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ABSTRACT

With the widespread adoption of machine learning systems, the need to curtail
their behavior has become increasingly apparent. This is evidenced by recent
advancements towards developing models that satisfy robustness, safety, and fair-
ness requirements. These requirements can be imposed (with generalization guar-
antees) by formulating constrained learning problems that can then be tackled by
dual ascent algorithms. Yet, though these algorithms converge in objective value,
even in non-convex settings, they cannot guarantee that their outcome is feasible.
Doing so requires randomizing over all iterates, which is impractical in virtu-
ally any modern applications. Still, final iterates have been observed to perform
well in practice. In this work, we address this gap between theory and practice
by characterizing the constraint violation of Lagrangian minimizers associated
with optimal dual variables, despite lack of convexity. To do this, we leverage
the fact that non-convex, finite-dimensional constrained learning problems can be
seen as parametrizations of convex, functional problems. Our results show that
rich parametrizations effectively mitigate the issue of feasibility in dual methods,
shedding light on prior empirical successes of dual learning. We illustrate our
findings in fair learning tasks.

1 INTRODUCTION

Machine learning (ML) has become a core technology of information systems, reaching critical
applications from medical diagnostics (Engelhard et al., 2023) to autonomous driving (Kiran et al.,
2021). Consequently, it has become paramount to develop ML systems that not only excel at their
main task, but also adhere to requirements such as fairness and robustness.

Since virtually all ML models are trained using empirical risk minimization (ERM) (Vapnik, 1999),
a natural way to impose requirements is to explicitly add constraints to these optimization prob-
lems (Cotter et al., 2018; Chamon & Ribeiro, 2020; Velloso & Van Hentenryck, 2020; Fioretto et al.,
2021; Chamon et al., 2023). Recent works (Chamon & Ribeiro, 2020; Chamon et al., 2023) have
shown that from a probably approximately correct (PAC) perspective, constrained learning is essen-
tially as hard as classical learning and that, despite non-convexity, it can be tackled using dual al-
gorithms that only involve a sequence of regularized, unconstrained ERM problems. This approach
has been used in several domains, such as federated learning (Shen et al., 2022), fairness (Cotter
et al., 2019; Tran et al., 2021), active learning (Elenter et al., 2022), adversarial robustness (Robey
et al., 2021), and data augmentation (Hounie et al., 2022).

These theoretical works, however, only address (i) the estimation error, arising from the empir-
ical approximation of expectations in ERM and (ii) the approximation error, arising from using
finite-dimensional models with limited functional representation capability. These are the leading
challenges in unconstrained learning since the convergence properties of unconstrained optimization
algorithms are well-understood in convex (e.g., (Bertsekas, 1997; Boyd & Vandenberghe, 2004)) as
well as many non-convex settings (e.g., for overparametrized models (Soltanolkotabi et al., 2018;
Brutzkus & Globerson, 2017; Ge et al., 2017)). This is not the case in constrained learning, where
(iii) the optimization error can play a crucial role.
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Indeed, dual methods are severely limited when it comes to recovering feasible solutions for con-
strained problems. In fact, not only might their primal iterates not converge to a feasible point [e.g,
Fig. 1 or (Cotter et al., 2019, Section 6.3.1)], but they might not converge at all, displaying a cy-
clostationary behavior instead. This problem is hard even from an algorithmic complexity point-
of-view (Daskalakis et al., 2021). For convex problems, this issue can be overcome by simply
averaging the iterates (Nedić & Ozdaglar, 2009). Non-convex problems, however, require random-
ization (Kearns et al., 2018; Agarwal et al., 2018; Goh et al., 2016; Chamon et al., 2023). This
approach is not only impractical, given the need to store a growing sequence of primal iterates, but
also raises ethical considerations, since randomization further hinders explainability.

Yet, it has been observed that for typical modern ML tasks, taking the last or best iterate can perform
well in practice (Cotter et al., 2018; Chamon & Ribeiro, 2020; Chamon et al., 2023; Robey et al.,
2021; Elenter et al., 2022; Hounie et al., 2022; Shen et al., 2022; Gallego-Posada et al., 2022).
This work addresses this gap between theory and practice by characterizing the sub-optimality and
infeasibility of primal solutions associated with optimal dual variables. To do so, we observe that,
though non-convex, constrained learning problems are generally parametrized versions of benign
functional optimization problems. We then show that for sufficiently rich parametrizations, solutions
obtained by dual algorithms closely approximate these functional solutions, not only in terms of
optimal value as per (Cotter et al., 2019; Chamon & Ribeiro, 2020; Chamon et al., 2023), but also
in terms of constraint satisfaction. This implies that dual ascent methods yield near-optimal and
near-feasible solutions without randomization, despite non-convexity.

2 CONSTRAINED LEARNING

2.1 STATISTICAL CONSTRAINED RISK MINIMIZATION

As in classical learning, constrained learning tasks can be formulated as a statistical optimization
problem, namely,

P ⋆
p = min

θ∈Θ
ℓ0(fθ) := E(x,y)[ℓ̃0(fθ(x), y)]

s. to ℓi(fθ) := E(x,y)[ℓ̃i(fθ(x), y)] ≤ 0, i = 1, ..,m
(Pp)

where fθ : X → Y is a function associated with the parameter vector θ ∈ Θ ⊆ Rp and the
hypothesis class Fθ = {fθ : θ ∈ Θ} induced by this family of functions is assumed to be a
subset of some compact functional space F ⊂ L2. Throughout the paper, we use the subscript p
(parametrized) to refer to quantities related to (Pp). The functionals ℓi : F → R, i = 0, ..,m,
denote expected risks for loss functions ℓ̃i. In this setting, ℓ0 can be interpreted as a top-line metric
(e.g., accuracy), while the functionals ℓ1, .., ℓm encode statistical requirements that the solution must
satisfy (see example below).

Example 2.1: Learning under counterfactual fairness constraints. Consider the problem of
learning an accurate classifier that is insensitive to changes in a set of protected attributes. Due to
the correlation between these attributes and other features, simply hiding them from the model is not
enough to guarantee this insensitivity. To do so, this requirement must be enforced explicitly. Indeed,
consider the COMPAS study (ProPublica, 2020), with the goal of predicting recidivism based on past
offense data while controlling for gender and racial bias. Explicitly, let ℓ̃0 denote the cross-entropy
loss ℓ̃0(ŷ, y) = − log[ŷ]y . By collecting the protected features into the separate vector z, i.e.,
x = [x̃, z], we can formulate the problem of learning a predictor insensitive to transformations ρi
that encompass all possible single variable modifications of z. Explicitly,

min
θ∈Rp

E
[
ℓ̃0 (fθ(x), y)

]
s. to E

[
DKL(fθ(x̃, z)

∥∥ fθ(x̃, ρi(z))
]
≤ c, i = 1, . . . ,m,

where c > 0 is the desired sensitivity level. Note that this formulation corresponds to the notion
of (average) counterfactual fairness from (Kusner et al., 2018, Definition 5). In this setting, each
constraint represents a requirement that the output of the classifier be near-invariant to changes in
the protected features (here, gender and race). For instance, the prediction should be (almost) the
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Figure 1: Feastibility of primal iterates in a constrained learning problem with fairness requirements.
Left: Example of a hard constraint which oscillates between feasibiliy and infeasibility, and an
easy constraint which remains feasible for all iterations. Right: After training accuracy has settled
(around half of training epochs), all but the last constraint are infeasible 30-45 % of the iterations.
In fact, at least one constraint is violated on 85% of the iterations shown. We cannot therefore stop
the algorithm and expect to obtain a feasible solution.

same whether, all else being equal, the gender of the input is changed from “Male” to “Female” (and
vice-versa) or the race is changed from “Caucasian” to “African-American.”

Note that even if the losses ℓ̃i(ŷ, y) are convex in (ŷ, y) (as is the case of the cross-entropy), the
functions ℓi need not be convex in θ. This is the case, for instance, for typical modern ML mod-
els (e.g., if fθ is a neural network, NN). Hence, (Pp) is usually a non-convex optimization problem
for which there is no straightforward way to project onto the feasibility set (e.g., onto the set of fair
NNs). In light of these challenges, we turn to Lagrangian duality.

2.2 LEARNING IN THE DUAL DOMAIN

Let the Lagrangian L : F × Rm
+ → R be defined as

L(ϕ, λ) = ℓ0(ϕ) + λT ℓ(ϕ), (1)
where ℓ = [ℓ1, .., ℓm] is a vector-valued functional collecting the constraints of (Pp). For reasons that
will become apparent later, we define L over F ⊇ Fθ. For a fixed dual variable λp, the Lagrangian
L(fθ, λp) is a regularized version of (Pp), where ℓ acts as the regularizing functional. This leads to
the dual function

gp(λp) = min
θ∈Θ

L(fθ, λp), (2)

based on which we can in turn define the dual problem of (Pp) as
D⋆

p = max
λp⪰0

gp(λp). (Dp)

This saddle-point problem can be viewed as a two-player game or as a regularized learning problem,
where the regularization parameter is also an optimization variable. As such, (Dp) is a relaxation of
(Pp), implying that D⋆

p ≤ P ⋆
p . This is known as weak duality (Bertsekas, 1997).

The dual function gp in (2) is concave, irrespective of whether (Pp) is convex (it is the pointwise
minimum of a family of affine functions on λ (Boyd & Vandenberghe, 2004)). As such, though
gp may not be differentiable, it can be equipped with supergradients that provide potential ascent
directions. Explicitly, a vector s ∈ Rm is a supergradient of the concave function h : Rm → R at
a point x if h(z) − h(x) ≥ sT (z − x) for all z. The set of all supergradients of h at x is called the
superdifferential and is denoted ∂h(x). When the losses ℓi are continuous, the superdifferential of
gp admits a simple description (Nedić & Ozdaglar, 2009), namely,

∂gp(λp) = conv
[
ℓ(fθ(λp)) : fθ(λp) ∈ F⋆

θ (λp)
]
,

where conv(S) denotes the convex hull of the set S and F⋆
θ (λp) denotes the set of Lagrangian

minimizers fθ(λp) associated to the multiplier λp, i.e.,
F⋆

θ (λp) = argmin
θ∈Θ

L(fθ, λp). (3)
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Algorithm 1 Dual Constrained Learning
1: Inputs: number of iterations T ∈ N, step size η > 0.
2: Initialize: λ(1) = 0
3: for t = 1, . . . , T do
4: Obtain fθ(t) such that

fθ(t) ∈ argmin
θ∈Θ

ℓ0(fθ) + λ(t)T ℓ(fθ) = argmin
θ∈Θ

L(fθ, λ(t))

5: Update dual variables

λi(t+ 1) = max
[
0, λi(t) + η ℓi(fθ(t))

]
6: end for

In particular, this leads to an algorithm for solving (Dp) known as projected supergradient ascent
(Polyak, 1987; Shor, 2013) that we summarize in Algorithm 1.

When executing Algorithm 1, dual iterates λp(t) move in ascent directions of the concave function
gp (Shor, 2013, Section 2.4). Yet, the sequence of primal iterates {fθ(t)}Tt=1 obtained as a by-
product need not approach the set of solutions of (Pp). The experiment in Figure 1 showcases this
behaviour and illustrates that, in general, one can not simply stop the dual ascent algorithm at any
iteration t and expect the primal iterate fθ(t) to be feasible. Additionally, the Lagrangian minimizers
are not unique. In particular, for an optimal dual variable λ⋆

p ∈ Λ⋆
p, the set F⋆

θ (λ
⋆
p) is typically not

a singleton and could contain infeasible elements (i.e, ℓi(fθ(λ⋆
p)) > 0 for some i ≥ 1). Even more

so, as λp(t) approaches Λ⋆
p, the constraint satisfaction of primal iterates can exhibit pathological

cyclostationary behaviour, where one or more constraints oscillate between feasibility and infeasi-
bility, see e.g., (Cotter et al., 2019, Section 6.3.1). For these reasons, convergence guarantees for
non-convex optimization problems typically require randomization over (a subset of) the sequence
{fθ(t)}Tt=1, which is far from practical [see e.g, (Agarwal et al., 2018, Theorem 2), (Kearns et al.,
2018, Theorem 4.1), (Cotter et al., 2019, Theorem 2), (Chamon et al., 2023, Theorem 3)]. In the
sequel, we show conditions under which this is not necessary.

3 NEAR-OPTIMAL SOLUTIONS OF CONSTRAINED LEARNING PROBLEMS

Primal iterates obtained as a by-product of the dual ascent method in Algorithm 1 may fail to be
solutions of (Pp). However, it has been observed that taking the last or best iterate can perform
well in practice. This can be understood by viewing (Pp) as the parametrized version of a benign
functional program, ammenable to a Lagrangian formulation. This unparametrized problem does
not suffer from the same limitations as (Pp) in terms of primal recovery and we can thus use its
solution as a reference point to measure the sub-optimality of the primal iterates obtained with
Algorithm 1.

The unparametrized constrained learning problem is defined as

P ⋆
u = min

ϕ∈F
ℓ0(ϕ)

s.to ℓi(ϕ) ≤ 0, i = 1, ..,m
(Pu)

where F is a convex, compact subset of an L2 space. For instance, F can be a subset of the space
of continuous functions or a reproducing kernel Hilbert space (RKHS) and Fθ can be induced by
a neural network architecture with smooth activations or a finite linear combinations of kernels.
In both cases, we know that Fθ can uniformly approximate F arbitrarily well as the dimension
of θ grows (Hornik, 1991; Berlinet & Thomas-Agnan, 2011). The smallest choice of F is in fact
conv(Fθ) (closed convex hull of Fθ).

Analogous to the definitions from Section 2.1,

gu(λu) := min
ϕ∈F

L(ϕ, λu)
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denotes the unparametrized dual function, F⋆(λu) = argminϕ∈F L(ϕ, λu) is the set of Lagrangian
minimizers ϕ(λu) associated to λu and

D⋆
u = max

λu⪰0
gu(λu) (Du)

is the unparametrized dual problem. The subscript u is used to denote quantities related to the
unparametrized problem (Pu). We now present two assumptions that allow us to characterize the
relation between the dual and primal solutions of problem Du.
Assumption 3.1. The functionals ℓi , i = 0, . . . ,m, are convex and M−Lipschitz continuous in F .
Additionally, ℓ0 is µ0−strongly convex.

Note that we require convexity of the losses with respect to their functional arguments and not model
parameters θ, which holds for most typical losses, e.g, mean squared error and cross-entropy loss.
Assumption 3.2. There exists ϕ ∈ F such that ℓ(ϕ) ≺ min[0, ℓ(ϕ(λ⋆

p)), ℓ(fθ(λ
⋆
p))] for all ϕ(λ⋆

p) ∈
F(λ⋆

p), fθ(λ
⋆
p) ∈ Fθ(λ

⋆
p) and λ⋆

p ∈ Λ⋆
p.

Assumption 3.2 is a stronger version of Slater’s constraint qualification, which requires only ℓ(ϕ) ≺
0. Here, we require the existence of a (suboptimal) candidate ϕ that is strictly feasible even for
perturbed versions of (Pu).

Under these assumptions, the Lagrangian minimizer is unique. This makes the superdifferential
of the dual function a singleton at every λu: ∂gu(λu) = {ℓ(ϕ(λu))}, which means that the dual
function gu(λu) is differentiable (Shor, 2013). Let ϕ⋆ be a solution of problem (Pu). Assumptions
3.1 and 3.2 imply that strong duality (i.e, P ⋆

u = D⋆
u) holds in this problem, and that at λ⋆

u, there is a
unique Lagrangian minimizer ϕ⋆(λ⋆

u) = ϕ⋆ which is, by definition, feasible (Bertsekas, 1997).

The only difference between problems (Pp) and (Pu) is the set over which the optimization is carried
out. Thus, if the parametrization Θ is rich enough (e.g, deep neural networks), the set Fθ is essen-
tially the same as F , and we should expect the properties of the solutions to problems (Dp) and (Du)
to be similar. This insight leads us to the ν−near universality of the parametrization assumption.
Assumption 3.3. For all ϕ ∈ F , there exists θ ∈ Θ such that ∥ϕ− fθ∥L2 ≤ ν.

The constant ν in Assumption 3.3 is a measure of how well Fθ covers F . Consider, for instance,
that F is the set of continuous functions and Fθ the set of functions implementable with a two-
layer neural network with sigmoid activations and K hidden neurons. If the parametrization has 10
neurons in the hidden layer, it is considerably worse at representing elements in F than one with
1000 neurons. While determining the exact value of ν is in general not straightforward, any ν > 0
can be achieved for a large enough number of neurons (Hornik, 1991). The same holds for the
number of kernels and an RKHS (Berlinet & Thomas-Agnan, 2011).

Given these facts, it is legitimate to ask: how close are the elements of Fθ(λ
⋆
p) to ϕ⋆ in terms of their

optimality and constraint satisfaction? Bounding these errors would theoretically justify the use of
last primal iterates, doing away with the need for randomization.

3.1 NEAR-OPTIMALITY AND NEAR-FEASIBILITY OF DUAL LEARNING

A key challenge of using duality to undertake (Pp) is that the value D⋆
p of the dual problem (Dp)

need not be a good approximation of the value P ⋆
p of (Pp) (i.e, lack of strong duality). This was

tackled in (Chamon et al., 2023, Prop. 3.3). Explicitly, under Assumptions 3.1-3.3, the duality gap
of problem (Pp) is bounded as in

P ⋆
p −D⋆

p ≤ Mν(1 + ∥λ̃⋆∥1) := Γ1, (4)

where λ̃⋆ maximizes g̃p(λ) = gp(λ) + Mν∥λ∥1. This result, however, only shows that the dual
problem can be used to approximate the value of the constrained problem (Pp). It says nothing about
whether it can provide a (near-)feasible solution, which is the main issue addressed in this paper. We
next characterize the sub-optimality and constraint violation of the Lagrangian minimizers fθ(λ⋆

p) ∈
Fθ(λ

⋆
p) by comparing these primal variables with the solution of the unparametrized problem ϕ⋆.

The curvature of the unparametrtized dual function gu(λu) around its optimum is central to this
analysis. We will first provide a result with the following assumption on this curvature and then
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describe its connection to the properties of (Pp). Let Hλ := {γλ⋆
u +(1− γ)λ⋆

p : γ ∈ [0, 1]} denote
the segment connecting λ⋆

u and λ⋆
p.

Assumption 3.4. The dual function gu is µg−strongly concave and βg−smooth along Hλ .

The following proposition characterizes the constraint violation for all fθ(λ⋆
p) ∈ F⋆

θ (λ
⋆
p) with re-

spect to ϕ⋆; the optimal, feasible solution of the unparametrized problem.
Proposition 3.1. Under Assumptions 3.1-3.4, any fθ(λ

⋆
p) ∈ F⋆

θ (λ
⋆
p), approximates the constraint

value of the solution ϕ∗ of (Pu) as in:

∥ℓ(fθ(λ⋆
p))− ℓ(ϕ⋆)∥22 ≤ 2βgMν(1 + ∥λ⋆

p∥1)
(
1 +

√
βg

µg

)2

.

Since (Pu) is feasible, ℓ(ϕ⋆) is non-positive. Hence, the approximation bound in Proposition 3.1 is
stronger than an infeasibility bound on fθ(λ

⋆
p). Indeed, it says not that ℓ(fθ(λ⋆

p)) ≤ 0, but that it
approximates the constraint values of the optimal solution ϕ⋆. The ratio βg/µg (i.e, the condition
number of gu), which determines optimal step sizes in dual ascent methods (Polyak, 1987), also
plays a key role here, representing the tension between two fundamental forces driving this bound.
On the one hand, the sensitivity of the dual problems, controlled by µg , which determines how
different λ⋆

u and λ⋆
p are. On the other hand, the sensitivity of the primal problems, linked to the

smoothness constant βg , which determines the effect of this difference on feasibility.

Nevertheless, Proposition 3.1 remains abstract. To connect it to the properties of (Pp), we rely on
the following assumptions to obtain bounds on µg and βg .
Assumption 3.5. The functionals ℓi , i = 0, . . . ,m are β-smooth on F .
Assumption 3.6. The Jacobian Dϕℓ(ϕ

⋆) is full-row rank at the optimum, i.e, there exists σ > 0
such that inf∥λ∥2=1 ∥λTDϕℓ(ϕ

⋆)∥L2
≥ σ, where Dϕℓ(ϕ

⋆) denotes the Fréchet derivative of the
functional ℓ at ϕ⋆ (see definition in Appendix A.1).

Assumption 3.6 is unlike the previous regularity assumptions over which a practitioner has full
control and is not straightforward to satisfy at first sight. It is, however, a typical assumption used to
derive duality results in convex optimization known as linear independence constraint qualification
or LICQ (Bertsekas, 1997). As such, it could be replaced by a different constraint qualification,
such as a stricter version of Assumption 3.2. This is, however, left for future work. Under these
assumptions, we can describe the curvature of gu in terms of the problem parameters as follows.
Lemma 3.1. Under assumptions 3.1, 3.2, 3.5 and 3.6, gu(λu) is µg−strongly concave and
βg−smooth on Hλ for µg = µ0 σ2

β2(1+∆)2 and βg =
√
mM2

µ0
, where ∆ = max(∥λ⋆

u∥1, ∥λ⋆
p∥1).

Having characterized the curvature of the unparametrized dual function gu, we can now state the
main result of this section, which puts together Proposition 3.1, Lemma 3.1, and the near-optimality
result from (Chamon et al., 2023) in (4) to bound the near-optimality and near-feasibility of La-
grangian minimizers associated to optimal dual variables.

Theorem 3.1. Under assumptions 3.1, 3.2, 3.3, 3.5 and 3.6, the sub-optimality and infeasi-
bility of any fθ(λ

⋆
p) ∈ F(λ⋆

p) is bounded by:

∥ℓ(fθ(λ⋆
p))− ℓ(ϕ⋆)∥∞ ≤ Γ2 := M [1 + κ1κ0(1 + ∆)]

√
2m

Mν

µ0
(1 + ∥λ⋆

p∥1) (5)

|P ⋆
p − ℓ0(fθ(λ

⋆
p))| ≤ (1 + ∥λ⋆

p∥1)Mν + Γ1 + ∥λ⋆
p∥1Γ2 (6)

with κ1 = M
σ , κ0 = β

µ0
, ∆ = max{∥λ⋆

u∥1, ∥λ⋆
p∥1} and Γ1 as in (4).

Theorem 3.1 shows that the dual problem (Dp) not only approximates the value P ⋆
p of (Pp), but

also provides approximate solutions for it. The quality of these approximations depends on three
factors. First, the sensitivity of the learning problem, as captured by the Lipschitz constant M and
the constants κ1 and κ0, that correspond to the condition numbers of the constraint Jacobian and the
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objective function respectively. Overall, these quantities measure how well-conditioned the problem
is. Second, the requirements difficulty. Indeed, the optimal dual variables can be seen as measures
of the sensitivity of the objective value with respect to constraint perturbations (see, e.g., (Boyd &
Vandenberghe, 2004)). Hence, the more stringent the constraints, the larger ∥λ⋆

u∥1 and/or ∥λ⋆
p∥1.

Finally, the approximation error depends on the factor ν that denotes the richness of the parametriza-
tion, i.e., how good it is at approximating functions in F (Assumption 3.3). In fact, Theorem 3.1
shows that as the model capacity increases (ν decreases), the approximation bounds (5)–(6) improve.
This behavior is not trivial. Indeed, while we expect that richer parametrizations lead to lower ap-
proximation errors, Theorem 3.1 states that they also make solving the optimization problem (Pp)
easier, since dual solutions then provide better approximations of primal solutions. Observe that the
effect of these factors on feasibility in (5) are similar to those on optimality in (6) and, e.g., (Chamon
et al., 2023). Next, we leverage these results to provide convergence guarantees for Algorithm 1.
But first, we outline the main ideas behind the proof of Proposition 3.1.

3.2 PROOF SKETCH

In this section, we provide a brief outline of the proof of Theorem 3.1. We begin by decomposing
the distance between constraint violations as

∥ℓ(fθ(λ⋆
p))− ℓ(ϕ⋆)∥2 = ∥ℓ(fθ(λ⋆

p))− ℓ(ϕ(λ⋆
p)) + ℓ(ϕ(λ⋆

p))− ℓ(ϕ⋆)∥2
≤ ∥ℓ(fθ(λ⋆

p))− ℓ(ϕ(λ⋆
p))∥2 + ∥ℓ(ϕ(λ⋆

p))− ℓ(ϕ(λ⋆
u))∥2

(7)

The first term captures the effect of parametrizing the hypothesis class for a fixed dual variable.
In contrast, the second term characterizes the effect of changing the dual variables on the un-
parametrized Lagrangian minimizer. This is made clear in (7) by using the fact that ϕ⋆ = ϕ(λ⋆

u) (see
discussion in Section 3). In the sequel, we analyze each of these terms separately. For conciseness,
all technical definitions from this section are deferred to Appendix A.1.

3.2.1 DUAL VARIABLE PERTURBATION

We begin by analyzing the second term in (7). Recall from the beginning of Section 3 that un-
der Assumption 3.1–3.2, it holds that ∇λgu(λ) = ℓ(ϕ(λ)). Hence, ∥ℓ(ϕ(λ⋆

p)) − ℓ(ϕ(λ⋆
u))∥2 =

∥∇λgu(λ
⋆
p)−∇λgu(λ

⋆
u)∥2. Using the βg-smoothness of gu, this gradient difference can be bounded

using ∥λ⋆
p − λ⋆

u∥2. The latter can in turn be bounded by combining the ν-universality of the
parametrization (Assumption 3.3) and convex optimization perturbation results to obtain:
Proposition 3.2. Under assumptions 3.1-3.4, the distance between the constraint violations of
ϕ(λ⋆

p) and ϕ(λ⋆
u) is bounded by:

∥ℓ(ϕ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥22 ≤ 2
β2
g

µg
Mν(1 + ∥λ⋆

p∥1) (8)

3.2.2 HYPOTHESIS CLASS PERTURBATION

Bounding the first term in (7) is less straightforward. To do so, we rely on the perturbation function
of the unparametrized problem (Pu), defined as

P ⋆
u (ϵ) = min

ϕ∈F
ℓ0(ϕ)

s.to ℓ(ϕ) + ϵ ⪯ 0,
(Pϵ)

for some perturbation ϵ ∈ Rm. Intuitively, P ⋆
u (ϵ) quantifies the impact on the objective value of

modifying the constraint specifications by ϵ. Note that the unparametrized problem (Pu) is recovered
for ϵ = 0. Motivated by the fact that we can get a strong handle on the sensitivity of the perturbation
function (Pϵ), we seek to bound ∥ℓ(fθ(λ⋆

p))− ℓ(ϕ(λ⋆
p))∥2 by instead analyzing |P ⋆

u (ϵp)− P ⋆
u (ϵu)|

for ϵp = −ℓ(fθ(λ
⋆
p)) and ϵu = −ℓ(ϕ(λ⋆

p)). Indeed, it holds for every λ ∈ Rm
+ that P †(λ) =

−gu(λ), where † denotes the Fenchel conjugate (see Appendix A.4). We can therefore relate the
curvature of gu to that P ⋆

u (ϵ) (Kakade et al., 2009) to obtain:
Proposition 3.3. Under assumptions 3.1-3.4, the distance between constraint violations associated
to the parametrization of the hypothesis class is given by:

∥ℓ(ϕ(λ⋆
p))− ℓ(fθ(λ

⋆
p))∥22 ≤ 2βgMν(1 + ∥λ⋆

p∥1)

7
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Using Propositions 3.2–3.3 in (7) yields Proposition 3.1. Theorem 3.1 is then obtained by further
leveraging Lemma 3.1 and the bound on the duality gap P ⋆

p −D⋆
p in (4) (see Appendix A.13.2).

4 BEST ITERATE CONVERGENCE

In this section, we leverage the connection between the parameterized [cf. (Pp) and (Dp)] and
unparameterized [cf. (Pu) and (Du)] problems to analyze the convergence of Algorithm 1. Seeking
a more general result, we relax Steps 4 and 5 to allow for approximate Lagrangian minimization and
the use of stochastic supergradients of the dual function respectively.

Explicitly, we assume that for all t, the oracle in Step 4 returns a function fo
θ (t) such that

L(fo
θ (t), λp) ≤ min

θ∈Θ
L(fθ, λ(t)) + ρ, (9)

for an approximation error ρ ≥ 0. In contrast to Step 4, equation 9 accounts for potential numerical
and approximation errors in the computation of the Lagrangian minimizer. The existence of such
a ρ-approximate oracle is a typical assumption in the analysis of dual algorithms (Cotter et al.,
2019; Chamon et al., 2023; Kearns et al., 2018) and is often justified by substantial theoretical
and empirical evidence that many ML optimization problems can be efficiently solved despite non-
convexity. That is the case, e.g., for deep neural networks (Zhang et al., 2021; Brutzkus & Globerson,
2017; Soltanolkotabi et al., 2018; Ge et al., 2017). Additionally, we consider that the dual variable
update in Step 5 is replaced by

λi(t+ 1) = max
[
0, λi(t) + η ℓ̂i(f

o
θ (t))

]
, (10)

where ℓ̂i(f
o
θ (t)) are conditionally unbiased estimates of the statistical risks ℓi(f

o
θ (t)), i.e.,

E[ℓ̂i(fo
θ (t))|λ(t)] = ℓi(f

o
θ (t)). This stochastic update accounts for, e.g., the use of independent

sample batches to estimate the constraint slacks ℓi(fo
θ ).

The following Lemma establishes the convergence of the best iterate of (9)–(10), i.e., of the dual
variables λi(t) that yield the largest dual function for all t.
Lemma 4.1. Let gbest

p (t|λ(t0)) = maxs∈[t0,t] gp(λ(s)) be the maximum value of the parametrized
dual function up to time t. Then, for all t0 > 1, it holds that

lim
t→∞

gbest
p (t|λ(t0)) ≥ D⋆

p −
(
ηS2

2
+ ρ

)
a.s.,

where S2 >
∑m

i=1 E
[
|ℓ̂i(fo

θ (t))|2|λ(t)
]
.

The existence of a finite S2 is implied by the assumption that Fθ ⊆ F ⊂ L2. Lemma 4.1 implies
that for any δ > 0, there exists a finite t⋆ such that λ(t⋆) achieves the value D⋆

p −
(

ηS2

2 + ρ+ δ
)

.

We denote this iterate λbest. Note that the step size η can be reduced so as to make gbest
p arbitrarily

close to D⋆
p−ρ (asymptotically). In view of the bound on the duality gap P ⋆

p −D⋆
p in (4), Lemma 4.1

implies that λbest is near-optimal. Combine with the near-feasibility results from Section 3, we can
also bound the constraint violations of the Lagragian minimizer associated with λbest.

Proposition 4.1. Let λbest be any dual iterate that achieves gp(λbest) ≥ D⋆
p − (ηS2/2 + ρ).

Suppose there exists ϕ ∈ F such that ℓ(ϕ) ≺ min{0, ℓ(ϕ(λbest)), ℓ(fθ(λ
best))} and that

Assumptions 3.1, 3.3, 3.5, and 3.6 hold. Then,

∥ℓ(ϕ⋆)− ℓ(fθ(λ
best)))∥22 ≤ 2βg

(
Mν(1 + ∥λbest∥1) +

ηS2

2
+ ρ

)(
1 +

√
βg

µ̃g

)2

where µ̃g = µ0 σ2

β2(1+max{∥λ⋆
u∥1,∥λbest∥1})2 .

Reasonably, the bound in Proposition 4.1 is governed by the same terms as Theorem 3.1. Here,
however, the bound is the loosened by the sub-optimality of λbest with respect to λ⋆

p.
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Figure 2: Left: the Unconstrained model performs better in terms of average test accuracy than
both the Last and Randomized model. Middle: Both constrained models do better in terms of
Counterfactual Fairness. The key point is that the Last iterate is never far from the Randomized
one in terms of constraint violation. Right: As the richness of the parametrization increases the
maximum constraint violation (i.e: size of the oscillations) decreases.

5 EXPERIMENTAL VALIDATION

To illustrate the theoretical results from Sections 3 and 4, we return to the counterfactually fair learn-
ing problem from Example 2.1. We work with the COMPAS dataset, where the task is to predict
recidivism while remaining insensitive to the protected variables gender and race, which can take
the values [“Male”, “Female”] and [“African American”, “Hispanic”, “Caucasian”, “Other”] respec-
tively. We take the parametrized model fθ to be a 2-layer NN with sigmoid activations, so that the
resulting constrained learning problem is non-convex. Further experimental details are provided in
Appendix A.16. We compare the accuracy and constraint satisfaction of three models: an uncon-
strained predictor, trained without any additional constraints; a last iterate predictor, corresponding
to the final iterate fθ(T ) of an empirical version of Algorithm 1; and a randomized predictor that
samples a model uniformly at random from the sequence of primal iterates {fθ(t))}Tt=t0 for each
prediction.

As shown in Fig. 2 (Left), the unconstrained model is slightly better than the two constrained ones
in terms of predictive accuracy. This advantage comes at the cost of less counterfactually fair pre-
dictions, i.e., a model more sensitive to the protected features (Fig. 2, Middle). The key point of
this experiment, however, is that the last iterate and randomized predictors provide similar accuracy
and constraint satisfaction, as predicted by Theorem 3.1. Additionally, Fig. 2 (Right) showcases the
impact of the parametrization richness on the constraint violation of last primal iterates. We control
this richness by means of projecting the data onto a lower dimensional space using a fixed, random
linear map. Note that, as Theorem 3.1 indicates, the constraint violation decreases by up to an order
of magnitude as we increase the capacity of the model. As we have observed before, this behavior
is not straightforward: though richer parametrizations are expected to lead to lower approximation
errors, it is not immediate that it should make the optimization problem (Pp) easier to solve.

6 CONCLUSION

We analyzed primal iterates obtained from a dual ascent method when solving the Lagrangian
dual of a primal non-convex constrained learning problem. The primal problem in question is the
parametrized version of a convex functional program, which is amenable to a Lagrangian formu-
lation. Specifically, we characterized how far these predictors are from the solution of the un-
parametrized problem in terms of their optimality and constraint violation. This result led to a
characterization of the infeasibility of best primal iterates and elucidated the role of the capacity of
the model and the curvature of the objective. These guarantees bridge a gap between theory and
practice in constrained learning, shedding light on when and why randomization is unnecessary.
The findings presented in this work can be extended in several ways. For instance, a study of the
estimation error incurred by minimizing the empirical Lagrangian in Algorithm 1 could be added. It
might also be possible to characterize the curvature of the dual function by alternative means, which
could potentially lift assumptions on the unparametrized problem.
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A APPENDIX

A.1 ADDITIONAL DEFINITIONS

Definition A.1. We say that a functional ℓi : F → R is Fréchet differentiable at ϕ0 ∈ F if there
exists an operator Dϕℓi(ϕ

0) ∈ B(F ,R) such that:

lim
h→0

|ℓi(ϕ0 + h)− ℓi(ϕ
0)− ⟨Dϕℓi(ϕ

0), h⟩|
∥h∥L2

= 0

where B(F ,R) denotes the space of bounded linear operators from F to R.

The space B(F ,R), algebraic dual of F , is equipped with the corresponding dual norm:

∥B∥L2
= sup

{ |⟨B,ϕ⟩|
∥ϕ∥L2

: ϕ ∈ F , ∥ϕ∥L2
̸= 0

}
which coincides with the L2−norm through Riesz’s Representation Theorem: there exists a unique
g ∈ F such that B(ϕ) = ⟨ϕ, g⟩ for all ϕ and ∥B∥L2

= ∥g∥L2
.

Definition A.2. A function h : X → R is said to be closed if for each α ∈ R, the sublevel set
{h(x) ≤ α : x ∈ X} is a closed set.
Definition A.3. A convex function h : X → R is proper if h(x) > −∞ for all x ∈ X and there
exists x0 ∈ X such that h(x0) < +∞.
Definition A.4. Let X be an Euclidean vector space. Given a convex function h : X → R ∪ {∞},
its Fenchel conjugate h† : X → R ∪ {∞} is defined as:

h†(y) = sup
x∈X

⟨x, y⟩ − h(x)

A.2 PROOF OF LEMMA A.1: DISTANCE BETWEEN DUAL FUNCTIONS

Lemma A.1. The point-wise distance between the parametrized and unparametrized dual functions
is bounded by:

0 ≤ gp(λ)− gu(λ) ≤ Mν(1 + ∥λ∥1) ∀ λ ⪰ 0 (11)

As defined in section 2.1, ϕ(λ) denotes the Lagrangian minimizer associated to the multiplier λ in
the unparametrized problem.

By the near-universality assumption, ∃ θ̃ ∈ Θ such that ∥ϕ(λ)− fθ̃∥L2
≤ ν. Note that,

L(fθ̃, λ)− L(ϕ(λ), λ) = ℓ0(fθ̃)− ℓ(ϕ(λ)) + λT
(
ℓ(fθ̃)− ℓ(ϕ(λ))

)
≤ ∥ℓ0(fθ̃)− ℓ(ϕ(λ))∥2 +

m∑
i=1

[λ]i∥ℓ(fθ̃)− ℓ(ϕ(λ))∥2

where we used the triangle inequality twice. Then, using the M−Lipschitz continuity of the func-
tionals ℓi and the fact that ∥ϕ(λ)− fθ̃∥2 ≤ ν, we obtain:

L(fθ̃, λ)− L(ϕ(λ), λ) ≤ M∥fθ̃ − ϕ(λ)∥L2
+M

m∑
i=1

[λ]i∥fθ̃ − ϕ(λ)∥L2

≤ Mν +Mν

m∑
i=1

[λ]i = Mν(1 + ∥λ∥1)

Since fθ(λ) ∈ F⋆
θ (λ) is a Lagrangian minimizer, we know that L(fθ(λ), λ) ≤ L(fθ̃, λ). Thus,

0 ≤ L(fθ(λ), λ)− L(ϕ(λ), λ) ≤ L(fθ̃, λ)− L(ϕ(λ), λ)

where the non-negativity comes from the fact that FΘ ⊆ F . This implies:

0 ≤ gp(λ)− gu(λ) ≤ Mν(∥λ∥1 + 1) ∀ λ ⪰ 0

which conludes the proof.
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A.3 PROOF OF LEMMA A.2: DIFFERENTIABILITY OF gu(λu)

Lemma A.2. Under assumption 3.1, the unparametrized dual function gu(λ) is everywhere differ-
entiable with gradient ∇λgu(λ) = ℓ(ϕ(λ)).

From assumption 3.1, ℓ(ϕ) is strongly convex and λT ℓ(ϕ) is a non-negative combination of convex
functions. Thus, the Lagrangian L(f, λ) is strongly convex on ϕ for any fixed dual variable λ ∈ Rm

+ .

The convexity and compactness of F imply that, in the unparametrized problem, the Lagrangian
functional attains its minimizer ϕ(λ) for each λ. (see e.g, (Kurdila & Zabarankin, 2006) Theorem
7.3.1.) Then, by the strong convexity of L(ϕ, λ), this minimizer is unique.

Since L(f, λ) is affine on λ, it is differentiable on λ. Then, by application of the Generalized
Danskin’s Theorem (see e.g: (Başar & Bernhard, 2008) Corollary 10.1) to gu(λ) and using that the
set of minimizers ϕ(λ) of L(f, λ) is a singleton, we obtain:

∇λgu(λ) = ℓ(ϕ(λ)),

which completes the proof.

A.4 PROOF OF LEMMA A.3: DISTANCE BETWEEN OPTIMAL DUAL VARIABLES

Lemma A.3. Under assumptions 3.1, 3.2, 3.3, 3.4, the proximity between the unparametrized and
parametrized optimal dual variables is characterized by:

∥λ⋆
p − λ⋆

u∥22 ≤ 2
Mν

µg
(1 + ∥λ⋆

p∥1) (12)

Since gu(λ) is differentiable (see A.2) and µg−strongly concave for λ ∈ Hλ :

gu(λ) ≤ gu(λ
⋆
u) +∇gu(λ

⋆
u)

T (λ− λ⋆
u)−

µg

2
∥λ− λ⋆

u∥22 ∀λ ∈ Hλ

From Lemma A.2 we have that ∇gu(λ
⋆
u) = ℓ(ϕ(λ⋆

u))), then evaluating at λ⋆
p we obtain:

gu(λ
⋆
p) ≤ gu(λ

⋆
u) + ℓ(ϕ(λ⋆

u))
T (λ⋆

p − λ⋆
u)−

µg

2
∥λ⋆

p − λ⋆
u∥22

By complementary slackness, ℓ(ϕ(λ⋆
u))

Tλ⋆
u = 0. Then, since ϕ(λ⋆

u) is feasible and λ⋆
p ≥ 0:

ℓ(ϕ(λ⋆
u))

Tλ⋆
p ≤ 0. Thus,

gu(λ
⋆
p) ≤ gu(λ

⋆
u)−

µg

2
∥λ⋆

p − λ⋆
u∥22

By Proposition 1: gp(λ⋆
p)−Mν(1 + ∥λ⋆

p∥1) ≤ gu(λ
⋆
p), which implies:

gp(λ
⋆
p)−Mν(1 + ∥λ⋆

p∥1) ≤ gu(λ
⋆
u)−

µg

2
∥λ⋆

p − λ⋆
u∥22

Thus,

∥λ⋆
p − λ⋆

u∥22 ≤ 2

µg

[
gu(λ

⋆
u)− gp(λ

⋆
p)
]
+

2

µg
Mν(1 + ∥λ⋆

p∥1) (13)

Finally, since Fθ ⊆ F we have that : gu(λ) ≤ gp(λ) ∀ λ. Evaluating at λ⋆
u and using that λ⋆

p
maximizes gp we obtain:

gu(λ
⋆
u) ≤ gp(λ

⋆
u)

≤ gp(λ
⋆
p)

Using this in equation 13 we obtain,

∥λ⋆
p − λ⋆

u∥22 ≤ 2

µg
Mν(1 + ∥λ⋆

p∥1)
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A.5 PROOF OF PROPOSITION 3.2: PERTURBATION OF DUAL VARIABLES

Proposition. 3.2 Under assumptions 3.1-3.4, the distance between the constraint violations of
ϕ(λ⋆

p) and ϕ(λ⋆
u) is bounded by:

∥ℓ(ϕ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥22 ≤ 2
β2
g

µg
Mν(1 + ∥λ⋆

p∥1) (14)

The proof follows from straightforward applications of Lemma A.2 and Proposition A.3. Since the
dual function gu(λ) is βg−smooth, we have:

∥ℓ(ϕ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥22 = ∥∇λgu(λ
⋆
p)−∇λgu(λ

⋆
u)∥22

≤ β2
g∥λ⋆

p − λ⋆
u∥22

Then, the bound between optimal dual variables given in Proposition A.3 yields:

∥ℓ(ϕ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥22 ≤ 2
β2
g

µg
Mν(1 + ∥λ⋆

p∥1)

which concludes the proof.

A.6 PROOF OF LEMMA 3.1: CURVATURE OF THE DUAL FUNCTION

Lemma. 3.1 Under assumptions 3.1, 3.2, 3.5 and 3.6, the unparametrized dual function gu(λu) is
µg−strongly concave and βg−smooth on Hλ with:

µg =
µ0 σ

2

β2(1 + ∆)2
and βg =

√
mM2

µ0
(15)

where ∆ = max(∥λ⋆
u∥1, ∥λ⋆

p∥1).

A.6.1 STRONG CONCAVITY CONSTANT µg

As shown in Lemma A.2, the unparametrized Lagrangian has a unique minimizer ϕ(λ) for each
λ ∈ Rm

+ . Let λ1, λ2 ∈ Hλ and ϕ1 = ϕ(λ1), ϕ2 = ϕ(λ2).

By convexity of the functions ℓi : F → R for i = 1, . . . ,m, we have:

ℓi(ϕ2) ≥ ℓi(ϕ1) + ⟨Dϕℓi(ϕ1), ϕ2 − ϕ1⟩,
ℓi(ϕ1) ≥ ℓi(ϕ2) + ⟨Dϕℓi(ϕ2), ϕ1 − ϕ2⟩

Multiplying the above inequalities by [λ1]i ≥ 0 and [λ2]i ≥ 0 respectively and adding them, we
obtain:

−⟨ℓ(ϕ2)− ℓ(ϕ1), λ2 − λ1⟩ ≥ ⟨λT
1 Dϕℓ(ϕ1)− λT

2 Dϕℓ(ϕ2), ϕ2 − ϕ1⟩ (16)

Since ∇gu(λ) = L(ϕ(λ)), we have that:

−⟨∇gu(λ2)−∇gu(λ2), λ2 − λ1⟩ ≥ ⟨λT
1 DϕL(ϕ1)− λT

2 DϕL(ϕ2), ϕ2 − ϕ1⟩ (17)

Moreover, first order optimality conditions yield:

Dϕℓ0(ϕ1) + λT
1 Dϕℓ(ϕ1) = 0,

Dϕℓ0(ϕ2) + λT
2 Dϕℓ(ϕ2) = 0

(18)

where 0 denotes the null-opereator from F to R (see e.g: (Kurdila & Zabarankin, 2006) Theorem
5.3.1).

15
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Combining equations 17 and 18 we obtain:

−⟨∇gu(λ2)−∇gu(λ2), λ2 − λ1⟩ ≥ ⟨Dϕℓ0(ϕ2)−Dϕℓ0(ϕ1), ϕ2 − ϕ1⟩
≥ µ0∥ϕ2 − ϕ1∥2L2

(19)

where we used the µ0−strong convexity of the operator ℓ0.

We will now obtain a lower bound on ∥ϕ2 − ϕ1∥L2 , starting from the β−smoothness of ℓ0:

∥ϕ2 − ϕ1∥2 ≥ 1

β
∥Dϕℓ0(ϕ2)−Dϕℓ0(ϕ1)∥L2

=
1

β
∥λT

2 Dϕℓ(ϕ2)− λT
1 Dϕℓ(ϕ1)∥L2

=
1

β
∥(λ2 − λ1)

TDϕℓ(ϕ2)− λT
1 (Dϕℓ(ϕ1)−Dϕℓ(ϕ2))∥L2

(20)

Then, second term in the previous equality can be characterized using assumption 3.6:

∥(λ2 − λ1)
TDϕℓ(ϕ2)∥L2

≥ σ∥λ2 − λ1∥2 (21)

For the second term, using the β−smoothness of ℓi we can derive:

∥λT
1 (Dϕℓ(ϕ1)−Dϕℓ(ϕ2))∥L2

= ∥
m∑
i=1

[λ1]i(Dϕℓi(ϕ1)−Dϕℓi(ϕ2))∥L2

≤
m∑
i=1

[λ1]i∥Dϕℓi(ϕ1)−Dϕℓi(ϕ2)∥L2

≤
m∑
i=1

[λ1]iβ∥ϕ1 − ϕ2∥L2

= β∥λ1∥1∥ϕ1 − ϕ2∥L2

(22)

Then, using the reverse triangle inequality:

∥(λ2 − λ1)
TDϕℓ(ϕ2)−λT

1 (Dϕℓ(ϕ1)−Dϕℓ(ϕ2))∥L2

≥ ∥(λ2 − λ1)
TDϕℓ(ϕ2)∥L2 − ∥λT

1 (Dϕℓ(ϕ1)−Dϕℓ(ϕ2))∥L2

≥ σ∥λ2 − λ1∥2 − β∥λ1∥1∥ϕ2 − ϕ1∥L2

(23)

Combining this with equation 20 we obtain:

∥ϕ2 − ϕ1∥2 ≥ 1

β
(σ∥λ2 − λ1∥2 − β∥λ1∥1∥ϕ2 − ϕ1∥L2

)

−→ ∥ϕ2 − ϕ1∥L2
≥ σ

β(1 + ∥λ1∥1)
∥λ2 − λ1∥2

(24)

This means that we can write equation 19 as:

−⟨∇gu(λ2)−∇gu(λ1), λ2 − λ1⟩ ≥
µ0 σ

2

β2(1 + ∥λ1∥1)2
∥λ2 − λ1∥22

Letting λ2 = λ⋆
u, we obtain that the strong concavity constant of gu in Hλ is µg =

µ0 σ2

β2(1+max{∥λ⋆
u∥1,∥λ⋆

p∥1})2 . A similar proof in the finite dimensional case can be found in (Guigues,
2020).

A.6.2 SMOOTHNESS CONSTANT βg

Set λ1, λ2 ∈ Rm
+ , and let ϕ1 = ϕ(λ1) and ϕ2 = ϕ(λ2) denote the Lagrangian minimizers associated

to these multipliers.

16
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Since the unparametrized Lagrangian is differentiable and µ0-strongly convex we have:

L(f, λ) ≥ L(ϕ(λ), λ) + ⟨DϕL(ϕ(λ), λ)), f − ϕ(λ)⟩+ µ0

2
∥f − ϕ(λ)∥2L2

Using that ϕ(λ) is a minimizer, we obtain (see e.g: (Kurdila & Zabarankin, 2006) Theorem 5.3.1) :

L(ϕ(λ), λ) ≤ L(f, λ)− µ0

2
∥f − ϕ(λ)∥22,∀f ∈ F

Applying this to ϕ2 and ϕ1 we obtain:

ℓ0(ϕ2) + λT
2 ℓ(ϕ2) ≤ ℓ0(ϕ1) + λT

2 ℓ(ϕ1)−
µ0

2
∥ϕ2 − ϕ1∥2L2

ℓ0(ϕ1) + λT
1 ℓ(ϕ1) ≤ ℓ0(ϕ2) + λT

1 ℓ(ϕ2)−
µ0

2
∥ϕ2 − ϕ1∥2L2

Summing the above inequalities and applying Cauchy-Schwarz:

µ0∥ϕ2 − ϕ1∥22 ≤ (λ2 − λ1)
T (ℓ(ϕ1)− ℓ(ϕ2))

≤ ∥λ2 − λ1∥2∥ℓ(ϕ1)− ℓ(ϕ2)∥2
≤ √

mM∥λ2 − λ1∥2∥ϕ1 − ϕ2∥L2

where the last inequality follows from assumption 3.1. Then, applying Lemma A.2 we obtain:

∥∇λgu(λ2)−∇λgu(λ1)∥2 = ∥ℓ(ϕ2)− ℓ(ϕ1)∥2
≤ M∥ϕ2 − ϕ1∥L2

≤ √
m
M2

µ0
∥λ2 − λ1∥2

which means that gu has a smoothness constant βg =
√
mM2

µ0
.

A.7 PROOF LEMMA A.4

Lemma A.4. Let P † denote the Fenchel conjugate of the perturbation function P ⋆(ϵ). For every
λ ∈ Rm

+ we have that P †(λ) = −gu(λ).

By definition of Fenchel conjugate:

P †(λ) = sup
ϵ

λT ϵ− P ⋆(ϵ) (25)

Using the definition of the perturbation function P ⋆(ϵ) we obtain:

P †(λ) = sup
ϕ∈F,ϵ

λT ϵ− ℓ0(ϕ)

s.t: ℓ(ϕ) + ϵ ⪯ 0
(26)

Applying the change of variable z = ℓ(ϕ) + ϵ, P †(λ) can be written as:

P †(λ) = sup
ϕ∈F,z

λT z− λT ℓ(ϕ)− ℓ0(ϕ)

s. to: z ⪯ 0
(27)

Since z ⪯ 0, the term λT z is unbounded above for λ ≺ 0. Thus, we restrict the domain of P †(λ) to
λ ⪰ 0. In this region, maximizing over z ∈ Rm

− yields z⋆ = 0. We can thus write P †(λ) as:

P †(λ) = sup
ϕ∈F

−λT ℓ(ϕ)− ℓ0(ϕ), λ ⪰ 0

=− inf
ϕ∈F

λT ℓ(ϕ) + ℓ0(ϕ), λ ⪰ 0
(28)

Therefore,
P †(λ) = −gu(λ), λ ⪰ 0.

Similar versions of this result can be found in (Rockafellar, 1997), Section 28, (Guigues, 2020),
Lemma 2.9 or (Rockafellar, 1974), Theorem 7.
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A.8 PROOF OF COROLLARY A.1: CURVATURE OF THE PERTURBATION FUNCTION

Corollary A.1. Let Bϵ = {γϵu + (1 − γ)ϵp : γ ∈ [0, 1]} denote the segment connecting ϵu and
ϵp. The perturbation function P ⋆(ϵ) is µϵ−strongly convex on Bϵ with constant: µϵ = 1/βg .

We begin by stating a well-known Lemma on the duality between smoothness and strong convexity
Lemma A.5. Let h be a closed convex function defined on a subset of the vector space X ; h is
µ−strongly convex if and only if h† has µ−Lipschitz continuous gradients. (See e.g, (Kakade et al.,
2009) or (Goebel & Rockafellar, 2008)).

In order to apply Lemma A.5 we need to show that the perturbation function P (ϵ) is convex and
closed in the region of interest.

Convexity of P ⋆(ϵ) for convex functional programs is shown in (Bonnans & Shapiro, 1998) or
(Rockafellar, 1997) Theorem 29.1. Now we will show that P ⋆(ϵ) is proper and lower semi continu-
ous in the region of interest, which implies that it is closed.

The functional ℓ0, defined on the compact set F , is smooth. Thus, it is bounded on F . From
assumption 3.2 we have that the problem is feasible for ϵ = 0. Therefore, P (0) < +∞. Moreover,
by boundedness of ℓ0, P (ϵ) > −∞ ∀ϵ, implying that P (ϵ) is proper.

Now, fix ϵ0 ∈ Bϵ. Assumption 3.2 implies that the perturbed problem with constraint: L(f)+ϵ0 ⪯ 0
is strictly feasible. Since this perturbed problem is convex and strictly feasible, its perturbation
function P̃ (ϵ) is lower semi continuous at 0 (see (Bonnans & Shapiro, 1998) Theorem 4.2). Note
that P̃ (ϵ) = P ⋆(ϵ+ ϵ0). Thus, P ⋆(ϵ) is lower semi continuous at ϵ0.

We conclude that P ⋆(ϵ) is proper and lower semi continuous for all ϵ ∈ Bϵ.

On the other hand, from Corollary 3.1 P †(λ) = −gu(λ) is βg-smooth on Rm
+ . Thus, we are in the

hypothesis of Proposition A.4, which implies that P ⋆(ϵ) is strongly convex on Bϵ with constant 1
βg

.

A.9 PROOF OF PROPOSITION A.1: SUBGRADIENTS OF P ⋆

Proposition A.1. Under assumptions 3.1 and 3.2, λ⋆
p is a subgradient of the perturbation function

at ϵu. That is, λ⋆
p ∈ ∂P ⋆(ϵu).

The conjugate nature of the dual function gu(λ) and the perturbation function P ⋆(ϵ) also establishes
a dependence between their first order variations. This dependence is captured in the following
lemma.
Lemma A.6. If h is a closed convex function, the subdifferential ∂h† is the inverse of ∂h in the
sense of multivalued mappings (see (Rockafellar, 1997) Corollary 23.5.1):

x ∈ ∂h†(y) ⇐⇒ y ∈ ∂h(x)

On one hand, from Lemma A.2, we have that ∇λgu(λ
⋆
p) = ℓ(ϕ(λ⋆

p)) = −ϵu. On the other hand,
from Lemma A.4, P †(λ) = −gu(λ) for all λ ∈ Rm

+ .

Taking the gradient with respect to λ and evaluating at λ⋆
p we obtain: ∇λP

†(λ⋆
p) = ϵu. Then,

Lemma A.6, yields the sensitivity result:

λ⋆
p ∈ ∂P ⋆(ϵu).

A.10 PROOF OF PROPOSITION A.2: DISTANCE BETWEEN OPTIMAL VALUES

Proposition A.2. Under assumptions 3.3 and 3.1, the difference between the optimal values of
problems perturbed by ϵp and ϵu is bounded:

P ⋆(ϵp)− P ⋆(ϵu) ≤ Mν(1 + ∥λ⋆
p∥) + λ∗T

p (ϵp − ϵu)

Recall that ϵu = −ℓ(ϕ(λ⋆
p)) and ϵp = −ℓ(fθ(λ

⋆
p)). We want to show that:

P ⋆(ϵp)− P ⋆(ϵu) ≤ Mν(1 + ∥λ⋆
p∥) + λ∗T

p (ϵp − ϵu)
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We start by showing that P ⋆(ϵp) ≤ ℓ0(fθ(λ
⋆
p)). Note that fθ(λ⋆

p) is feasible in the perturbed prob-
lem, since its constraint value is −ϵp. Then,

P (ϵp) = min
f

{L0(f) : L(f) + ϵp ⪯ 0} ≤ L0(fθ(λ
⋆
p))

Therefore,
P ⋆(ϵp)− P ⋆(ϵu) ≤ ℓ0(fθ(λ

⋆
p))− P ⋆(ϵu). (29)

Note that the dual function of the problem perturbed by ϵu is g̃u(λ, ϵu) := minϕ∈F {ℓ0(f) +
λT (ℓ(ϕ) + ϵu)}. Then, weak duality implies that P ⋆(ϵu) ≥ g̃u(λ, ϵu) for all λ. Evaluating at
λ⋆
p we obtain:

P ⋆(ϵu) ≥ min
ϕ∈F

{L0(f) + λ∗T
p (L(f) + ϵu)}

= min
ϕ∈F

{ℓ0(ϕ) + λ∗T
p ℓ(ϕ)}+ λ∗T

p ϵu

= gu(λ
⋆
p) + λ∗T

p ϵu

(30)

Combining equations 30 and 29 we obtain:

P ⋆(ϵp)− P ⋆(ϵu) ≤ ℓ0(fθ(λ
⋆
p))− gu(λ

⋆
p)− λ∗T

p ϵu

= ℓ0(fθ(λ
⋆
p))± λ∗T

p ϵp − gu(λ
⋆
p)− λ∗T

p ϵu
(31)

Recall that ϵp = −ℓ(fθ(λ
⋆
p)). Then, we can identify the parametrized dual function gp(λ) =

ℓ0(fθ(λ
⋆
p))− λ∗T

p ϵp and write equation 31 as:

P ⋆(ϵp)− P ⋆(ϵu) ≤ gp(λ
⋆
p)− gu(λ

⋆
p) + λ∗T

p (ϵp − ϵu)

Finally, leveraging the bound between dual functions from Lemma A.1 we obtain:

P ⋆(ϵp)− P ⋆(ϵu) ≤ Mν(1 + ∥λ⋆
p∥1) + λ∗T

p (ϵp − ϵu),

which conludes the proof.

A.11 PROOF OF PROPOSITION 3.3: FUNCTION CLASS PERTURBATION

Proposition. 3.3 Under assumptions 3.1-3.4, the distance between constraint violation associated
to the parametrization of the hypothesis class is given by:

∥ℓ(ϕ(λ⋆
p))− ℓ(fθ(λ

⋆
p))∥22 ≤ 2βgMν(1 + ∥λ⋆

p∥1)

Let ∆ϵ = ϵp − ϵu, using the strong convexity constant obtained in Proposition A.1 we have that:

P ⋆(ϵp) ≥ P ⋆(ϵu) + sT∆ϵ+
1

2βg
∥∆ϵ∥22

where s ∈ ∂P ⋆(ϵu) is a subgradient of P ⋆(ϵ) at ϵu.

From Proposition A.1 we know that: λ⋆
p ∈ ∂P ⋆(ϵu). Thus,

P ⋆(ϵp) ≥ P ⋆(ϵu) + λ∗T
p ∆ϵ+

1

2βg
∥∆ϵ∥22

Using the bound on P ⋆(ϵp)− P ⋆(ϵu) obtained in proposition A.2 we can write:

Mν(1 + ∥λ⋆
p∥1) + λ⋆T

p ∆ϵ ≥ λ⋆T

p ∆ϵ+
1

2βg
∥∆ϵ∥22

−→Mν(1 + ∥λ⋆
p∥1) ≥

1

2βg
∥∆ϵ∥22

This implies:
∥∆ϵ∥22 ≤ 2βgMν(1 + ∥λ⋆

p∥1)
−→∥ℓ(ϕ)− ℓ(fθ(λ

⋆
p))∥22 ≤ 2βgMν(1 + ∥λ⋆

p∥1)

which concludes the proof.
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A.12 PROOF OF PROPOSITION 3.1: 2-NORM NEAR-FEASIBILITY

Proposition. 3.1 Under assumptions 3.1-3.4, for all fθ(λ⋆
p) ∈ F⋆

θ (λ
⋆
p), the distance between the

unparametrized and parametrized constraint violations is bounded by:

∥ℓ(fθ(λ⋆
p))− ℓ(ϕ⋆)∥22 ≤ 2βgMν(1 + ∥λ⋆

p∥1)
(
1 +

√
βg

µg

)2

Proposition 3.1 stems from combining the feasibility bounds in Corollary 3.2 and Proposition 3.3:

∥ℓ(ϕ(λ⋆
p))− ℓ(ϕ⋆)∥2 ≤

√
2
β2
g

µg
Mν(1 + ∥λ⋆

p∥1) (32)

∥ℓ(ϕ(λ⋆
p))− ℓ(fθ(λ

⋆
p))∥2 ≤

√
2βgMν(1 + ∥λ⋆

p∥1) (33)

Combining the above equations through a triangle inequality we obtain:

∥ℓ(fθ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥2 ≤
√
2
β2
g

µg
Mν(1 + ∥λ⋆

p∥1) +
√

2βgMν(1 + ∥λ⋆
p∥1) (34)

=
√
2βgMν(1 + ∥λ⋆

p∥1)
(
1 +

√
βg

µg

)
(35)

Taking squares on both sides yields the desired result.

A.13 PROOF OF THEOREM 3.1: NEAR-FEASIBILITY AND NEAR-OPTIMALITY

Theorem. 3.1 Under assumptions 3.1, 3.2, 3.3, 3.5 and 3.6, the sub-optimality and near-feasibility
of all fθ(λ⋆

p) ∈ F(λ⋆
p) is bounded by

∥ℓ(fθ(λ⋆
p))− ℓ(ϕ⋆)∥∞ ≤ M [1 + κ1κ0(1 + ∆)]

√
2m

Mν

µ0
(1 + ∥λ⋆

p∥1) := Γ2 (36)

|P ⋆
p − ℓ0(fθ(λ

⋆
p))| ≤ ∥λ⋆

p∥1Γ2 + (1 + ∥λ⋆
p∥1)Mν + Γ1 (37)

with κ1 = M
σ , κ0 = β

µ0
, ∆ = max{∥λ⋆

u∥1, ∥λ⋆
p∥1} and Γ1 as in eq. 4.

A.13.1 NEAR-FEASIBILITY

Recall that Lemma 3.1 characterizes the strong concavity µg and smoothness βg of the dual function
in terms of the properties of the losses ℓi and the functional space F . The proof of this theorem stems
from applying Lemma 3.1 to the 2-norm bound in Theorem 3.1.

We start by observing that:
∥ℓ(fθ(λ⋆

p))− ℓ(ϕ(λ⋆
u))∥∞ ≤ ∥ℓ(fθ(λ⋆

p))− ℓ(ϕ(λ⋆
u))∥2 (38)

≤
√
2βgMν(1 + ∥λ⋆

p∥1)(1 +
√

βg

µg
) (39)

From proposition 3.1, we have that µg = µ0 σ2

β2(1+∆)2 and βg =
√
mM2

µ0
. This implies that

βg

µg
=

√
m
M2

σ2

β2

µ2
0

(1 + ∆)2

where ∆ = max{∥λ⋆
u∥1, ∥λ⋆

p∥1}. Plugging this into equation 39, we obtain:

∥ℓ(fθ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥∞ ≤ Mm1/4

√
2
Mν

µ0
(1 + ∥λ⋆

p∥1)
[
1 +m1/4M

σ

β

µ0
(1 + ∆)

]

≤ M

√
2
Mν

µ0
(1 + ∥λ⋆

p∥1)
[
1 +

M

σ

β

µ0
(1 + ∆)

]√
m
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Finally, using the definitions of the condition numbers κ1 = M
σ , κ0 = β

µ0
we obtain:

∥ℓ(fθ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥∞ ≤ M [1 + κ1κ0(1 + ∆)]

√
2m

Mν

µ0
(1 + ∥λ⋆

p∥1) (40)

which is the desired near-feasibility bound.

A.13.2 NEAR-OPTIMALITY

To derive the near-optimality bound, we combine equation 40 with the duality gap bound from
(Chamon et al., 2023, Prop. 3.3):

P ⋆
p −D⋆

p ≤ Mν(1 + ∥λ̃⋆∥1) := Γ1, (41)

where λ̃⋆ maximizes g̃p(λ) = gp(λ) +Mν∥λ∥1.

Since P ⋆
p ≥ P ⋆

u we have:

P ⋆
u −D⋆

p ≤ Γ1 ⇔ ℓ0(ϕ
∗)− ℓ0(fθ(λ

∗
p)) ≤ λ∗T

p ℓ(fθ(λ
∗
p)) + Γ1

Then, using that the solution of the unparametrized problem ϕ∗ is feasible (i.e, ℓ(ϕ∗)) ≤ 0) and
λ∗
p ⪰ 0 we obtain

ℓ0(ϕ
∗)− ℓ0(fθ(λ

∗
p)) ≤ λ∗T

p (ℓ(fθ(λ
∗
p)− ℓ(ϕ∗)) + Γ1

≤ ∥λ∗
p∥1∥ℓ(ϕ∗)− ℓ(fθ(λ

∗
p))∥∞ + Γ1

To conclude the derivation, note that the ν-universality and M -Lipschitz continuity (Assumptions
3.3 and 3.1) imply that there exists θ′ such that |ℓi(ϕ∗)− ℓi(fθ′)| ≤ Mν for all i = 0, . . . ,m. Thus,

ℓ0(ϕ
∗)− ℓ0(fθ(λ

∗
p)) ≥ ℓ0(ϕ

∗)± ℓ0(fθ′)− ℓ0(fθ(λ
∗
p))

≥ ℓ0(fθ′)−Mν − ℓ0(fθ(λ
∗
p))

(42)

Note that the duality gap bound implies the approximate saddle-point relation:

L(fθ(λ
∗
p), λ

∗
u)− Γ1 ≤ L(fθ(λ

∗
p), λ

∗
p) ≤ L(fθ′ , λ∗

p) + Γ1.

Applying the right-hand side of this inequality to equation 42 we obtain:

ℓ0(ϕ
∗)− ℓ0(fθ(λ

∗
p)) ≥ λ∗T

p (ℓ(fθ(λ
∗
p))− ℓ(ϕ∗))− Γ1 − (1 + ∥λ∗

p∥1)Mν

≥ −∥λ∗
p∥1∥ℓ(ϕ∗)− ℓ(fθ(λ

∗
p))∥∞ − (1 + ∥λ∗

p∥1)Mν − Γ1

which completes the proof.

A.14 PROOF OF LEMMA 4.1: BEST ITERATE CONVERGENCE

Lemma. 4.1 Let gbest
p (t|λ(t0)) = maxs∈[t0,t] gp(λ(s)) be the maximum value of the parametrized

dual function up to time t. Then,

lim
t→∞

gbest
p (t|λ(t0)) ≥ D⋆

p −
(
ηS2

2
+ ρ

)
a.s.

where S2 > E[∥ŝ(t)∥2|λ(t)] is an upper bound on the norm of the second order moment of the
stochastic supergradients.

A similar proof in the context of resource allocation for wireless communications can be found in
(Ribeiro, 2010), Theorem 2. To ease the notation, we will denote the value of the parametrized dual
function at iteration t by g(t) := gp(λ(t)). Similarly, gbest(t) will denote the largest value of g(t)
encountered so far.

We start by deriving a recursive inequality between the distances of iterates λ(t) and an optimal dual
variable λ⋆

p ∈ argmaxλ⪰0 gp(λ).
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Proposition A.3. Consider the dual ascent algorithm described in Section 4 using a constant step
size η > 0. Then,

E{∥λ(t+ 1)− λ⋆
p∥2|λ(t)} ≤ ∥λ(t)− λ⋆

p∥2 + η2S2 − 2η(D⋆
p − g(t)− ρ) (43)

We delay the proof of Proposition A.3 to section A.14.1. We can observe that as the optimality gap
D⋆

p − g(t) decreases, the fixed term η2S2 dominates the right hand side of equation (43), suggesting
convergence of λ(t) only to a neighborhood of λ⋆

p. In order to show this, the main obstacle is that
Proposition A.3 bounds the expected value of ∥λ(t+1)−λ⋆

p∥2 and we wish to establish almost sure
convergence. This can be addressed by leveraging the Supermartingale Convergence Theorem (see
e.g, (Solo & Kong, 1994) Theorem E7.4), which we state here for completeness.
Theorem A.1. Consider nonnegative stochastic processes A(N) and B(N) with realizations α(N)
and β(N) having values α(t) ≥ 0 and β(t) ≥ 0 and a sequence of nested σ-algebras A(0 : t)
measuring at least α(0 : t) and β(0 : t). If

E[α(t+ 1) | A(0 : t)] ≤ α(t)− β(t) (44)

the sequence α(t) converges almost surely and β(t) is almost surely summable, i.e.,
∑∞

u=1 β(u) <
∞ a.s.

We define α(t) and β(t) as follows,

α(t) := ∥λ(t)− λ⋆
p∥2 I

{
D⋆

p − gbest(t) >
ηS2

2
+ ρ

}
β(t) := [2η(D⋆

p − g(t)− ρ)− η2S2] I
{
D⋆

p − gbest(t) >
ηS2

2
+ ρ

}
Note that α(t) tracks ∥λ(t)− λ⋆

p∥2 until the optimality gap D⋆
p − gbest(t) falls bellow the threshold

ηS2

2 + ρ and is then set to 0. Similarly, β(t) tracks 2η(D⋆
p − g(t) − ρ) − η2S2 until the optimality

gap D⋆
p − gbest(t) falls bellow the same threshold and is then set to 0.

It is clear that α(t) ≥ 0, since it is the product of a norm and an indicator function. The same holds
for β(t), since the indicator evaluates to 0 whenever 2η(D⋆

p − g(t)− ρ)− η2S2 ≤ 0. We thus have,
α(t), β(t) ≥ 0 for all t.

We will leverage Theorem A.1 to show that β(t) is almost surely summable. Let A(0 : t) be a
sequence of σ-algebras measuring α(0 : t), β(0 : t) and λ(0 : t). We will show that α(t) and β(t)
satisfy the hypothesis of Theorem A.1 with respect to A(0 : t). Note that at each iteration, α(t) and
β(t) are fully determined by λ(t). Therefore, conditioning on A(0 : t) is equivalent to conditioning
on λ(t), i.e: E{α(t)|A(0 : t)} = E{α(t)|λ(t)}. Then we can write,

E{α(t)|A(0 : t)} =E{α(t)|λ(t), α(t) = 0}P{α(t) = 0}
+ E{α(t)|λ(t), α(t) > 0}P{α(t) > 0} (45)

From equation 45, we will derive that E{α(t)|A(0 : t)} ≤ α(t) − β(t) which is the remaining
hypothesis in Theorem A.1.

On one hand, observe that if α(t) = 0 we have that I{D⋆
p − gbest(t) ≤ ηS2

2 + ρ} = 0. This is
because in the case where ∥λ(t) − λ⋆

p∥2 = 0, the indicator function also evaluates to 0. Therefore,
if α(t) = 0, it must be that β(t) = 0. Then, trivially, E{α(t)|λ(t), α(t) = 0} = α(t)− β(t).

On the other hand, when α(t) > 0:

E[α(t+ 1) | λ(t), α(t) > 0] (46)

= E

{∥∥λ(t+ 1)− λ⋆
p

∥∥2 I{D⋆
p − gbest(t+ 1) >

ηŜ2

2
+ ρ

}
| λ(t)

}
(47)

≤ E
{∥∥λ(t+ 1)− λ⋆

p

∥∥2 | λ(t)
}

(48)
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where we used the definition of α(t+ 1) and the fact the the indicator function is not larger than 1.
Then, from proposition A.3 we have:

E[α(t+ 1) | λ(t), α(t) > 0] ≤
∥∥λ(t)− λ⋆

p

∥∥2 + η2S2 − 2η(D⋆
p − g(t)− ρ) (49)

= α(t)− β(t). (50)

where the last equality comes from the fact that α(t) > 0 implies
I
{
D⋆

p − gbest(t+ 1) > ηŜ2

2 + ρ
}
= 1.

This means that we can write equation 45 as:

E{α(t)|A(0 : t)} ≤ [α(t)− β(t)](P{α(t) = 0}+ P{α(t) > 0})
= α(t)− β(t)

(51)

which shows that α(t) and β(t) satisfy the hypothesis of Theorem A.1. Then, we have that β(t) is
almost surely summable, which implies,

lim inf
t→∞

[
2η(D⋆

p − g(t)− ρ)− η2S2
]
I{D⋆

p − gbest(t) > ηŜ2 + ρ/2} = 0 a.s.

This is true if either D⋆
p − gbest(t) ≤ ηS2

2 + ρ for some t, or if
lim inft→∞

[
2η(D⋆

p − g(t)− ρ)− η2S2
]
= 0, which concludes the proof.

A.14.1 PROOF OF PROPOSITION A.3

Proposition. A.3 Consider the stochastic supergradient ascent algorithm from Section 4 using a
constant step size η > 0. Then,

E{∥λ(t+ 1)− λ⋆
p∥2|λ(t)} ≤ ∥λ(t)− λ⋆

p∥2 + η2S2 − 2η(D⋆
p − g(t)− ρ) (52)

Let ŝ(t) denote the approximate stochastic supergradient ℓ̂i(f
†
θ (t)). From the definition of λ(t+1):

∥λ(t+ 1)− λ⋆
p∥2 = ∥[λ(t) + ηŝ(t)]+ − λ⋆

p∥2

≤ ∥λ(t)− λ⋆
p + ηŝ(t)∥2

= ∥λ(t)− λ⋆
p∥2 + η2∥ŝ(t)∥2 + 2ηŝ(t)T (λ(t)− λ⋆

p)

(53)

where we used the fact that setting the negative components of λ(t)+ηŝ(t) to 0 decreases its distance
to the positive vector λ⋆

p and then expanded the square.

Note that for a given λ(t), the relations in 53 hold for all realizations of ŝ(t). Thus, the expectation
of ∥λ(t+ 1)− λ⋆

p∥, conditioned on λ(t) satisifes:

E{∥λ(t+1)−λ⋆
p∥2|λ(t)} ≤ ∥λ(t)−λ⋆

p∥2+η2E{∥ŝ(t)∥2|λ(t)}+2ηE{ŝ(t)|λ(t)}(λ(t)−λ⋆
p) (54)

Furthermore, the stochastic supergadient ŝ(t) yields, on average, an approximate ascent direction of
the dual function gp:

E{ŝ(t)|λ(t)}(λ(t)− λ)− ρ ≤ g(t)− gp(λ). (55)

Evaluating the previous inequality at λ⋆
p and combining it with equation 54 we obtain:

E{∥λ(t+ 1)− λ⋆
p∥2|λ(t)} ≤ ∥λ(t)− λ⋆

p∥2 + η2S2 + 2η(g(t)−D⋆
p + ρ) (56)

which concludes the proof.

A.15 PROOF PROPOSITION 4.1

We will bound the distance between ℓ(ϕ(λ⋆
u)) and ℓ(fθ(λ

best))) by partioning it into terms that we
have previously analyzed in Corollary 3.2 and Proposition 3.3:

∥ℓ(ϕ(λ⋆
u))− ℓ(fθ(λ

best)))∥2 ≤ ∥ℓ(ϕ(λ⋆
u))− ℓ(ϕ(λbest))∥2

+ ∥ℓ(ϕ(λbest))− ℓ(fθ(λ
best))∥2
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The first term is of the same nature as the one analyzed in Corollary 3.2, since it is characterizes
a perturbation in dual variables in the unparametrized problem. Thus, using the characterization of
the curvature of the dual function from proposition A.3 and the sub-optimality of λbest with respect
to λ⋆

p, this term can be bounded.

We denote by Bλbest the segment connecting λbest and λ⋆
u and by µ̃g the strong concavity constant of

gu in Bλbest . Using Lemma A.1 and the fact that gp(λ⋆
p) ≥ gu(λ

⋆
u) we obtain:

∥λbest − λ⋆
u∥22 ≤ 2

µ̃g
(gu(λ

⋆
u)− gu(λ

best))

≤ 2

µ̃g
(gp(λ

⋆
p)−

(
gp(λ

best)−Mν(1 + ∥λbest∥1)
)

Then, leveraging the almost sure convergence shown in Proposition 4.1 we have:

∥λbest − λ⋆
u∥22 ≤ 2

µ̃g

(
Mν(1 + ∥λbest∥1) +

ηS2

2
+ ρ

)
(57)

Note that equation 57 corresponds to the bound in Proposition A.4 but amplified by the sub-
optimality of λbest with respect to λ⋆

p. Then, since the gradient ∇λgu(λ) = ℓ(ϕ(λ)) is βg-Lipschitz
continuous:

∥ℓ(ϕ(λbest))− ℓ(ϕ(λ⋆
u))∥22 = ∥∇λgu(λ

best)−∇λgu(λ
⋆
u)∥22 (58)

≤ β2
g∥λbest − λ⋆

u∥22 (59)

≤ 2β2
g

µ̃g

(
Mν(1 + ∥λbest∥1) +

ηS2

2
+ ρ

)
(60)

which completes the first part of the proof.

The term ∥ℓ(ϕ(λbest))− ℓ(fθ(λ
best))∥2 captures a perturbation in the function class for a fixed dual

variable, and can be bounded by leveraging the perturbation analysis of Proposition 3.3. Let ϵ̃u =
−ℓ(ϕ(λbest)) and ϵ̃p = −ℓ(fθ(λ

best)). First note that the duality between smoothness and strong
convexity detailed in Corollary A.1 implies that P ⋆(ϵ) is strongly convex with constant 1

βg
on Bλbest .

Then, as in Proposition A.2, we can bound the distance between the optimal values associated to
these perturbations ϵ̃p and ϵ̃u by:

P ⋆(ϵ̃p)− P ⋆(ϵ̃u) ≤ Mν(1 + ∥λbest∥1) + λbestT (ϵ̃p − ϵ̃u) (61)

The strong convexity of P ⋆ combined with equation 61 yields:

Mν(1 + ∥λbest∥1) + λbestT∆ϵ̃ ≥ λbestT∆ϵ̃+
1

2βg
∥∆ϵ̃∥22 (62)

which implies:

∥∆ϵ̃∥22 ≤ 2βgMν(1 + ∥λbest∥1) (63)

We conclude the proof by summing the bounds in equations 60 and 63 to obtain:

∥ℓ(ϕ(λ⋆
u))− ℓ(fθ(λ

best)))∥2 (64)

≤
√
2βgMν(1 + ∥λbest∥1) +

√
2β2

g

µ̃g

(
Mν(1 + ∥λbest∥1) +

ηS2

2
+ ρ

)
(65)

≤
√
2βg

(
Mν(1 + ∥λbest∥1) +

ηS2

2
+ ρ

)
+

√
2β2

g

µ̃g

(
Mν(1 + ∥λbest∥1) +

ηS2

2
+ ρ

)
(66)

=

√
2βg

(
Mν(1 + ∥λbest∥1) +

ηS2

2
+ ρ

)(
1 +

√
βg

µ̃g

)
(67)

which concludes the proof.

24



Published as a conference paper at ICLR 2024

A.16 ADDITIONAL EXPERIMENTAL DETAILS

We adopt the same data pre-processing steps as in (Chamon & Ribeiro, 2020) and use a two-layer
neural network with 64 nodes and sigmoid activations. The counterfactual fairness constraint upper
bound is set to 0.001. We train this model over T = 400 iterations using a ADAM, with a batch
size of 256, a primal learning rate equal to 0.1 and weight decay magnitude set to 10−4. The dual
variable learning rate is set to 2.
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