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A. Appendix to Paper: Mathematical Theory of Adversarial Deep Learning

This appendix contains proofs for theorems in Section 3.

A.1. Proof of Theorem 3.4

We will show that RobM(D, «) is computationally equivalent to the following NPC problem.

Definition A.1 (Reversible 6-SAT). Let ¢ be a Boolean formula and let © denote the formula obtained from ¢ by negating
each variable. The Boolean formula ¢ is called reversible if either both ¢ and © are satisfiable or both are not satisfiable.
The reversible satisfiability problem is to recognize the satisfiability of reversible formulae in conjunctive normal form
(CNF). By the reversible 6-SAT, we mean the reversible satisfiability problem for CNF formulae with six variables per
clause. In (Megiddo, 1988), it was shown that the reversible 6-SAT is NPC.

We restate Theorem 3.4 here for convenience.

Theorem A.2. RobM(D, ) is NP-hard; that is, for o € R, and a dataset D C R™ x {—1,1}, it is NP-hard to decide
whether there exists a robust network in H,, o for D with budget .

Proof. Let p(k,m) = A", p;(k,m) be a 6-SAT for k variables, where o, (k, m) = \/?:1@,3‘ and ; ; is either x or -
for s € [k] (refer to Definition A.1).

For i € [k], define QY € RF as follows: Qf[j] = 1if x; occurs in ¢;(k,m); Qf[j] = —1if ~x; occurs in ¢;(k, m);
Qf [1] = 0 otherwise. Then six entries of Qf are 1 or —1 and all other entries are zero. Also, let 1; € R*, whose i-th
element is 1 and all other entries are 0.

We define a binary classification dataset D(¢) = {(xs,y:)}7h** € R¥F x {—1,1} as follows
(D zo =0,y = -1
(2)Fori € [k], z; = k1l;,y; = —1.
(3)Fori € {k+1,k+2,...,2k}, 2 = —k1;_p,y: = —1.
(4)Fori € {2k + 1,2k +2,...,3k}, z; = 2.001k1;_op, yi = 1.
(5)Fori € {3k + 1,3k +2,...,4k}, z; = —2.001k1;_35, y; = 1.
(6) Fori € {4k + 1,3k +2,..., 4k + m}, z; = k/4.1- QY ., vi = —1.
The size of D(yp) is O((m + k) log k) and D(y) has separation bound k/4.1 > 1, because k > 6 for 6-SAT problem.

We claim that RobM(D(¢), 0.5) has a solution F if and only if the reversible 6-SAT (%, m) has a solution J = {z; =
v;}5_, and F and .J can be deduced from each other in polynomial time; that is, RobM(D(y), 0.5) is computationally
equivalent to ¢(k, m). Since reversible 6-SAT is NPC (Megiddo, 1988), by the claim, RobM(D(¢y), 0.5) is NPC, which
implies that RobM(D(¢p), «) is NP-hard. This proves the theorem.

Before proving the claim, we first introduce a notation. Let J = {z; = v;} le be a solution to the reversible 6-SAT problem
pand p;(k,m) = \/?zlfi,j a clause of ¢, where v; € {—1,1}. Then denote ¢(J, ¢;) to be the number of Z; ; which has
value 1 on the solution J. If ¢(J, ¢;) = 0, then ¢; is not true. If ¢(J, ;) = 6, then —¢p; is not true. Since J is a solution to
the reversible 6-SAT problem ¢, we have 1 < ¢(J, ;) < 5. Itis easy to see that ¢(J, p;) = [{j € [k]: Q7 [j] = v,}|.

The claim will be proved in two steps.

Step 1. We prove that if ¢(k,m) has a solution J = {z; = Uj}é‘?:l, then RobM(D(p),0.5) has a solution F,
where v; € {—1,1}. Let Uy = Z(vi,v2,...,v;), Uz = —2(v1,02,...,0;). Define F € Hy 5 to be F(z) =
Y(o(Urx — 1) + o(Usx — 1)), ¥ means the Sgn. It is clear that F can be obtained from .J in Poly (k). We will show that
F(z) is a robust memorization of D() with budget 0.5. The proof will be given in five steps: (c1) - (c5).

(c1) Since ||Uy||1 = 2/3, we have that Uz — 1 > 1/3 implies Uy (x + ¢) — 1 > 0 for any € € R” satisfying ||¢||o < 0.5,
and Uyz — 1 < —1/3 implies U (x 4+ €) — 1 < 0 for any ||¢||oo < 0.5. Uz has similar properties.

(c2) Since Uyzg — 1 = —1 < —1/3 and Uszg — 1 = —1 < —1/3, from (c1), for any ||€||s < 0.5, we have F(zg +€) =
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Y(o(Ur(xzo+€) — 1) + o(Ua(xo +€) — 1)) = (0 + 0) = 0 = yo. Thus F is robust at x, with budget 0.5.
(c3) For i € [2k], we have that Uyx; — 1 < =1+ |Uy||z;| = =14+ k-2/(3k) = —1/3 and Usw; — 1 < —1 + |Us||z;| =
—14+k-2/(3k) = —1/3. By (cl), for any ||¢]|oc < 0.5, we have

F(xi+€) =¢(o(Ur(wi +€) = 1) + o(Uz(wi +€) = 1)) =¢(0+0) =0 = y;.

Thus F is robust at z; with budget 0.5.

(c4) Fori € {2k + 1,2k + 2,...,4k}, since Uy = —Us, at least one of the following two inequalities Uyz; — 1 =
=1+ |U]|zs| = =1+ 2.001k - 2/(3k) > 1/3 and Usx; — 1 = —1 + |Us||z;| = —1 + 2.001k - 2/(3k) > 1/3 is true, say
the first one is true. By (c1), for any ||¢||oc < 0.5, we have

F(zi +€) =p(o(Ui(mi +€) — 1) + o(Ua(z; +¢) — 1)) 2 P(ae(Ui(zi +¢) — 1)) =1 =y;.

