
Under review as a conference paper at ICLR 2024

NEAR-OPTIMAL SOLUTIONS OF CONSTRAINED
LEARNING PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

With the widespread adoption of machine learning systems, the need to curtail
their behavior has become increasingly apparent. This is evidenced by recent ad-
vancements towards developing models that satisfy robustness, safety and fairness
requirements. Imposing these requirements leads to constrained learning prob-
lems, which can be tackled with dual ascent methods. However, convergence
guarantees for dual ascent algorithms typically involve a randomized or averaged
sequence of primal iterates. These solutions are impractical, since they require
storing an ever growing sequence of models. Although it has been observed that
final iterates perform well in practice, theoretical guarantees for their optimality
and feasibility have remained elusive. In this work, we characterize the infeasibil-
ity of Lagrangian minimizers associated with optimal dual variables, which leads
to a sub-optimality bound for best primal iterates. To do this, we leverage the fact
that constrained learning problems are parametrized versions of convex functional
programs. This bound sheds light on how the richness of the parametrization and
the curvature of the objective impact the convergence of primal iterates. We em-
pirically validate this finding in learning problems with fairness constraints.

1 INTRODUCTION

Machine learning (ML) has become a core technology of information systems, reaching critical
applications from medical diagnostics (Engelhard et al., 2023) to autonomous driving (Kiran et al.,
2021). Consequently, it has become paramount to develop ML models that not only excel at a main
task, but also adhere to requirements such as fairness and robustness.

Since virtually all ML models are trained using Empirical Risk Minimization (ERM) (Vapnik, 1999),
a natural way to impose requirements is to explicitly add constraints to these optimization problems
(Fioretto et al., 2021; Velloso & Van Hentenryck, 2020; Cotter et al., 2018; Chamon et al., 2023).
Recent works (Chamon & Ribeiro, 2020) have shown that from a PAC (Probably Approximately
Correct) perspective, learning under requirements is essentially as hard as classical learning and
that it can be done by means of dual ascent methods, which only involve solving a sequence of
regularized, unconstrained ERM problems. This gave rise to applications across several areas such
as federated learning (Shen et al., 2022), fairness (Cotter et al., 2019; Tran et al., 2021), active
learning (Elenter et al., 2022), adversarial robustness (Robey et al., 2021) and data augmentation
(Hounie et al., 2022).

Despite these statistical guarantees, duality-based algorithms suffer from a severe limitation in terms
of recovering feasible solutions. Indeed, dual ascent iterates need not remain in the feasibility set
or converge to a fixed point, displaying ciclostationary behaviour. For convex problems, this issue
can be tackled using averaging (Nedić & Ozdaglar, 2009). In contrast, the non-convex case requires
randomization (Kearns et al., 2018; Agarwal et al., 2018; Goh et al., 2016). These solutions are
not only impractical, given the need to store an ever-growing sequence of primal iterates, but also
raise ethical considerations. For instance, when selecting job candidates, giving medical diagnosis
or deciding whether to give bank loans, randomizing over various predictors could be undesirable
from an explainability standpoint.

In fact, this problem is even hard from an algorithmic complexity point of view (Daskalakis et al.,
2021). While it has been observed that taking the last or best iterate, can perform well in practice
(Cotter et al., 2018; Chamon et al., 2023; Robey et al., 2021; Elenter et al., 2022; Hounie et al., 2022;
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Shen et al., 2022), these predictors can also fail miserably, severely violating the requirements that
are being imposed.

This work adresses this gap between theory and practice by characterizing the infeasibility of primal
iterates associated with optimal dual variables. To do so, we observe that many optimization prob-
lems can be seen as parametrized versions of very benign functional optimization problems. We
show that for sufficiently rich parametrizations, duality-based solutions are able to closely approxi-
mate the feasibilibility of these functional solutions. This implies that dual ascent methods can yield
solutions with guaranteed near-feasibility without randomization and despite non-convexity.

2 PROBLEM FORMULATION

2.1 CONSTRAINED LEARNING

Constrained learning can be formulated as a statistical optimization problem, namely,

P ⋆
p =min

θ∈Θ
ℓ0(fθ)

s. to: ℓi(fθ) ≤ 0, i = 1, ..,m
(Pp)

where fθ : X → Y is a function associated with the parameter vector θ ∈ Θ ⊆ Rp and the
hypothesis class Fθ = {fθ : θ ∈ Θ} induced by these functions is a subset of a compact functional
space F ⊆ L2(Ω). The use of the subscript p, for ”parametrized”, will later become evident. The
functionals ℓi : F → R denote expected risks: E(x,y)[ℓ̃i(fθ(x), y)], where ℓ̃i is typically a loss
function such as mean squared error or cross entropy loss. In this setting, ℓ0 can be interpreted
as a top-line metric (e.g., accuracy), while the functional ℓ = (ℓ1(fθ), · · · , ℓm(fθ)) encodes the
statistical requirements that the solution must satisfy (see example below). It is important to note
that the functionals ℓi are typically non-convex with respect to θ.

Learning under Counterfactual Fairness Constraints. In ProPublica’s COMPAS dataset, the
goal is to predict recidivism based on an individual’s past offense data while controlling for gender
and racial bias. Let ℓ̃0 denote the negative log-likelihood function: − log[fθ(x)]y . The problem of
learning a predictor insensitive to perturbations of these protected variables can be formulated as an
invariance constrained learning problem:

P ∗
p = min

θ∈Rp
E
[
ℓ̃0 (fθ(x), y)

]
s. to: E(x,y) [DKL(fθ(x, z)||fθ(x, ρi(z))] ≤ c, for all i

where z contains the protected variables (gender and race), c > 0 determines the sensitivity level
and the transformations ρi encompass all possible single variable modifications of z. This con-
strained optimization problem is non-convex for many parametrizations (e.g., neural networks) and
there is typically no straightforward way to project onto the feasibility set (i.e. the set of classifiers
insensitive to gender and race). In light of these challenges, we turn to Lagrangian Duality.

2.2 DUAL CONSTRAINED LEARNING

The Lagrangian L : F × Rm → R is defined as:

L(ϕ, λ) = ℓ0(ϕ) + λT ℓ(ϕ), (1)

with ϕ ∈ F and λ ∈ Rm
+ . For reasons that will become apparent later we define L over F rather

than Fθ. For a fixed dual variable λ, the Lagrangian L(ϕ, λ) is a regularized objective, where ℓ acts
as a regularizing functional. This leads to the dual function of problem Pp:

gp(λp) = min
θ∈Θ

L(fθ, λp), (2)

and to the definition of the dual problem,

D⋆
p = max

λp⪰0
gp(λp). (Dp)

2



Under review as a conference paper at ICLR 2024

Algorithm 1 Dual Constrained Learning
1: Inputs: number of iterations T ∈ N, step size η > 0.
2: Initialize: λ(1) = 0
3: for t = 1, . . . , T do
4: Obtain fθ(t) such that

fθ(t) ∈ argmin
θ∈Θ

ℓ0(fθ) + λ(t)T ℓ(fθ)

5: Update dual variables

λi(t+ 1) = max[0, λi(t) + η ℓi(fθ(t))]

6: end for

This saddle-point problem can be viewed as a two-player game or as a regularized minimization,
where the regularization weight is also an optimization variable, updated according to the degree of
constraint satisfaction or violation.

The dual function gp is concave, irrespective of whether Pp is convex. Indeed, it is the pointwise
minimum of a family of affine functions on λ. As such, though gp may not be differentiable, it
can be equipped with supergradients, that may be used to determine ascent directions. Explicitly, a
vector s ∈ Rm is a supergradient of the concave function h : Rm → R at a point x if h(z)−h(x) ≥
sT (z−x) for all z. The set of all supergradients of h at x is called the superdifferential and is denoted
∂h(x). When the losses ℓi are continuous, the superdifferential of gp admits a simple description,
namely:

∂gp(λp) = conv{ℓ(fθ(λp)) : fθ(λp) ∈ F⋆
θ (λp)}.

where conv(S) denotes the convex hull of the set S and F⋆
θ (λp) denotes the set of Lagrangian

minimizers fθ(λp) associated to the multiplier λp:

F⋆
θ (λp) = argmin

θ∈Θ
L(fθ, λp). (3)

We can then proceed to obtain an algorithm for solving Dp, updating dual variables in the ascent
direction indicated by a supergradient ℓ(fθ(λp)) and projecting the resulting iterates into the non-
negative orthant. This procedure, referred to as projected supergradient ascent (Polyak, 1987), is
presented in Algorithm 1.

