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Abstract

Text watermarking aims to subtly embeds statis-
tical signals into text by controlling the Large
Language Model (LLM)’s sampling process, en-
abling watermark detectors to verify that the out-
put was generated by the specified model. The
robustness of these watermarking algorithms has
become a key factor in evaluating their effective-
ness. Current text watermarking algorithms em-
bed watermarks in high-entropy tokens to ensure
text quality. In this paper, we reveal that this
seemingly benign design can be exploited by at-
tackers, posing a significant risk to the robustness
of the watermark. We introduce a generic effi-
cient paraphrasing attack, the Self-Information
Rewrite Attack (SIRA), which leverages the vul-
nerability by calculating the self-information of
each token to identify potential pattern tokens
and perform targeted attack. Our work exposes
a widely prevalent vulnerability in current wa-
termarking algorithms. The experimental results
show SIRA achieves nearly 100% attack success
rates on seven recent watermarking methods with
only $0.88 per million tokens cost. Our approach
does not require any access to the watermark al-
gorithms or the watermarked LLM and can seam-
lessly transfer to any LLM as the attack model
even mobile-level models. Our findings highlight
the urgent need for more robust watermarking.
The source code is available at SIRA.

1. Introduction
Large language models (LLMs), exemplified by Chat-
GPT (OpenAI, 2024) and Claude (Anthropic, 2024), have
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demonstrated remarkable capabilities in generating coher-
ent, human-like text. However, while these advances sig-
nificantly expand AI’s potential in content creation, they
have concurrently heightened concerns regarding their mis-
use (Deshpande et al., 2023; Wang et al., 2024), including
the spread of misinformation (Monteith et al., 2024) and
threats to academic integrity (Stokel-Walker, 2022).

To mitigate risks associated with LLM-generated content,
text watermarking has emerged as a promising counter-
measure (Kirchenbauer et al., 2023; Aaronson & Kirchner,
2022). This technique subtly alters the LLM’s generation
process to embed imperceptible patterns in the output text,
the pattern is invisible to human readers and can be reliably
detected using specialized algorithms. This generate-detect
framework enables the differentiation between AI-generated
and human-authored content and allows tracking of the text
back to the specific LLM that generates the text (Li et al.,
2024). Consequently, this mechanism promotes account-
ability and helps mitigate LLM misuse, providing a reliable
means to ensure transparency and integrity in AI-generated
content.

Recent studies have demonstrated that watermarking tech-
niques exhibit significant robustness against simple manip-
ulations, including word deletions (Welbl et al., 2020) and
emoji attacks (Kirchenbauer et al., 2023). However, tra-
ditional NLP attack strategies, such as word deletion and
insertion, are increasingly insufficient for thoroughly evalu-
ating the robustness of advanced watermarking algorithms.
As LLMs continue to advance, there is a growing need for
more sophisticated testing methodologies that account for
complex manipulation tactics, ensuring that watermarking
techniques remain resilient against emerging threats.

To provide a more rigorous evaluation of watermarking ro-
bustness, paraphrasing attacks have been proposed. Despite
their potential, these approaches face several limitations.
First, current paraphrasing attacks rely on a naive and brute-
force approach, where they simply instruct LLMs to rewrite
watermarked text. This process is both inefficient and incon-
sistent in its results. The modifications to text are untargeted
and random, dictated by the LLM, often leaving portions of
the watermark intact causing the attack to fail. For newer
and more robust watermarking algorithms like SIR (Liu
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et al., 2024), these methods already fail to deliver effective
attacks, making them unsuitable as robustness evaluation
methods for future research. Moreover, changing the words
that do not embed the watermark may cause a change in
semantics, or lead to decline in text quality. Second, cur-
rent methods require significant hardware resources and
costs, as they often rely on large-scale LLMs to achieve no-
table attack performance which could be a barrier for future
study. Thirdly, they are non-transferable, as the reliance on
specifically fine-tuned LLM (Krishna et al., 2024) prevents
them from effectively leveraging the capabilities of more
powerful, rapidly emerging language models for attacks.

