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A. Appendix to Paper: Mathematical Theory of Adversarial Deep Learning
This appendix contains proofs for theorems in Section 3.

A.1. Proof of Theorem 3.4

We will show that RobM(D, α) is computationally equivalent to the following NPC problem.

Definition A.1 (Reversible 6-SAT). Let φ be a Boolean formula and let φ denote the formula obtained from φ by negating
each variable. The Boolean formula φ is called reversible if either both φ and φ are satisfiable or both are not satisfiable.
The reversible satisfiability problem is to recognize the satisfiability of reversible formulae in conjunctive normal form
(CNF). By the reversible 6-SAT, we mean the reversible satisfiability problem for CNF formulae with six variables per
clause. In (Megiddo, 1988), it was shown that the reversible 6-SAT is NPC.

We restate Theorem 3.4 here for convenience.

Theorem A.2. RobM(D, α) is NP-hard; that is, for α ∈ R+ and a dataset D ⊂ Rn × {−1, 1}, it is NP-hard to decide
whether there exists a robust network in Hn,2 for D with budget α.

Proof. Let φ(k,m) = ∧m
i=1φi(k,m) be a 6-SAT for k variables, where φi(k,m) = ∨6

j=1x̃i,j and x̃i,j is either xs or ¬xs
for s ∈ [k] (refer to Definition A.1).

For i ∈ [k], define Qφ
i ∈ Rk as follows: Qφ

i [j] = 1 if xj occurs in φi(k,m); Qφ
i [j] = −1 if ¬xj occurs in φi(k,m);

Qφ
i [j] = 0 otherwise. Then six entries of Qφ

i are 1 or −1 and all other entries are zero. Also, let 1i ∈ Rk, whose i-th
element is 1 and all other entries are 0.

We define a binary classification dataset D(φ) = {(xi, yi)}m+4k
i=0 ⊂ Rk × {−1, 1} as follows

(1) x0 = 0, y0 = −1.

(2) For i ∈ [k], xi = k1i, yi = −1.

(3) For i ∈ {k + 1, k + 2, . . . , 2k}, xi = −k1i−k, yi = −1.

(4) For i ∈ {2k + 1, 2k + 2, . . . , 3k}, xi = 2.001k1i−2k, yi = 1.

(5) For i ∈ {3k + 1, 3k + 2, . . . , 4k}, xi = −2.001k1i−3k, yi = 1.

(6) For i ∈ {4k + 1, 3k + 2, . . . , 4k +m}, xi = k/4.1 ·Qφ
i−4k, yi = −1.

The size of D(φ) is O((m+ k) log k) and D(φ) has separation bound k/4.1 > 1, because k ≥ 6 for 6-SAT problem.

We claim that RobM(D(φ), 0.5) has a solution F if and only if the reversible 6-SAT φ(k,m) has a solution J = {xj =
vj}kj=1, and F and J can be deduced from each other in polynomial time; that is, RobM(D(φ), 0.5) is computationally
equivalent to φ(k,m). Since reversible 6-SAT is NPC (Megiddo, 1988), by the claim, RobM(D(φ), 0.5) is NPC, which
implies that RobM(D(φ), α) is NP-hard. This proves the theorem.

Before proving the claim, we first introduce a notation. Let J = {xj = vj}kj=1 be a solution to the reversible 6-SAT problem
φ and φi(k,m) = ∨6

j=1x̃i,j a clause of φ, where vi ∈ {−1, 1}. Then denote q(J, φi) to be the number of x̃i,j which has
value 1 on the solution J . If q(J, φi) = 0, then φi is not true. If q(J, φi) = 6, then ¬φi is not true. Since J is a solution to
the reversible 6-SAT problem φ, we have 1 ≤ q(J, φi) ≤ 5. It is easy to see that q(J, φi) = |{j ∈ [k] :Qφ

i [j] = vj}|.

The claim will be proved in two steps.

Step 1. We prove that if φ(k,m) has a solution J = {xj = vj}kj=1, then RobM(D(φ), 0.5) has a solution F ,
where vi ∈ {−1, 1}. Let U1 = 2

3k (v1, v2, . . . , vk), U2 = − 2
3k (v1, v2, . . . , vk). Define F ∈ Hk,2 to be F(x) =

ψ(σ(U1x− 1) + σ(U2x− 1)), ψ means the Sgn. It is clear that F can be obtained from J in Poly(k). We will show that
F(x) is a robust memorization of D(φ) with budget 0.5. The proof will be given in five steps: (c1) - (c5).

(c1) Since ||U1||1 = 2/3, we have that U1x− 1 > 1/3 implies U1(x+ ϵ)− 1 > 0 for any ϵ ∈ Rk satisfying ||ϵ||∞ ≤ 0.5,
and U1x− 1 ≤ −1/3 implies U1(x+ ϵ)− 1 ≤ 0 for any ||ϵ||∞ ≤ 0.5. U2 has similar properties.

(c2) Since U1x0 − 1 = −1 < −1/3 and U2x0 − 1 = −1 < −1/3, from (c1), for any ||ϵ||∞ ≤ 0.5, we have F(x0 + ϵ) =
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ψ(σ(U1(x0 + ϵ)− 1) + σ(U2(x0 + ϵ)− 1)) = ψ(0 + 0) = 0 = y0. Thus F is robust at x0 with budget 0.5.

(c3) For i ∈ [2k], we have that U1xi − 1 ≤ −1 + |U1||xi| = −1 + k · 2/(3k) = −1/3 and U2xi − 1 ≤ −1 + |U2||xi| =
−1 + k · 2/(3k) = −1/3. By (c1), for any ||ϵ||∞ ≤ 0.5, we have

F(xi + ϵ) = ψ(σ(U1(xi + ϵ)− 1) + σ(U2(xi + ϵ)− 1)) = ψ(0 + 0) = 0 = yi.

Thus F is robust at xi with budget 0.5.

(c4) For i ∈ {2k + 1, 2k + 2, . . . , 4k}, since U1 = −U2, at least one of the following two inequalities U1xi − 1 =
−1 + |U1||xi| = −1 + 2.001k · 2/(3k) > 1/3 and U2xi − 1 = −1 + |U2||xi| = −1 + 2.001k · 2/(3k) > 1/3 is true, say
the first one is true. By (c1), for any ||ϵ||∞ ≤ 0.5, we have

F(xi + ϵ) = ψ(σ(U1(xi + ϵ) − 1) + σ(U2(xi + ϵ) − 1)) ≥ ψ(σ(U1(xi + ϵ) − 1)) = 1 = yi.

Thus F is robust at xi with budget 0.5.

(c5) Let i ∈ {4k + 1, 4k + 2, . . . , 4k +m}. It is clear that q(J, φi−4k) + q(J, φi−4k) = 6. Then

U1Q
φ
i−4k

=
∑

j : xj ∈ φi−4k
vjQ

φ
i−4k[j]

=
∑

j : xj ∈ φi−4k,Sgn(Qφ
i−4k[j])=Sgn(vj)

2
3k−∑

j : xj ∈ φi−4k,Sgn(Qφ
i−4k[j]) ̸=Sgn(vj)

2
3k

= q(J, φi−4k)
2
3k − q(J, φi−4k)

2
3k

∈ {0, 2 · (2/(3k)), 4 · (2/(3k)),−2 · (2/(3k)),−4 · (2/(3k))},

which means |U1Q
φ
i−4k| ≤ 8/(3k). Similarly, we also have |U2Q

φ
i−4k| ≤ 8/(3k). As a consequence, U1xi − 1 =

−1 + U1Q
φ
i−4k · k/4.1 ≤ −1 + 8/(3k) · k/4.1 ≤ −1 + 2/3 = −1/3, and similarly U2xi − 1 ≤ −1/3. By (c1), for any

||ϵ||∞ ≤ 0.5, we have that
F(xi + ϵ) = ψ(σ(U1(xi + ϵ) − 1) + σ(U2(xi + ϵ) − 1)) = ψ(0 + 0) = yi.

Thus F is robust at xi with budget 0.5.

From (c2) to (c5), F is a robustness memorization of D(φ) with budget 0.5, and Step 1 is proved.

Step 2. We prove that if RobM(D(φ), 0.5) has a solution F(x) = ψ(σ(U1x+ b1) + σ(U2x+ b2)) ∈ Hk,2 which is a
robust memorization of D(φ) with budget 0.5, then φ(k,m) has a solution.

Without loss of generality, we can assume that U1 ̸= 0 and U2 ̸= 0. We will show that J = {xi = Sgn(U (i)
1 )}ki=1 is the

solution to the reversible 6-SAT problem φ(k,m). The proof is divided into six steps: (d1) - (d7).

(d1) We will show that it can be assumed b1 = b2 = −1. Since F is robust at x0 = 0 with budget 0.5 and y0 = 0, we have
that 0 = F(x0 + 0.1Sgn(U1)) = F(0.1Sgn(U1)) ≥ ψ(σ(0.1U1Sgn(U1) + b1) = ψ(σ(b1 + 0.1||U1||1)), which implies
b1 < 0. Similarly, b2 < 0. Then, we can assume b1 = b2 = −1, because

F(x)

= ψ(σ(U1x+ b1) + σ(U2x+ b2))

= ψ(|b1|σ( U1

|b1|x− 1) + |b2|σ( U2

|b2|x− 1))

= ψ(σ( U1

|b1|x− 1) + σ( U2

|b2|x− 1)).

(d2) We prove ||U1||1 ≤ 2 and ||U2||1 ≤ 2. Since F is robust at x0 = 0 with budget 0.5, we have that

0 = F(0.5Sgn(U1))

= ψ(σ(0.5U1Sgn(U1)− 1) + σ(0.5U2Sgn(U1)− 1))

≥ ψ(σ(0.5||U1||1 − 1)),
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which implies ||U1||1 ≤ 2. Similarly, we have ||U2||1 ≤ 2.

(d3) We prove that U (j)
1 U

(j)
2 < 0 for all j ∈ [k], where U (j)

i is the j-th component of Ui.

(d3.1) For i ∈ {2k + 1, 2k + 2, . . . , 4k}, since F(xi) = ψ(σ(U1xi − 1) + σ(U2xi − 1)) = 1 > 0, at least one of
U1xi − 1 > 0 or U2xi − 1 > 0 is valid.

Assume U (j)
1 ≥ 0 and U (j)

2 ≥ 0 for some j ∈ [k]. Then we have U1x3k+j −1 = −1−2.001kU
(j)
1 < 0 and U2x3k+j −1 =

−1− 2.001kU
(j)
2 < 0, which contradict to (d3.1).

Assume U (j)
1 ≤ 0 and U (j)

2 ≤ 0 for some j ∈ [k]. Then we have U1x2k+j −1 = −1+2.001kU
(j)
1 < 0 and U2x2k+j −1 =

−1 + 2.001kU
(j)
2 < 0, which contradicts to (d3.1). Then (d3) is proved.

(d4) For any j ∈ [k], we have k|U (j)
1 | ≤ 1− 0.5||U1||1 and k|U (j)

2 | ≤ 1− 0.5||U2||1.

For i ∈ [2k], because F(xi) = ψ(σ(U1(xi + ϵ)− 1) + σ(U2(xi + ϵ)− 1)) = 0 is stand for any ||ϵ||∞ ≤ 0.5, so we have
U1(xi + ϵ)− 1 ≤ 0 and U2(xi + ϵ)− 1 ≤ 0; that is U1xi − 1 ≤ −0.5||U1||1 and U2xi − 1 ≤ −0.5||U2||1.

For any j ∈ [k], we have U1xj ≤ 1− 0.5||U1||1 and U1xk+j ≤ 1− 0.5||U1||1, considering that the j-th component of xj
and xk+j has different positive and negative, so one of them has the same positive and negative with the j-th component of
U

(j)
1 , so max{U1xj , U1xk+j} = k|U (j)

1 | ≤ 1− 0.5||U1||1. Similar, we have k|U (j)
2 | ≤ 1− 0.5||U2||1.

(d5) For any j ∈ [k], we have 2.001|kU (j)
1 | > 1 + 0.5||U1||1 and 2.001|kU (j)

2 | > 1 + 0.5||U2||1.

For j ∈ [k], by (d3), we first assume that U (j)
1 > 0 and U (j)

2 < 0. We will prove the following conclusions about this j.

(d5.0) For i ∈ {2k + 1, 2k + 2, . . . , 4k}, since F(xi) = ψ(σ(U1(xi + ϵ)− 1) + σ(U2(xi + ϵ)− 1)) = 1 > 0 is valid for
||ϵ||∞ ≤ 0.5, at least one of U1(xi + ϵ)− 1 > 0 or U2(xi + ϵ)− 1 > 0 is valid.

(d5.1) U (j)
2 < − 1

2.001k . By (d5.0), at least one of U1x3k+j − 1 > 0 and U2x3k+j − 1 > 0 is valid. Since U1x3k+j − 1 =

−1− 2.001kU
(j)
1 < −1 < 0 (by U j

1 > 0), we have U2x3k+j − 1 = −1− 2.001kU
(j)
2 > 0; that is, U (j)

2 < − 1
2.001k .

(d5.2) U2(x2k+j + ϵ)− 1 < 0 for any ||ϵ||∞ ≤ 0.5. By (d2) and (d5.1), we have

U2(x2k+j + ϵ)− 1 ≤ U2x2k+j + 0.5||U2||1 − 1
(d2)

≤ U2x2k+j + 0.5 · 2− 1
(d5.1)

≤ − 1
2.001k · 2.001k + 0.5 · 2− 1

< 0.

(d5.3) 2.001kU
(j)
1 > 1 + 0.5||U1||1. By (d5.0), for any ||ϵ||∞ ≤ 0.5, at least one of U1(x2k+j + ϵ) − 1 > 0 or

U2(x2k+j + ϵ)−1 > 0 is valid. By (d5.2), we have U2(x2k+j + ϵ)−1 < 0 for any ||ϵ||∞ ≤ 0.5. So U1(x2k+j + ϵ)−1 > 0

is valid for any ||ϵ||∞ ≤ 0.5. Then we have U1x2k+j − 1 > 0.5||U1||1; that is 2.001kU (j)
1 > 1 + 0.5||U1||1.

(d5.4) −2.001kU
(j)
2 > 1 + 0.5||U2||1. This can be proved similar to (d5.3).

If we replace U (j)
1 > 0 and U (j)

2 < 0 with U (j)
1 < 0 and U (j)

2 > 0, then we can obtain −2.001kU
(j)
1 > 1 + 0.5||U1||1

and 2.001kU
(j)
2 > 1 + 0.5||U2||1. So, for any j ∈ [k], we finally obtain 2.001|kW j

1 | > 1 + 0.5||U1||1 and 2.001|kU (j)
2 | >

1 + 0.5||U2||1.

(d6) For any j ∈ [k], we have 2/3−0.001
k < |U (j)

1 | < 2/3+0.001
k and 2/3−0.001

k < |U (j)
2 | < 2/3+0.001

k .

For any j ∈ [k], by (d4) and (d5), we know that 1−0.5||U1||1
k ≥ |U (j)

1 | > 1+0.5||U1||1
2.001k .

(d6.1) |U (j)
1 | > 2/3−0.001

k . Let e = argminj∈[k]{|U
(j)
1 |}. Then by (d5), we have that |U (e)

1 | > 1+0.5||U1||1
2.001k ≥ 1+0.5k|U(e)

1 |
2.001k ;

that is |U (e)
1 | > 2/3−0.001

k . So for any j ∈ [k], we have that |U (j)
1 | ≥ |U (e)

1 | > 2/3−0.001
k .

(d6.2) |U (j)
1 | < 2/3+0.001

k . By (d6.1), we have ||U1||1 > k|U (e)
1 | > 2/3 − 0.001. Then we have |U (j)

1 | ≤ 1−0.5||U1||1
k <
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1−1/3+0.0005
k < 2/3+0.001

k .

(d6.1) and (d6.2) prove the inequality for U1. The inequality for U2 can be proved similarly.

(d7) We show that {xi = Sgn(U (i)
1 )}ki=1 is the solution of the reversible 6-SAT problem φ.

Assume that J = {xi = Sgn(U (i)
1 )}ki=1 is not the solution of φ. Then there exists a clause, say φ1, such that φ1 = 0 at J ,

or φ1 = 0 at J ; that is, q(J, φ1) = 0 or q(J ′, φ1) = 0, where J ′ = {xi = Sgn(U (i)
2 )}ki=1. Then , we have

F(x4k+1 + 0.5Sgn(U1))

= ψ(σ(U1(x4k+1 + 0.5Sgn(U1)− 1) + σ(U2(x4k+1 + 0.5Sgn(U1)− 1))

≥ ψ(σ(U1(x4k+1 + 0.5Sgn(U1)− 1))
(d6)

≥ ψ(σ(U1x4k+1 + 0.5k · 2/3−0.001
k − 1))

(d6)

≥ ψ(σ(6 · 2/3−0.001
k · k

4.1 + 0.5k · 2/3−0.001
k − 1))

≥ ψ(σ(0.97 + 0.1− 1))

= 1 ̸= y4k+1.

Then the robustness budget of F is smaller than 0.5 at x4k+1, which contradicts to the fact that F is a solution to
RobM(D(φ), 0.5). Therefore, J = {xi = Sgn(U (i)

1 )}ki=1 is a solution to φ. This proves Step 2.

A.2. Proof of Theorem 3.6

We will show that RobM(D, α) is computationally equivalent to the following NPC problem (Garey & Johnson, 1979).

Definition A.3 (Minimum vertex cover). A vertex cover in a graph G is a set of vertices of G such that each edge of G has
at least one of its end point in this set. A minimum vertex cover in a graph G is a vertex cover that has the smallest number
of vertices among all possible vertex covers of G.

We restate Theorem 3.6 for convenience.

Theorem A.4. MinRob(D, α) is NP-hard; that is, finding the smallest k such that there exists a robust network with budget
α in Hn,k is NP-hard.

Proof. Let G = (V,E) be a graph with vertex set V = {v1, . . . , vp} and edge set E = {e1, . . . , eq}. Denote 1a,b(m) to be
the vector in Rp, whose a-th and b-th entries are m, and all other entries are zero. Define a binary classification dataset
D(G) = {(xi, yi)}qi=0 ⊂ Rp × {0, 1} as follows:

(1) x0 = 0 and y0 = 0;

(2) For i ∈ [q], if ei has vertices va and vb, then set xi = 1a,b(1.001) and yi = 1.

The separation bound of D(G) is 1.001.

We claim that the minimum vertex cover problem for G is computationally equivalent to problem MinRob(D(G), 0.5).
Since the minimum vertex cover problem is NPC (Garey & Johnson, 1979), problem MinRob(D(G), 0.5) is NPC, which
implies that MinRob(D, α) is NP-hard. This proves the theorem.

We prove the claim in three steps.

Step 1. Let V1 ⊆ V be a minimum vertex cover of G and k = |V1|. Then we can compute an F ∈ Hk,p in time Poly(p)
such that F is a robust memorization of D(G) with budget 0.5.

Let F(x) = ψ(
∑

vj∈V1
σ(21jx− 1)) ∈ Hk,p, where 1j ∈ R1×p is the vector whose j-th weight is 1 and others weights

are 0. It is easy to see that F can be computed in Poly(p), since k ≤ p. We will verify that this network is a robustness
memorization of D(G) with budget 0.5, which comes from the facts (c1) and (c2) to be proved below.
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(c1) For any χ ∈ Rp satisfying ||χ||∞ ≤ 0.5, we have

F(x0 + χ)

= ψ(
∑

vj∈V1
σ(21j(x0 + χ)− 1))

= ψ(
∑

vj∈V1
σ(21jχ− 1))

(s1)

≤ ψ(
∑

vj∈V1
σ(2||1j ||1||χ||∞ − 1))

≤ ψ(
∑

vj∈V1
σ(1− 1)) = 0.

In step (c1), we use the inequality ab ≤ ||a||1||b||∞ for a ∈ R1×p and b ∈ Rp×1. So, F is robust at x0 with budget 0.5.

(c2) For i ∈ [q], xi = 1q,p(1.001). Since V1 is a vertex cover, we have va ∈ V1 or vb ∈ V1, say va ∈ V1. Then for any
χ ∈ Rp such that ||χ||∞ ≤ 0.5, we have

F(xi + χ)

= ψ(
∑

vj∈V1
σ(21j(xi + χ)− 1))

≥ ψ(σ(21a(xi + χ)− 1))

≥ ψ(σ(21axi − 1− 2||1a||1||χ||∞))

≥ ψ(σ(1.001 · 2− 1− 1))

> 0.

So F(xi + χ) = 1 = yi for any i ∈ [q] and F is robust at xi with budget 0.5.

Step 2. Let F ∈ Hk,p be a solution to problem MinRob(D(G), 0.5). Then we can compute a vertex cover V1 ⊆ V of
G in time Poly(p) such that |V1| ≤ k.

Let F(x) = ψ(
∑k

i=1 σ(Uix+ bi)) be such a network. Without loss of generality, we assume that Ut ̸= 0 for any t ∈ [k].
Then we have three results (d1) to (d3).

(d1) For any t ∈ [k], bt < 0 and ||Ut||1 ≤ 2|bt|. This is because

0 = y0

= F(x0 + 0.5Sgn(Ut))

= F(0.5Sgn(Ut))

= ψ(
∑k

i=1 σ(0.5Ui(Sgn(Ut) + bi))

≥ ψ(σ(0.5Ut(Sgn(Ut) + bt))

= ψ(0.5||Ut||1 + bt)

which implies 0.5||Ut||1 + bt ≤ 0 and we can deduce bt < 0 and ||Ut||1 ≤ 2|bt| from 0.5||Ut||1 + bt ≤ 0.

(d2) For any t ∈ [q], let xt = 1a,b(1.001). Then there exists at least one s ∈ [k] such that U(a)
s +U(b)

s

|bs| > 2− 0.002
0.501 . We have

||xt − 1a,b(0.501)||∞ = ||1a,b(1.001)− 1a,b(0.501)||∞ = 0.5. Since F(x̂t) = 1 for any x̂t satisfying ||x̂t − xt||∞ ≤ 0.5,
we have

1 = F(1a,b(0.501)) = ψ(
∑k

i=1 σ(Ui1a,b(0.501) + bi))

= ψ(
∑k

i=1 |bi|σ(
Ui1a,b(0.501)

|bi| − 1))

Thus at least one s ∈ [k] satisfies Us1a,b(0.501)
|bs| − 1 > 0; that is, U(a)

s +U(b)
s

|bs| > 2− 0.002
0.501 .

(d3) Let V1 = {vj :∃i ∈ [k], s.t. j = Ûi}, where j = Ûi ∈ [p] means that U (j)
i is the largest component of Ui. It is clear

that V1 can be computed from F in Poly(p). We will show that V1 is a vertex cover of G.
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For any m ∈ [q], let em = (va, vb). By (d2), there exists an s ∈ [k] such that U(a)
s +U(b)

s

|bs| > 2− 0.002
0.501 . By (d1), we also have

||Us||1 ≤ 2|bs|. So ∀g ∈ [p] with g ̸= a, b, we have

|U (g)
s |

≤ ||Us||1 − |U (a)
s | − |U (b)

s |
≤ 2|bs| − (U

(a)
s + U

(b)
s )

≤ 0.002|bs|
0.501

< (1− 0.001
0.501 )|bs|

< (U
(a)
s + U

(b)
s )/2

≤ max{U (a)
s , U

(b)
s }

which implies that Ûs ∈ {a, b}, so whether va ∈ V1 or vb ∈ V1 and em is covered by V1. Thus, V1 is a vertex cover of G.

Step 3. The two problems are computationally equivalence.

Let V1 be a minimum vertex cover of the graph G. Then from Step 1, we can find a network F1 with width |V1|, which
is a robust memorization of D(G) with budget 0.5. On the other hand, by Step 2, if F1 is not a minimum-width robust
memorization of D(G) with budget 0.5, then there exists a smaller vertex cover for G. So |V1| and F1 are a solution to
MinRob(D, 0.5). Similarly, we can show that a solution of MinRob(D(G), 0.5) leads to a minimum vertex cover for G.

A.3. Proof of Proposition 3.7

We restate Proposition 3.7 for convenience.

Proposition A.5. If H = {F : Rn → R,width(F) = w} is an optimal robust memorization of any dataset D ∈ Dn,N,L

with N > n, then width(F) = w ≥ n.

Proof. It suffices to show that there exists an dataset D, if F has width less than n and memorizes D, then RAD(F , 0.4λD) ≤
1− 1

n+1 ; that is, F is not a robust memorization of D with budget 0.4λD.

Denote 1 to be the vector all of whose weights are 1 and 1k the vector whose k-th weight is 1 and all other weights are
0. Without loss of generality, let N satisfy (n + 1)|N . We define a dataset D = {xi, yi}Ni=1 with separation bound 1 as
follows:

(1) x1 = 0 and y1 = 0; xi = 1i−1 and yi = 1 for i = 2, 3, . . . , n+ 1;

(2) for i = k(n+1)+1, . . . , k(n+1)+n+1 and k = 1, . . . , N
n+1 −1, xi = xi+1 and yi = yi, where i = i mod (n+1)

if (n+ 1) ̸ |i and i = n+ 1 otherwise.
It is easy to see that λD = 1.

Let F : Rn → R be a network which memorizes D defined above. Let W1 be the weight matrix of the first layer of F . Then
W1 ∈ RK×n. We will show that, there exists an s in [n] such that

∃δ1, δs ∈ Rn, satisfying ||δ1||∞ < 0.4, ||δs||∞ < 0.4,W1(x1 + δ1) =W1(xs + δs).

Firstly, since n > K, W1 ∈ RK×n is not of full row rank, and hence there exists a vector v ∈ Rn such that W1v = 0 and
||v||∞ = 1. For such a v, let |v(s)| = 1 for some s ∈ [n]. We define δ1, δs ∈ Rn as follows:

δ
(s)
1 = 1/3 and δ(k)1 = −v(s)v(k)/3 for k ̸= s; δ

(s)
s = 0 and δ(k)s = v(s)v(k)/3 for k ̸= s.

It is clearly that ||δ1||∞ = 1
3 < 0.4 and ||δs||∞ = 1

3 < 0.4. Also, xs + δs − x1 − δ1 = 2
3v

(s)v. Thus, W1(x1 + δ1) −
W1(xs + δs) =W1(x1 + δ1 − xs − δs) =W1(

2
3v

(s)v) = 0.

It is easy to see that, for any x, z ∈ Rn, W1x =W1z implies F(x) = F(z). Since W1(x1 + δ1) =W1(xs + δs), we have
F(x1 + δ1) = F(xs + δs), and either F(x1 + δ1) ̸= 0 or F(xs + δs) ̸= 1 must be valid. In other words, F cannot be
robust at x1 or xs for the robust budget 0.4. Similarly, F cannot be robust for at least one point in {xi}(k+1)(n+1)

i=k(n+1)+1 for
k ∈ {1, . . . , N

n+1 − 1}. In summary, F cannot be robust for at least N
n+1 points, so RAD(F , 0.4) ≤ 1− 1

n+1 .
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A.4. Proof of Theorem 3.9

We restate Theorem 3.9 for convenience.
Theorem A.6. For any dataset D ∈ Dn,N,L, the hypothesis space Hn,2N+1,3n+1,O(Nn) is an optimal robust memorization
for D.

Proof. It suffices to show that for any µ < 0.5λD, there exists a network with depth 2N + 1, width 3n+ 1, and O(Nn)
nonzero parameters, which can robustly memorize D with robust budget µ.

Let D = {(xi, yi)}Ni=1 ⊂ Rn × [L]. Let C ∈ R+ satisfy C > |x(j)i |+ µ > 0 for all i ∈ [N ] and j ∈ [n].

F will be defined in three steps for an input x.

Step 1. The first layer is used to check whether x ∈ B(x1, µ). The second layer is used to compute E1(x) in Property 2
given below. The two layers are given below.

(1-1.1) F0
1 (x) = 0;

(1-1.2) F j
1 (x) = σ(x

(j)
1 − x(j) − µ), Fn+j

1 (x) = σ(x(j) − x
(j)
1 − µ), where j ∈ [n];

(1-1.3) F2n+j
1 (x) = σ(x(j) + C), where j ∈ [n];

(1-2.1) F0
2 (x) = 0;

(1-2.2) F1
2 (x) = σ(y1 − y1

λD−2µ

∑2n
k=1Fk

1 (x));

(1-2.3) F j+1
2 (x) = σ(F2n+j

1 (x)), where j ∈ [n].

Step 2. For i = 2, 3, . . . , N , the (2i− 1)-th layer has width 3n+1 and is used to check whether x ∈ B(xi, µ). The 2i layer
has width n+ 2 and is used to compute Ei(x) in Property 2 given below. These layers are given below.

(i-1.1) F0
2i−1(x) = σ(F0

2i−2(x) + F1
2i−2(x));

(i-1.2) F j
2i−1(x) = σ((x

(j)
i +C)−F j+1

2i−2(x)− µ) and Fn+j
2i−1(x) = σ(F j+1

2i−2(x)− (x
(j)
i +C)− µ), where j ∈ [n];

(i-1.3) F2n+j
2i−1 (x) = σ(F j+1

2i−2(x)), where j ∈ [n];

(i-2.1) F0
2i(x) = σ(F0

2i−1(x));

(i-2.2) F1
2i(x) = σ(yi − yi

λD−2µ

∑2n
k=1Fk

2i−1(x)−F0
2i−1(x));

(i-2.3) F j+1
2i (x) = σ(F2n+j

2i−1 (x)), where j ∈ [n].

Step 3. The output layer of F is F(x) = F0
2N (x) + F1

2N (x).

Next, we will show that F has the following properties.

Property 1. F j+1
2i (x) = x(j) + C for i ∈ [N ], j ∈ [n], and x ∈ Rn.

From (1-1.3) and (1-2.3), since C + x
(j)
i > µ > 0 for all i ∈ [N ] and j ∈ [n], we have that F j+1

2 (x) = F2n+j
1 (x) =

σ(xj + C) = xj + C.

From (i-2.3) and (i-1.3), we have that F j+1
2i (x) = σ(F2n+j

2i−1 (x)) = σ(F j+1
2i−2(x)) = · · · = σ(F j+1

2 (x)) = x(j) + C, for all
i ∈ [N ] and j ∈ [n]. Property 1 is proved.

Property 2. Let Ei(x) = yi − yi

λD−2µ

∑2n
j=1F

j
2i−1(x) for i ∈ [N ]. Then Ei(x) = yi for x ∈ B∞(xi, µ), and Ei(x) < yi

for x /∈ B∞(xi, µ).

Due to Property 1, for j ∈ [n], step (i-1.2) becomes

F j
2i−1(x) = σ((x

(j)
i + C)−F j+1

2i−2(x)− µ)

= σ(x
(j)
i − x(j) − µ)

Fn+j
2i−1(x) = σ(F j+1

2i−2(x)− (x
(j)
i + C)− µ)

= σ(x(j) − x
(j)
i − µ).
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If x ∈ B∞(xi, µ), then σ(xi−x−µ) = σ(x−xi−µ) = 0, which means F j
2i−1(x) = 0 for j ∈ [2n]. Thus Ei(x) = yi. If

x ̸∈ B∞(xi, µ), then ||xi − x− µ||∞ > 0 or ||x− xi − µ||∞ > 0 which means that F j
2i−1(x) > 0 for at least one j ∈ [2n].

Since F j
i (x) ≥ 0 for all i and j, we have that Ei(x) < yi.

Property 3. If x ∈ B∞(xk, µ) for yk ̸= yi, then Ei(x) ≤ 0.

Since x ∈ B∞(xk, µ) and yk ̸= yi, we have that ||xi−x−µ||∞ ≥ λD − 2µ > 0 or ||x−xi−µ||∞ ≥ λD − 2µ > 0, since
the separation bound is λ. Then F j

2i−1(x) ≥ λD−2µ for at least one j ∈ [2n] and thusEi(x) ≤ yi− yi

λD−2µ (λD−2µ) = 0.

Property 4. F(x) = maxi∈[N ]{Ei(x), 0} for x ∈ Rn.

Since max{x, y} = x+ σ(y − x) for x, y ∈ R and F j
i (x) ≥ 0 for all i and j, we have that

σ(F0
2i(x) + F1

2i(x)) = F0
2i(x) + F1

2i(x)

= σ(F0
2i−1(x)) + σ(Ei−1(x)−F0

2i−1(x))

= max{F0
2i−1(x), Ei(x)}

= max{σ(F0
2i−2(x) + F1

2i−2(x)), Ei(x)}.

Using the above equation repeatedly, we have that F(x) = σ(F0
2N (x) + F1

2N (x)) = maxNi=1{Ei(x), F0
2 (x)} =

maxNi=1{Ei(x), 0}.

We now show that F satisfies the conditions of the theorem. Let x ∈ B∞(xs, µ) for s ∈ [N ]. By Property 2, Es(x) = ys;
and if i ̸= s and yi = ys, then Ei(x) < ys. By Property 3, if yi ̸= ys, then Ei(x) ≤ 0. By Property 4, F(x) =
maxi∈[N ]{Ei(x)} = Es(x) = ys; that is, F is robust at xs with budget µ.

We now estimate the number of nonzero parameters. For i ∈ [N ], constructions (i-1.1) and (i-2.1) need 3 parameters; (i-1.2)
needs 8n parameters; (i-1.3) and (i-2.3) need 2n parameters; (i-2.2) need 2n+2 parameters. Totally, (N − 1)(12n+5)+ 2
parameters are needed.

A.5. Proofs for Theorem 3.11

We give a lemma below.

Lemma A.7. There exists a network
F ∈ Hn,O(logn),O(n),O(n) such that F(x) = ||x||∞; that is, there exists a network F : Rn → R with depth O(log n),
width O(n), and O(n) nonzero parameters such that F(x) = ||x||∞.

Proof. Let e = ⌈log2 n⌉. Without loss of generality, we assume that n = 2e. Then F has depth 2e and for i ∈ [e+ 1], the
(2i− 1)-th layer has width 2e−i+2, and the 2i-th layer has width 2e−i+1.

Denote Wi and bi to be the weight matrix and the bias of the i-th layer of F . The first and second layers will change x to |x|.
The first layer has width 2e+1 and the second layer has width 2e, which are defined below.

W 2i,i
1 = 1 and W 2i+1,i

1 = −1; other entries of W1 are 0. b1 = 0.

W i,2i
2 = 1 and W i,2i+1

2 = 1; other entries of W2 are 0. b2 = 0.

Since σ(x) + σ(−x) = |x| for any x ∈ R, it is easy to check that F2(x) = σ(W2σ(W1x)) = |x|.

For i ∈ [e], the (2i+ 1)-th and the (2i+ 2)-th layers are defined below.

F2m
2i+1(x) = σ(F2m

2i (x)), where m = 0, 1, . . . , 2e−i − 1.

F2m+1
2i+1 (x) = σ(F2m+1

2i (x)−F2m
2i (x)), where m = 0, 1, . . . , 2e−i − 1.

Fm
2i+2(x) = σ(F2m

2i+1(x) + F2m+1
2i+1 (x)), where m = 0, 1, . . . , 2e−i − 1.
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For i ∈ [e+ 1], using σ(x− y) + y = max{x, y} for any x, y ∈ R, we have that

Fm
2i+2(x)

= σ(F2m
2i+1(x) + F2m+1

2i+1 (x))

= F2m
2i+1(x) + F2m+1

2i+1 (x)

= σ(F2m
2i (x)) + σ(F2m+1

2i (x)−F2m
2i (x))

= F2m
2i (x) + σ(F2m+1

2i (x)−F2m
2i (x))

= max{F2m
2i (x),F2m+1

2i (x)}.

The (2e+ 2)-th layer has width 1 and is the output

F(x) = F1
2e+2(x)

= max{F2
2e(x),F1

2e(x)}
= max{F4

2e−2(x),F3
2e−2(x),F2

2e−2(x), ,F1
2e−2(x)}

= . . .

= max{F2e

2 (x),F2e−1
2 (x), . . . ,F2

2 (x), ,F1
2 (x)}

= ||x||∞.

We now estimate the number of parameters. The first two layers need 4d nonzero parameters. For i ∈ [e], the (2i+ 1)-th
layer and (2i+ 2)-th layer need 5 · 2e−i parameters. So, we need

∑e
i=1 5 · 2e−i = O(2e) = O(n) parameters. Then the

lemma is proved.

We restate the theorem for convenience.

Theorem A.8. For any dataset D ∈ Bn,N , the hypothesis space Hn,O(N log(n)),O(n),O(Nn log(n)) contains a network F
which is an optimal robust memorization of D via Lipschitz; that is, F is a memorization of D and Lip∞(F) = 2/λD.

Proof. Let D be defined in section 3.4 and C ∈ R+ satisfy C + x
(k)
i − 0.5λD > 0 for all i ∈ [N ], k ∈ [n]. The network

has N(2⌈log(n)⌉+ 5) + 1 hidden layers which will be defined below.

Step 1. The first layer has width n+ 1: F0
1 (x) = 2 and F j

1 (x) = σ(x(j) + C) = x(j) + C, where j ∈ [n].

Step 2. Let sk = (2⌈log(n)⌉+5)(k− 1)+ 2. For k ∈ [N ], we will use the sk-th layer to the (sk +2⌈log(n)⌉+4)-th layer
to check if ||x− xk||∞ < 0.5λD. Step 2 consists of three sub-steps.

Step 2a. We use the sk-th layer and the (sk + 1)-th layer to calculate |x− xk|. The sk-th layer has width 3n+ 1 and is
defined below.

F0
sk
(x) = σ(F0

sk−1(x));

F j
sk
(x) = σ(F j

sk−1(x)− x
(j)
k − C), where j ∈ [n];

Fn+j
sk

(x) = σ(−F j
sk−1(x) + x

(j)
k + C), where j ∈ [n];

F2n+j
sk

(x) = σ(F j
sk−1(x)), where j ∈ [n].

The (sk + 1)-th layer has width 2n+ 1 and is defined below.

F0
sk+1(x) = σ(F0

sk
(x));

Fj
sk+1(x) = σ(F j

sk
(x) + Fn+j

sk
(x)), where j ∈ [n];

Fn+j
sk+1(x) = σ(F2n+j

sk
(x)), where j ∈ [n].

The sk-th layer needs 5n+ 1 nonzeros parameters and (sk + 1)-th layer needs 3n+ 1 nonzeros parameters.
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Step 2b. Lemma A.7 is used to calculate ||x− xk||∞. By Lemma A.7, there exists a network H : Rn → R with 2⌈log(n)⌉
hidden layers, width O(n), and O(n) nonzero parameters to compute H(x) = ||x||∞ for x ∈ Rn. Since H has 2⌈log(n)⌉
hidden layers, we set the output of the (sk + 2⌈log(n)⌉+ 1)-th layer to be

F0
sk+2⌈log(n)⌉+1(x) = σ(F0

sk+1(x));

F1
sk+2⌈log(n)⌉+1(x) = H(F1

sk+1(x), . . . ,Fn
sk+1(x)) = ||Fsk+1(x)||∞;

F j+1
sk+2⌈log(n)⌉+1(x) = σ(Fn+j

sk+1(x)), where j ∈ [n].

Step 2c. Use the (sk + 2⌈log(n)⌉ + 2)-th to the (sk + 2⌈log(n)⌉ + 4)-th layers to check if ||x − xk||∞ < 0.5λD. The
(sk + 2⌈log(n)⌉+ 2)-th layer has width n+ 4 and is defined below

F0
sk+2⌈log(n)⌉+2(x) = σ(F0

sk+2⌈log(n)⌉+1(x));

F1
sk+2⌈log(n)⌉+2(x) = σ(−2/λDF1

sk+2⌈log(n)⌉+1(x) + 1);

F2
sk+2⌈log(n)⌉+2(x) = σ(F0

sk+2⌈log(n)⌉+1(x)− 2);

F3
sk+2⌈log(n)⌉+2(x) = σ(−F0

sk+2⌈log(n)⌉+1(x) + 2);

F j+3
sk+2⌈log(n)⌉+2(x) = σ(F j+1

sk+2⌈log(n)⌉+1(x)), where j ∈ [n].

The (sk + 2⌈log(n)⌉+ 3)-th layer has width n+ 3 and is defined below

F0
sk+2⌈log(n)⌉+3(x) = σ(F0

sk+2⌈log(n)⌉+2(x) + ykF1
sk+2⌈log(n)⌉+2(x));

F1
sk+2⌈log(n)⌉+3(x) = σ(F1

sk+2⌈log(n)⌉+2);

F2
sk+2⌈log(n)⌉+3(x) = σ(F1

sk+2⌈log(n)⌉+2 − (F2
sk+2⌈log(n)⌉+2(x) + F3

sk+2⌈log(n)⌉+2(x)));

F j+2
sk+2⌈log(n)⌉+3(x) = σ(F j+3

sk+2⌈log(n)⌉+2(x)), where j ∈ [n].

The (sk + 2⌈log(n)⌉+ 4)-th layer has width n+ 1 and is defined as

F0
sk+2⌈log(n)⌉+4(x) = σ(F0

sk+2⌈log(n)⌉+3(x)− yk(F1
sk+2⌈log(n)⌉+3(x)−F2

sk+2⌈log(n)⌉+3(x)));

F j
sk+2⌈log(n)⌉+4(x) = σ(F j+2

sk+2⌈log(n)⌉+3(x)), where j ∈ [n].

It is easy to check that if F j
sk+1(x) = |x(j) − x

(j)
k |. Then

F1
sk+2⌈log(n)⌉+2(x) = σ(−2/λDF1

sk+2⌈log(n)⌉+1(x) + 1) > 0

if and only if ||x− xk||∞ < 0.5λD. These three layers need 3n+ 16 nonzeros parameters.

Step 3. The output is F(x) = F0
sN+2⌈log(n)⌉+4(x) − 2. The network F has width O(n), depth O(N log(n)), and

O(Nn log(n)) nonzeros parameters.

We now show that F satisfies the condition of the theorem; that is F memorizes D and satisfies Lip∞(F) = 2/λD.

Property 1. F j
sk−1(x) = x(j) + C for j ∈ [n] and k ∈ [N ]. When k = 1, sk − 1 = 1. By Step 1, we have that

F j
s1−1(x) = F j

1 (x) = x(j) + C. When k > 1, we have that

F j
sk+1−1(x)

= σ(F j
sk+2⌈log(n)⌉+4(x)) = σ(F j+2

sk+2⌈log(n)⌉+3(x))

= σ(F j+3
sk+2⌈log(n)⌉+2(x)) = σ(F j+1

sk+2⌈log(n)⌉+1(x))

= σ(Fn+j
sk+1(x)) = σ(F2n+j

sk
(x)) = σ(F j

sk−1(x))

= F j
sk−1(x).

Then, F j
sk+1−1(x) = F j

sk−1(x) = · · · = F j
s1−1(x) = F j

1 (x) = x(j) + C.
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Property 2. F j
sk+1(x) = |x(j) − x

(j)
k | and F1

sk+2⌈log(n)⌉+1(x) = ||x− xk||∞ for j ∈ [n].

Since σ(x) + σ(−x) = |x| for any x ∈ R, from Step 2a, F j
sk+1(x) = |F j

sk−1(x) − x
(j)
k − C| for j ∈ [n]. By Property

1, F j
sk−1(x) = x(j) + C for j ∈ [n]. Then, F j

sk+1(x) = |x(j) − x
(j)
k | for j ∈ [n]. From Step 2b, we have that

F1
sk+2⌈log(n)⌉+1(x) = ||x− xk||∞ for j ∈ [n].

Property 3. F0
sk+2⌈log(n)⌉+4(x) = 2 + ywk

σ(1− 2/λD||x− xwk
||∞), where wk = argmini∈[k]||x− xi||∞.

We prove the property by induction on k. We first show that the statement is valid for k = 1. We have that wk = 1 and
F0

s1+2⌈log(n)⌉+2(x) = F0
s1+2⌈log(n)⌉+1(x) = F0

s1+1(x) = F0
s1(x) = F0

s1−1(x) = 2. From Step 2c and Property 2,

F0
s1+2⌈log(n)⌉+3(x)

= σ(F0
s1+2⌈log(n)⌉+2(x) + y0F1

s1+2⌈log(n)⌉+2(x))

= σ(2 + y0σ(1− 2/λDF1
s1+2⌈log(n)⌉+1(x)))

= 2 + y0σ(−2/λDF1
s1+2⌈log(n)⌉+1(x) + 1)

= 2 + y0σ(1− 2/λD||x− x0||∞).

Since F2
s1+2⌈log(n)⌉+2(x) = σ(F0

s1+2⌈log(n)⌉+1(x) − 2) = σ(2 − 2) = 0 and F3
s1+2⌈log(n)⌉+2(x) =

σ(−F0
s1+2⌈log(n)⌉+1(x) + 2) = σ(2 − 2) = 0, we have that F2

s1+2⌈log(n)⌉+3(x) = σ(F1
s1+2⌈log(n)⌉+2 −

(F2
s1+2⌈log(n)⌉+2(x) + F3

s1+2⌈log(n)⌉+2(x))) = σ(F1
s1+2⌈log(n)⌉+2) = F1

s1+2⌈log(n)⌉+3. Then

F0
s1+2⌈log(n)⌉+4(x)

= σ(F0
s1+2⌈log(n)⌉+3(x)− y0(F1

s1+2⌈log(n)⌉+3(x)

−F2
s1+2⌈log(n)⌉+3(x)))

= F0
s1+2⌈log(n)⌉+3(x)

= 2 + y0σ(1− 2/λD||x− x0||∞).

We have proved the statement for k = 1.

Assume that the statement is valid for k − 1; that is, F0
sk−1+2⌈log(n)⌉+4(x) = 2 + ywk−1

σ(1− 2/λD||x− xwk−1
||∞). We

have that F0
sk+2⌈log(n)⌉+2(x) = F0

sk+2⌈log(n)⌉+1(x) = F0
sk+1(x) = F0

sk
(x) = F0

sk−1(x) = 2 + ywk−1
σ(1 − 2/λD||x −

xwk−1
||∞) ≥ 1, and we also have that F1

sk+2⌈log(n)⌉+2(x) = σ(−2/λDF1
sk+2⌈log(n)⌉+1(x) + 1) ≤ 1. Then

F0
sk+2⌈log(n)⌉+3(x)

= σ(F0
sk+2⌈log(n)⌉+2(x) + ykF1

sk+2⌈log(n)⌉+2(x))

= σ(F0
sk+2⌈log(n)⌉+2(x)

+ykσ(1− 2/λDF1
sk+2⌈log(n)⌉+1(x)))

= F0
sk+2⌈log(n)⌉+2(x)

+ykσ(1− 2/λDF1
sk+2⌈log(n)⌉+1(x))

= F0
sk−1(x) + ykσ(1− 2/λDF1

sk+2⌈log(n)⌉+1(x))

= F0
sk−1(x) + ykF1

sk+2⌈log(n)⌉+2(x)

(23)

Since F2
sk+2⌈log(n)⌉+2(x) = σ(F0

sk+2⌈log(n)⌉+1(x)− 2) and F3
sk+2⌈log(n)⌉+2(x) = σ(−F0

sk+2⌈log(n)⌉+1(x)+ 2), we have
that F2

sk+2⌈log(n)⌉+3(x) = σ(F1
sk+2⌈log(n)⌉+2 − (F2

sk+2⌈log(n)⌉+2(x) + F3
sk+2⌈log(n)⌉+2(x))) = σ(F1

sk+2⌈log(n)⌉+2 −
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|F0
sk+2⌈log(n)⌉+1(x)− 2|). Then

F0
sk+2⌈log(n)⌉+4(x)

= σ(F0
sk+2⌈log(n)⌉+3(x)−

yk(F1
sk+2⌈log(n)⌉+3(x)−F2

sk+2⌈log(n)⌉+3(x)))

= σ(F0
sk−1(x) + ykF1

sk+2⌈log(n)⌉+2(x)

−yk(F1
sk+2⌈log(n)⌉+2(x)− σ(F1

sk+2⌈log(n)⌉+2(x)−
|F0

sk−1(x)− 2|))).

We divide the proof into two cases.

Case 1. If x /∈ B∞(xk, 0.5λD), then F1
sk+2⌈log(n)⌉+2(x) = σ(−2/λDF1

sk+2⌈log(n)⌉+1(x) + 1) = σ(1 − 2/λD||x −
xk||∞) = 0 and

F0
sk+2⌈log(n)⌉+4(x)

= σ(F0
sk−1(x) + ykF1

sk+2⌈log(n)⌉+2(x)

−yk(F1
sk+2⌈log(n)⌉+2(x)−

σ(F1
sk+2⌈log(n)⌉+2(x)− |F0

sk−1(x)− 2|)))
= F0

sk−1(x)

= F0
sk−1+2⌈log(n)⌉+4(x)

= 2 + ywk−1
σ(1− 2/λD||x− xwk−1

||∞)

= 2 + ywk
σ(1− 2/λD||x− xwk

||∞).

Case 2. If x ∈ B∞(xk, 0.5λD), then F1
sk+2⌈log(n)⌉+2(x) = σ(−2/λDF1

sk+2⌈log(n)⌉+1(x) + 1) = σ(1 − 2/λD||x −
xk||∞) ≥ 0 and using equation 23:

F0
sk+2⌈log(n)⌉+4(x)

= σ(F0
sk−1(x) + ykF1

sk+2⌈log(n)⌉+2(x)

−yk(F1
sk+2⌈log(n)⌉+2(x)− σ(F1

sk+2⌈log(n)⌉+2(x)

−|F0
sk−1(x)− 2|)))

= σ(F0
sk−1(x) + ykF1

sk+2⌈log(n)⌉+2(x)

−yk(min{F1
sk+2⌈log(n)⌉+2(x), |2−F0

sk−1(x)|}))
= σ(2 + ywk−1

σ(1− 2/λD||x− xwk−1
||∞)+

yk(1− 2/λD||x− xk||∞)

−yk(min{1− 2/λD||x− xk||∞,
σ(1− 2/λD||x− xwk−1

||∞)})).

Consider two sub-cases:
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Case 2.1. If ||x− xwk−1
||∞ > 0.5λD, then wk = k and hence

F0
sk+2⌈log(n)⌉+4(x)

= σ(2 + ywk−1
σ(1− 2/λD||x− xwk−1

||∞)+

yk(1− 2/λD||x− xk||∞)

−yk(min{1− 2/λD||x− xk||∞,
σ(1− 2/λD||x− xwk−1

||∞)}))
= σ(2 + yk(1− 2/λD||x− xk||∞))

= 2 + yk(1− 2/λD||x− xk||∞)

= 2 + ywk
(1− 2/λD||x− xwk

||∞).

Case 2.2. If ||x− xwk−1
||∞ ≤ 0.5λD, then ywk−1

= yk and hence

F0
sk+2⌈log(n)⌉+4(x)

= σ(2 + ywk−1
σ(1− 2/λD||x− xwk−1

||∞)+

yk(1− 2/λD||x− xk||∞)

−yk(min{1− 2/λD||x− xk||∞,
σ(1− 2/λD||x− xwk−1

||∞)}))
= σ(2 + ywk−1

(1− 2/λD||x− xwk−1
||∞)

+yk(1− 2/λ||x− xk||∞)

−yk(min{1− 2/λD||x− xk||∞,
1− 2/λD||x− xwk−1

||∞}))
= 2 + yk max{1− 2/λD||x− xk||∞,

1− 2/λD||x− xwk−1
||∞}

= 2 + ywk
σ(1− 2/λD||x− xwk

||∞).

The property is proved.

Property 4. F is a memorization D and has Lip∞(F) = 2/λD.

By Property 3, the output is

F(x) = F1
sN+2⌈log(n)⌉+4(x)− 2 = ywN

σ(1− 2/λD||x− xwN
||∞)

where wN = argmini∈[N ]||x− xi||∞.

If x = xs, then wN = s and F(x) = ys; that is, F memorizes D. If x ∈ B(xs, 0.5λD) for some s ∈ [N ], then wN ∈ [N ]
and F(x) = ywN

(1 − 2/λD||x − xwN
||∞) such that the local Lip∞(F) = 2/λD over B(xwN

, 0.5λD). If x is not in
∪N
i=1B(xs, 0.5λD), then ||x−xwN

||∞ > 0.5λD. Hence F(x) = 0 and the local Lip∞(F) = 0. The theorem is proved.