Thus F is robust at z; with budget 0.5.
(c5) Leti € {4k + 1,4k + 2, ...,4k + m}. Itis clear that ¢(J, p;—ax) + ¢(J, B;_4;) = 6. Then

U1Qf74k
= Zjiwj € pi—ak vaf—4/€[j]
2jas € pian SENQP 4, [1)=SEN(vy) 3

2
3k
2

2jin, € puse. SENQP,, LDASEN(v,) 3k

= q(J,0i—an) 5 — (], Bi_ap) %
{0,2-(2/(3k)), 4 - (2/(3k)), =2 - (2/(3k)), —4 - (2/(3k))},
which means [U1QY .| < 8/(3k). Similarly, we also have [U>QY ,,| < 8/(3k). As a consequence, Uyz; — 1 =

14+ U1Q7 4 - k/41 < —1+8/(3k) - k/4.1 < —1+2/3 = —1/3, and similarly Usx; — 1 < —1/3. By (cl), for any

[l€]|oo < 0.5, we have that
Flz; +€) = (o(Ur(z; +€) —1) + o(Ua(z; +€) — 1)) = (0 +0) = y;.

Thus F is robust at z; with budget 0.5.
From (c2) to (c5), F is a robustness memorization of D(p) with budget 0.5, and Step 1 is proved.

Step 2. We prove that if RobM(D(¢p), 0.5) has a solution F(x) = ¢(c(U1x + b1) + o(Usx + b2)) € Hy o whichis a
robust memorization of D(y) with budget 0.5, then ¢ (%, m) has a solution.

Without loss of generality, we can assume that U; # 0 and U # 0. We will show that J = {z; = Sgn(Ul( )) i is the
solution to the reversible 6-SAT problem (%, m). The proof is divided into six steps: (d1) - (d7).

(d1) We will show that it can be assumed b; = bs = —1. Since F is robust at o = 0 with budget 0.5 and yo = 0, we have
that 0 = F(zo + 0.1Sgn(U1)) = F(0.1Sgn(U1)) > ¢(0(0.1U1Sgn(U1) + b1) = (o (b1 + 0.1||U1]]1)), which implies
b1 < 0. Similarly, by < 0. Then, we can assume b; = by = —1, because
F(x)
= ’lﬁ(U(Ull' + bl) + U(UQ:,C + bg))
= U(|bilo (\b r—1) + |b2|0(|b iz —1))
= bo(Lr— 1) + o(2z —1).

(d2) We prove ||Uy||1 < 2 and ||Uz||1 < 2. Since F is robust at o = 0 with budget 0.5, we have that

0

F(0.55gn(U1))
¥ (0(0.5U:Sgn(Uy) — 1) + 0(0.5U2Sgn(Uy) — 1))
P(a(0.5[|U1 ][ — 1)),

Y
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which implies ||U1||; < 2. Similarly, we have ||Us]|1 < 2.
(d3) We prove that U 1(j )Ug(j ) < 0forall J € [k], where Ui(j ) is the j-th component of Us.

(d3.1) For i € {2k + 1,2k + 2,...,4k}, since F(z;) = ¢Y(o(Urx; — 1) + o(Uzx; — 1)) = 1 > 0, at least one of
Uix; — 1> 0or Usx; — 1 > 0is valid.

Assume Ul(j) > 0 and UQ(j) > 0 for some j € [k]. Then we have Uy zgpy; —1 = —1— 2.001kU1(j) < 0and Uszgp4; —1 =
—1—2.001kU{" < 0, which contradict to (d3.1).

Assume Ul(j) < 0and UQ(j) < 0for some j € [k]. Then we have U zopy; —1 = —1 +2.001kU1(j) < 0and Usxop4; —1 =
-1+ 2.001kU2(J ) < 0, which contradicts to (d3.1). Then (d3) is proved.
(d4) For any j € [k], we have k|U1(j)| < 1-0.5||U1]|1 and k\UQ(j)| <1-0.5]|Us||1.

For i € [2k], because F(z;) = (o (U1 (x; + €) — 1) + o(Usz(z; + €) — 1)) = 0 is stand for any ||¢[| < 0.5, so we have
Ul(.lfi + 6) —1<0and Ug(l‘l + 6) —1<0;thatisUyz; — 1 < —0.5||U1||1 and Usx; — 1 < —0.5||U2||1.

For any j € [k], we have Uyz; <1 —0.5||U1||1 and Uyzg4; < 1 — 0.5||U1]]1, considering that the j-th component of z;
and x4 ; has different positive and negative, so one of them has the same positive and negative with the j-th component of

U, so max{Uyz;, Uragps;} = KUY | < 1—0.5||Uy]];. Similar, we have k|US| < 1 — 0.5||Us|];.
(d5) For any j € [k], we have 2.001[kU| > 1 + 0.5||U1 |1 and 2.001|kUS| > 1+ 0.5(|Us]|s.
For j € [k], by (d3), we first assume that U- 1(j )'> 0and UQ(j ) < 0. We will prove the following conclusions about this j.

(d5.0) Fori € {2k + 1,2k +2,...,4k}, since F(x;) = Y(o(Ur(z; +€) — 1) + o(Ua(x; + €) — 1)) = 1 > 0 is valid for
ll€lloo < 0.5, at least one of Uy (x; + €) — 1 > 0 or Us(x; + €) — 1 > 0 is valid.