To address these challenges, we propose a new paraphrasing
attack named SIRA (Self-Information Rewrite Attack). Our
approach not only introduces a more effective paraphras-
ing strategy but also reveals a fundamental vulnerability in
current watermark algorithms. Specifically, watermarking
techniques aim to be imperceptible to users while maintain-
ing text quality and semantics intact, which necessitates
embedding patterns in high-entropy tokens (Kirchenbauer
et al., 2023; Liu et al., 2023). These high-entropy tokens
also exhibit high self-information within the given text con-
text. Leveraging this otherwise harmless watermark feature,
SIRA could identify potential “green list” token candidates
within watermarked text without any prior knowledge. By
masking potential green tokens, we can transform the un-
targeted paraphrasing into a targeted fill-in-the-blank task,
achieving a stronger and more efficient attack.

In summary, we make the following contributions:

- We formalize and thoroughly investigate the threat
model of LLM watermark black-box paraphrasing, dis-
tinguishing it from other watermark attacks that rely
on probing-based modeling or online attack methods.

- We reveal a widely existing vulnerability in watermark
algorithms and propose the first, to our knowledge,
targeted paraphrasing attack. This attack is easy to
implement and transferable, making it well-suited for
future robustness evaluations.

- We comprehensively study paraphrasing attacks on re-
cent watermark algorithms. For newly proposed water-
marking algorithms, we show that existing paraphras-
ing attacks are no longer sufficient to verify robustness.

2. Related Work
Self-information. Self-information, also known as sur-
prisal, is a fundamental concept in Information Theory, first
introduced by Claude Shannon in his seminal work (Shan-
non, 1948). Shannon employed self-information as the prin-
cipal metric to quantify the information content associated
with the occurrence of specific events, effectively linking

the rarity of an event to the amount of information it com-
municates.

In the realm of Natural Language Processing (NLP), self-
information plays a crucial role in the analysis and modeling
of language. It aids in deciphering language patterns, partic-
ularly in evaluating the entropy and predictability of tokens
within sequences. The concept is particularly useful for
quantifying the informativeness or surprise of a token in a
given linguistic context. Language models predict the prob-
ability of a subsequent token in a sequence using the preced-
ing context P (tk | t1, t2, . . . , tk−1). The self-information
of the token in this context is computed as follows:

I(tk | t1, t2, . . . , tk−1) = − logb(P (tk | t1, t2, . . . , tk−1))

where I(tk | t1, t2, . . . , tk−1) denotes the self-information
of token tk given the context of previous tokens, P (tk |
t1, t2, . . . , tk−1) is the probability of token tk occurring
after the preceding sequence of tokens, and b represents the
base of the logarithm.

LLM Watermark. Watermarking techniques for large lan-
guage models are designed to embed identifiable patterns in
model outputs, allowing for the traceability of generated text
back to its originating source. These watermarks serve as an
essential tool for ensuring accountability and ownership, par-
ticularly in scenarios where identifying the specific model or
version that produced the content is crucial. LLM watermark
methods can be broadly classified into two primary cate-
gories: the KGW Family and the Christ Family. Each family
employs distinct mechanisms that are integral to the internal
workings of LLMs. The KGW Family (Kirchenbauer et al.,
2023; Liu et al., 2023; Zhao et al., 2023; Wu et al., 2024;
Lu et al., 2024) focuses on modifying the logits—the raw
output probabilities produced by the model—before they
are transformed into text. This approach involves selec-
tively adding bias to certain tokens, referred to as “green
list” tokens, which influences the model to favor these to-
kens, thus embedding a statistical signature in the output.
Post text generation, a statistical metric based on the propor-
tion of these “green” tokens is computed. A predetermined
threshold enables differentiation between watermarked and
non-watermarked text.