Observe that as dual iterates λp(t) approach the set Λ⋆
p = argmaxλp⪰0 gp(λp) of solutions of Dp,

a sequence of primal iterates {fθ(t) ∈ F⋆
θ (λp(t))}Tt=1 is obtained as a by-product. In general,

however, the Lagrangian minimizers are not unique. In particular, for an optimal dual variable
λ⋆
p ∈ Λ⋆

p, the set F⋆
θ (λ

⋆
p) is typically not a singleton and could contain infeasible elements (i.e,

ℓi(fθ(λ
⋆
p)) > 0 for some i ≥ 1). Even more so, as λp(t) approaches Λ⋆

p, the constraint satisfaction
of primal iterates can exhibit pathological cyclostationary behaviour, where one or more constraints
oscillate between feasibility and infeasibility. The experiment in Figure 1 showcases this behaviour
and illustrates that, in general, one can not simply stop the dual ascent algorithm at an iteration t and
expect the primal iterate fθ(λp(t)) to be feasible. This is why, in these type of non-convex problems,
guarantees usually pertain a probability distribution over (a subset of) the sequence {fθ(t)}Tt=1 (see
e.g, (Agarwal et al., 2018) Theorem 2, (Kearns et al., 2018) Theorem 4.1, (Cotter et al., 2019)
Theorem 2, (Chamon et al., 2023)).

3 NEAR-OPTIMAL SOLUTIONS OF CONSTRAINED LEARNING PROBLEMS

Final primal iterates obtained as a by-product of dual ascent methods can fail at solving problem
Pp. However, constrained learning problems arise as parametrized versions of very benign convex
functional programs, which are ammenable to a Lagrangian relaxation.
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Figure 1: Feastibility of primal iterates in a constrained learning problem with fairness requirements.
Left: Example of a hard constraint which oscillates between feasibiliy and infeasibility, and an easy
constraint which remains feasible. The constraint average line, lying below feasibility threshold,
illustrates that averaging primal iterates is beneficial in terms of constraint satisfaction. Right: After
training accuracy has settled (around half of training epochs) all but the last constraint are infeasible
30-45 % of the time. In fact, on 85% of the iteratons, at least one constraint is violated. We cannot
stop the algorithm and expect to arrive at a feasible solution. This work analyzes the magnitude of
feasibility oscillations.

3.1 THE UNPARAMETRIZED PROBLEM

The unparametrized constrained learning problem is defined as:

P ⋆
u = min

ϕ∈F
ℓ0(ϕ)

s.to : ℓi(ϕ) ≤ 0 i = 1, ..,m
(Pu)

where F is a convex, compact subset of an L2(Ω) space, Ω being a Lebesgue measurable subset
of Rd. For instance, F can be the space of continuous functions or a reproducing kernel Hilbert
space (RKHS) and Fθ can be a neural network or a finite linear combinations of kernels, both
of which meet the uniform approximation assumption (Hornik, 1991; Berlinet & Thomas-Agnan,
2011). Analogously to the definitions presented in section 2.1, gu(λu) := minϕ∈F L(ϕ, λu) de-
notes the unparametrized dual function, Φ⋆(λu) = argminϕ∈F L(ϕ, λu) denotes the set of un-
parametrized Lagrangian minimizers associated with λu and

D⋆
u = max

λu⪰0
gu(λu) (Du)

is the unparametrized dual problem. We now present two assumptions that allow us to characterize
the relation between the dual and primal solutions of problem Du.

Assumption 3.1 The functionals ℓi , i = 0, . . . ,m, are convex and M−Lipschitz continuous in F .
Additionally, ℓ0 is µ0−strongly convex.

Assumption 3.2 There exists ϕ ∈ F such that ℓ(ϕ) ≺ min[0, ℓ(ϕ(λ⋆
p)), ℓ(fθ(λ

⋆
p))], where the

minimum is taken coordinate-wise.

Note that we require convexity of the objective with respect to the functionals, but not model param-
eters, which holds for both mean squared error and cross-entropy loss. Assumption 3.2 is a stronger
version of Slater’s constraint qualification, since it requires strict feasibility in a set of perturbed ver-
sions of the unparametrized problem. It will later allow us to analyze the variations of the optimal
value P ⋆

u as a function of the constraint tightness.

As will be explained in section 3.3, under these assumptions, the unparametrized Lagrangian min-
imizer is unique. This makes the superdifferential of the dual function a singleton at every λu:
∂gu(λu) = {ℓ(ϕ(λu))}, which means that the dual function gu(λu) is differentiable. Let ϕ⋆ be a
solution of problem Pu. Assumptions 3.1 and 3.2 imply that strong duality (i.e, P ∗

u = D⋆
u) holds

in this problem, and that at λ⋆
u, there is a unique Lagrangian minimizer ϕ⋆(λ⋆

u) = ϕ⋆ which is, by
definition, feasible.
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Note that the only difference between problems Pp and Pu is the nature of the set over which the
optimization is carried out. Thus, if the parametrization Θ is rich (e.g, deep neural networks), the
set Fθ is close to F , and we can expect the properties of the solutions to problems Dp and Du to be
similar. This insight leads us to the ν−near universality of the parametrization assumption.

Assumption 3.3 For all ϕ ∈ F , there exists θ ∈ Θ such that ∥ϕ− fθ∥L2
≤ ν.

Given the properties of the problems presented, it is legitimate to ask: how close are fθ(λ⋆
p) and ϕ⋆ in

terms of their constraint satisfaction ? Should a tight bound exist, then averaging and randomization
would not be necessary.

3.2 FEASIBILITY APPROXIMATION

We will characterize the constraint violation of the Lagrangian minimizers fθ(λ
⋆
p) ∈ Fθ(λ

⋆
p) by

comparing these primal variables with the solution of the unparametrized problem: ϕ⋆. Since the
problem is feasible, ℓ(ϕ⋆) is non-positive and, due to complementary slackness, it is a null vector
when all constraints are active.

The curvature of the unparametrtized dual function gu(λu) around the optimum is central in this
analysis. We will first provide a result assuming this curvature is known, and will later describe its
connection to the properties of Problem Pp. Let Bλ := {γλ⋆

u + (1− γ)λ⋆
p : γ ∈ [0, 1]} denote the

segment connecting λ⋆
u and λ⋆

p.

Assumption 3.4 The dual function gu is µg−strongly concave on Bλ and βg−smooth.

We now state the main result of this section, characterizing the constraint satisfaction of any La-
grangian minimizer of the constrained learning problem at an optimal dual variable λ⋆

p ∈ Λ⋆
p with

respect to that of the optimal, feasible solution of the unparametrized problem.

Theorem 3.5 Under assumptions 3.1-3.4, for any fθ(λ
⋆
p) ∈ F⋆

θ (λ
⋆
p), the distance between

the unparametrized and parametrized constraint violations is bounded by:

∥ℓ(fθ(λ⋆
p))− ℓ(ϕ⋆)∥22 ≤ 2βgMν(1 + ∥λ⋆

p∥1)
(
1 +

√
βg

µg

)2

The ratio βg

µg
, which corresponds to the condition number of the Hessian of gu(λ), can be used to

determine optimal step sizes in dual ascent methods (Polyak, 1987), and plays a crucial role in this
bound. As will be shown in Section 3.3 if the dual function is steeply curved (i.e, µg is large) then
λ⋆
p and λ⋆

u are not too far apart. However, as µg increases so does βg , which increases the sensitivity
of the optimum P ∗

u with respect to constraint perturbations and loosens the bound.

The constant ν indicates how rich the parametrization is in terms of approximating the functions of
F . Thus, it is reasonable that as the model capacity increases and ν goes to 0, the distance between
constraint violations decreases. In the extreme, if all functions in F can be exactly approximated by
an element of Fθ (ν = 0), the problems Pp and Pu are equivalent and trivially ϕ⋆ = fθ(λ

⋆
p).

To better understand how the properties of problem Pp impact the feasibility approximation bound
in Theorem 3.5, we now the relate the curvature of gu(λu) to the properties of the losses ℓi.

Assumption 3.6 The functionals ℓi , i = 0, . . . ,m are β-smooth in F .

Assumption 3.7 The Jacobian Dϕℓ(ϕ
⋆) is full-row rank at the optimum, i.e: ∃σ > 0 such that

inf∥λ∥=1 ∥λTDϕℓ(ϕ
⋆)∥L2 ≥ σ, where Dϕℓ(ϕ

⋆) denotes the Frechet derivative of the functional ℓ
at ϕ⋆ (see Appendix A.1).

Assumption 3.7, which lower-bounds the singular values of the constraint Jacobian, is customary in
constrained optimization and is related to the Linear independence constraint qualification (LICQ).
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Lemma 3.8 Under assumptions 3.1, 3.2, 3.6 and 3.7, the unparametrized dual function gu(λu) is
µg−strongly concave on Bλ and βg−smooth with:

µg =
µ0 σ

2

β2(1 + ∆)2
, βg =

√
mM2

µ0
(4)

where ∆ = max{∥λ⋆
u∥1, ∥λ⋆

p∥1}.

From Lemma 3.8, we have that βg

µg
=

√
mM2

σ2
β2

µ2
0
(1 + ∆)2. Therefore, the condition numbers

κ1 = M
σ and κ2 = β

µ0
of the constraint Jacobian and the objective’s Hessian impact how far the

constraint violations of fθ(λ⋆
p) are to that of ϕ⋆. Combining this with Theorem 3.5, we obtain the

following infinity norm bound:

Corollary 3.9 Under assumptions 3.1, 3.2, 3.3, 3.6 and 3.7, the maximum distance between
the parametrized and unparametrized contraints violations is characterized by:

∥ℓ(fθ(λ⋆
p))− ℓ(ϕ⋆)∥∞ ≤ M [1 + κ1κ2(1 + ∆)]

√
2m

Mν

µ0
(1 + ∥λ⋆

p∥1) (5)

with κ1 = M
σ , κ2 = β

µ0
and ∆ = max{∥λ⋆

u∥1, ∥λ⋆
p∥1}.

This bound can be split into three main components. The condition numbers κ1 = M
σ and κ2 = β

µ0

of the constraint Jacobian and the objective’s Hessian are present in the term [1 + κ1κ2(1 + ∆)].
Thus, it can be thought of as the baseline effect, capturing how well-conditioned the problem is.
Furthermore, the term

√
2mMν

µ0
(1 + ∥λ⋆

p∥1) contains the approximation error in PACC learning
( see (Chamon & Ribeiro, 2020), Theorem 2). Although the number of constraints m naturally
appears in this bound, it can be integrated into the term M if one makes the stronger assumption that
ℓ is M−Lipschitz, as opposed to assuming this of each individual ℓi.

3.3 DUAL VARIABLE AND HYPOTHESIS CLASS PERTURBATIONS

In this section, we give an outline on the results that build up to Theorem 3.5. We will focus on
the properties that shed light on the nature of the Lagrangian minimizers fθ(λ

⋆
p) ∈ F⋆

θ (λ
⋆
p). For

clarity, we will sometimes write ϕ⋆ as ϕ(λ⋆
u) to emphasize the dependence on λ⋆

u. We start by
decomposing the distance between parametrized and unparametrized contraints violations using a
triangle inequality:

∥ℓ(fθ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥2 = ∥ℓ(fθ(λ⋆
p))− ℓ(ϕ(λ⋆

p)) + ℓ(ϕ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥2
≤ ∥ℓ(ϕ(λ⋆

p))− ℓ(ϕ(λ⋆
u))∥2 + ∥ℓ(fθ(λ⋆

p))− ℓ(ϕ(λ⋆
p))∥2

The first term captures the impact of the perturbation of dual variables in the unparametrized prob-
lem. The second one captures the effect of parametrizating the hypothesis class for a fixed dual
variable. For conciseness, technical definitions used in this section are deferred to Appendix A.1.

3.3.1 DUAL VARIABLE PERTURBATION

In the unparametrized problem the Lagrangian minimizer ϕ(λu) is unique at each λu, which im-
plies that gu(λ) is everywhere differentiable with gradient ∇λgu(λ) = ℓ(ϕ(λ)) (see Appendix A.3).
In this setting, analyzing the term ℓ(ϕ(λ⋆

p)) − ℓ(ϕ(λ⋆
u)) is equivalent to studying the distance be-

tween the gradients of gu at λ⋆
p and λ⋆

u. Furthermore, leveraging the ν−near universality of the
parametrization we can show that the maximizers of gu and gp cannot be too far apart. In fact, as
shown in Appendix A.4, their distance is characterized by:

∥λ⋆
p − λ⋆

u∥22 ≤ 2
Mν

µg
(1 + ∥λ⋆

p∥1). (6)

Optimal dual variables indicate the sensitivity of the optimal value with respect to constraint pertur-
bations. Thus, the term (1+∥λ⋆

p∥1) can be seen as an indicator of the sensitivity of the optimization
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problem. Combining the bound in equation in equation 6 with the βg-smoothness of gu, we can
characterize the impact of going from λ⋆

u to λ⋆
p in the unparametrized problem.

Proposition 3.10 Under assumptions 3.1-3.4, the distance between the constraint violations ϕ(λ⋆
p)

and ϕ(λ⋆
u) is bounded by:

∥ℓ(ϕ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥22 ≤ 2
β2
g

µg
Mν(1 + ∥λ⋆

p∥1) (7)

As the constant βg

µg
grows, and the Hessian of gu becomes ill-conditioned, the bound becomes looser.

As shown in Lemma 3.8, this occurs if the number of constraints grows, or if the curvature of the
objective ℓ0 decreases.

3.3.2 HYPOTHESIS CLASS PERTURBATION

We now consider a perturbed version of the unparametrized problem. Its optimal value - or
perturbation- function is defined as:

P ⋆(ϵ) =min
ϕ∈F

ℓ0(ϕ)

s.to : ℓ(ϕ) + ϵ ⪯ 0
(Pϵ)

for a perturbation ϵ ∈ Rm. Intuitively, increasing ϵ (coordinate-wise) tightens the constraint, making
the feasible set smaller and potentially increasing P ⋆(ϵ). Note that by setting ϵ = 0, we recover the
unparametrized problem: P ∗(0) = P ∗

u .

By focusing on particular instances of this problem with perturbations ϵu = −ℓ(ϕ(λ⋆
p)) and

ϵp = −ℓ(fθ(λ
⋆
p)) we can bound the distance between the constraint violations of the Lagrangian

minimizers associated to λ∗
p ∈ Λ∗

p in the parametrized and unparametrized problems. To do this, we
start by analyzing the variations of the optimal value function P ⋆(ϵ) using a well-known result from
conjugate duality: for every λ ∈ Rm

+ we have that P †(λ) = −gu(λ), where P † denotes the Fenchel
conjugate of the perturbation function P ∗(ϵ). In fact, the dual problem is sometimes defined as the
maximization of −P †(λ) (Rockafellar, 1974). This result is impactful, because it allows us to relate
the curvature of gu(λ), which we know from Lemma 3.8, to the variations of P ∗(ϵ). Specifically,
we leverage the duality between smoothness and strong convexity.

Informally, a closed convex function h is strongly convex with constant µ if and only if its Fenchel
conjugate h† is 1

µ−smooth (Kakade et al., 2009). Since gu is βg-smooth, this implies that P ∗(ϵ) is
1/βg−strongly convex in the region of interest (see Appendix A.8). However, for this result to hold,
the strict feasibility assumption 3.2 is indispensable. Indeed, the fact that the perturbed problems are
strictly feasible implies that perturbation function P ⋆(ϵ) is closed, a property needed to characterize
its variations (see Appendix A.8).

Furthermore, since we know that fθ(λ⋆
p) is feasible for the problem with perturbation ϵp, we can use

weak duality to bound the distance between P ∗(ϵp) and P ∗(ϵu) (see Appendix A.10). Combining
these results, we can describe the impact of the parametrizion for a fixed dual variable λ⋆

p ∈ Λ⋆
p.

Proposition 3.11 Under assumptions 3.1-3.4, the distance between constraint violation associated
to the parametrization of the hypothesis class is given by:

∥ℓ(ϕ(λ⋆
p))− ℓ(fθ(λ

⋆
p))∥22 ≤ 2βgMν(1 + ∥λ⋆

p∥1)

In contrast to Proposition 3.10, the strong concavity of the dual function is not present in Proposition
3.11, which means that the smoothness of the losses ℓi does not play a role in this bound.

4 BEST ITERATE CONVERGENCE

As described in section 2.1, in constrained learning, the objective ℓ0 and the constraints ℓ are statisti-
cal in nature: ℓi(fθ) = E(x,y)[ℓ̃i(f(x), y)] where (x, y) is sampled from a distribution D. In practice,
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we do not have access to D, but to a set of samples D = {(x1, y1), . . . , (xn, yn)}, assumed iid. We
will denote by ℓ̂i(fθ) an estimate of ℓi(fθ) using the dataset D: ℓ̂i(fθ) := 1

n

∑n
k=1 ℓ̃i(fθ(xk), yk).

Estimating expectations with sample means does not modify Algorithm 1 significantly. Since
ℓ̂i(fθ(t)) is an unbiased estimator of ℓi(fθ(t)), a stochastic supergradient ŝ(t) := ℓ̂i(fθ(t)) of gp
can be obtained using samples from D. Thus, in the stochastic version of the supergradient ascent
algorithm (Shor, 2013), the dual update can be written as:

λp(t+ 1) = [λp(t) + η ŝ(t)]+ (8)

Observe that since E(x,y){ŝ(t)|λ(t)} ∈ ∂gp(λ(t)), dual variables will move, on average, towards
the optimal set Λ⋆.

We now analyze the convergence of the best dual iterate, that is, the dual variable which evaluates
to the largest dual function encountered so far. More precisely, we show that best dual iterates enter
a near-optimality ball infinitely often. Since the dual function can be evaluated, this translates into
a practical algorithm, analogous to a validation step in standard supervised learning. We then use
Propositions 3.10 and 3.11 to obtain a bound on the infeasibility of primal variables associated to
the best dual iterate.

Lemma 4.1 Let gbest
p (t|λ(t0)) = maxs∈[t0,t] gp(λ(s)) be the maximum value of the parametrized

dual function up to time t. Then,

lim
t→∞

gbest
p (t|λ(t0)) ≥ D⋆

p −
ηS2

2
a.s.

where S2 > E[∥ŝ(t)∥2|λ(t)] is an upper bound on the norm of the second order moment of the
stochastic supergradients.

Observe that the existence of S2 is guaranteed by the Lipschitz continuity of the losses ℓi and the
boundedness of the set Fθ ⊆ F . Since S2 is finite, one can reduce the step size η to make gbest

p
arbitrarily close to D⋆

p , with the potential cost of increasing the time of occurrence of such proximity.

Lemma 4.1 implies that for almost every realization, and arbitrary δ > 0, as t grows gbest
p (t|λ(t0))

is ηS2

2 + δ close to D⋆
p at least once. Since t0 is arbitrary, this occurs infinitely often. Let λbest be

a dual iterate such that: gp(λbest) ≥ D⋆
p − (ηS

2

2 + δ). The near-optimality of λbest) and the results
from section 3.3 allow us to derive a bound on the constraint violation of primal iterates associated
to λbest in the parametrized and unparametrized problems.

Proposition 4.2 Let λbest be a dual iterate such that: gp(λ
best) ≥ D⋆

p − (ηS
2

2 + δ). Under
assumptions 3.1, 3.3, 3.3, 3.7 and assuming that there exists ϕ ∈ F such that ℓ(ϕ) ≺
min{0, ℓ(ϕ(λbest)), ℓ(fθ(λ

best))} we have:

∥ℓ(ϕ⋆)− ℓ(fθ(λ
best)))∥22 ≤ 2βgMν(1 + ∥λbest∥1)

(
1 + (1 +

ηS2

2
+ δ)

√
βg

µ̃g

)2

where µ̃g = µ0 σ2

β2(1+max{∥λ⋆
u∥1,∥λbest∥1})2

The main difference between Proposition 4.2 and the main Theorem 3.5 is that the condition number
βg

µ̃g
gets amplified by the sub-optimality of λbest with respect to λ⋆

p.

5 EXPERIMENTAL VALIDATION

To validate the theoretical findings of sections 3 and 4 we return to example 2.1, a constrained
learning problem with counterfactual fairness requirements. In the COMPAS dataset, the protected
variables gender and race can take the values [”Male”, ”Female”] and [”African American”, ”His-
panic”, ”Caucasian”, ”Other”] respectively. We use a two-layer neural network with 64 nodes and

8
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Figure 2: Left: the Unconstrained model performs better in terms of average test accuracy than
both the Last and Randomized model. Middle: Both constrained models do better in terms of
Counterfactual Fairness. The key point is that the last model is never far from the Randomized one.
Right: As the richness of the parametrization increases the maximum constraint violation (i.e: size
of the oscillations) decreases.

sigmoid activations. The training objective ℓ0 is the negative log-likelihood and the constraint upper
bound is set to 0.001. We train this model over T = 400 iterations using a ADAM, with batch
size 256, primal learning rate 0.1, and dual variable learning rate 2. The objective ℓ0 is the negative
log-likelihood. We use the same data pre-processing steps as in (Chamon & Ribeiro, 2020).

In this setting, we compare the performance and constraint satisfaction of three predictors. An
Unconstrained predictor: trained without contemplating the fairness requirements through empirical
risk minimization. The Last predictor: corresponding to the final iterate fθ(λ(T )) of the stochastic
dual supergradient ascent method. The Randomized predictor: which takes the sequence of primal
iterates {fθ(λ(t))}Tt=t0 and samples a learner uniformly from this sequence in order to make a
prediction. We take t0 as the iteration where training accuracy settles, which corresponds to around
half of the training iterations.

As shown in Figure 2, the unconstrained model is slightly better than the constrained ones, although
this difference is small (< 1%). Furthermore, the unconstrained model is significantly worse in
terms of counterfactual fairness than both the Last and Randomized Predictors, which are always
close, in agreement with Theorem 3.5. We also perform an ablation on how the richness of the
parametrization impacts the maximum violation of primal iterates. To control the richness of the
parametrization we project the input samples into a space of lower-dimension with a fixed, random
linear map. These lower-dimensional vectors are then used to train the neural network. As the
richness of the parametrization increases, ν decreases, reducing the upper bound in Theorem 3.5.
This is illustrated by the right-most plot in Figure 2, where the maximum constraint violation (i.e:
magnitude of the feasibility oscillations) decreases by an order of magnitude as we progressively
increase the capacity of the model.

6 CONCLUSION

We analyzed the feasibility of primal iterates obtained from a dual ascent method when solving the
Lagrangian dual of a primal non-convex constrained learning problem. The primal problem in ques-
tion is the parametrized version of a convex functional program, which is amenable to a Lagrangian
relaxation. Specifically, we characterized how far these predictors are from a solution of the un-
parametrized problem in terms of their constraint violations. This result led to a characterization of
the infeasibility of best primal iterates and elucidated the role of the capacity of the model and the
curvature of the objective. These guarantees bridge a gap between theory and practice in constrained
learning, shedding light on when and why randomization is unnecessary.

The findings presented in this work can be extended in several ways. For instance, the estimation
error incurred by using samples to estimate statistical losses can be included in the main analysis.
Moreover, feasibility results studying the primal iterates directly, and not on their distance to the
solution of the unparametrized problem can be obtained. Finally, it might be possible to lift one or
more assumptions about the unparametrized problem.

9
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A APPENDIX

A.1 ADDITIONAL DEFINITIONS

Definition A.1 We say that a functional ℓi : F → R is Fréchet differentiable at ϕ0 ∈ F if there
exists an operator Dϕℓi(ϕ

0) ∈ B(F ,R) such that:

lim
h→0

|ℓi(ϕ0 + h)− ℓi(ϕ
0)− ⟨Dϕℓi(ϕ

0), h⟩|
∥h∥L2

= 0

where B(F ,R) denotes the space of bounded linear operators from F to R.

The space B(F ,R), algebraic dual of F , is equipped with the corresponding dual norm:

∥B∥L2
= sup

{ |⟨B,ϕ⟩|
∥ϕ∥L2

: ϕ ∈ F , ∥ϕ∥L2
̸= 0

}
which coincides with the L2−norm through Riesz’s Representation Theorem: there exists a unique
g ∈ F such that B(ϕ) = ⟨ϕ, g⟩ for all ϕ and ∥B∥L2

= ∥g∥L2
.

Definition A.2 A function h : X → R is said to be closed if for each α ∈ R, the sublevel set
{h(x) ≤ α : x ∈ X} is a closed set.

Definition A.3 A convex function h : X → R is proper if h(x) > −∞ for all x ∈ X and there
exists x0 ∈ X such that h(x0) < +∞.

Definition A.4 Let X be an Euclidean vector space. Given a convex function h : X → R ∪ {∞},
its Fenchel conjugate h† : X → R ∪ {∞} is defined as:

h†(y) = sup
x∈X

⟨x, y⟩ − h(x)

A.2 PROOF LEMMA A.5

Lemma A.5 The point-wise distance between the parametrized and unparametrized dual functions
is bounded by:

0 ≤ gp(λ)− gu(λ) ≤ Mν(1 + ∥λ∥1) ∀ λ ⪰ 0 (9)

As defined in section 2.1, ϕ(λ) denotes the Lagrangian minimizer associated to the multiplier λ in
the unparametrized problem.

By the near-universality assumption, ∃ θ̃ ∈ Θ such that ∥ϕ(λ)− fθ̃∥L2 ≤ ν. Note that,

L(fθ̃, λ)− L(ϕ(λ), λ) = ℓ0(fθ̃)− ℓ(ϕ(λ)) + λT
(
ℓ(fθ̃)− ℓ(ϕ(λ))

)
≤ ∥ℓ0(fθ̃)− ℓ(ϕ(λ))∥2 +

m∑
i=1

[λ]i∥ℓ(fθ̃)− ℓ(ϕ(λ))∥2

where we used the triangle inequality twice. Then, using the M−Lipschitz continuity of the func-
tionals ℓi and the fact that ∥ϕ(λ)− fθ̃∥2 ≤ ν, we obtain:

L(fθ̃, λ)− L(ϕ(λ), λ) ≤ M∥fθ̃ − ϕ(λ)∥L2 +M

m∑
i=1

[λ]i∥fθ̃ − ϕ(λ)∥L2

≤ Mν +Mν

m∑
i=1

[λ]i = Mν(1 + ∥λ∥1)

Since fθ(λ) ∈ F⋆
θ (λ) is a Lagrangian minimizer, we know that L(fθ(λ), λ) ≤ L(fθ̃, λ). Thus,

0 ≤ L(fθ(λ), λ)− L(ϕ(λ), λ) ≤ L(fθ̃, λ)− L(ϕ(λ), λ)

where the non-negativity comes from the fact that FΘ ⊆ F . This implies:

0 ≤ gp(λ)− gu(λ) ≤ Mν(∥λ∥1 + 1) ∀ λ ⪰ 0

which conludes the proof.
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A.3 LEMMA A.6: DIFFERENTIABILITY OF gu(λu)

Lemma A.6 Under assumption 3.1, the unparametrized dual function gu(λ) is everywhere differ-
entiable with gradient ∇λgu(λ) = ℓ(ϕ(λ)).

From assumption 3.1, ℓ(ϕ) is strongly convex and λT ℓ(ϕ) is a non-negative combination of convex
functions. Thus, the Lagrangian L(f, λ) is strongly convex on ϕ for any fixed dual variable λ ∈ Rm

+ .

The convexity and compactness of F imply that, in the unparametrized problem, the Lagrangian
functional attains its minimizer ϕ(λ) for each λ. (see e.g, (Kurdila & Zabarankin, 2006) Theorem
7.3.1.) Then, by the strong convexity of L(ϕ, λ), this minimizer is unique.

Since L(f, λ) is affine on λ, it is differentiable on λ. Then, by application of the Generalized
Danskin’s Theorem (see e.g: (Başar & Bernhard, 2008) Corollary 10.1) to gu(λ) and using that the
set of minimizers ϕ(λ) of L(f, λ) is a singleton, we obtain:

∇λgu(λ) = ℓ(ϕ(λ)),

which completes the proof.

A.4 PROOF LEMMA A.7

Lemma A.7 Under assumptions 3.1, 3.2, 3.3, 3.4, the proximity between the unparametrized and
parametrized optimal dual variables is characterized by:

∥λ⋆
p − λ⋆

u∥22 ≤ 2
Mν

µg
(1 + ∥λ⋆

p∥1) (10)

Since gu(λ) is differentiable (see A.6) and µg−strongly concave for λ ∈ Bλ :

gu(λ) ≤ gu(λ
⋆
u) +∇gu(λ

⋆
u)

T (λ− λ⋆
u)−

µg

2
∥λ− λ⋆

u∥22 ∀λ ∈ Bλ

From Lemma A.6 we have that ∇gu(λ
⋆
u) = ℓ(ϕ(λ⋆

u))), then evaluating at λ⋆
p we obtain:

gu(λ
⋆
p) ≤ gu(λ

⋆
u) + ℓ(ϕ(λ⋆

u))
T (λ⋆

p − λ⋆
u)−

µg

2
∥λ⋆

p − λ⋆
u∥22

By complementary slackness, ℓ(ϕ(λ⋆
u))

Tλ⋆
u = 0. Then, since ϕ(λ⋆

u) is feasible and λ⋆
p ≥ 0:

ℓ(ϕ(λ⋆
u))

Tλ⋆
p ≤ 0. Thus,

gu(λ
⋆
p) ≤ gu(λ

⋆
u)−

µg

2
∥λ⋆

p − λ⋆
u∥22

By Proposition 1: gp(λ⋆
p)−Mν(1 + ∥λ⋆

p∥1) ≤ gu(λ
⋆
p), which implies:

gp(λ
⋆
p)−Mν(1 + ∥λ⋆

p∥1) ≤ gu(λ
⋆
u)−

µg

2
∥λ⋆

p − λ⋆
u∥22

Thus,

∥λ⋆
p − λ⋆

u∥22 ≤ 2

µg

[
gu(λ

⋆
u)− gp(λ

⋆
p)
]
+

2

µg
Mν(1 + ∥λ⋆

p∥1) (11)

Finally, since Fθ ⊆ F we have that : gu(λ) ≤ gp(λ) ∀ λ. Evaluating at λ⋆
u and using that λ⋆

p
maximizes gp we obtain:

gu(λ
⋆
u) ≤ gp(λ

⋆
u)

≤ gp(λ
⋆
p)

Using this in equation 11 we obtain,

∥λ⋆
p − λ⋆

u∥22 ≤ 2

µg
Mν(1 + ∥λ⋆

p∥1)
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A.5 PROOF THEOREM 3.10

The proof follows from straightforward applications of Lemma A.6, Proposition and Proposition
A.7:

∥L(ϕ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥22 = ∥∇λgu(λ
⋆
p)−∇λgu(λ

⋆
u)∥22

≤ β2
g∥λ⋆

p − λ⋆
u∥22

≤ 2
β2
g

µg
Mν(1 + ∥λ⋆

p∥1)

A.6 PROOF LEMMA 3.8

A.6.1 STRONG CONCAVITY CONSTANT µg

As argued in Lemma A.6, the unparametrized Lagrangian has a unique minimizer ϕ(λ) for each
λ ∈ Rm

+ . Let λ1, λ2 ∈ Bλ and ϕ1 = ϕ(λ1), ϕ2 = ϕ(λ2).

By convexity of the functions ℓi : F → R for i = 1, . . . ,m, we have:

ℓi(ϕ2) ≥ ℓi(ϕ1) + ⟨Dϕℓi(ϕ1), ϕ2 − ϕ1⟩,
ℓi(ϕ1) ≥ ℓi(ϕ2) + ⟨Dϕℓi(ϕ2), ϕ1 − ϕ2⟩

Multiplying the above inequalities by [λ1]i ≥ 0 and [λ2]i ≥ 0 respectively and adding them, we
obtain:

−⟨ℓ(ϕ2)− ℓ(ϕ1), λ2 − λ1⟩ ≥ ⟨λT
1 Dϕℓ(ϕ1)− λT

2 Dϕℓ(ϕ2), ϕ2 − ϕ1⟩ (12)

Since ∇gu(λ) = L(ϕ(λ)), we have that:

−⟨∇gu(λ2)−∇gu(λ2), λ2 − λ1⟩ ≥ ⟨λT
1 DϕL(ϕ1)− λT

2 DϕL(ϕ2), ϕ2 − ϕ1⟩ (13)

Moreover, first order optimality conditions yield:

Dϕℓ0(ϕ1) + λT
1 Dϕℓ(ϕ1) = 0,

Dϕℓ0(ϕ2) + λT
2 Dϕℓ(ϕ2) = 0

(14)

where 0 denotes the null-opereator from F to R (see e.g: (Kurdila & Zabarankin, 2006) Theorem
5.3.1).

Combining equations 13 and 14 we obtain:

−⟨∇gu(λ2)−∇gu(λ2), λ2 − λ1⟩ ≥ ⟨Dϕℓ0(ϕ2)−Dϕℓ0(ϕ1), ϕ2 − ϕ1⟩
≥ µ0∥ϕ2 − ϕ1∥2L2

(15)

where we used the µ0−strong convexity of the operator ℓ0.

We will now obtain a lower bound on ∥ϕ2 − ϕ1∥L2
, starting from the β−smoothness of ℓ0:

∥ϕ2 − ϕ1∥2 ≥ 1

β
∥Dϕℓ0(ϕ2)−Dϕℓ0(ϕ1)∥L2

=
1

β
∥λT

2 Dϕℓ(ϕ2)− λT
1 Dϕℓ(ϕ1)∥L2

=
1

β
∥(λ2 − λ1)

TDϕℓ(ϕ2)− λT
1 (Dϕℓ(ϕ1)−Dϕℓ(ϕ2))∥L2

(16)

Then, second term in the previous equality can be characterized using assumption 3.7:

∥(λ2 − λ1)
TDϕℓ(ϕ2)∥L2 ≥ σ∥λ2 − λ1∥2 (17)

14
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For the second term, using the β−smoothness of ℓi we can derive:

∥λT
1 (Dϕℓ(ϕ1)−Dϕℓ(ϕ2))∥L2 = ∥

m∑
i=1

[λ1]i(Dϕℓi(ϕ1)−Dϕℓi(ϕ2))∥L2

≤
m∑
i=1

[λ1]i∥Dϕℓi(ϕ1)−Dϕℓi(ϕ2)∥L2

≤
m∑
i=1

[λ1]iβ∥ϕ1 − ϕ2∥L2

= β∥λ1∥1∥ϕ1 − ϕ2∥L2

(18)

Then, using the reverse triangle inequality:

∥(λ2 − λ1)
TDϕℓ(ϕ2)−λT

1 (Dϕℓ(ϕ1)−Dϕℓ(ϕ2))∥L2

≥ ∥(λ2 − λ1)
TDϕℓ(ϕ2)∥L2

− ∥λT
1 (Dϕℓ(ϕ1)−Dϕℓ(ϕ2))∥L2

≥ σ∥λ2 − λ1∥2 − β∥λ1∥1∥ϕ2 − ϕ1∥L2

(19)

Combining this with equation 16 we obtain:

∥ϕ2 − ϕ1∥2 ≥ 1

β
(σ∥λ2 − λ1∥2 − β∥λ1∥1∥ϕ2 − ϕ1∥L2

)

−→ ∥ϕ2 − ϕ1∥L2 ≥ σ

β(1 + ∥λ1∥1)
∥λ2 − λ1∥2

(20)

This means that we can write equation 15 as:

−⟨∇gu(λ2)−∇gu(λ1), λ2 − λ1⟩ ≥
µ0 σ

2

β2(1 + ∥λ1∥1)2
∥λ2 − λ1∥22

Letting λ2 = λ⋆
u, we obtain that the strong concavity constant of gu in Bλ is µg =

µ0 σ2

β2(1+max{∥λ⋆
u∥1,∥λ⋆

p∥1})2 . A similar proof in the finite dimensional case can be found in (Guigues,
2020).

A.6.2 SMOOTHNESS CONSTANT βg

Set λ1, λ2 ∈ Rm
+ , and let ϕ1 = ϕ(λ1) and ϕ2 = ϕ(λ2) denote the Lagrangian minimizers associated

to these multipliers.

Since the unparametrized Lagrangian is differentiable and µ0-strongly convex we have:

L(f, λ) ≥ L(ϕ(λ), λ) + ⟨DϕL(ϕ(λ), λ)), f − ϕ(λ)⟩+ µ0

2
∥f − ϕ(λ)∥2L2

Using that ϕ(λ) is a minimizer, we obtain (see e.g: (Kurdila & Zabarankin, 2006) Theorem 5.3.1) :

L(ϕ(λ), λ) ≤ L(f, λ)− µ0

2
∥f − ϕ(λ)∥22,∀f ∈ F

Applying this to ϕ2 and ϕ1 we obtain:

ℓ0(ϕ2) + λT
2 ℓ(ϕ2) ≤ ℓ0(ϕ1) + λT

2 ℓ(ϕ1)−
µ0

2
∥ϕ2 − ϕ1∥2L2

ℓ0(ϕ1) + λT
1 ℓ(ϕ1) ≤ ℓ0(ϕ2) + λT

1 ℓ(ϕ2)−
µ0

2
∥ϕ2 − ϕ1∥2L2

Summing the above inequalities and applying Cauchy-Schwarz:

µ0∥ϕ2 − ϕ1∥22 ≤ (λ2 − λ1)
T (ℓ(ϕ1)− ℓ(ϕ2))

≤ ∥λ2 − λ1∥2∥ℓ(ϕ1)− ℓ(ϕ2)∥2
≤ √

mM∥λ2 − λ1∥2∥ϕ1 − ϕ2∥L2
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where the last inequality follows from assumption 3.1. Then, applying Lemma A.6 we obtain:

∥∇λgu(λ2)−∇λgu(λ1)∥2 = ∥ℓ(ϕ2)− ℓ(ϕ1)∥2
≤ M∥ϕ2 − ϕ1∥L2

≤ √
m
M2

µ0
∥λ2 − λ1∥2

which means that gu has a smoothness constant βg =
√
mM2

µ0
.

A.7 PROOF LEMMA A.8

Lemma A.8 Let P † denote the Fenchel conjugate of the perturbation function P ∗(ϵ). For every
λ ∈ Rm

+ we have that P †(λ) = −gu(λ).

By definition of Fenchel conjugate:

P †(λ) = sup
ϵ

λT ϵ− P ⋆(ϵ) (21)

Using the definition of P ∗(ϵ):

P †(λ) = sup
ϕ∈F,ϵ

λT ϵ− ℓ0(ϕ)

s.t: ℓ(ϕ) + ϵ ⪯ 0
(22)

Applying the change of variable z = ℓ(ϕ) + ϵ, P †(λ) can be written as:

P †(λ) = sup
ϕ∈F,z

λT z− λT ℓ(ϕ)− ℓ0(ϕ)

s. to: z ⪯ 0
(23)

Since z ⪯ 0, the term λT z is unbounded above for λ ≺ 0. Thus, we restrict the domain of P †(λ) to
λ ⪰ 0. In this region, maximizing over z ∈ Rm

− yields z∗ = 0. We can thus write P †(λ) as:

P †(λ) = sup
ϕ∈F

−λT ℓ(ϕ)− ℓ0(ϕ), λ ⪰ 0

=− inf
ϕ∈F

λT ℓ(ϕ) + ℓ0(ϕ), λ ⪰ 0
(24)

Therefore,
P †(λ) = −gu(λ), λ ⪰ 0.

See for instance: (Rockafellar, 1997), Section 28, (Guigues, 2020), Lemma 2.9 or (Rockafellar,
1974), Theorem 7.

A.8 PROOF COROLLARY A.9

Corollary A.9 Let Bϵ = {γϵu + (1− γ)ϵp : γ ∈ [0, 1]} denote the segment connecting ϵu and ϵp.
The perturbation function P ∗(ϵ) is µϵ−strongly convex on Bϵ with constant: µϵ = 1/βg .

Lemma A.10 Let h be a closed convex function defined on a subset of the vector space X ; h is
µ−strongly convex if and only if h† has µ−Lipschitz continuous gradients. (See e.g, (?) or (Goebel
& Rockafellar, 2008)).

In order to apply Lemma A.10 we need to show that the perturbation function P (ϵ) is convex and
closed in the region of interest.

Convexity of P ⋆(ϵ) for convex functional programs is shown in (Bonnans & Shapiro, 1998) or
(Rockafellar, 1997) Theorem 29.1. Now we will show that P ⋆(ϵ) is proper and lower semi continu-
ous in the region of interest, which implies that it is closed.

16
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The functional ℓ0, defined on the compact set F , is smooth. Thus, it is bounded on F . From
assumption 3.2 we have that the problem is feasible for ϵ = 0. Therefore, P (0) < +∞. Moreover,
by boundedness of ℓ0, P (ϵ) > −∞ ∀ϵ, implying that P (ϵ) is proper.

Now, fix ϵ0 ∈ Bϵ. Assumption 3.2 implies that the perturbed problem with constraint: L(f)+ϵ0 ⪯ 0
is strictly feasible. Since this perturbed problem is convex and strictly feasible, its perturbation
function P̃ (ϵ) is lower semi continuous at 0 (see (Bonnans & Shapiro, 1998) Theorem 4.2). Note
that P̃ (ϵ) = P ∗(ϵ+ ϵ0). Thus, P ⋆(ϵ) is lower semi continuous at ϵ0.

We conclude that P ⋆(ϵ) is proper and lower semi continuous for all ϵ ∈ Bϵ.

On the other hand, from Corollary 3.8 P †(λ) = −gu(λ) is βg-smooth on Rm
+ . Thus, we are in the

hypothesis of proposition A.8, which implies that P ⋆(ϵ) is strongly convex on Bϵ with constant 1
βg

.

A.9 PROOF PROPOSITION A.11

Proposition A.11 Under assumptions 3.1 and 3.2, λ⋆
p is a subgradient of the perturbation function

at ϵu. That is, λ⋆
p ∈ ∂P ∗(ϵu).

The conjugate nature of the dual function gu(λ) and the perturbation function P ⋆(ϵ) also establishes
a dependence between their first order variations. This dependence is captured in the following
lemma.

Lemma A.12 If h is a closed convex function, the subdifferential ∂h† is the inverse of ∂h in the
sense of multivalued mappings (see (Rockafellar, 1997) Corollary 23.5.1):

x ∈ ∂h†(y) ⇐⇒ y ∈ ∂h(x)

On one hand, from Lemma A.6, we have that ∇λgu(λ
⋆
p) = ℓ(ϕ(λ⋆

p)) = −ϵu. On the other hand,
from Lemma A.8, P †(λ) = −gu(λ) for all λ ∈ Rm

+ .

Taking the gradient with respect to λ and evaluating at λ⋆
p we obtain: ∇λP

†(λ⋆
p) = −ϵu. Then,

Lemma A.12, yields the wanted sensitivity result:
λ⋆
p ∈ ∂P ∗(ϵu).

A.10 PROOF PROPOSITION A.13

Proposition A.13 Under assumptions 3.3 and 3.1, the difference between the optimal values of
problems perturbed by ϵp and ϵu is bounded:

P ∗(ϵp)− P ∗(ϵu) ≤ Mν(1 + ∥λ⋆
p∥) + λ∗T

p (ϵp − ϵu)

Recall that ϵu = −ℓ(ϕ(λ⋆
p)) and ϵp = −ℓ(fθ(λ

⋆
p)). We want to show that:

P ∗(ϵp)− P ∗(ϵu) ≤ Lν(1 + ∥λ⋆
p∥) + λ∗T

p (ϵp − ϵu)

We start by showing that P ∗(ϵp) ≤ ℓ0(fθ(λ
⋆
p)). Note that fθ(λ⋆

p) is feasible in the perturbed prob-
lem, since its constraint value is −ϵp. Then,

P (ϵp) = min
f

{L0(f) : L(f) + ϵp ⪯ 0} ≤ L0(fθ(λ
⋆
p))

Therefore,
P ∗(ϵp)− P ∗(ϵu) ≤ ℓ0(fθ(λ

⋆
p))− P ∗(ϵu). (25)

Note that the dual function of the problem perturbed by ϵu is g̃u(λ, ϵu) := minϕ∈F {ℓ0(f) +
λT (ℓ(ϕ) + ϵu)}. Then, weak duality implies that P ∗(ϵu) ≥ g̃u(λ, ϵu) for all λ. Evaluating at
λ⋆
p we obtain:

P ∗(ϵu) ≥ min
ϕ∈F

{L0(f) + λ∗T
p (L(f) + ϵu)}

= min
ϕ∈F

{ℓ0(ϕ) + λ∗T
p ℓ(ϕ)}+ λ∗T

p ϵu

= gu(λ
⋆
p) + λ∗T

p ϵu

(26)

17
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Combining equations 26 and 25 we obtain:

P ∗(ϵp)− P ∗(ϵu) ≤ ℓ0(fθ(λ
⋆
p))− gu(λ

⋆
p)− λ∗T

p ϵu

= ℓ0(fθ(λ
⋆
p))± λ∗T

p ϵp − gu(λ
⋆
p)− λ∗T

p ϵu

Using that ϵp = −ℓ(fθ(λ
⋆
p)) we obtain:

P ∗(ϵp)− P ∗(ϵu) ≤ gp(λ
⋆
p)− gu(λ

⋆
p) + λ∗T

p (ϵp − ϵu)

Finally, using Propostion we obtain:

P ∗(ϵp)− P ∗(ϵu) ≤ Mν(1 + ∥λ⋆
p∥1) + λ∗T

p (ϵp − ϵu),

which conludes the proof.

A.11 PROOF THEOREM 3.11

Let ∆ϵ = ϵp − ϵu, using the strong convexity constant obtained in Proposition A.9 we have that:

P ∗(ϵp) ≥ P ∗(ϵu) + sT∆ϵ+
1

2βg
∥∆ϵ∥22

where s ∈ ∂P ∗(ϵu) is a subgradient of P ∗(ϵ) at ϵu.

From Proposition A.11 we know that: λ⋆
p ∈ ∂P ∗(ϵu). Thus,

P ∗(ϵp) ≥ P ∗(ϵu) + λ∗T
p ∆ϵ+

1

2βg
∥∆ϵ∥22

Using the bound on P ∗(ϵp)− P ∗(ϵu) obtained in proposition A.13 we can write:

Mν(1 + ∥λ⋆
p∥1) + λ⋆T

p ∆ϵ ≥ λ⋆T

p ∆ϵ+
1

2βg
∥∆ϵ∥22

−→Mν(1 + ∥λ⋆
p∥1) ≥

1

2βg
∥∆ϵ∥22

This implies:

∥∆ϵ∥22 ≤ 2βgMν(1 + ∥λ⋆
p∥1)

−→∥ℓ(ϕ)− ℓ(fθ(λ
⋆
p))∥22 ≤ 2βgMν(1 + ∥λ⋆

p∥1)

which concludes the proof.

A.12 PROOF PROPOSITION 3.5

From Corollary 3.10 and Proposition 3.11 we have that:

∥ℓ(ϕ(λ⋆
p))− ℓ(ϕ⋆)∥2 ≤

√
2
β2
g

µg
Mν(1 + ∥λ⋆

p∥1) (27)

∥ℓ(ϕ(λ⋆
p))− ℓ(fθ(λ

⋆
p))∥2 ≤

√
2βgMν(1 + ∥λ⋆

p∥1) (28)

Combining the two equations above we obtain:

∥ℓ(fθ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥2 ≤
√
2
β2
g

µg
Mν(1 + ∥λ⋆

p∥1) +
√

2βgMν(1 + ∥λ⋆
p∥1) (29)

≤
√
2βgMν(1 + ∥λ⋆

p∥1)
(
1 +

√
βg

µg

)
(30)

Taking squares on both sides yields the desired result.
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A.13 PROOF COROLLARY 3.9

Proposition 3.8 characterizes the strong concavity µg and smoothness βg of the dual function in
terms of the properties of the losses ℓi and the functional space F . The proof of this corollary stems
from applying proposition 3.8 to the 2-norm bound in Theorem 3.5.

We start by observing that:

∥ℓ(fθ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥∞ ≤ ∥ℓ(fθ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥2 (31)

≤
√
2βgMν(1 + ∥λ⋆

p∥1)(1 +
√

βg

µg
) (32)

From proposition 3.8, we have that µg = µ0 σ2

β2(1+∆)2 and βg =
√
mM2

µ0
. This implies that

βg

µg
=

√
m
M2

σ2

β2

µ2
0

(1 + ∆)2

where ∆ = max{∥λ⋆
u∥1, ∥λ⋆

p∥1}. Plugging this into equation 32, we obtain:

∥ℓ(fθ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥∞ ≤ Mm1/4

√
2
Mν

µ0
(1 + ∥λ⋆

p∥1)
[
1 +m1/4M

σ

β

µ0
(1 + ∆)

]

≤ M

√
2
Mν

µ0
(1 + ∥λ⋆

p∥1)
[
1 +

M

σ

β

µ0
(1 + ∆)

]√
m

Finally, using the definitions of the condition numbers κ1 = M
σ , κ2 = β

µ0
we obtain:

∥ℓ(fθ(λ⋆
p))− ℓ(ϕ(λ⋆

u))∥∞ ≤ M [1 + κ1κ2(1 + ∆)]

√
2m

Mν

µ0
(1 + ∥λ⋆

p∥1) (33)

which conludes the proof.

A.14 PROOF PROPOSITION 4.1

A similar proof in the context of resource allocation for wireless communications can be found in
(Ribeiro, 2010), Theorem 2. To ease the notation, we will denote the value of the parametrized dual
function at iteration t by g(t) := gp(λ(t)). Similarly, gbest(t) will denote the largest value of g(t)
encountered so far. As described in section 4, expected values are taken with respect to (x, y) ∼ Di.

We start by deriving a recursive inequality between the distances of iterates λ(t) and an optimal dual
variable λ⋆

p ∈ argmaxλ⪰0 gp(λ).

Proposition A.14 Consider the dual ascent algorithm described in Section 4 using a constant step
size η > 0. Then,

E{∥λ(t+ 1)− λ⋆
p∥2|λ(t)} ≤ ∥λ(t)− λ⋆

p∥2 + η2S2 − 2η(D⋆
p − g(t)) (34)

We can observe that as the optimality gap D⋆
p − g(t) decreases, the term 2η(D⋆

p − g(t)) eventually
becomes smaller than the fixed term η2S2, suggesting convergence of λ(t) only to a neighborhood
of λ⋆

p. In order to show this, the main obstacle is that Proposition A.14 bounds the expected value
of ∥λ(t + 1) − λ⋆

p∥2 and we wish to establish almost sure convergence. This can be addressed
by leveraging the Supermartingale Convergence Theorem (see e.g, (Solo & Kong, 1994) Theorem
E7.4), which we state here for completeness.

Theorem A.15 Consider nonnegative stochastic processes A(N) and B(N) with realizations α(N)
and β(N) having values α(t) ≥ 0 and β(t) ≥ 0 and a sequence of nested σ-algebras A(0 : t)
measuring at least α(0 : t) and β(0 : t). If

E[α(t+ 1) | A(0 : t)] ≤ α(t)− β(t) (35)
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the sequence α(t) converges almost surely and β(t) is almost surely summable, i.e.,
∑∞

u=1 β(u) <
∞ a.s.

We define α(t) and β(t) as follows,

α(t) := ∥λ(t)− λ⋆
p∥2 I

{
D⋆

p − gbest(t) >
ηS2

2

}
β(t) := [2η(D⋆

p − g(t))− η2S2] I
{
D⋆

p − gbest(t) >
ηS2

2

}
Note that α(t) tracks ∥λ(t)− λ⋆

p∥2 until the optimality gap D⋆
p − gbest(t) falls bellow the threshold

ηS2

2 and is then set to 0. Similarly, β(t) tracks 2η(D⋆
p − g(t)) − η2S2 until the optimality gap

D⋆
p − gbest(t) falls bellow the same threshold and is then set to 0.

It is clear that α(t) ≥ 0, since it is the product of a norm and an indicator function. The same holds
for β(t), since the indicator evaluates to 0 whenever 2η(D⋆

p − g(t)) − η2S2 ≤ 0. We thus have,
α(t), β(t) ≥ 0 for all t.

In what follows, we will leverage Theorem A.15 to show that β(t) is almost surely summable, which
will lead to the wanted result.

Let A(0 : t) be a sequence of σ-algebras measuring α(0 : t), β(0 : t) and λ(0 : t). We will show
that α(t) and β(t) satisfy the hypothesis of Theorem A.15 with respect to A(0 : t). Note that at
each iteration, α(t) and β(t) are fully determined by λ(t). Therefore, conditioning on A(0 : t) is
equivalent to conditioning on λ(t), i.e: E{α(t)|A(0 : t)} = E{α(t)|λ(t)}. Then we can write,

E{α(t)|A(0 : t)} =E{α(t)|λ(t), α(t) = 0}P{α(t) = 0}
+ E{α(t)|λ(t), α(t) > 0}P{α(t) > 0} (36)

From equation 36, we will derive that E{α(t)|A(0 : t)} ≤ α(t) − β(t) which is the remaining
hypothesis in Theorem A.15.

On one hand, observe that if α(t) = 0 we have that I{D⋆
p − gbest(t) ≤ ηS2

2 } = 0. This is because in
the case where ∥λ(t)− λ⋆

p∥2 = 0, the indicator function also evaluates to 0. Therefore, if α(t) = 0,
it must be that β(t) = 0. Then, trivially, E{α(t)|λ(t), α(t) = 0} = α(t)− β(t).

On the other hand, when α(t) > 0:

E[α(t+ 1) | λ(t), α(t) > 0] (37)

= E

{∥∥λ(t+ 1)− λ⋆
p

∥∥2 I{D⋆
p − gbest(t+ 1) >

ηŜ2

2

}
| λ(t)

}
(38)

= E
{∥∥λ(t+ 1)− λ⋆

p

∥∥2 | λ(t)
}

(39)

where we used the definition of α(t+ 1) and the fact the the indicator function needs to evaluate to
1 since α(t) > 0. Then, from proposition A.14 we have:

E[α(t+ 1) | λ(t), α(t) > 0] ≤
∥∥λ(t)− λ⋆

p

∥∥2 + η2S2 − 2η(D⋆
p − g(t)) (40)

= α(t)− β(t). (41)

where the last equality comes from the fact that α(t) > 0 implies I
{
D⋆

p − gbest(t+ 1) > ηŜ2

2

}
= 1.

This means that we can write equation 36 as:

E{α(t)|A(0 : t)} ≤ [α(t)− β(t)](P{α(t) = 0}+ P{α(t) > 0})
= α(t)− β(t)

(42)
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which shows that α(t) and β(t) satisfy the hypothesis of Theorem A.15. Then, we have that β(t) is
almost surely summable, which implies,

lim inf
t→∞

[
2η(D⋆

p − g(t))− η2S2
]
I{D⋆

p − gbest(t) > ηŜ2/2} = 0 a.s.

This is true if either D⋆
p−gbest(t) ≤ ηS2

2 for some t, or if lim inft→∞
[
2η(D⋆

p − g(t))− η2S2
]
= 0,

which concludes the proof.

A.14.1 PROOF PROPOSITION A.14

We want to show that

E{∥λ(t+ 1)− λ⋆
p∥2|λ(t)} ≤ ∥λ(t)− λ⋆

p∥2 + η2S2 − 2η(D⋆
p − g(t)) (43)

We start from the definition of λ(t+ 1):

∥λ(t+ 1)− λ⋆
p∥2 = ∥[λ(t) + ηŝ(t)]+ − λ⋆

p∥2

≤ ∥λ(t)− λ⋆
p + ηŝ(t)∥2

= ∥λ(t)− λ⋆
p∥2 + η2∥ŝ(t)∥2 + 2ηŝ(t)T (λ(t)− λ⋆

p)

(44)

where we used the fact that setting the negative components of λ(t)+ηŝ(t) to 0 decreases its distance
to the positive vector λ⋆

p and then expanded the square.

Note that for a given λ(t), the relations in 44 hold for all realizations of ŝ(t). Thus, the expectation
of ∥λ(t+ 1)− λ⋆

p∥, conditioned on λ(t) satisifes:

E{∥λ(t+1)−λ⋆
p∥2|λ(t)} ≤ ∥λ(t)−λ⋆

p∥2+η2E{∥ŝ(t)∥2|λ(t)}+2ηE{ŝ(t)|λ(t)}(λ(t)−λ⋆
p) (45)

Finally, recall that E{ŝ(t)|λ(t)} is a supergradient of the concave dual function gp(λ), that is:

E{ŝ(t)|λ(t)}(λ(t)− λ) ≤ g(t)− gp(λ) . (46)

Evaluating the previous inequality at λ⋆
p and combining it with equation 45 we obtain:

E{∥λ(t+ 1)− λ⋆
p∥2|λ(t)} ≤ ∥λ(t)− λ⋆

p∥2 + η2S2 + 2η(g(t)−D⋆
p) (47)

which concludes the proof.

A.15 PROOF PROPOSITION 4.2

We will bound the distance between ℓ(ϕ(λ⋆
u)) and L(fθ(λ

best))) by partioning it into terms that are
similar to those we have previously analyzed in Corollary 3.10 and Proposition 3.11:

∥ℓ(ϕ(λ⋆
u))− ℓ(fθ(λ

best)))∥2 ≤ ∥ℓ(ϕ(λ⋆
u))− ℓ(ϕ(λbest))∥2

+ ∥ℓ(ϕ(λbest))− ℓ(fθ(λ
best))∥2

The first term is of the same nature as the one analyzed in Corollary 3.10, since it is characterizes
a perturbation in dual variables in the unparametrized problem. Thus, using the characterization of
the curvature of the dual function from proposition A.7 and the sub-optimality of λbest with respect
to λ⋆

p, this term can be bounded.

We will denote by Bλbest the segment connecting λbest and λ⋆
u and by µ̃g the strong concavity constant

of gu in Bλbest . Proceeding exactly as in the proof of Propositon A.7 we obtain:

∥λbest − λ⋆
u∥22 ≤ 2

µ̃g
(gu(λ

⋆
u)− gu(λ

best))

≤ 2

µ̃g
(gp(λ

⋆
p)−

(
gp(λ

best)−Mν(1 + ∥λbest∥1)
)

where we used Lemma A.5 and the fact that gp(λ⋆
p) ≥ gu(λ

⋆
u).
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Then, leveraging the almost sure convergence shown in Proposition 4.1 we have:

∥λbest − λ⋆
u∥22 ≤ 2

µ̃g

(
Mν(1 + ∥λbest∥1) +

ηS2

2
+ δ

)
(48)

Thus,

∥ℓ(ϕ(λbest))− ℓ(ϕ(λ⋆
u))∥22 = ∥∇λgu(λ

best)−∇λgu(λ
⋆
u)∥22 (49)

≤ β2
g∥λbest − λ⋆

u∥22 (50)

≤ 2β2
g

µ̃g

(
Mν(1 + ∥λbest∥1) +

ηS2

2
+ δ

)
(51)

which completes the first part of the proof.

The term ∥ℓ(ϕ(λbest))− ℓ(fθ(λ
best))∥2 captures a perturbation in the function class for a fixed dual

variable, and can be analyzed similarly to Proposition 3.11. Let ϵ̃u = −ℓ(ϕ(λbest)) and ϵ̃p =
−ℓ(fθ(λ

best)). Using the same arguments as in Lemma A.11, Proposition A.13 and Corollary A.9
we have that:

1. P ∗(ϵ) is strongly convex with constant 1
βg

on Bλbest

2. λbest ∈ ∂P (ϵ̃u)

3. P ∗(ϵ̃p)− P ∗(ϵ̃u) ≤ Mν(1 + ∥λbest∥1) + λbestT (ϵ̃p − ϵ̃u)

Let ∆ϵ̃ = ϵ̃p − ϵ̃u. Combining the aforementioned properties as done in Theorem 3.11 yields:

Mν(1 + ∥λbest∥1) + λbestT∆ϵ̃ ≥ λbestT∆ϵ̃+
1

2βg
∥∆ϵ̃∥22 (52)

which implies:

∥∆ϵ̃∥22 ≤ 2βgMν(1 + ∥λbest∥1) (53)

Combining the bounds in equations 51 and 53 we obtain:

∥ℓ(ϕ(λ⋆
u))− ℓ(fθ(λ

best)))∥2 (54)

≤
√

2βgMν(1 + ∥λbest∥1) +
√

2β2
g

µ̃g

(
Mν(1 + ∥λbest∥1) +

ηS2

2
+ δ

)
(55)

=
√
2βgMν(1 + ∥λbest∥1)

(
1 + (1 +

ηS2

2
+ δ)

√
βg

µg

)
(56)

Taking squares on both sides concludes the proof.
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