(d5.1) Uf” < — gk By (d5.0), at least one of U1zsy; — 1 > 0 and Uszgpy; — 1> O s valid. Since Urzapg; — 1=
—1-2.001kUY) < =1 <0 (by Uj > 0), we have Upzys; — 1 = —1 — 2.001kUS" > 0; that is, U < — 5.

(d5.2) Us(z2x+; +€) —1 < O for any ||€||oc < 0.5. By (d2) and (d5.1), we have

U2(Z‘2k+j+€)—1 < U2$2k+j+0~5||U2||1_1

(d2)
< Uswopy; +0.5-2 -1

(d5.1) )
< —m-2.001k‘+0.5~2—1
< 0.

(d5.3) 2.001kUY) > 1+ 0.5||U;];. By (d5.0), for any ||€||sc < 0.5, at least one of U (za5i; + €) — 1 > 0 or
Us(2or+; +€) —1 > 01is valid. By (d5.2), we have Us(z2x4; +€) —1 < 0 for any ||€||oc < 0.5. So Uy (22x4,+€)—1>0

is valid for any ||€||oo < 0.5. Then we have Uyaopy; — 1 > 0.5/|U7 |1 that is 2.001kU ) > 1 + 0.5||Uy |1
(d5.4) —2.001kUS” > 14 0.5||Us||;. This can be proved similar to (d5.3).

If we replace Ul(j) > 0 and U2(j) < 0 with Ul(j) < 0 and UQ(j) > 0, then we can obtain 72.001kU1(j) > 14 0.5||Uy|)1

and 2.001kU{") > 1+ 0.5||U,]|1. So, for any j € [k], we finally obtain 2.001|kW7| > 1 + 0.5||U1]|1 and 2.001|kUS"| >
14 0.5]|Us|]1.

(d6) For any j € [k], we have 72/37160'001 < \Ul(j)| < 2/3+ko.001 and 2/371@0'001 < |U2(j)| < 72/320'001.
For any j € [k], by (d4) and (d5), we know that % > |U1(j)\ > %.

>

' j 5 ©
(d6.1) (U] > 2250000 et ¢ = argmin, ¢y {|Uf”)|}. Then by (d5), we have that [U{)] > L9l > oot
that is |U{?)] > 2/3=0.001 'S for any j € [k], we have that @ > vl > 2/3-0.001

(d6.2) [UY)| < 2340001 By (d6.1), we have ||U || > K|U”| > 2/3 — 0.001. Then we have [UY)| < 2=08lUlL o
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2 .001
< /3+k0 001

1—1/340.0005
k

(d6.1) and (d6.2) prove the inequality for U;. The inequality for U, can be proved similarly.
(d7) We show that {x; = Sgn(U{ )) 1 is the solution of the reversible 6-SAT problem ¢.
Assume that J = {x; = Sgn(Ull )}%_, is not the solution of ¢. Then there exists a clause, say ¢, such that p; = 0 at J,

orp; = 0at J; thatis, g(J, 1) = 0orq(J’,¢1) = 0, where J' = {x; = Sgn(UQi)) k_,. Then , we have

f(l‘4k+1 + 0. SSgn(Ul))

= P(o(Ui(zak+1 + 0.58gn(Ur) — 1) + o(U2(zax+1 + 0.58gn(Uy) — 1))
> (o(Ur(@ap41 + 0.58gn(Ur) — 1))

(d6) 5

> p(o(Urzappr + 0.5k - 2320000 _qy)

Y (o6 23000 k(5. 230001 )

> P(0(0.97 + 0.1 - 1))

1 # Yary1-

Then the robustness budget of F is smaller than 0.5 at x4y41, which contradicts to the fact that F is a solution to
RobM(D(¢p), 0.5). Therefore, J = {z; = Sgn(U ) "_, is a solution to . This proves Step 2. O

A.2. Proof of Theorem 3.6
We will show that RobM(D, «) is computationally equivalent to the following NPC problem (Garey & Johnson, 1979).

Definition A.3 (Minimum vertex cover). A vertex cover in a graph G is a set of vertices of GG such that each edge of G has
at least one of its end point in this set. A minimum vertex cover in a graph G is a vertex cover that has the smallest number
of vertices among all possible vertex covers of G.

‘We restate Theorem 3.6 for convenience.

Theorem A.4. MinRob(D, «) is NP-hard; that is, finding the smallest k such that there exists a robust network with budget
ain Hy, 1 is NP-hard.

Proof. Let G = (V, E) be a graph with vertex set V' = {v1,...,v,} and edge set E = {e1,...,e,}. Denote 1, ,(m) to be
the vector in R?, whose a-th and b-th entries are m, and all other entries are zero. Define a binary classification dataset
D(G) = {(wi,yi)}y C RP x {0, 1} as follows:

(1) xg = 0 and yg = 0;
(2) For i € [q], if e; has vertices v, and v, then set x; = 1,,(1.001) and y; = 1.
The separation bound of D(G) is 1.001.

We claim that the minimum vertex cover problem for G is computationally equivalent to problem MinRob(D(G), 0.5).
Since the minimum vertex cover problem is NPC (Garey & Johnson, 1979), problem MinRob(D(G), 0.5) is NPC, which
implies that MinRob(D, «) is NP-hard. This proves the theorem.

We prove the claim in three steps.

Step 1. Let V; C V' be a minimum vertex cover of G and & = |V;|. Then we can compute an 7 € Hj, ,, in time Poly(p)
such that F is a robust memorization of D(G) with budget 0.5.

Let F(x) = ¥ (32, ev, 0(212 = 1)) € Hyp, where 1; € R1*P s the vector whose j-th weight is 1 and others weights

are 0. It is easy to see that F can be computed in Poly(p), since k& < p. We will verify that this network is a robustness
memorization of D(G) with budget 0.5, which comes from the facts (c1) and (c2) to be proved below.