Conversely, the Christ Family (Aaronson & Kirchner, 2022;
Christ et al., 2024; Kuditipudi et al., 2023) modifies the
sampling process during the generation phase itself. Rather
than altering the logits, this family intervenes directly in the
token selection during decoding. Techniques such as top-
k sampling, temperature adjustment, or nucleus sampling
are adapted to ensure preferential selection of watermarked
tokens. This method provides more direct control over the
generation process, embedding watermarks that are resilient
against post-processing attacks, such as paraphrasing.
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Watermark Removal Attacks. The robustness of a water-
marking algorithm is crucial, as it determines the effective-
ness of the watermark under various real-world conditions,
particularly in adversarial settings. Attacks against water-
mark algorithms, commonly referred to as watermark tam-
pering attacks, can be broadly categorized into two types:

Text manipulations: These attacks involve traditional NLP
techniques to straightforward text manipulations, such as
word deletion (Welbl et al., 2020), substitution (Yu et al.,
2010), or insertion (Kirchenbauer et al., 2023). By altering
the word-level structure of the text, these methods attempt
to distort or eliminate the watermark. These techniques
disrupt the statistical pattern of the watermark by adding,
removing, or replacing words. Kirchenbauer et al. (2023)
propose emoji attack and copy-paste attack which insert
emoji/human written text in the generated text to avoid de-
tection. These methods are considered variants of text ma-
nipulations, however, they are easily thwarted by detectors
equipped with content filters and often alter the semantics
of the generated text which makes them inappropriate for
real-world use.

Informed watermark attack: Such attacks rely on the ad-
versary having specific knowledge or access to the water-
marking system, such as the ability to probe the watermark
model. One typical attack is the watermark-stealing at-
tack (Jovanović et al., 2024; Wu & Chandrasekaran, 2024).
These methods aim to reverse-engineer or approximate the
embedded watermark by probing watermark algorithms
with queries. Attackers construct the watermark distribu-
tion of the target model and estimate whether each token
complies with the watermark rules based on the context
by issuing a large number of pre-designed prefix queries.
However, these methods assume that the adversary has un-
limited access to the targeted watermarked LLM model.
Additionally, this method becomes ineffective when water-
marks employ dynamic strategies (e.g., using a set of hash
keys). Another notable recent attack is the random walk
attack (Zhang et al., 2023); this method iteratively perturbs
the watermarked text using multiple models, relying on the
detector’s feedback as the termination condition. While it
effectively removes watermarks, its iterative nature intro-
duces significant computational and time overhead. Another
major limitation of this approach is it does not guarantee
any semantic preservation.

The above methods share a strong assumption: the attacker
has access to the watermarked LLM, either with or with-
out the watermark detector. However, this assumption is
rarely met in real-world adversarial scenarios especially the
access to the watermark detector. The aforementioned meth-
ods also suffer from significant overhead, both in terms of
computational resource demands and execution time. As a
result, these methods are generally excluded from robust-

ness evaluations of watermarking algorithms Kirchenbauer
et al. (2023); Liu et al. (2024); Aaronson & Kirchner (2022);
Zhao et al. (2023). Due to the different threat models and
much stronger assumptions, we do not include them in this
paper.

Model-based paraphrasing: A more common and advance
form of attack involves using another LLM to paraphrase the
watermarked content. This method differs from watermark-
stealing attacks by operating in a strict black box setting,
where the attacker’s knowledge is limited to the water-
marked text. Krishna et al. (2024) propose DIPPER, a
paraphrase generation model developed by fine-tuning T5-
XXL (Raffel et al., 2020b) on an aligned paragraph dataset.
This model has been widely adopted in recent watermark
research (Zhao et al., 2023; Liu et al., 2024; Kuditipudi
et al., 2023) to evaluate the robustness of watermarking al-
gorithms. GPT Paraphraser is another model-based method,
which utilizes the GPT model as a paraphrase. Previous ap-
proaches in this category derive their effectiveness primarily
from two mechanisms: (1) paraphrased text especially new
generated portion dilutes the strength of the original wa-
termark by introducing new linguistic structures, and (2)
lexical variations introduced during paraphrasing could in-
cidentally alter a subset of green tokens. However, such
changes that are controlled by an LLM, thus occurring by
chance, leads to untargeted paraphrasing that is neither suffi-
cient nor effective. In contrast, SIRA is a targeted approach
that selectively replaces potential green tokens in the wa-
termarked text, creating a ”neutral” template for rewriting.
It transforms the paraphrasing task into a fill-in-the-blank
problem.

Our proposed SIRA falls under the category of model-based
paraphrasing attacks and offers several key advantages: (1)
High Attack Effectiveness: SIRA achieves near 100% suc-
cess rates across seven tested watermarking algorithms; (2)
Lightweight and Highly Transferable: Unlike DIPPER,
which depends on a specific fine-tuned model, SIRA oper-
ates effectively on mobile-level 3B models and can seam-
lessly adapt to future powerful model; (3) Minimal As-
sumptions: It requires no access to the watermarked LLM
or its detector, enabling robust performance in black-box sce-
narios; (4) Low Cost and Plug-and-Play: SIRA operates
with minimal computational overhead (costing only$0.88
per Million tokens). Unlike watermark stealing requiring
large samples of watermarked text to initial one piece text
attack, SIRA is ready to use out of the box. These advan-
tages position SIRA as a promising tool for evaluating the
robustness of LLM watermarking in future research.

3. Methods
In this section, we detail SIRA attack formulation and im-
plementation. First, we lay out the problem setting in Sec-
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Nike Inc enjoyed big sales in gains in North
America and Europe last quarter and benefited
from fewer markdowns, helping the maker of

sports clothes and sneaker continue on its long-
term path to long-term profits and sales growth.

Nike Inc enjoyed _ _ _ gains_ _
_ _ _ _ _ _ benefited_ fewer_ _ _

_ _ _ _ sports clothes_  _ _
continue_ _ long_path _ _
long_ profits_ _ growth.

Nike has seen significant revenue growth in
North America and Europe, largely due to

reduced markdowns and a strong performance
in its core sports apparel and footwear
business. This success has enabled the

company to stay on track with its long-term
strategy of increasing profitability and sales.

Nike Inc. enjoyed significant revenue gains and
benefited from fewer markdowns, which helped
the sportswear and sneaker maker continue to

drive long-term profit and sales growth.

Reference Text

Masked Text

Watermarked Text

Mask according to 
self-infromation

paraphrase

LLama3
rewrite

Watermarked strength Watermarked strength

Attack Text

Figure 1. SIRA pipeline consisting to two steps. First, the attack generates a masked text based on self-information. If the self-
information of a specific part above a pre-set threshold, that portion of the text is masked and replaced with a placeholder. Simultaneously,
a reference text is generated by asking the LLM to paraphrase. In the second step, the LLM is prompted to complete the masked text
while incorporating all the information from the reference text.

tion 3.1, then we develop the details of the method in Sec-
tion 3.2.

3.1. Problem setting

Definition 1 (Language generative model). A Language
generative model M : X → Y maps any input prompt
x ∈ X to an output y ∈ Y , where X the prompt space, Y
the output space. We denote Yh is human written text space,
Yu is the machine generated unwatermarked text, Yw is the
machine generated watermarked text.

Definition 2 (Watermark Algorithm): A watermark algo-
rithm consists of a watermarking function W , a secret key k,
and a detector D. The watermarking function W , parameter-
ized by the key k, denoted as Wk, modifies the output y to
embed a watermark, given an input prompt x ∈ X resulting
in a watermarked output yw which M(x,Wk)→ yw ∈ Yw.
The detector D, using the same key k, can then verify
whether a given output ŷ ∈ Y contains the embedded wa-
termark. The detector D operates as a binary classifier with
the following output behavior:

D(Wk, ŷ) =

{
1 if ŷ is detected as watermarked
0 otherwise

(1)

The detector D contains a parameter θ, where the θ is the
z-score threshold.

Definition 3 (Perturbation Function): The attacker has
a perturbation function P : Yw → Yp modifies the wa-
termarked output yw to produce a perturbed output yp =
P (yw). The function P aims to minimize the detection
success rate of the detector D on the perturbed output yp.
A function S(yw, yp) measures the semantic similarity be-
tween the original watermarked output yw and the perturbed

output yp = P (yw). The pre-set threshold ