk+1∥∥yn−1

k − yn−1,∗
k ∥

≤ Lh,n−1

2
∥yn,∗k −ynk+1∥2 +

Lh,n−1

2
∥yn−1

k − yn−1,∗
k ∥2. (48)

The second term in (43) can be bounded as

Ek⟨yn,∗k − ynk+1, βk−1,n∇yn,∗(yn−1
k )⊤ψn−1

k ⟩ = Ek

[
⟨yn,∗k − ynk+1, βk,n−1∇yn,∗(xk)⊤E[ψn−1

k |Fn
k ]⟩

]
≤ Ly,nβk,n−1Ek[∥yn,∗k − ynk+1∥∥E[ψn−1

k |Fn
k ]∥]

(a)

≤ Ly,ncn−1

2
βk,n−1

(
Ek∥yn,∗k − ynk+1∥2 + βk,n−1

)
(49)

where (a) follows from Assumption 3.
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Collecting and substituting the upper bounds in (41), (44) and (49) into (40) yields

Ek⟨yn,∗k − ynk+1, y
n,∗
k+1 − yn,∗k ⟩

≤
((Ly,ncn−1

2
+

2L2
y,nL

2
h,n−1

λn−1

)
βk,n−1 + Ly′,nσn−1

Lh,n−1+σn−1

2
β2
k,n−1

)
Ek∥ynk+1 − yn,∗k ∥2

+
(λn−1

8
βk,n−1+

Ly′,nσn−1Lh,n−1

2
β2
k,n−1

)
∥yn−1

k −yn−1,∗
k ∥2+

Ly′,nσ
2
n−1+Ly,ncn−1

2
β2
k,n−1.

(50)

The last term in (39) can be bounded as

Ek∥yn,∗k − yn,∗k+1∥
2 ≤ L2

y,nβ
2
k,n−1Ek∥hn−1(yn−2

k , yn−1
k ) + ψn−1

k ∥2

≤ 2L2
y,nβ

2
k,n−1∥hn−1(yn−2

k , yn−1
k )∥2 + 2L2

y,nσ
2
n−1β

2
k,n−1

(42)
≤ 2L2

y,nL
2
h,n−1β

2
k,n−1∥yn−1

k − yn−1,∗
k ∥2 + 2L2

y,nσ
2
n−1β

2
k,n−1. (51)

Substituting the upper bounds in (50) and (51) into (39) yields (for 2 ≤n ≤ N )

Ek∥ynk+1 − yn,∗k+1∥
2

≤
(
1 +

(
Ly,ncn−1 +

4L2
y,nL

2
h,n−1

λn−1

)
βk,n−1 + Ly′,nσn−1(Lh,n−1+σn−1)β

2
k,n−1

)
Ek∥ynk+1 − yn,∗k ∥2

+
λn−1

2
βk,n−1∥yn−1

k −yn−1,∗
k ∥2+(Ly′,nσ

2
n−1+Ly,ncn−1+2L2

y,nσ
2
n−1)β

2
k,n−1 (52)

where we have used the following condition of the step size to simplify the inequality:

(Ly′,nσn−1Lh,n−1 + 2L2
y,nL

2
h,n−1)β

2
k,n−1 ≤ λn−1

4
βk,n−1, 2 ≤ n ≤ N. (53)

(2) When n = 1. The update of y1k is correlated with its upper level variable xk instead of yn−1
k when

n≥2. And since the update of xk depends on all variables while the update of yn−1
k (n≥2) only

depends on yn−2
k , the analysis of y1k is different from that of ynk (n>2). The difference therefore lies

in analyzing (39), which captures the dependence of lower level variable to its upper level variable.

By the mean-value theorem, for some x̂k+1 = axk + (1 − a)xk+1, a ∈ [0, 1], the second term in
(39) can be rewritten as

⟨y1,∗k − y1k+1, y
1,∗
k+1 − y1,∗k ⟩ = ⟨y1,∗k − y1k+1,∇y1,∗(x̂k+1)

⊤(xk+1 − xk)⟩

= ⟨y1,∗k − y1k+1, αk∇y1,∗(x̂k+1)
⊤v(xk, y

1:N
k )⟩

+ ⟨y1,∗k − y1k+1, αk∇y1,∗(x̂k+1)
⊤ξk⟩. (54)

The first term in the RHS of (54) can be bounded as

⟨y1,∗k − y1k+1, αk∇y1,∗(x̂k+1)
⊤v(xk, y

1:N
k )⟩

≤ Ly,1αk∥y1,∗k − y1k+1∥∥v(xk, y1:Nk )∥ (55)

(a)

≤ Ly,1αk

(
Lv,y∥y1,∗k − y1k+1∥

N∑
n=1

Ly(n)∥ynk − yn,∗k ∥+ Lv∥y1,∗k − y1k+1∥∥xk − x∗∥
)

(b)

≤ Ly,1αk

(Lv,y

2
∥y1,∗k −y1k+1∥2+

Lv,yN

2

N∑
n=1

L2
y(n)∥ynk−y

n,∗
k ∥2+Ly,1L

2
v

λ0
∥y1,∗k −y1k+1∥2+

λ0
4Ly,1

∥xk−x∗∥2
)

=(
Ly,1Lv,y

2
+
L2
y,1L

2
v

λ0
)αk∥y1k+1−y

1,∗
k ∥2+Ly,1Lv,yN

2
αk

N∑
n=1

L2
y(n)∥ynk−y

n,∗
k ∥2+ λ0

4
αk∥xk−x∗∥2

(56)
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and (a) follows from

∥v(xk, y1:Nk )∥ = ∥v(xk, y1:Nk )− v(xk) + v(xk)− v(x∗)︸ ︷︷ ︸
=0

∥

≤ ∥v(xk, y1:Nk )− v(xk)∥+ Lv∥xk − x∗∥

≤ Lv,y

N∑
n=1

Ly(n)∥ynk − yn,∗k ∥+ Lv∥xk − x∗∥, (57)

where the first inequality follows from Assumption 2 and the last inequality follows from Lemma 10;
and (b) follows from Young’s inequality:

∥y1,∗k − y1k+1∥
N∑

n=1

Ly(n)∥ynk − yn,∗k ∥ ≤ 1

2
∥y1,∗k − y1k+1∥2 +

1

2

( N∑
n=1

Ly(n)∥ynk − yn,∗k ∥
)2

≤ 1

2
∥y1,∗k − y1k+1∥2 +

N∑
n=1

N

2
L2
y(n)∥ynk − yn,∗k ∥2, (58a)

and

Lv∥y1,∗k − y1k+1∥∥xk − x∗∥ ≤ Ly,1L
2
v

λ0
∥y1,∗k −y1k+1∥2+

λ0
4Ly,1

∥xk−x∗∥2. (58b)

The second term in the RHS of (54) can be further decomposed as

Ek⟨y1,∗k − y1k+1, αk∇y1,∗(x̂k+1)
⊤ξk⟩

= Ek⟨y1,∗k − y1k+1, αk

(
∇y1,∗(x̂k+1)−∇y1,∗(xk)

)⊤
ξk⟩+ Ek⟨y1,∗k − y1k+1, αk∇y1,∗(xk)⊤ξk⟩.

(59)

The first term in the RHS of (59) can be bounded similarly to (44), with the upper level update term
∥xk+1 − xk∥ in place of ∥yn−1

k+1 − yn−1
k ∥ (n>2), that is

Ek⟨y1,∗k − y1k+1, αk

(
∇y1,∗(x̂k+1)−∇y1,∗(xk)

)⊤
ξk⟩

= Ek⟨y1,∗k − y1k+1, αk

(
∇y1,∗(x̂k+1)−∇y1,∗(xk)

)⊤
ξk⟩

≤ Ly′,1αkEk

[
∥y1,∗k − y1k+1∥∥x̂k+1 − xk∥∥ξk∥

]
≤ Ly′,1αkEk

[
∥y1,∗k − y1k+1∥∥xk+1 − xk∥∥ξk∥

]
≤ Ly′,1α

2
k

(
Ek

[
∥y1,∗k − y1k+1∥∥v(xk, y1:Nk )∥∥ξk∥

]
+ Ek

[
∥y1,∗k − y1k+1∥∥ξk∥2

])
= Ly′,1α

2
k

(
Ek

[
∥y1,∗k − y1k+1∥∥v(xk, y1:Nk )∥E[∥ξk∥|F1

k ]
]
+ Ek

[
∥y1,∗k − y1k+1∥E[∥ξk∥2|F1

k ]
])

≤ Ly′,1α
2
k

(
σ0Ek

[
∥y1,∗k − y1k+1∥∥v(xk, y1:Nk )∥

]
+ σ2

0Ek∥y1,∗k − y1k+1∥
)

≤ Ly′,1α
2
k

(
σ0Ek

[
∥y1,∗k − y1k+1∥∥v(xk, y1:Nk )∥

]
+
σ2
0

2
Ek∥y1,∗k − y1k+1∥2 +

σ2
0

2

)
(60)

≤ Ly′,1σ0α
2
k

(σ0+Lv,y+Lv

2
Ek∥y1k+1 − y1,∗k ∥2+Lv,yN

2

N∑
n=1

∥ynk − yn,∗k ∥2+Lv

2
∥xk − x∗∥2+ σ0

2

)
,

(61)

where the fourth inequality follows from Assumption 3 and the last inequality follows from similar
derivations of the upper bound of ∥y1,∗k − y1k+1∥∥v(xk, y1:Nk )∥ shown in (55)–(56).

The second term in the RHS of (59) can be bounded as

Ek⟨y1,∗k − y1k+1, αk∇y1,∗(xk)⊤ξk⟩ = Ek

[
⟨y1,∗k − y1k+1, αk∇y1,∗(xk)⊤E[ξk|F1

k ]⟩
]

≤ Ly,1αkEk[∥y1,∗k − y1k+1∥∥E[ξk|F1
k ]∥]

≤ Ly,1c0
2

αk

(
Ek∥y1,∗k − y1k+1∥2 + αk

)
. (62)
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Substituting the upper bounds in (56), (61) and (62) into (54) yields

Ek⟨y1,∗k − y1k+1, y
1,∗
k+1 − y1,∗k ⟩

≤
((Ly,1Lv,y

2
+
L2
y,1L

2
v

λ0
+
Ly,1c0

2

)
αk + Ly′,1

σ2
0 + (Lv,y+Lv)σ0

2
α2
k

)
Ek∥y1k+1 − y1,∗k ∥2

+
(Ly,1Lv,yN

2
αk +

Ly′,1σ0Lv,yN

2
α2
k

)
N

N∑
n=1

L2
y(n)∥ynk − yn,∗k ∥2

+
(λ0
4
αk +

Ly′,1Lvσ0
2

α2
k

)
∥xk − x∗∥2 + Ly′,1σ

2
0 + Ly,1c0
2

α2
k. (63)

The last term in (39) can be bounded as

Ek∥y1,∗k − y1k+1∥2

≤ L2
y,1α

2
kEk∥v(xk, y1:Nk ) + ξk∥2

≤ 2L2
y,1α

2
k∥v(xk, y1:Nk )∥2 + 2L2

y,1σ
2
0α

2
k

(57)
≤ 4L2

y,1α
2
k

(
L2
v,yN

N∑
n=1

Ly(n)
2∥ynk − yn,∗k ∥2+L2

v∥xk − x∗∥2
)
+2L2

y,1σ
2
0α

2
k. (64)

Substituting the upper bounds in (63) and (64) into (39) yields

Ek∥y1k+1 − y1,∗k+1∥
2

≤
(
1 + Ly,1

(
Lv,y+2Ly,1L

2
vλ

−1
0 +c0

)
αk + Ly′,1σ0(Lv,y+Lv+σ0)α

2
k

)
Ek∥y1k+1 − y1,∗k ∥2

+
(
Ly,1Lv,yNαk + (Ly′,1σ0Lv,y + 4L2

y,1L
2
v,y)Nα

2
k

) N∑
n=1

L2
y(n)∥ynk − yn,∗k ∥2

+
(λ0
2
αk + (Ly′,1Lvσ0+4L2

y,1L
2
v)α

2
k

)
∥xk − x∗∥2 + (Ly′,1σ

2
0+Ly,1c0+2L2

y,1σ
2
0)α

2
k. (65)

This completes the analysis of lower-level sequences.

B.2 Analysis of the main sequence

Recall that we defined the shorthand notations yn,∗k = yn,∗(yn−1
k ) with y1,∗k = y1,∗(xk); y1:Nk =

(y1k, y
2
k, . . . , y

N
k ). For convenience, we write E[·|Fk] as Ek[·]. In this section, we will analyze the

main sequence and then establish the convergence rate.

First we have

Ek∥xk+1 − x∗∥2

= ∥xk − x∗∥2 + 2αkEk⟨xk − x∗, v(xk, y
1:N
k ) + ξk⟩+ Ek∥xk+1 − xk∥2

= ∥xk − x∗∥2 + 2αkEk⟨xk − x∗, v(xk, y
1:N
k )− v(xk)⟩+ 2αk⟨xk − x∗, v(xk)⟩

+ 2αk⟨xk − x∗,Ek[ξk]⟩+ α2
kEk∥v(xk, y1:Nk ) + ξk∥2. (66)

By Lemma 10, the second term in (66) can be bounded as

⟨xk − x∗, v(xk, y
1:N
k )−v(xk)⟩ ≤ Lv,y∥xk − x∗∥

N∑
n=1

Ly(n)∥ynk − yn,∗k ∥

≤ λ0
8
∥xk − x∗∥2 +

2L2
v,yN

λ0

N∑
n=1

Ly(n)
2∥ynk − yn,∗k ∥2. (67)

By the strong monotonicity of v(x, y∗(x)) in Assumption 5, the third term in (66) can be bounded as

⟨xk − x∗, v(xk)⟩ ≤ −λ0∥xk − x∗∥2. (68)
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Using Assumption 3, the fourth term in (66) can be bounded as

⟨xk − x∗,Ek[ξk]⟩ ≤
λ0
8
∥xk − x∗∥2 + 2c20

λ0
αk. (69)

The last term in (66) can be bounded as

Ek∥v(xk, y1:Nk ) + ξk∥2 ≤ 2∥v(xk, y1:Nk )∥2 + 2σ2
0

(57)
≤ 4L2

v∥xk − x∗∥2 + 4NL2
v,y

N∑
n=1

Ly(n)
2∥ynk − yn,∗k ∥2 + 2σ2

0 . (70)

Substituting the upper bounds in (67)–(70) into (66) yields

Ek∥xk+1 − x∗∥2 ≤
(
1− 3

2
λ0αk+4L2

vα
2
k)∥xk − x∗∥2+4

(L2
v,y

λ0
αk+L

2
v,yα

2
k

)
N

N∑
n=1

L2
y(n)∥ynk−y

n,∗
k ∥2

+ 2
(
σ2
0 +

2c20
λ0

)
α2
k. (71)

Establishing convergence. For brevity, we fist define the following series

C0(1) := Ly,1

(
Lv,y+2Ly,1L

2
vλ

−1
0 +c0

)
, C1(1) := Ly′,1σ0(Lv+Lv,y+σ0);

C0(n) := Ly,ncn−1 +
4L2

y,nL
2
h,n−1

λn−1
, C1(n) := Ly′,nσn−1(Lh,n−1+σn−1), 2 ≤ n ≤ N ;

C2(n) := (4
L2
v,y

λ0
+
Ly,1Lv,y

2
)NL2

y(n), C3(n) := (L2
v,y +

Ly′,1σ0Lv,y

2
)NL2

y(n),∀n. (72)

Define a Lyapunov function Jk := ∥xk − x∗∥2 +
∑N

n=1 ∥ynk − yn,∗k ∥2. Then we have

Ek[Jk+1]− Jk = Ek∥xk+1 − x∗∥2 − ∥xk − x∗∥2 +
N∑

n=1

∥ynk+1 − yn,∗k+1∥
2 − ∥ynk − yn,∗k ∥2. (73)

Substituting (52), (65) and (71) into (73), and then applying (38) yields

Ek[Jk+1]− Jk

≤
(
− λ0αk +

(
Ly′,1Lvσ0 + 4L2

y,1L
2
v + 4L2

v

)
α2
k

)
∥xk − x∗∥2

+

N−1∑
n=1

(
(1+C0(n)βk,n−1+C1(n)β

2
k,n−1)(1−λnβk,n)−1+

λn
2
βk,n+C2(n)αk+C3(n)α

2
k

)
∥ynk−y

n,∗
k ∥2

+
(
(1+C0(N)βk,N−1+C1(N)β2

k,N−1)(1−λNβk,N )−1+C2(N)αk+C3(N)α2
k

)
∥yNk −yN,∗

k ∥2

+Θ(α2
k) + Θ

( N∑
n=1

(1 + βk,n−1 + β2
k,n−1)β

2
k,n

)
, (74)

where we define βk,0 := αk to simplify the result. As a clarification, the second term in the last
inequality disappears when N ≤ 1. Let the step sizes satisfy

− λ0αk +
(
Ly′,1Lvσ0 + 4L2

y,1L
2
v + 4L2

v

)
α2
k ≤ −λ0

2
αk, (75)

(1+C0(n)βk,n−1+C1(n)β
2
k,n−1)(1−λnβk,n)−1+

λn
2
βk,n+C2(n)αk+C3(n)α

2
k ≤−λ0

2
αk, 1≤n≤N − 1,

(76)

(1+C0(N)βk,n−1+C1(N)β2
k,n−1)(1−λNβk,N )−1+C2(N)αk+C3(N)α2

k ≤−λ0
2
αk, (77)

Note that (75) always admits solution for small enough α1. Given βk,N , applying Lemma 11 for
n = N, . . . , 1 to (77) and (76) implies that there exist solutions for βk,n(∀n).
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Then by (75)–(77), we have from (74) that

Ek[Jk+1] ≤
(
1− λ0

2
αk

)
Jk +Θ(α2

k) + Θ
( N∑
n=1

(1 + βk,n−1 + β2
k,n−1)β

2
k,n

)
. (78)

Note that (78) implies a finite-time convergence rate of 1
k with the choice of step size. Ap-

plying Robbins-Siegmund’s theorem stated in Lemma 12 to (78) gives
∑∞

k=1 αkJk < ∞ and
limk−→∞ Jk < ∞ almost surely, which along with the fact that

∑∞
k=1 αk = ∞ implies

limk−→∞ Jk = 0, i.e. for any n ∈ [N ]

lim
k−→∞

∥xk − x∗∥2 = 0, lim
k−→∞

∥ynk − yn,∗k ∥2 = 0, a.s. (79)

Finally, as a direct result of Lemma 13, we can directly obtain the same convergence theorem for the
alternative error metric ∥xk − x∗∥2 +

∑N
n=1 ∥ynk − yn,∗∥2. This completes the proof.

C Proof of Theorem 2

C.1 Analysis of the lower-level sequences

In this section, we provide a bound of the lower-level optimality gaps. Recall that we defined
the shorthand notations yn,∗k = yn,∗(yn−1

k ) with y1,∗k = y1,∗(xk); y1:Nk = (y1k, y
2
k, . . . , y

N
k ). For

convenience, we write E[·|Fk] as Ek[·].
It follows from (38) that

Ek∥ynk+1 − yn,∗k ∥2 ≤ (1− λnβk,n)∥ynk − yn,∗k ∥2 + 2(σ2
n+c

2
nλ

−1
n )β2

k,n. (80)

Bounding the drifting optimality gap. For any n ≥ 1, we have

∥ynk+1 − yn,∗k+1∥
2 = ∥ynk+1 − yn,∗k ∥2 + 2⟨yn,∗k − ynk+1, y

n,∗
k+1 − yn,∗k ⟩+ ∥yn,∗k − yn,∗k+1∥

2. (81)

(1) When n = 1. By the mean-value theorem, for some x̂k+1 = axk + (1− a)xk+1, a ∈ [0, 1], the
second term in (81) can be rewritten as

⟨y1,∗k − y1k+1, y
1,∗
k+1 − y1,∗k ⟩ = ⟨y1,∗k − y1k+1,∇y1,∗(x̂k+1)

⊤(xk+1 − xk)⟩

= ⟨y1,∗k − y1k+1, αk∇y1,∗(x̂k+1)
⊤v(xk, y

1:N
k )⟩

+ ⟨y1,∗k − y1k+1, αk∇y1,∗(x̂k+1)
⊤ξk⟩. (82)

The first term in (82) can be bounded as

⟨y1,∗k − y1k+1, αk∇y1,∗(x̂k+1)
⊤v(xk, y

1:N
k )⟩

≤ Ly,1αk∥y1,∗k − y1k+1∥∥v(xk, y1:Nk )∥ (83)

≤ Ly,1αk

(
Lv,y∥y1,∗k − y1k+1∥

N∑
n=1

Ly(n)∥ynk − yn,∗k ∥+ ∥y1,∗k − y1k+1∥∥v(xk)∥
)

≤ Ly,1αk

(Lv,y

2
∥y1,∗k − y1k+1∥2 +

Lv,yN

2

N∑
n=1

L2
y(n)∥ynk − yn,∗k ∥2

+ 2Ly,1∥y1,∗k − y1k+1∥2 +
1

8Ly,1
∥v(xk)∥2

)
= Ly,1

(Lv,y

2
+2Ly,1

)
αk∥y1k+1−y

1,∗
k ∥2+Ly,1Lv,yN

2
αk

N∑
n=1

L2
y(n)∥ynk−y

n,∗
k ∥2+1

8
αk∥v(xk)∥2,

(84)

where the second inequality follows from Lemma 10:

∥v(xk, y1:Nk )∥ ≤ ∥v(xk, y1:Nk )− v(xk)∥+ ∥v(xk)∥

≤ Lv,y

N∑
n=1

Ly(n)∥ynk − yn,∗k ∥+ ∥v(xk)∥. (85)
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The second term in (82) can be further decomposed as

Ek⟨y1,∗k − y1k+1, αk∇y1,∗(x̂k+1)
⊤ξk⟩

= Ek⟨y1,∗k −y1k+1, αk

(
∇y1,∗(x̂k+1)−∇y1,∗(xk)

)⊤
ξk⟩+Ek⟨y1,∗k −y1k+1, αk∇y1,∗(xk)⊤ξk⟩.

(86)
The first term in (86) can be bounded as

Ek⟨y1,∗k − y1k+1, αk

(
∇y1,∗(x̂k+1)−∇y1,∗(xk)

)⊤
ξk⟩ (87)

(60)
≤ Ly′,1σ0α

2
k

(
Ek

[
∥y1,∗k − y1k+1∥∥v(xk, y1:Nk )∥

]
+
σ0
2
Ek∥y1,∗k − y1k+1∥2 +

σ0
2

)
≤ Ly′,1σ0α

2
k

(Lv,y+σ0+1

2
Ek∥y1k+1−y

1,∗
k ∥2+Lv,yN

2

N∑
n=1

L2
y(n)∥ynk−y

n,∗
k ∥2+1

2
∥v(xk)∥2+

σ0
2

)
where the last inequality follows from similar derivations of the upper bound of ∥y1,∗k −
y1k+1∥∥v(xk, y1:Nk )∥ shown in (83)–(84).

The second term in (86) can be bounded as

Ek⟨y1,∗k − y1k+1, αk∇y1,∗(xk)⊤ξk⟩
(62)
≤ Ly,1c0

2
αk

(
Ek∥y1,∗k − y1k+1∥2 + αk

)
. (88)

Substituting the upper bounds in (84), (87) and (88) into (82) yields

⟨y1,∗k − y1k+1, y
1,∗
k+1 − y1,∗k ⟩ ≤

(
Ly,1

(Lv,y+c0
2

+2Ly,1

)
αk+Ly′,1σ0

Lv,y+σ0+1

2
α2
k

)
∥y1k+1 − y1,∗k ∥2

+
1

2

(
Ly,1Lv,yNαk + Ly′,1σ0Lv,yNα

2
k

) N∑
n=1

L2
y(n)∥ynk − yn,∗k ∥2

+
(1
8
αk+

Ly′,1σ0
2

α2
k

)
∥v(xk)∥2+

Ly′,1σ
2
0+Ly,1c0
2

α2
k. (89)

The last term in (81) can be bounded as
Ek∥y1,∗k − y1,∗k+1∥

2

≤ L2
y,1α

2
kEk∥v(xk, y1k) + ξk∥2 ≤ 2L2

y,1α
2
k∥v(xk, y1k)∥2 + 2L2

y,1σ
2
0α

2
k

(85)
≤ 4L2

v,yL
2
y,1Nα

2
k

N∑
n=1

L2
y(n)∥ynk − yn,∗k ∥2 + 4L2

y,1α
2
k∥v(xk)∥2 + 2L2

y,1σ
2
0α

2
k. (90)

Substituting the upper bounds in (89) and (90) into (81) yields

Ek∥y1k+1 − y1,∗k+1∥
2

≤
(
1 + Ly,1

(
Lv,y+c0+4Ly,1

)
αk + Ly′,1σ0(Lv,y+σ0+1)α2

k

)
Ek∥y1k+1 − y1,∗k ∥2

+
(
Ly,1Lv,yNαk + (Ly′,1σ0Lv,y + 4L2

v,yL
2
y,1)Nα

2
k

) N∑
n=1

L2
y(n)∥ynk − yn,∗k ∥2

+
(1
4
αk + (Ly′,1σ0+4L2

y,1)α
2
k

)
∥v(xk)∥2 + (Ly′,1σ

2
0+Ly,1c0+2L2

y,1σ
2
0)α

2
k. (91)

(2) When n ≥ 2. The update of ynk (n≥2) has no direct dependence on xk, therefore the analysis is
identical to that of Theorem 1. It directly follows from (51) that
Ek∥ynk+1 − yn,∗k+1∥

2

≤
(
1 +

(
Ly,ncn−1 +

4L2
y,nL

2
h,n−1

λn−1

)
βk,n−1 + Ly′,nσn−1(Lh,n−1+σn−1)β

2
k,n−1

)
Ek∥ynk+1 − yn,∗k ∥2

+
λn−1

2
βk,n−1∥yn−1

k − yn−1,∗
k ∥2 + (Ly′,nσ

2
n−1+Ly,ncn−1+2L2

y,nσ
2
n−1)β

2
k,n−1 (92)

where we have imposed the following condition on the step size

(Ly′,nσn−1Lh,n−1 + 2L2
y,nL

2
h,n−1)β

2
k,n−1 ≤ λn−1

4
βk,n−1, 2 ≤ n ≤ N. (93)

This completes the analysis of the lower-level sequences.
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C.2 Analysis of the main sequence

In this section, we provide an analysis of the main sequence update, and then establish the finite-time
convergence rate. Recall the shorthand notations yn,∗k = yn,∗(yn−1

k ) with y1,∗k = y1,∗(xk).

By the Lv-smoothness of F (x), we have

Ek[F (xk+1)]− F (xk)

≥ Ek

〈
v(xk), xk+1 − xk

〉
− Lv

2
Ek∥xk+1 − xk∥2

= Ek

〈
v(xk), αkv(xk, y

1:N
k )

〉
+ Ek

〈
v(xk), αkξk

〉
− Lv

2
Ek∥xk+1 − xk∥2. (94)

Define Ly(n) :=
∑N

i=n Ly,i−1Ly,i−2 . . . Ly,n with Ly,n−1Ly,i−2 . . . Ly,n := 1. Using Lemma 10,
the first term in (94) can be bounded as〈

v(xk), αkv(xk, y
1:N
k )

〉
=

〈
v(xk), αk(v(xk, y

1:N
k )− v(xk))

〉
+ αk∥v(xk)∥2

≥ −Lv,yαk

[∥∥v(xk)∥∥ N∑
n=1

Ly(n)∥ynk − yn,∗k ∥
]
+ αk∥v(xk)∥2

≥ −αk

4
∥v(xk)∥2 − L2

v,yNαk

N∑
n=1

L2
y(n)∥ynk − yn,∗k ∥2 + αk∥v(xk)∥2

=
3αk

4
∥v(xk)∥2 − L2

v,yNαk

N∑
n=1

L2
y(n)∥ynk − yn,∗k ∥2. (95)

The second term in (94) can be bounded as

Ek

〈
v(xk), αkξk

〉
=

〈
v(xk), αkEk[ξk]

〉
≥ −αk

4
∥v(xk)∥2 − αk∥Ek[ξk]∥2

≥ −αk

4
∥v(xk)∥2 − c20α

2
k. (96)

The last term in (94) can be bounded as

Ek∥xk+1 − xk∥2 ≤ 2α2
k

(
∥v(xk, y1:Nk )∥2+Ek∥ξk∥2

)
(85)
≤ 4α2

k∥v(xk)∥2+4L2
v,yNα

2
k

N∑
n=1

L2
y(n)∥ynk − yn,∗k ∥2+2σ2

0α
2
k. (97)

Substituting the bounds in (95), 96 and (97) into (94) yields

Ek[F (xk+1)]− F (xk)

≥ (
αk

2
−2Lvα

2
k)∥v(xk)∥2−N(L2

v,yαk+2LvL
2
v,yα

2
k)

N∑
n=1

L2
y(n)∥ynk − yn,∗k ∥2−(Lvσ

2
0+c

2
0)α

2
k.

(98)

Establishing convergence. For brevity, we fist define the following series

C4(1) := Ly,1

(
Lv,y+c0+4Ly,1

)
, C5(1) := Ly′,1σ0

(
Lv,y+σ0+1

)
;

C4(n) := Ly,ncn−1 + 4L2
y,nL

2
h,n−1λ

−1
n−1, C5(n) := Ly′,nσn−1(Lh,n−1+σn−1), 2 ≤ n ≤ N ;

C6(n) :=
(
Ly,1Lv,y + L2

v,y

)
NL2

y(n), C7(n) :=
(
Ly′,1σ0Lv,y+4L2

v,yL
2
y,1+2LvL

2
v,y

)
NL2

y(n),∀n.
(99)

Define a Lyapunov function Lk := −F (xk) +
∑N

n=1 ∥ynk − yn,∗k ∥2. Then we have

Ek[Lk+1]− Lk = F (xk)− Ek[F (xk+1)] +

N∑
n=1

Ek∥ynk+1 − yn,∗k+1∥
2 − ∥ynk − yn,∗k ∥2. (100)
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Substituting (91), (92) and (98) into (100), and then applying (38) yields

Ek[Lk+1]− Lk

≤
(
− 1

4
αk + (Ly′,1σ0+4L2

y,1+2Lv)α
2
k

)
∥v(xk)∥2

+

N−1∑
n=1

(
(1+C4(n)βk,n−1+C5(n)β

2
k,n−1)(1−λnβk,n)−1+

λn
2
βk,n+C6(n)αk+C7(n)α

2
k

)
∥ynk−y

n,∗
k ∥2

+
(
(1+C4(N)βk,N−1+C5(N)β2

k,N−1)(1−λNβk,N )−1+C6(N)αk+C7(N)α2
k

)
∥yNk −yN,∗

k ∥2

+Θ(α2
k) + Θ

( N∑
n=1

(1 + βk,n−1 + β2
k,n−1)β

2
k,n

)
. (101)

As a clarification, the second term in the last inequality is 0 when N = 1. We have also used
βk,0 = αk. Consider the following choice of step sizes

− 1

4
αk + (Ly′,1σ0+4L2

y,1+2Lv)α
2
k ≤ −1

8
αk, (102)

(1+C1(n)βk,n−1+C2(n)β
2
k,n−1)(1−λnβk,n)−1+

λn
2
βk,n+C3(n)αk+C4(n)α

2
k ≤ −λnαk, n≤N−1,

(103)

(1+C1(N)βk,N−1+C2(N)β2
k,N−1)(1− λNβk,N )− 1+C3(N)αk + C4(N)α2

k ≤ −λNαk.
(104)

Note that (102) always admits solution for small enough α1. Given βk,N , applying Lemma 11 for
n = N, . . . , 1 to (104) and (103) tells that there exist solutions for βk,n(∀n).
With (102)–(104), it follows from (101) that

Ek[Lk+1]− Lk

≤−αk

8
∥v(xk)∥2−

N∑
n=1

λnαk∥ynk − yn,∗k ∥2+Θ(α2
k)+Θ

( N∑
n=1

(1+βk,n−1+β
2
k,n−1)β

2
k,n

)
. (105)

Furthermore, taking expectation on both sides of (105) then summing over k = 1, . . . ,K yields

K∑
k=1

αkE
[1
8
∥v(xk)∥2 + λn∥ynk − yn,∗k ∥2

]
≤ L1 − E[LK+1] + Θ

( K∑
k=1

α2
k

)
+Θ

( K∑
k=1

N∑
n=1

(1 + βk,n−1 + β2
k,n−1)β

2
k,n

)
≤ L1 + CF +Θ

( K∑
k=1

α2
k

)
+Θ

( K∑
k=1

N∑
n=1

(1 + βk,n−1 + β2
k,n−1)β

2
k,n

)
. (106)

The inequality (106) implies a convergence rate of O( 1√
K
) with step sizes αk = Θ( 1√

K
) and

βk = Θ( 1√
K
). This completes the proof.

D Proof of Lemma 1 and Corollary 1

To prove the corollary, it suffices to prove Lemma 1 and then directly apply Theorem 1 and 2. We
direct the readers interested in why we can relax the assumptions in [8] to the proof of Theorem 1
and 2. In particular, we provide a refined technique on bounding the drifting optimality gap in (39)
and (81), which is crucial in alleviating the assumption.

Proof. We start to verify the Assumptions by order.

(1) Conditions (a) and (b) ⇒ Assumption 1. Since g(x, y) is strongly-convex w.r.t. y, there exists a
unique y∗(x) such that h(x, y∗(x)) = −∇yg(x, y

∗(x)) = 0.
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By [21, Lemma 2.2], we have

∥y∗(x)− y∗(x′)∥ ≤ Ly∥x− x′∥, Ly =
Lxy

λ1
. (107)

By [8, Lemma 2], we have

∥∇y∗(x)−∇y∗(x′)∥ ≤ Ly′∥x− x′∥, Ly′ =
lxy + lxyLy

λ1
+
Lxy(lyy + lyyLy)

λ21
. (108)

(2) Conditions (a)–(c) ⇒ Assumption 2. By [21, Lemma 2.2], we have

∥v(x, y)− v(x, y′)∥ ≤ Lv,y∥y − y′∥, Lv,y = lfx +
lfyLxy

λ1
+ ly(

lxy
λ1

+
LhLxy

λ21
) (109a)

∥v(x)− v(x′)∥ ≤ Lv∥y − y′∥, Lv =
Lxy(Lv,y + l′fy)

λ1
+ lfx + ly

( lxyly
λ1

+
lyyLxy

λ21

)
.

(109b)

Lastly, it follows from condition (b) that ∥h(x, y)− h(x, y′)∥ ≤ Lh∥y − y′∥.

(3) Condition (e) ⇒ Assumption 3; (a) ⇒ Assumption 4; (d) ⇒ Assumption 5; (f) ⇒ Assumption
6. These conditions directly imply their corresponding Assumption 3 when N = 1.

E Proof of Theorem 3

In this section, we will provide a proof of theorem 3. We omit all the index n since N = 1. We
also write y∗(xk) in short as y∗k. With Ax := Es∼µπx ,a∼πx,s′∼P [ϕ(s)(γϕ(s

′) − ϕ(s))⊤], bx :=
Es∼µπx ,a∼πx

[r(s, a)ϕ(s)], we list the conditions we need as follow. These conditions are also
adopted in [57].

Lemma 4 (Verification of assumptions) In the context of the AC update (21) and (22). Consider
the following conditions

(l) For any s ∈ S, ∥ϕ(s)∥ ≤ 1. For any x ∈ Rd0 , there exists a constant λ1 > 0 such that
⟨y − y′, Ax(y − y′)⟩ ≤ −λ1∥y − y′∥2 for any y, y′ ∈ Rd1 . The smallest singular value of
Ax is lower bounded by σ > 0.

(m) There exist constants Lπ ,L′
π andCπ such that for any s ∈ S and a ∈ A and x, x′ ∈ Rd0 , the

following inequalities hold: i) ∥πx(a|s)− πx′(a|s)∥ ≤ Lπ∥x− x′∥. ii) ∥∇ log πx(a|s)−
∇ log πx′(a|s)∥ ≤ L′

π∥x− x′∥. iii) ∥∇ log πx(a|s)∥ ≤ Cπ .

(n) For any x ∈ Rd0 , the Markov chain induced by the policy πx and transition kernel P is
ergodic. There exist positive constants κ and ρ < 1 such that

∥Pπx
(st ∈ ·|s0 = s, a0 = a)− µπx

(·)∥TV ≤ κρt,∀(s, a) ∈ S ×A, (110)

where Pπx
(st ∈ ·|s0, a0) is the probability measure of the tth state st on the Markov chain

induced by policy πx and transition kernel P , given the initial state and action s0, a0.

(o) The sampling protocol is: sk, ak ∼ dπx
, s′k ∼ P(·|sk, ak); s̄k ∼ µx, āk ∼ πx(·|s̄k) and

s̄′k ∼ P(·|s̄k, āk).

Consider the actor critic update defined in (21) and (22). Then we have:

(l)–(n) ⇒ Assumption 1; (l)&(m) ⇒ Assumption 2&4; Assumption 6 holds. (111)

Moreover, a slightly more generalized version of Assumption 3 holds under condition (l)&(o):

E[ξk|F1
k ] = 0, E[ψk|Fk] = 0,

∥ξk∥2 ≤ σ2
0 + σ̄2

0∥yk − y∗(xk)∥2, ∥ψk∥2 ≤ σ2
1 + σ̄2

1∥yk − y∗(xk)∥2, (112)

where σ2
0 = 8C2

π(1 + 4σ−2), σ̄2
0 = 32C2

π , σ2
1 = 32σ−2 + 8 and σ̄2

1 = 32.
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Proof. We will check the assumptions by order.

(1) Condition (l)–(n) ⇒Assumption 1. This is shown in Lemma 5.

(2) Condition (l)&(m) ⇒Assumption 2&4. We first check Assumption 2. In actor critic, we have
v(x) = v(x, y∗(x)) = ∇F (x). By [64, Lemma 3.2], there exists a constant Lv :=

L′
π

(1−γ)2 +
(1+γ)Cπ

(1−γ)2

such that

∥∇F (x)−∇F (x′)∥ ≤ Lv∥x− x′∥. (113)

Then we have

∥v(x, y)− v(x, y′)∥ = ∥E[(γϕ(s′)− ϕ(s))⊤(y − y′)∇ log πx(a|s)]∥ ≤ 2Cπ∥y − y′∥,
∥h(x, y)− h(x, y′)∥ = ∥Ax(y − y′)∥ ≤ 2∥y − y′∥. (114)

This completes the verification of Assumption 2. Lastly, Assumption 4 is directly implied by the
inequality ⟨y − y′, Ax(y − y′)⟩ ≤ −λ1∥y − y′∥2 in condition (l).

(3) Assumption 6 holds. It is clear that |F (x)| ≤ 1
1−γ .

(4) Proving (112). It is easy to check that E[ξk|F1
k ] = 0, E[ψk|Fk] = 0. Next we have

∥ξk∥2 ≤ 2E∥(r(s, a) + (γϕ(s′)− ϕ(s))⊤yk)∇ log πxk
(a|s)]∥2

+ 2∥(r(s̄k, āk) + (γϕ(s̄k)− ϕ(s̄k))
⊤yk)∇ log πxk

(āk|s̄k)∥2

≤ 8C2
π + 16C2

π∥yk∥2

≤ 8C2
π + 32C2

π∥y∗k∥2 + 32C2
π∥yk − y∗k∥2

≤ 8C2
π(1 + 4σ−2) + 32C2

π∥yk − y∗k∥2 := σ2
0 + σ̄2

0∥yk − y∗k∥2, (115)

where to get the last inequality we have used ∥y∗k∥ = ∥A−1
xk
bxk

∥ ≤ σ−1. Similarly we have

∥ψk∥2 ≤ 2E∥ϕ(s)(γϕ(s′)− ϕ(s))⊤yk + r(s, a)ϕ(s)∥2

+ 2∥ϕ(sk)(γϕ(s′k)− ϕ(sk))
⊤yk + r(sk, ak)ϕ(sk)∥2

≤ 16∥yk∥2 + 8

≤ 32∥yk − y∗k∥2 + 32σ−2 + 8 := σ2
1 + σ̄2

1∥yk − y∗k∥2. (116)

This completes the proof.

We restate Theorem 3 as follows.

Theorem 5 (Restatement of Theorem 3) Consider the sequences generated by (21) and (22) for
k = [K]. Under conditions (l)–(o), Theorem 2 holds; that is, with αk=Θ( 1√

K
) and βk=Θ( 1√

K
),

we have

1

K

K∑
k=1

(
E∥∇F (xk)∥2 + E∥yk − y∗(xk)∥2

)
= O

( 1√
K

)
. (117)

We have verified the necessary assumptions for Theorem 2 to hold in Lemma 4, except that Assump-
tion 3 needs a slight adaptation in AC. Thus the proof will be similar to that of Theorem 2, and only
the steps that are different due to the adaptation of Assumption 3 will be shown here.

E.1 Analysis of the critic optimality gap

Contraction of the critic optimality gap. First we have

Ek∥yk+1 − y∗k∥2 = ∥yk − y∗k∥2 + 2βkEk⟨yk − y∗k, h(xk, yk) + ψk⟩+ Ek∥yk+1 − yk∥2, (118)

The second term in (118) can be bounded as

Ek⟨yk − y∗k, h(xk, yk) + ψk⟩ = ⟨yk − y∗k, h(xk, yk)⟩+ ⟨yk − y∗k,Ek[ψk]⟩
≤ −λ1∥yk − y∗k∥2. (119)
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where the last inequality follows from the strong monotonicity of h(x, y) and Ek[ψk] = 0 verified in
Lemma 4.

The third term in (118) can be bounded as

Ek∥yk+1 − yk∥2 = β2
kEk∥h(xk, yk) + ψk∥2

= β2
k(∥h(xk, yk)∥2 + Ek∥ψk∥2)

≤ β2
k(∥h(xk, yk)∥2 + σ2

1 + σ̄2
1∥yk − y∗k∥2)

≤ (L2
h + σ̄2

1)β
2
k∥yk − y∗k∥2 + σ2

1β
2
k, (120)

where the second last inequality follows from (112) and the last inequality follows from Assumption
2 which gives

∥h(x, y)∥ = ∥h(x, y)− h(x, y∗(x))︸ ︷︷ ︸
=0

∥ ≤ Lh∥y − y∗(x)∥. (121)

Collecting the upper bounds in (119) and (120) yields

Ek∥yk+1 − y∗k∥2 ≤ (1− 2λ1βk + (L2
h + σ̄2

1)β
2
k)∥yk − y∗k∥2 + σ2

1β
2
k

≤ (1− λ1βk)∥yk − y∗k∥2 + σ2
1β

2
k, (122)

where the last inequality is due to the choice of step size that satisfies (L2
h + σ̄2

1)β
2
k ≤ λ1βk.

Bounding the drifting optimality gap. Next we start to bound the second term in (82) as follows

Ek⟨y∗k − yk+1, αk∇y∗(x̂k+1)
⊤ξk⟩

= Ek⟨y∗k − yk+1, αk

(
∇y∗(x̂k+1)−∇y∗(xk)

)⊤
ξk⟩+ Ek⟨y∗k − yk+1, αk∇y∗(xk)⊤Ek[ξk|F1

k ]⟩

= Ek⟨y∗k − yk+1, αk

(
∇y∗(x̂k+1)−∇y∗(xk)

)⊤
ξk⟩

≤ αkEk

[
∥y∗k − yk+1∥∥∇y∗(x̂k+1)−∇y∗(xk)∥∥ξk∥

]
≤ σ0αkEk

[
∥y∗k−yk+1∥∥∇y∗(x̂k+1)−∇y∗(xk)∥

]
+ σ̄0αkEk

[
∥y∗k−yk+1∥∥∇y∗(x̂k+1)−∇y∗(xk)∥∥yk − y∗k∥

]
(123)

where the second inequality follows from Ek[ξk|F1
k ] = 0 shown in Lemma 4, and the last inequality

follows from (112).

The first term in the RHS of (123) can be bounded as

Ek

[
∥y∗k−yk+1∥∥∇y∗(x̂k+1)−∇y∗(xk)∥

]
≤ Ly′Ek[∥y∗k−yk+1∥∥xk+1 − xk∥]
≤ Ly′αk

(
Ek[∥y∗k−yk+1∥∥v(xk, yk)∥] + Ek[∥y∗k−yk+1∥∥ξk∥]

)
≤ 1

2
Ly′αk

(
Ek∥y∗k−yk+1∥2 + ∥v(xk, yk)∥2 + Ek∥y∗k−yk+1∥2 + ∥ξk∥2

)
≤ 1

2
Ly′αk

(
2Ek∥y∗k−yk+1∥2 + ∥v(xk, yk)∥2 + σ2

1 + σ̄2
1∥yk − y∗k∥2

)
(124)

where the first inequality follows from Lemma 5 and the last inequality follows from (112).

The second term in (123) can be bounded as

Ek

[
∥y∗k−yk+1∥∥∇y∗(x̂k+1)−∇y∗(xk)∥∥yk − y∗k∥

]
≤ 2LyEk

[
∥y∗k−yk+1∥∥yk − y∗k∥

]
≤ LyEk∥y∗k−yk+1∥2 + Ly∥yk − y∗k∥2.

(125)

Substituting (124) and (125) into (123), then substituting (123) and (83) into (82) gives

Ek⟨y∗k − yk+1, y
∗
k+1 − y∗k⟩ ≤

(
Ly

(Lv,y

2
+2Ly+σ̄0

)
αk + Ly′σ0α

2
k

)
Ek∥yk+1 − y∗k∥2

+
1

2

(
Ly(Lv,y + σ̄0)αk + Ly′σ0σ̄

2
1α

2
k

)
∥yk − y∗k∥2

+
(1
8
αk +

1

2
Ly′σ0α

2
k

)
∥v(xk)∥2 +

1

2
Ly′σ0σ

2
1α

2
k. (126)
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The last term in (81) can be bounded as

Ek∥y∗k+1 − y∗k∥2 ≤ L2
yα

2
kEk∥v(xk, yk) + ξk∥2 = L2

yα
2
k(∥v(xk, yk)∥2 + Ek∥ξk∥2)

≤ L2
yα

2
k(∥v(xk, yk)∥2 + σ2

0 + σ̄2
0∥yk − y∗k∥2), (127)

where the last inequality follows from (112). Substituting (126) and (127) into (81) gives

Ek∥yk+1 − y∗k+1∥2 ≤
(
1 + Ly

(
Lv,y+4Ly+2σ̄0

)
αk + 2Ly′σ0α

2
k

)
Ek∥yk+1 − y∗k∥2

+
(
Ly(Lv,y + σ̄0)αk + (Ly′σ0σ̄

2
1 + L2

yσ̄
2
0)α

2
k

)
∥yk − y∗k∥2

+
(1
4
αk + (Ly′σ0 + L2

y)α
2
k

)
∥v(xk, yk∗)∥2 + (σ0σ

2
1 + L2

yσ
2
0)α

2
k. (128)

E.2 Analysis of the actor sequence

Analysis of main sequence. The second term in (94) is instead bounded as

Ek⟨v(xk, yk), αkξk⟩ = ⟨v(xk, yk), αkEk[ξk]⟩ = 0. (129)

Then the last term in (94) is instead bounded as

Ek∥xk+1 − xk∥2 = α2
k(∥v(xk, yk)∥2 + Ek∥ξk∥2) ≤ α2

k(∥v(xk, yk)∥2 + σ2
0 + σ̄2

0∥yk − y∗k∥2).
(130)

Substituting the bounds in (95), (129) and (130) into (94) yields

Ek[F (xk+1)]−F (xk)≥(
3αk

4
−Lv

2
α2
k)∥v(xk, y∗k)∥2−(L2

v,yαk+
Lv,y

2
σ̄2
0α

2
k)∥yk − y∗k∥2−

Lvσ
2
0

2
α2
k.

(131)

Establishing convergence. Recall that the Lyapunov function Lk = −F (xk) + ∥yk − y∗k∥2. With
the bounds in (122), (128) and (131), we have

Ek[Lk+1]− Lk ≤
(
− 1

2
αk + (

Lv

2
+ Ly′σ0L

2
y)α

2
k

)
∥v(xk, y∗k)∥2

+
(
(1 + C ′

0αk + C ′
1α

2
k)(1− λ1βk)− 1 + C ′

2αk + C ′
3α

2
k

)
∥yk − y∗k∥2

+Θ(α2
k + (1 + αk + α2

k)β
2
k), (132)

where C ′
0 := Ly

(
Lv,y+4Ly+2σ̄0

)
, C ′

1 := 2Ly′σ0, C ′
2 := Ly(Lv,y + σ̄0) +L2

v,y , C ′
3 := Ly′σ0σ̄

2
1 +

Lv,y

2 σ̄2
0 . Notice that (132) takes a similar form to that of (101) (N = 1).

If the step sizes are chosen such that

−1

2
αk + (

Lv

2
+ Ly′σ0L

2
y)α

2
k ≤ −1

4
αk,

(1 + C ′
0αk + C ′

1α
2
k)(1− λ1βk)− 1 + C ′

2αk + C ′
3α

2
k ≤ −λ1αk, (133)

then it follows from the derivation after (101) that Theorem 2 holds for AC update.

E.3 Supporting lemmas for Theorem 3

Lemma 5 (Complete version of Lemma 2) Consider the AC update in (21)-(22). Under condi-
tions (l)–(n), there exist constants Ly, Ly′ such that

∥y∗(x)− y∗(x′)∥ ≤ Ly∥x− x′∥,
∥∇y∗(x)−∇y∗(x′)∥ ≤ Ly′∥x− x′∥. (134)

Proof. Under condition (l), we have y∗(x) = −A−1
x bx. With Lemma 7 and ∥A−1

x ∥ ≤ σ−1, ∥bx∥ ≤
1, applying Lemma 14 to y∗(x) implies that it is Lipschitz continuous with modulus

Ly := (σ−1 + 2σ−2)L′
µ.
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We next verify the Lipschitz continuity of ∇y∗(x). For x ∈ Rd and f : Rd 7→ Rd1×d2 , we denote
[x]i as the ith element of x and we use ∇if(x) :=

∂f(x)
∂[x]i

. Then we have

∇iy
∗(x) = A−1

x ∇iAxA
−1
x bx −A−1

x ∇ibx = −A−1
x ∇iAxy

∗(x)−A−1
x ∇ibx. (135)

By Lemma 14, to prove ∇iy
∗(x) is Lipschitz continuous w.r.t. x, it suffices to prove ∇iAx, y∗(x),

∇ibx and A−1
x are bounded (in norm) and Lipschitz continuous. First we have

∥A−1
x ∥ ≤ σ−1, ∥y∗(x)∥ ≤ ∥A−1

x ∥∥bx∥ ≤ σ−1. (136)

And by Lemma 7, we have

∥A−1
x −A−1

x′ ∥ ≤ 2σ−2L′
µ∥x− x′∥. (137)

Thus it suffices to prove ∇iAx and ∇ibx are bounded in norm and Lipschitz continuous.

We start by

∇ibx = Es∼µπx ,a∼πx(·|s)[∇i log πx(a|s)Gx(s, a)], (138)

where Gx(s, a) := Eπx
[
∑∞

t=0

(
r(st, at)ϕ(st) − bx

)
|s0 = s, a0 = a]. By letting r̂(s, a, s′) =

r(s, a)ϕ(s) in Lemma 8, we have

∥Gx(s, a)∥ ≤ CG, ∥Gx(s, a)−Gx′(s, a)∥ ≤ LG∥x− x′∥, (139)

where CG := 2 + ρκ
1−ρ and LG := L′

µ + ρκLπ|A|
1−ρ +

(
κ

1−ρ + 1
)2
(Lπ|A|+ Lµ) + Lµ. Then we have

∥∇ibx∥ can be bounded as

∥∇ibx∥ ≤ CπEs∼µx,a∼πx(·|s)[∥Gx(s, a)∥] ≤ CπCG, (140)

Now we start to prove the Lipschitz continuity of ∇ibx. First we have

∥∇ibx −∇ibx′∥
≤

∥∥Es∼µπx ,a∼πx
[∇i log πx(a|s)Gx(s, a)]− Es∼µπ

x′ ,a∼πx′ [∇i log πx(a|s)Gx(s, a)]
∥∥

+ Es∼µπ
x′ ,a∼πx′

∥∥∇i log πx(a|s)Gx(s, a)−∇i log πx′(a|s)Gx′(s, a)
∥∥

≤ ∥µπx · πx − µπx′ · πx′∥TV sup ∥∇ log πx(a|s)Gx(s, a)∥
+ Es∼µπ

x′ ,a∼πx′∥∇i log πx(a|s)Gx(s, a)−∇i log πx′(a|s)Gx′(s, a)∥
≤ CGL

′
µ∥x− x′∥+ (CπLG + LπCG)∥x− x′∥ := L′

b∥x− x′∥, (141)

where the µπx · πx denotes the probability measure specified by the probability function (µπx ·
πx)(s, a) = µπx(s)πx(a|s). In the second inequality, we apply Lemma 6 to the first term; and for
the second term, we apply Lemma 14 along with (139) and condition (m).

For ∇iAx, we have

∇iAx = Es∼µπx ,a∼πx
[∇i log πx(a|s)Gx(s, a)], (142)

where we slightly abuse the notation and define Gx(s, a) := Eπx

[∑∞
t=0

(
ϕ(st)

(
γϕ(st+1) −

ϕ(st)
)⊤ − Ax

)
|s0 = s, a0 = a

]
. Observing that ∇iAx has similar structure as that of ∇ibx,

we can apply the same technique and obtain

∥∇iAx∥ ≤ CπC
′
G,

∥∇iAx −∇iAx′∥ ≤ C ′
GL

′
µ∥x− x′∥+ (CπL

′
G + LπC

′
G)∥x− x′∥ := L′

A∥x− x′∥, (143)

where C ′
G := 4 + 2ρκ

1−ρ and L′
G := 2L′

µ + ρκLπ|A|
1−ρ +

(
κ

1−ρ + 1
)2
(Lπ|A|+ Lµ) + Lµ.

Finally, applying Lemma 14 to (135) with (136), (137), (140), (141) and (143) yields

∥∇iy
∗(x)−∇iy

∗(x′)∥ ≤ Ly′∥x− x′∥, (144)

where Ly′ := 2σ−3L′
µCπC

′
G+L′

Aσ
−2+LyCπC

′
Gσ

−1+2σ−2L′
µCπCG+σ−1L′

b. This completes
the proof.
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Lemma 6 [66, Lemma 3] Define (µπx · πx)(s, a) := µπx(s)πx(a|s). Under conditions (n) and (m),
it holds that

∥µπx
− µπx′∥TV ≤ Lµ∥x− x′∥, ∥µπx

· πx − µπx′ · πx′∥TV ≤ L′
µ∥x− x′∥ (145)

where Lµ := 2Lπ|A|(logρ κ−1 + 1
1−ρ ) and L′

µ := Lµ + 2Lπ|A|.

Lemma 7 Define µπx
· πx(s, a) := µπx

(s)πx(a|s). Under conditions (n) and (m), the following
inequalities hold

∥Ax −Ax′∥ ≤ 2L′
µ∥x− x′∥, ∥A−1

x −A−1
x′ ∥ ≤ 2σ−2L′

µ∥x− x′∥, ∥bx − bx′∥ ≤ L′
µ∥x− x′∥

(146)

where L′
µ = 2Lπ|A|(1 + logρ κ

−1 + 1
1−ρ ).

Proof. First we have

∥bx − bx′∥ ≤ ∥µπx · πx − µπx′ · πx′∥TV sup
s,a

∥r(s, a)ϕ(s)∥ ≤ L′
µ∥x− x′∥, (147)

where the last inequality follows from Lemma 6. And similarly, we have

∥Ax −Ax′∥ ≤ 2L′
µ∥x− x′∥. (148)

Finally, we have

∥A−1
x −A−1

x′ ∥ = ∥A−1
x′ (Ax −Ax′)A−1

x ∥ ≤ σ−2∥Ax −Ax′∥
≤σ−2∥µπx

· πx − µπx′ · πx′∥TV sup
s,s′

∥ϕ(s)(γϕ(s′)− ϕ(s))∥≤2σ−2L′
µ∥x− x′∥, (149)

where the last inequality follows from Lemma 6. This completes the proof.

Lemma 8 Suppose conditions (l)–(n) hold. With mapping r̂ : S × A × S 7→ Rd×d′
such that

∥r(s, a, s′)∥ ≤ Cr for any (s, a, s′), define

Gx(s, a) := E at∼πx(·|st)
st+1∼P(·|st,at)

[ ∞∑
t=0

(
r̂(st, at, st+1)− r̄x

)∣∣s0 = s, a0 = a
]
,

with r̄x := Es∼µπx ,a∼πx(·|s)
s′∼P(·|s,a)

[r̂(s, a, s′)]. (150)

Then there exists a constant LG such that for any (s, a) ∈ S × A and x, x′ ∈ Rd, the following
inequalities hold

∥Gx(s, a)−Gx′(s, a)∥ ≤ LG∥x− x′∥,

∥Gx(s, a)∥ ≤ 2Cr +
Crρκ

1− ρ
. (151)

Proof. We write Gx(s0, a0) as:

Gx(s0, a0) = Es1∼P [r̂(s0, a0, s1)]−r̄x+
∞∑
t=1

( ∑
(s,a)∈S×A

Prπx(st=s|s0, a0)πx(a|s)Es′∼P [r̂(s, a, s
′)]

−
∑

(s,a)∈S×A

µπx(s)πx(a|s)Es′∼P [r̂(s, a, s
′)]
)
. (152)

Given (s0, a0), define the vector p1 := [P(s(0)|s0, a0),P(s(1)|s0, a0), ...,P(s(|S|)|s0, a0)] where
s(0), ..., s(|S|) are states in S . Given πx, define the following state transition matrix

Pπx
:=

 Pπx
(s(0)|s(0)) Pπx

(s(1)|s(0)) . . . Pπx
(s(|S|)|s(0))

...
Pπx

(s(0)|s(|S|)) Pπx
(s(1)|s(|S|)) . . . Pπx

(s(|S|)|s(|S|))

 , (153)
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where Pπx(s
′|s) =

∑
a∈A P(s′|s, a)πx(a|s). Then it is clear that we can write the probability

function Prπx
(st = ·|s0, a0) as its vector form p1P

t−1
πx

. We slightly abuse the notation and use
[p1P

t
πx
]s = Prπx

(st = s|s0, a0). Then (152) can be rewritten as

Gx(s0, a0) = Es1∼P [r̂(s0, a0, s1)]− r̄x +

∞∑
t=0

( ∑
(s,a)∈S×A

[p1P
t
πx
]sπx(a|s)Es′∼P [r̂(s, a, s

′)]

−
∑
s,a

[p1P
∞
πx
]sπx(a|s)Es′∼P [r̂(s, a, s

′)]
)

= Es1∼P [r̂(s0, a0, s1)]− r̄x +

∞∑
t=0

∑
(s,a)

([p1P
t
πx
]s − [p1P

∞
πx
]s)πx(a|s)Es′∼P [r̂(s, a, s

′)]

= Es1∼P [r̂(s0, a0, s1)]− r̄x +
∑
(s,a)

[p1Yx]sπx(a|s)Es′∼P [r̂(s, a, s
′)], (154)

where Yx :=
∑∞

t=0(P
t
πx

− P∞
πx
). Then ∥Gx(s, a)∥ can be bounded as follows

∥Gx(s, a)∥ ≤ 2Cr + Cr

∑
s,a

|[p1Yx]s|πx(a|s)

≤ 2Cr + Cr

∑
s

|[p1Yx]s|

≤ 2Cr +
Crρκ

1− ρ
:= CG, (155)

where the last inequality follows from condition (n) and∑
s

|[p1Yx]s| ≤
∞∑
t=1

∑
s

|Prπx(st = s|s0, a0)− µπx(s)|

=

∞∑
t=1

∥Pπx
(st ∈ ·|s0, a0)− µπx

(·)∥TV ≤ ρκ

1− ρ
. (156)

Then we have

∥Gx(s, a)−Gx′(s, a)∥

≤ ∥r̄x − r̄x′∥+ Cr

∑
s,a

∣∣[p1Yx]s∣∣∥∥πx(a|s)− πx′(a|s)
∥∥+ Cr

∑
s,a

∣∣[p1(Yx − Yx′)]s
∣∣πx′(a|s)

≤ ∥r̄x − r̄x′∥+
∑
s

∣∣[p1Yx]s∣∣Lπ|A|∥x− x′∥+ ∥p1(Yx − Yx′)∥1

≤ ∥r̄x − r̄x′∥+ ρκLπ|A|
1− ρ

∥x− x′∥+ ∥Yx − Yx′∥∞ (157)

where the last inequality follows from (156). The first term in (157) can be bounded as

∥r̄x − r̄x′∥ ≤ ∥µx · πx − µx′ · πx′∥TV sup
s,a,s′

∥r(s, a, s′)∥ ≤ CrL
′
µ, (158)

where the last inequality follows from Lemma 6. By [40, Theorem 2.5], we have Yx + P∞
πx

=

(I − Pπx + P∞
πx
)−1. First note that

∥(I − Pπx
+ P∞

πx
)−1∥∞ ≤ ∥Yx∥∞ + ∥P∞

πx
∥∞

≤
∞∑
t=0

∥P t
πx

− P∞
πx
∥∞ + 1

=

∞∑
t=0

max
s0∈S

∑
s

|Prπx
(st = s|s0)− µπx

(s)|+ 1 ≤ κ

1− ρ
+ 1, (159)

where the last inequality follows from condition (n).
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We also have

∥(I − Pπx + P∞
πx
)−1 − (I − Pπx′ + P∞

πx′ )
−1∥∞

≤ ∥(I − Pπx
+ P∞

πx
)−1∥∞∥Pπx

− Pπx′ + P∞
πx′ − P∞

πx
∥∞∥(I − Pπx′ + P∞

πx′ )
−1∥∞

(159)
≤

( κ

1− ρ
+ 1

)2(∥Pπx
− Pπx′∥∞ + ∥P∞

πx′ − P∞
πx
∥∞

)
≤

( κ

1− ρ
+ 1

)2
(Lπ|A|+ Lµ)∥x− x′∥ (160)

where in the last inequality we have used

∥Pπx
− Pπx′∥∞ = max

s

∑
s′

|
∑
a

πx(a|s)P(s′|s, a)−
∑
a

πx′(a|s)P(s′|s, a)|

= max
s

|
∑
a

πx(a|s)−
∑
a

πx′(a|s)|
∑
s′

P(s′|s, a)

≤ max
s

∑
a

|πx(a|s)− πx′(a|s)| ≤ Lπ|A|∥x− x′∥,

∥P∞
πx′ − P∞

πx′∥∞ = ∥µπx
− µπx′∥TV ≤ Lµ∥x− x′∥ (Lemma 6). (161)

With (160) and (161), we can write

∥Yx − Yx′∥∞ ≤ ∥P∞
πx

− P∞
πx′∥∞ + ∥(I − Pπx

+ P∞
πx
)−1 − (I − Pπx′ + P∞

πx′ )
−1∥∞

≤
(( κ

1− ρ
+ 1

)2
(Lπ|A|+ Lµ) + Lµ

)
∥x− x′∥. (162)

Substituting (158) and (162) into (157) gives

∥Gx(s, a)−Gx′(s, a)∥≤
(
CrL

′
µ+

ρκLπ|A|
1− ρ

+
( κ

1− ρ
+1

)2
(Lπ|A|+Lµ)+Lµ

)
∥x− x′∥. (163)

This completes the proof.

F Proof of Lemma 3 and Corollary 2

Here we prove Lemma 3 which along with the generic Theorem 1 and 2 implies Corollary 2.

Proof. We will verify the assumptions by order.

(1) Condition (g) ⇒ Assumption 1. Note that yn,∗(yn−1) = fn−1(yn−1), then (g) directly implies
Assumption 1 holds.

(2) Condition (g) ⇒ Assumption 2. First note

v(x) = v
(
x, y1,∗(x), y2,∗(y1,∗(x)), . . . , yN,∗(. . . y2,∗(y1,∗(x)) . . . )

)
= v

(
x, f0(x), f1(f0(x)), . . . , fN−1(. . . f1(f0(x)) . . . )

)
= ∇f0(x)∇f1(f0(x)) · · · ∇fN (fN−1(. . . f1(f0(x)) . . . )). (164)

By Lemma 14, in order for v(x) to be Lipschitz continuous, it suffices to let ∇fn(x) be bounded and
Lipschitz continuous for every n = 0, 1, . . . , N . This is satisfied under condition (g).

Now in order for v(x, y1, y2, . . . , yN ) be Lipschitz continuous w.r.t. y1, y2, . . . , yN , it again suffices
to let ∇fn(x) be bounded and Lipschitz continuous for every n = 0, 1, . . . , N , which is satisfied
under condition (g).

Finally, the Lipschitz continuity of hn(yn−1, yn) w.r.t. yn is directly implied by condition (g).

(3) Condition (h) and (i)⇒ Assumption 3. First we have

E[ξk|F1
k ] = −v(xk, y1k, . . . , yNk )+E[∇f0(xk; ζ̂0k) · · · ∇fN (yNk ; ζNk )|F1

k ]

= −v(xk, y1k, . . . , yNk )+E[∇f0(xk; ζ̂0k) · · · ∇fN (yNk ; ζNk )|Fk]

= −v(xk, y1k, . . . , yNk )+∇f0(xk) · · · ∇fN (yNk ) = 0, (165)
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where we have used the condition that ζ̂0k , ζ
0
k , ζ

1
k , . . . , ζ

N
k are conditionally independent of each other

given Fk. The same goes for ψn
k that

E[ψn
k |Fn+1

k ] = −hn(yn−1
k , ynk ) + E[fn−1(yn−1

k , ζn−1
k )|Fk]− ynk = 0. (166)

The bounded variance condition directly implies that E[∥ψn
k ∥2|F

n+1
k ] <∞. Now for ξk we have

E[∥ξk∥2|F1
k ]

= E[∥ξk∥2|Fk]

= Ek∥∇f0(x)∇f1(y1) · · · ∇fN (yN )−∇f0(xk; ζ̂0k) · · · ∇fN (yNk ; ζNk )∥2

= Ek∥∇f0(xk; ζ̂0k)∥2...Ek∥∇fN (yNk ; ζNk )∥2−∥∇f0(x)∥2∥∇f1(y1)∥2...∥∇fN (yN )∥2, (167)

which is bounded by a constant since under contion (h), we have Ek∥∇fn(xk; ζnk )∥2 <∞ for any n.

(4) Condition (j) ⇒ Assumption 5, (k) ⇒ Assumption 6. These assumptions are directly implied
by the conditions.

(5) Verifying Assumption 4. By plugging in yn,∗(yn−1) = fn−1(yn−1), it is immediate that
Assumption 4 holds with λn = 1 for any n ∈ [N ].

G Proof of Theorem 4

Before we prove the result, we first give a lemma that establishes the connection between Theorem 4
and the generic Theorem 2.

Lemma 9 In the context of the MAMPG update in (32) and (33). Consider the following conditions:

(p) There exist constants Lπ ,L′
π , L′′

π and Cπ such that for any (s, a)∈S×A and x, x′∈Rd0 , we
have: i) ∥πx(a|s)−πx′(a|s)∥≤Lπ∥x−x′∥; ii) ∥∇ log πx(a|s)−∇ log πx′(a|s)∥≤L′

π∥x−x′∥;
iii) ∥∇2 log πx(a|s)−∇2 log πx′(a|s)∥≤L′′

π∥x−x′∥ and iv) ∥∇ log πx(a|s)∥≤Cπ .

(q) Given Fk, we have for any n ∈ {1, . . . , N} and i ∈ {1, 2, ...,M}: fni (y
n−1
k,i ; ζnk,i) and

∇fni (ynk,i; ζnk,i) are respectively the unbiased estimators of fni (y
n−1
k,i ) and ∇fni (ynk,i) with

bounded variance. Likewise, f0i (xk; ζ
0
k,i) and ∇f0i (xk; ζ̂0k,i) are respectively unbiased

estimators of f0i (xk) and ∇f0i (xk) with bounded variance.

(r) Given Fk, ζ̂0k,i, ζ
0
k,i, ζ

1
k,i, . . . , ζ

N
k,i are conditionally independent for i = 1, 2, ...,M .

We use a⇒ b to indicate that a is a sufficient condition of b. Then we have
(p) ⇒ Assumption 1& 2; (q)&(r) ⇒ Assumption 3;

Assumption 4 holds naturally for (32); Assumption 6 holds under bounded reward. (168)

Condition (p) is a standard assumption commonly adopted in the literature; see e.g., [14]. It is
satisfied with certain popular policy parameterization such as the softmax policy. Conditions (q)&(r)
can be satisfied with certain choice of the estimators and a simple sampling protocol.

Proof. We now check the assumptions by order.

(1) (p)⇒ Assumption 1. First we have yn,∗(yn−1) = fn−1(yn−1). In order for the concatenation
fn−1(yn−1) to be Lipschitz continuous and smooth, we only need each block fn−1

i (yn−1
i ) to be

Lipschitz continuous and smooth. Recall that fn−1
i (yn−1

i ) = yn−1
i + η∇Fi(y

n−1
i ). The Lipschitz

continuity of fn−1
i (yn−1

i ) is guaranteed by the Lipschitz smoothness of Fi(·), which is well estab-
lished in the literature [64]. Thus we only need to check the Lipschitz smoothness of fn−1

i (yn−1
i ),

that is, the Lipschitz continuity of ∇2Fi(y
n−1
i ). By [14], the policy hessian is given by

∇2F (x) = Eζ∼p(·|x)

[
g(x; ζ)

H∑
t=0

∇ log πx(at|st)⊤ +∇g(x; ζ)︸ ︷︷ ︸
H(x;ζ)

]
, (169)
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where ζ = (s0, a0, ..., sH , aH) and p(ζ|x) = ρ(s0)πx(a0|s0)ΠH−1
t=0 P(st+1|at, st)πx(at+1|st+1);

g(x; ζ) :=
∑H

h=0 ∇ log πx(ah|sh)
∑H

t=h γ
tr(st, at), and we omit i since the result holds for all i.

For any x, x′ ∈ Rd0 , we have

∥∇2F (x)−∇2F (x′)∥
≤

∥∥Eζ∼p(·|x)[H(x; ζ)]− Eζ∼p(·|x′)[H(x; ζ)]
∥∥+

∥∥Eζ∼p(·|x′)[H(x; ζ)]− Eζ∼p(·|x′)[H(x′; ζ)]
∥∥

≤
∥∥Eζ∼p(·|x)[H(x; ζ)]− Eζ∼p(·|x′)[H(x; ζ)]

∥∥+ Eζ∼p(·|x′)

∥∥H(x; ζ)−H(x′; ζ)
∥∥. (170)

We consider the second term first. By Lemma 14, in order for H(x; ζ) to be Lipschitz continuous
w.r.t. x, it suffices to prove: i) ∇ log πx(a|s) can be bounded and Lipschitz continuous; ii) g(x; ζ)
can be bounded and Lipschitz continuous; iii) ∇g(x; ζ) is Lipschitz continuous. First, i) is directly
implied by condition (p). We then prove ii) as follows

∥g(x; ζ)∥ ≤
H∑

h=0

∥∥∇ log πx(ah|sh)
∥∥∣∣ H∑

t=h

γtr(st, at)
∣∣ ≤ Cπ

(1− γ)2
(171)

∥g(x; ζ)− g(x′; ζ)∥ =

H∑
h=0

∥∥∇ log πx(ah|sh)−∇ log πx′(ah|sh)
∥∥ H∑

t=h

|γtr(st, at)|

≤ L′
π

(1− γ)2
∥x− x′∥. (172)

Next we prove iii) as follows

∥∇g(x; ζ)−∇g(x′; ζ)∥ ≤
H∑

h=0

∥∥∇2 log πx(ah|sh)−∇2 log πx′(ah|sh)
∥∥ H∑

t=h

|γtr(st, at)|

≤ L′′
π

(1− γ)2
∥x− x′∥. (173)

By Lemma 14, we know i), ii) and iii) imply the Lipschitz continuity of H(x; ζ), i.e. it holds that

∥H(x; ζ)−H(x′; ζ)∥ ≤ L′′
π + 2HCπL

′
π

(1− γ)2
∥x− x′∥. (174)

The first term in (170) can be bounded as∥∥Eζ∼p(·|x)[H(x; ζ)]− Eζ∼p(·|x′)[H(x; ζ)]
∥∥ ≤ sup

ζ

∥∥H(x; ζ)
∥∥∑

ζ

|p(ζ|x)− p(ζ|x′)|

(176)
≤ HC2

π + L′
π

(1− γ)2

∑
ζ

|p(ζ|x)− p(ζ|x′)|

≤ HC2
π + L′

π

(1− γ)2
(H + 1)|A|Lπ∥x− x′∥ (175)

where the second inequality follows from

∥∥H(x; ζ)
∥∥ ≤ ∥g(x; ζ)∥

H∑
t=0

∥∇ log πx(at|st)∥+ ∥∇g(x; ζ)∥ ≤ HC2
π

(1− γ)2
+

L′
π

(1− γ)2
. (176)

Substituting (174) and (175) into (170) yields

∥∇2F (x)−∇2F (x′)∥ ≤
(L′′

π + 2HCπL
′
π

(1− γ)2
+
HC2

π + L′
π

(1− γ)2
(H + 1)|A|Lπ

)
∥x− x′∥. (177)

This implies that fn−1
i (·) is η

(L′′
π+2HCπL

′
π

(1−γ)2 +
HC2

π+L′
π

(1−γ)2 (H+1)|A|Lπ

)
-Lipschitz smooth for n ∈ [N ].

(2) (q)&(r)⇒ Assumption 3. It is clear that conditions (q)&(r) imply condition (h)&(i). Thus by
Lemma 3, Assumption 3 is satisfied.
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Now we only need to specify the estimators that satisfy condition (q) as follow. First, it is known that
the policy gradient takes the following form [14]:

∇Fi(x)=Eζ∼πx

[ H∑
h=0

∇ log πx(ah|sh)
H∑
t=h

γtri(st, at)|ρi,Pi

]
. (178)

Then to estimate fni (y) (n = 0, 1, ..., N − 1), one can use:

fni (y; ζ
n
i ) := y + η

H∑
h=0

∇ log πy(ah|sh)
H∑
t=h

γtri(st, at), n = 0, 1, ..., N − 1, (179)

where ζni = (s0, a0, ..., sH , aH) is generated under policy πy, transition distribution Pi and initial
distribution ρi. The estimator satisfies condition (q):

Eζn
i
[fni (y; ζ

n
i )] = y + η∇Fi(y) = fni (y),

Eζn
i
[∥fni (y; ζni )− fni (x)∥2] ≤ Eζn

i
∥

H∑
h=0

∇ log πy(ah|sh)
H∑
t=h

γtri(st, at)∥2 ≤ C2
π

(1− γ)4
. (180)

To estimate ∇fni (y) (n = 0, 1, ..., N − 1), one can use:

∇fni (y; ζni ) := I + ηH(y; ζni ), n = 0, 1, ..., N − 1, (181)

where ζni = (s0, a0, ..., sH , aH) is generated under policy πy, transition distribution Pi and initial
distribution ρi. The estimator satisfies condition (q):

Eζn
i
[∇fni (y; ζni )] = I + η∇2Fi(y) = ∇fni (y),

Eζn
i
∥∇fni (y; ζni )−∇fni (y)∥2 ≤ Eζn

i
∥∇fni (y; ζni )∥2

(176)
≤ 2 + 2η2

(HC2
π + L′

π)
2

(1− γ)4
. (182)

To estimate ∇fNi (x), one can use

∇fNi (x; ζNi ) :=

H∑
h=0

∇ log πx(ah|sh)
H∑
t=h

γtri(st, at), (183)

where ζni = (s0, a0, ..., sH , aH) is generated under policy πy, transition kernel Pi and initial distri-
bution ρi. This estimator satisfies the condition (q), following the similar lines in (180).

(3) Verifying Assumption 4 and 6. Assumption 4 is satisfied with λn = 1 by directly plugging in
yn,∗(yn−1) = fn−1(yn−1). Assumption 6 is satisfied by observing that

F (x) =
1

M

M∑
i=1

Fi(x̃
N
i (x)) ≤ 1

1− γ
, (184)

where we have used the fact that Fi(x) ≤ 1
1−γ for any x.

Given the generic result in Theorem 2, Lemma 9 directly implies Theorem 4.

Theorem 6 (Restatement of Theorem 4) Consider the sequences generated by the MAMPG up-
date in (32) and (33) for k = [K]. Under conditions (p)–(r), we have Theorem 2 holds.

H Technical Lemmas

Lemma 10 Suppose Assumption 1 & 2 hold. Recall that Ly(n) =
∑N

i=n Ly,i−1Ly,i−2 . . . Ly,n

with Ly,n−1Ly,n−2 . . . Ly,n = 1 for any n ∈ [N ]. Then it holds that

∥∥v(xk, y1:Nk )−v(xk)
∥∥≤Lv,y

N∑
n=1

Ly(n)∥ynk−yn,∗(yn−1k )∥. (185)
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Proof. By the Lipschitz continuity of v(x, y1, . . . , yN ) w.r.t. y1, . . . , yN , we have

∥v(xk, y1:Nk )− v(xk)∥ ≤ Lv,y

N∑
n=1

∥ynk − yn,∗(. . . y2,∗(y1,∗(xk)) . . . )∥. (186)

For any n ≥ 2, we have

∥ynk − yn,∗(. . . y2,∗(y1,∗(xk)) . . . )∥
≤ ∥ynk − yn,∗(yn−1

k )∥+ ∥yn,∗(yn−1
k )− yn,∗(. . . y2,∗(y1,∗(xk)) . . . )∥

≤ ∥ynk − yn,∗(yn−1
k )∥+ Ly,n−1∥yn−1

k − yn−1,∗(. . . y2,∗(y1,∗(xk)) . . . )∥. (187)

Unraveling yields

∥ynk − yn,∗(. . . y2,∗(y1,∗(xk)) . . . )∥ ≤
n∑

j=1

Ly,n−1Ly,n−2 . . . Ly,j∥yjk − yj,∗(yj−1
k )∥, (188)

where Ly,n−1Ly,n−2 . . . Ly,n := 1. Substituting (188) into (186) completes the proof.

Lemma 11 With any positive λ1 and non-negative constants λ0, λ2 < λ1 and C1, ..., C4, consider
the following inequality about the step size βk,n−1:

(1 + C1βk,n−1 + C2β
2
k,n−1)(1− λ1βk,n)− 1 + λ2βk,n + C3αk + C4α

2
k ≤ −λ0αk. (189)

Suppose all step sizes are in the same time-scale. Then given any βk,n, if αk ≤ βk,n−1 ≤ 1, the
above inequality always admits solutions for βk,n−1.

Proof. First we have

C2β
2
k,n−1 ≤ C2βk,n−1, C4α

2
k ≤ C4αk. (190)

With the above inequality, we can simplify (189) to

(1 + (C1 + C2)βk,n−1)(1− λ1βk,n) + λ2βk,n ≤ 1− (λ0 + C3 + C4)αk. (191)

By λ2βk,n≤(1+(C1+C2)βk,n−1)λ2βk,n, the sufficient condition of (189) is

(1 + (C1 + C2)βk,n−1)(1− λ′βk,n)≤1− (λ0 + C3 + C4)αk. (192)

where λ′ = λ1 − λ2 > 0. Next we show that (192) holds. With αk ≤ βk,n−1, rearranging and
simplifying (192) gives

βk,n−1 ≤ λ′
βk,n

λ0 + C1 + C2 + C3 + C4
, (193)

which can be satisfied if βk,n−1, βk,n are in the same scale, and β1,n−1 is small relative to β1,n.

Lemma 12 (Robbins-Siegmund [18, Theorem 2.3.5]) Consider a sequence of σ-algebras
{Fk}k≥1 and four integrable non-negative sequences {Uk}, {Vk}, {τk}, {δk} that satisfy

i) Uk, Vk, τk, δk are Fk-measurable.

ii) Πk≥1(1 + τk) <∞ and
∑

k≥1 E[βk] <∞.

iii) For k ≥ 1, E[Vk+1|Fk] ≤ Vk(1 + τk) + δk − Uk+1.

Then it holds that

1) Vk
k−→∞−−−−→ V∞ <∞ and supk≥1 E[Vk] <∞.

2)
∑

k≥1 E[Uk] <∞ and
∑

k≥1 Uk <∞ a.s.

Lemma 13 Suppose Assumption 1 holds. Then there exists a positive constant CN such that

∥xk − x∗∥2 +
N∑

n=1

∥ynk − yn,∗∥2 ≤ CN

(
∥xk − x∗∥2 +

N∑
n=1

∥ynk − yn,∗(yn−1
k )∥2

)
. (194)
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Proof. First note that under Assumption 1, we have
N∑

n=1

∥ynk − yn,∗∥ =

N∑
n=1

∥ynk − yn,∗(. . . y2,∗(y1,∗(x∗))∥. (195)

To bound the RHS of the above inequality, we can directly follow the derivation of (186)–(188) with
xk = x∗ and obtain

N∑
n=1

∥ynk − yn,∗∥ =

N∑
n=1

∥ynk − yn,∗(. . . y2,∗(y1,∗(x∗))∥

≤ Ly(1)∥y1k − y1,∗(x∗)∥+
N∑

n=2

Ly(n)∥ynk−yn,∗(yn−1k )∥, (196)

where {Ly(n)}Nn=1 is a series of constants specified in Lemma 10.

Continuing from the last inequality, we have
N∑

n=1

∥ynk − yn,∗∥ ≤ Ly(1)∥y1,∗(xk)−y1,∗(x∗)∥+Ly(1)∥y1k − y1,∗(xk)∥+
N∑

n=2

Ly(n)∥ynk−yn,∗(yn−1k )∥

≤ Ly(1)Ly,1∥xk − x∗∥+
N∑

n=1

Ly(n)∥ynk−yn,∗(yn−1k )∥. (197)

Then we have

∥xk − x∗∥2 +
N∑

n=1

∥ynk − yn,∗∥2

≤
(
∥xk − x∗∥+

N∑
n=1

∥ynk − yn,∗∥
)2

(197)
≤ 2(1 + Ly(1)Ly,1)

2∥xk − x∗∥2+2N

N∑
n=1

L2
y(n)∥ynk−yn,∗(yn−1k )∥2. (198)

With the above inequality, choosing CN = 2max{(1 + Ly(1)Ly,1)
2, NL2

y(1), ..., NL
2
y(n)} com-

pletes the proof.

Lemma 14 (Lipschitz continuity of a product.) Define fi : Rd 7→ Rdi×di+1 . If there exist positive
constants L1, L2, ..., Ln and C1, C2, ..., Cn such that for any x, x′ ∈ Rd it holds that

∥fi(x)− fi(x
′)∥ ≤ Li∥x− x′∥, ∥fi(x)∥ ≤ Ci, ∀i ∈ [n]. (199)

Then it holds that

∥f1(x)f2(x)...fn(x)− f1(x
′)f2(x

′)...fn(x
′)∥ ≤

n∑
j=1

C1C2...Lj ...Cn∥x− x′∥. (200)

Proof. We can decompose the product as

∥f1(x)f2(x)...fn(x)− f1(x
′)f2(x

′)...fn(x
′)∥

= ∥f1(x)f2(x)...fn(x)− f1(x
′)f2(x)...fn(x) + f1(x

′)f2(x)...fn(x)− f1(x
′)f2(x

′)...fn(x)

+ · · ·+ f1(x
′)f2(x

′)...fn(x)− f1(x
′)f2(x

′)...fn(x
′)∥

≤ C2...Cn∥f1(x)− f1(x
′)∥+C1C3..Cn∥f2(x)− f2(x

′)∥+· · ·+C1C2..Cn−1∥fn(x)− fn(x
′)∥

≤
n∑

j=1

C1C2...Lj ...Cn∥x− x′∥. (201)

This completes the proof.
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