Mathematical Theory of Adversarial Deep Learning

(c1) For any x € RP satisfying ||x||cc < 0.5, we have

F(zo +x)
= U, e 02,z +0) ~ 1)
= ¢(Zu ew o(21 JX_I))
Y US, e o@I Hxnoo— 1)
< P eno(1-1)) =

In step (c1), we use the inequality ab < ||a|[1]|b||s for a € RY*P and b € RP*1. So, F is robust at xy with budget 0.5.

(c2) For i € [q], ©; = 14,(1.001). Since V; is a vertex cover, we have v, € V; or v, € Vi, say v, € V. Then for any
X € RP such that || || < 0.5, we have

Flxi+x)
= V(X yer, oL@ +x) — 1))
> Y(o(21a(zi +x) — 1))
> Y021z — 1 = 2|[1all1]Ix]]o0))
> ¢(c(1.001-2—1—1))
> 0

So F(xz; + x) =1 =y; forany i € [¢] and F is robust at ; with budget 0.5.

Step 2. Let 7 € Hy, ;, be a solution to problem MinRob(D(G), 0.5). Then we can compute a vertex cover V; C V of
G in time Poly(p) such that |V;| < k.

Let F(x) = 1/1(22":1 o(U;x + b;)) be such a network. Without loss of generality, we assume that U; # 0 for any ¢ € [k].
Then we have three results (d1) to (d3).

(d1) For any ¢ € [k], by < 0 and ||U||1 < 2|b;|. This is because

0 = %o
‘F

xo + 0.5Sgn(Uy))
F(0.5Sgn(Uy))

V(X o (0.5Ui(Sgn(Uy) + by))
¥(0(0.5U:(Sgn(Ut) + bt))
¥(0.5]|Ut||1 + be)

(
(

v

which implies 0.5]|Uy||1 + b, < 0 and we can deduce b; < 0 and ||Uy||1 < 2|by| from 0.5||U;||1 + by < 0.

. Ul 4+u® 0.002
(d2) For any t € [q], let z; = 1,,5(1.001). Then there exists at least one s € [k] such that “ > 2 — 5507+ We have

llzt — 14,5(0.501) (|00 = ||14,5(1.001) — 1,(0.501)||oc = 0.5. Since F(&;) = 1 for any &, satisfying ||&; — ¢||co < 0.5,
we have
1 = F(1a(0.501)) = (X5, 0(Ui1,4(0.501) + b;))

k U;1, 5(0.501
= Y(i [bilo (PR 1))

Us1a,,(0.501)
[bs]

U +U® o 0.002

Thus at least one s € [k] satisfies — 1 > 0; that is, —= [N 0501

(d3)Let Vi = {v;:Ji € [k],s.t. j = U}, where j = U; € [p] means that Ui(j) is the largest component of U;. It is clear
that V; can be computed from F in Poly(p). We will show that V; is a vertex cover of G.
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(@) L ()
For any m. € [g], let €, = (v, vp). By (d2), there exists an s € [k] such that ¥ |;;‘Usb 2 — 3002,

[|Usll1 < 2|bs|. So Vg € [p] with g # a, b, we have

By (d1), we also have

U]

a b
< Ul = U] - US|
< 20by| — (U +UD)

0.002b,
< ST
< (1 g5o)1bsl
< (U +u))2
< max{Us(a),Us(b)}

which implies that lA]s € {a, b}, so whether v, € V; or v, € V; and e, is covered by V7. Thus, V] is a vertex cover of G.
Step 3. The two problems are computationally equivalence.

Let V4 be a minimum vertex cover of the graph G. Then from Step 1, we can find a network F; with width |V;|, which
is a robust memorization of D(G) with budget 0.5. On the other hand, by Step 2, if F; is not a minimum-width robust
memorization of D(G) with budget 0.5, then there exists a smaller vertex cover for G. So |V;| and F; are a solution to
MinRob(D, 0.5). Similarly, we can show that a solution of MinRob(D(G), 0.5) leads to a minimum vertex cover for G. [

A.3. Proof of Proposition 3.7

We restate Proposition 3.7 for convenience.

Proposition A.5. [fH = {F : R" — R, width(F) = w} is an optimal robust memorization of any dataset D € Dy, n 1,
with N > n, then width(F) = w > n.

Proof It suffices to show that there exists an dataset D, if F has width less than n and memorizes D, then RAp (F, 0.4\p) <

1-— TH’ that is, F is not a robust memorization of D with budget 0.4\ p.

Denote 1 to be the vector all of whose weights are 1 and 1 the vector whose k-th Weight is 1 and all other weights are
0. Without loss of generality, let N satisfy (n + 1)|N. We define a dataset D = {x;, y;}}*, with separation bound 1 as
follows:

Dz =0andy; =0;2x;, =1;_1andy; =1fort=2,3,...,n+1;
(2)fori =k(n+1)+1,...,k(n+1)+n+landk =1,...

if (n+1) fiandi = n + 1 otherwise.
It is easy to see that A\p = 1.

,n+1 —1,2; =x;+1andy;, = y;, where i = i mod (n+1)

Let 7 : R™ — R be a network which memorizes D defined above. Let 1/} be the weight matrix of the first layer of 7. Then
W, € REX" We will show that, there exists an s in [n] such that

351,55 S Rn, satisfying H61||oo < 04, ||59Hoo < 04, Wl(fﬂl + 51) = Wl(l’s + 59)

Firstly, sincen > K, W € RE*™ g not of full row rank, and hence there exists a vector v € R™ such that Wyv = 0 and
|[v||oo = 1. For such a v, let [v(*)| = 1 for some s € [n]. We define 6;, 5, € R™ as follows:

5 = 1/3 and 6 = —v®v®) /3 for k # s; (5@ = 0and 68 = v®v® /3 for k # s.

It is clearly that ||61]|oc = 3 < 0.4 and ||0s]|oc = & < 0.4. Also, x5 + 65 — 1 — 01 = 20w, Thus, Wy(z1 + 61) —
Wl(xs—f—és):W1(x1+51—xs—53) Wl( U( ) ) 0.

It is easy to see that, for any x, z € R™, Wiz = Wiz implies F(z) = F(z). Since Wi (21 + 01) = Wi (zs + d5), we have
F(x1 +01) = F(xs + Js), and either F(x1 + 01) # 0 or F(xs + d5) # 1 must be valid. In other words, F cannot be
robust at z; or xs for the robust budget 0.4. Similarly, F cannot be robust for at least one point in {xl}szlr)l(fl';fl for

O

ke{l,..., TH — 1}. In summary, F cannot be robust for at least == points, so RAp(F,0.4) < 1 — n+1
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A.4. Proof of Theorem 3.9

‘We restate Theorem 3.9 for convenience.

Theorem A.6. For any dataset D € Dy, n,1, the hypothesis space Hy, on11,3n41,0(Nn) iS an optimal robust memorization
forD.

Proof. Tt suffices to show that for any 1 < 0.5\p, there exists a network with depth 2N + 1, width 3n + 1, and O(Nn)
nonzero parameters, which can robustly memorize D with robust budget .

Let D = {(z;,4:)}L, CR"™ x [L]. Let C € Ry satisfy C' > |$Ej)\ +p>0foralli € [N]and j € [n].
F will be defined in three steps for an input x.

Step 1. The first layer is used to check whether 2 € B(x1, ). The second layer is used to compute E; () in Property 2
given below. The two layers are given below.

(1-1.1) FY(z) = 0;

(1-12) F (@) = o2 — 20 — p), 7 (2) = o(2@) — 2 — ), where j € [n];
(1-1.3) F2" (z) = o(29) + C), where j € [n];

(1-2.1) }'S(m) =0;

(1-2.2) Fi(2) = o(y1 — 525 s FE(@));

(1-2.3) Fit (z) = o(F2" (z)), where j € [n].

Step 2. Fori = 2,3,..., N, the (2¢ — 1)-th layer has width 3n + 1 and is used to check whether x € B(z;, i1). The 2i layer
has width n 4 2 and is used to compute F;(x) in Property 2 given below. These layers are given below.

(-1.1) 3,1 (2) = 0(F5i_5(2) + Fpi_o(@));

(i12) F,_y(2) = o((@{!) + C) = F 5 (2) — p) and F3 4 () = o(FL (@) — (@) + ©) — ), where j € [n];
(i-1.3) Fort (x) = o(FLH, (x)), where j € [n];

(-2.1) Foi(z) = o(FS,_1(x));

(i-2.2) Fi(x) = o(y; — o Fh (@) = FY_i(x)):

Yi

AD—24
(i-2.3) Fi () = o (F3 (x)), where j € [n].

Step 3. The output layer of F is F(x) = Foy(x) + Fay ().

Next, we will show that F has the following properties.

Property 1. 7). (z) = 29) + C fori € [N], j € [n], and z € R".

From (1-1.3) and (1-2.3), since C + 2\ > i > Oforall i € [N] and j € [n], we have that 73! (2) = F2"H (z) =

o2l +C) =127 +C.

From (i-2.3) and (i-1.3), we have that ]-'gjl(x) = U(]-'gfflj(x)) = U(]-'gj_lz(x)) = . =o(F(2)) = 2 4+ C, for all

i € [N]and j € [n]. Property 1 is proved.

Property 2. Let E;(x) = y; — A;fﬁzjilfgl_l(x) for i € [N]. Then E;(x) = y; for & € Boo(x;, 1), and Ey(x) < y;

for z ¢ Boo (x4, ).

Due to Property 1, for j € [n], step (i-1.2) becomes

Fia (@) = o +C) = F() — )

o a0

Pt (@) = o(F @) — () + C) = )

=o(z) — xz(-j) — ).
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If 2 € Boo (24, ), then o (x; — & — p) = o(x — x; — p) = 0, which means FJ, | (z) = 0 for j € [2n]. Thus E;(z) = y;. If
@ & Boo (24, 1), then ||2; — 2 — pu]|oo > 00r||2 — 2; — p1]|oo > 0 which means that 73, ,(z) > 0 for at least one j € [2n].
Since F; (x) > 0 for all ¢ and j, we have that F;(z) < y;.

Property 3. If © € B, (xy, 1) for yi # y;, then F;(x) < 0.

Since x € Boo (2, 1) and yi, # 4, we have that ||2; — 2 — pi||oc > Ap — 21 > O or ||@ — 23 — 1[0 > Ap —2p > 0, since
the separation bound is \. Then 73, (x) > A\p — 2y for atleast one j € [2n] and thus E;(x) < y; — s (A —2p) = 0.

Property 4. 7 (z) = max;en{ Ei(z),0} for x € R™.

Since max{z,y} = x + o(y — x) for z,y € R and F} (x) > 0 for all i and j, we have that

o(Foi(@) + Foy(x)) = Foy(x) + Fp(x)
= o(Fgi_1(2) + o(Eii(z) — F5;_4(x))
= max{Fy;_,(z), Ei(x)}
= max{o(Fy;_»(7) + Fz;_»(v)), Ei(x)}.

Using the above equation repeatedly, we have that F(z) = o(Foy(z) + Fan(z)) = max¥ {E;(x), FS(z)} =
max  {E;(z),0}.

We now show that F satisfies the conditions of the theorem. Let & € By (x5, 1) for s € [N]. By Property 2, Es(x) = ys;
and if i # s and y; = ys, then E;(z) < ys. By Property 3, if y; # ys, then E;(z) < 0. By Property 4, F(z) =
max;en{Ei(r)} = Eg(x) = ys; that is, F is robust at , with budget .

We now estimate the number of nonzero parameters. For ¢ € [N], constructions (i-1.1) and (i-2.1) need 3 parameters; (i-1.2)
needs 8n parameters; (i-1.3) and (i-2.3) need 2n parameters; (i-2.2) need 2n + 2 parameters. Totally, (N — 1)(12n +5) + 2
parameters are needed. O
A.5. Proofs for Theorem 3.11

We give a lemma below.

Lemma A.7. There exists a network
F € H,,,0(10g n),0(n),0(n) Stch that F(x) = ||x||«; that is, there exists a network F : R" — R with depth O(logn),
width O(n), and O(n) nonzero parameters such that F () = ||z||oc.

Proof. Let e = [log, n]. Without loss of generality, we assume that n = 2¢. Then F has depth 2e and for ¢ € [e + 1], the
(2i — 1)-th layer has width 2°~*2, and the 2i-th layer has width 2¢~F1.

Denote W; and b; to be the weight matrix and the bias of the -th layer of F. The first and second layers will change z to |z|.
The first layer has width 2°*! and the second layer has width 2°, which are defined below.

Wf” = 1and Wf”l’i = —1; other entries of W7 are 0. by = 0.

W;Zl = 1and Wé’mﬂ = 1; other entries of W5 are 0. by = 0.
Since o () 4+ o(—x) = |z| for any = € R, it is easy to check that 72 (x) = o(Wao (Wix)) = ||
For i € [e], the (2i + 1)-th and the (2i + 2)-th layers are defined below.

Fim(x) = o(F3M(x)), wherem = 0,1,...,2¢7" — 1.

FalltH (@) = o(F3 T (x) — F3m (), where m = 0,1,...,2°7¢ — 1.

Fo(x) = o(F2m, (z) + Falt ! (x)), where m = 0,1,..., 267 — 1.
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For i € [e + 1], using o(x — y) + y = max{z, y} for any z,y € R, we have that

f2@+2($)
= o(F(z) + Foit ()

2m+1
= 2%711( )+ fzﬁJ{ ()

= o(FP @) + o (F (@)~ F(a)
= B+ (P @) - FP @)
= max{F" (a), B (@)}

The (2e + 2)-th layer has width 1 and is the output

F(x) = Faeqa(2)
= max{Fg(v), Fa(2)}
= maX{fée—Q(x)PFge—Z(x)?JT'.226—2(:L')7af21e—2(x)}

= max{}-ge(x),}—ge—l(x)’ e ,]:22(.%‘), ’]:21(1:)}

= [l

We now estimate the number of parameters. The first two layers need 4d nonzero parameters. For i € [e], the (2¢ + 1)-th
layer and (2i + 2)-th layer need 5 - 2% parameters. So, we need > ;_, 5-2°7¢ = O(2¢) = O(n) parameters. Then the
lemma is proved. O

‘We restate the theorem for convenience.

Theorem A.8. For any dataset D € B, n, the hypothesis space H,, o(N 10g(n)),0(n),0(Nnlog(n)) CONtains a network F
which is an optimal robust memorization of D via Lipschitz; that is, F is a memorization of D and Lip__(F) = 2/Ap.

Proof. Let D be defined in section 3.4 and C' € R satisfy C' + mgk) —0.5Ap > 0 forall i € [N], k € [n]. The network
has N(2[log(n)] + 5) + 1 hidden layers which will be defined below.

Step 1. The first layer has width n + 1: FO(z) = 2 and F/ (z) = o(z1) + C) = 21 + C, where j € [n].

Step 2. Let s, = (2[log(n)] +5)(k — 1) 4+ 2. For k € [N], we will use the s-th layer to the (s, + 2[log(n)| + 4)-th layer
to check if ||x — x||coc < 0.5Ap. Step 2 consists of three sub-steps.

Step 2a. We use the sj-th layer and the (sj + 1)-th layer to calculate |« — x|. The s-th layer has width 3n + 1 and is
defined below.

Fo (@) = o(F) _1(2));

Fi (2) = o(F,_4(2) —al) = C), where j € [n];
Foti(z) = o(~ ]'—gk () + (J) + C), where j € [n];
-7:52:+j( )= O’(J:jk 1(2)), where j € [n].

The (s, + 1)-th layer has width 2n + 1 and is defined below.
Fo (@) = o(F2 (2)):

FI (@) = o(Fi (x) + FrHi(x)), where j € [n];

‘an;;]l(m) = o(F2rti(x)), where j € [n].

The s-th layer needs 5n + 1 nonzeros parameters and (s + 1)-th layer needs 3n + 1 nonzeros parameters.
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Step 2b. Lemma A.7 is used to calculate ||z — zx||o. By Lemma A.7, there exists a network H : R™ — R with 2[log(n)]
hidden layers, width O(n), and O(n) nonzero parameters to compute H () = ||z||o for x € R™. Since H has 2[log(n)]
hidden layers, we set the output of the (s + 2[log(n)] + 1)-th layer to be

F o +oflogm)+1(®) = 0 (FJ 11 (2));
F o vofogm+1(®) = H(FS 11(@), s FL 1 (@) = [[Fopra (@)|]oos
Fi:jZHOg(n)]+1(m) = U(]::kiﬁ (z)), where j € [n].

Step 2c. Use the (s + 2[log(n)] + 2)-th to the (s + 2[log(n)] + 4)-th layers to check if ||z — 2k||co < 0.5Ap. The
(sk + 2[log(n)] + 2)-th layer has width n 4 4 and is defined below

Feer2ogtny +2(®) = O(FY L anog(my)+1(2);

(
Fger2nogmy+2(®) = 0(=2/ AT, L oniogny1+1 (@) + 1);
Feer2nogmy+2(8) = (L, Lopioginy 41(%) = 2)5
F o v2nogm+2(®) = (= F Lanogmy1+1(7) +2);
]:qk+2(1og(n)1+2(33) o s:_+2[10g(n)]+1( x)), where j € [n].

The (si + 2[log(n)] + 3)-th layer has width n + 3 and is defined below

F oot 2f10g(m)+3(®) = 0(Fo tafogmy+2(®) + UeF g tafogmy +2(%):
T aet2togm]+3 () = 0(Fy, fafog(ny)+2);
Feer2nogn +3(®) = (5 sonogmy+2 — (Fayt2niogm+2(®) + F2, 42710g(m)1 +2(%));
F o nogtn+3(%) = O atiog(uy 42(2)). where j € [n].
The (s + 2[log(n)] + 4)-th layer has width n + 1 and is defined as

fgﬁzﬂog(n)]ﬂ(m) = 0(fgk+2rlog(n)]+3(x) - yk’(]:slkJr2|'log(nﬂ+3(w) - fiﬂﬂog(n)ws(x)));

, o .
Ft2ftog(my] 44 (%) = 0(F Lonog(ny1+3(%)), where j € [n].
It is easy to check that if 77, (z) = [2() — 27|, Then
FavoMogm+2(®) = 0(=2/ApF} L oriog(ny+1 (@) +1) >0
if and only if ||z — 21 ||co < 0.5Ap. These three layers need 3n + 16 nonzeros parameters.

Step 3. The output is F(z) = F{ . ori0e(m)144(%) — 2. The network JF has width O(n), depth O(N log(n)), and

O(Nnlog(n)) nonzeros parameters.
We now show that F satisfies the condition of the theorem; that is F memorizes D and satisfies Lip__ (F) = 2/Ap.

Property 1. ]:gk ((x) = 2Y) 4 Cforj € [n]and k € [N]. When k = 1, s, — 1 = 1. By Step 1, we have that

.7:5]1 1 (z ):]:j( ) = 2) + C. When k > 1, we have that

ng+1 1 (Z‘)

+2
= 0(F, t21og(m+4®) = OFL L opiog(ny) +3(%))

(Pl ooty +2(®)) = 0 (F o iogmy 41(2)
(Fithi (@) = o(F2Hi(x) = o(F, 1 (x))
= fik 1 ().

g
g

Then, ]:]kJrl (z) = FI () = - ]:J1 (z) = ]:f(a:) =2 L.

Sk—



Mathematical Theory of Adversarial Deep Learning

Property 2. 7/, (z) = [z) — 2’| and F1 )11 (@) =

= ||z — zk||oo for j € [n].

Since o(x) 4+ o(—x) = |z| for any x € R, from Step 2a, .ngﬂ( x) = |F _(x) - :L',(j) — C| for j € [n]. By Property
1, }'Sk ((z) = 2U) 4 C for j € [n]. Then, fgkﬂ(x) = |z(@) — g)| for j € [n]. From Step 2b, we have that
}—sk+2ﬂog(n)]+1( z) = [|x — 2x|oo for j € [n].

Property 3. F k+2[log(nﬂ+4( ) =2+ Yu, 0(1 = 2/Ap|[x — Tu, || o), Where wy, = argmin; ¢ ||z — @[ oo

We prove the property by induction on k. We first show that the statement is valid for £ = 1. We have that w; = 1 and

-7:21+2ﬂog(n)1+2(f”) = -7:21+2ﬂog(n)1+1( z) = ]:51+1( r) = }-21( )= ]:sl 1(%) = 2. From Step 2c and Property 2,
Foi2mog(m+3(@)

= U(f£1+2[10g( )1+2( )+yo}—1+2 [log(n)]+2 2(2))

= (2+y00(1 - 2/)\7) 1+2[10g(n)]+1( ))

= 2+yoo(— 2//\’D]: 1+2[10g(nﬂ+1( z) +1)

= 24 yoo(l—2/Apllx — zo||co)-
Since Of1+2nog< w142 = o(F negmn (@) —2) = o2 -2) = 0 and 71+2qog< wy1+2(%)
o(=F sofiogny+1(¥) +2) = (2 —2) = 0, we have thatlf +2M10g(m1+3(%) = TPy taogm 2 ~

2 _ _
(]:lerz[log(n)Hz( z) + F, 1+2nog(nﬂ+2( x))) = U(]:sl+2r1og(n)1+2) = }_sl+2rlog(nﬂ+3 Then

]:s1+2ﬂog(n)]+4(x)

= U('F81+2|—10g 11+3(@) = ol sl+2(1og(n)]+3( z)
_]:sl+2[1og(n)]+3( z)))

= f31+2(1og(n)1+3(50)

= 2+yoo (1 —2/Apllz — zol)-

We have proved the statement for £ = 1.

Assume that the statement is valid for k — 1; that is, F? 1Jrznog(n)HZl( ) =24 yu,_,0(1 = 2/Ap||T — Ty, ||0o)- We

have that 7 +2ﬂog(n)]+2( T) = ‘Fsk+2[log(nﬂ+1( z) = ]:sk+1( x) = F) (x) = Fo _1(2) = 2+ Yuy,_,0(1 = 2/Ap||z —
T, ||oo) > 1, and we also have that fSk+2(log(ft)]+2( z) =o(=2/ApF k+2“0g(n)]+1( z) + 1) < 1. Then

0
]:sk +2ﬂog(n)]+3(x)

= J(‘ng—&-Qﬂog(n)]-&-Q(x) + i, k+2r10g(")]+2( z))
= U(fgk+2(1og(n)1+2(x)
+yka(1 - 2/)‘D k+2[10g(n)]+1( )))

= Fot2Miogmy+2(7)

Fyro (1= 2/ADFL orogny)+1(®))
= Foo1(@) +yko (1 = 2/ApF] L oriogm+1(®))

= ]:Sk 1($)+yk7 k+2[log(n)—\+2( )

(23)

Since 77,y ofiog(ny+2(%) = 0 fk+2rlog(n)1+1( 2) = 2) and F7 o piogny142(2) = 0(=FG yariogn) 1 (%) +2), we have

_ 2 _ 1
that 72, orioa(m14+3(%) = 0(FL tonogim)1re — Foerzmiogm)]+2(®) T For ooy +2(®)) = 0(Fs, yofiogm)lre —
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|]'—£k+2rlog(n)1+1 (z)

We divide the proof into two cases.

—2|). Then

]:gk+2ﬂog(n)]+4(x)

U(]:gﬁzmog(n)ws(x)*

yk(‘Fslk+2|'log(n)-\+3( ) — f52k+2]—log(n)]+3(x)))
0’(]:2;671( ) + YiF, k+2(1og(n)]+2( x)

_yk(]:sk-"-Qﬂog(n)]-‘y-Q( ) B U(fsk+2flog(nﬂ +2(Z‘)—
[ Fo—1(z) = 2]))).

Case 1. If x ¢ B (zk,0.5Mp), then F, k+2(log(n)]+2( z) = o(=2/ApF, k+2(log(n)1+1( x) +1)

Zk|loo) = 0 and

Feet2nog(ny] +4 (@)

= o(Fo 1 (@) + kT, Lafiogny)+2(7)
“Ue(F s, 2o (n] 42 (@)
U(fsk+2(1og(n]+2( x) — |Fy sn—1(z) —2[)))

= ]:sk 1 ()

= ‘ng,1+2|—log(nﬂ+4(x)

= 24 yuw, ,0(1=2/2p|[z — 2w, [|o0)

= 2+ Yu, 0(1 = 2/Ap|[7 — Tu, [|oo)-

Case 2. If & € Boo(xk,0.5Mp), then F or1o00110(2) = 0(=2/ADFL Lonogmy11(@) + 1)

Zk|loo) > 0 and using equation 23:

Consider two sub-cases:

F o+ 2Mog(m)] +4(%)

0(Fo—1(®) + UnFJ, 4 oriog(ny +2(2)
*yk(fewzﬂog(nﬂw( ) = 0(Fey 2108(m)] +2()
—|F 1 (@) —20)))
o(Fo—1(@) + UnFL 4 oriog(ny +2(2)
(L g0 142(@): 2 = F, 4 (@)]})
02+ Yu—10(1 = 2/Ap||2 = Ty [loc)+
k(1 = 2/Aplz — zkllo)
—yr(min{1l — 2/Ap||x — zk||cos
(1 =2/Apllx = zw,_,[loc)}))-

= O’(]. — 2/)\[)”1‘ —

= O’(l — 2/)\’[)”1‘ —
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Case 2.1. If ||z — Ty, _, ||co > 0.5Ap, then wy, = k and hence

fgk+2(1og(n)]+4($)

= 024 Yu,_,0(1 = 2/Mpl[x — Tw,_, [|oo)+
yr(1 = 2/Apllz — zklo)
—yr(min{l — 2/Ap||z — 2| co,

o(1=2/Apllz = 2w, [lo)}))

= 02+ ye(1=2/Apllz — z[|s))

= 2+ y(1—2/Apllr — zill)

= 2+ Yu, (1 = 2/Mpl|lz — Tap, |[o0)-

Case 2.2. If ||z — Ty, _, ||oo < 0.5Ap, then y,,,_, = yi and hence

fgk+2(1og(n)]+4(x)
= 02+ Yuw,_ ,0(1 —2/Ap||T — Twy,_||oo)+
yr(1 = 2/Apllx — zk|lo0)
—yr(min{1 — 2/Ap|[x — 2o,
o(1=2/Ap||lz — Zw,_,l)}))
= 02+ Yu_ (1 =2/Ap[|z — 2w, _, )
Ty (1 = 2/A||z — z/loo)
—yr(min{1 — 2/Ap|[x — 2o,
1=2/Mpl[z — 2w, _,[lsc}))
= 2+ yrmax{l —2/Ap||lz — k||,
1=2/Aplz — 2w, o}
= 24y, 0(1 — 2/Ap||T — Zuy |]oo)-

The property is proved.
Property 4. F is a memorization D and has Lip__(F) = 2/\p.
By Property 3, the output is

F(2) = Foysonopm+4(2) = 2 = Yuy (1 = 2/Ap[|2 = Ty o)
where wy = argmin;¢|y[|2 — 24| oo-

If x = z,, then wy = s and F(x) = y,; that is, F memorizes D. If z € B(x,,0.5\p) for some s € [N], then wy € [N]
and F(z) = yuy (1 — 2/Ap||x — 2wy ||oo) such that the local Lip (F) = 2/Ap over B(zy,,0.5Ap). If 2 is not in
UN  B(z5,0.5\p), then || — T4 ||oo > 0.5Ap. Hence F(z) = 0 and the local Lip__(F) = 0. The theorem is proved. [



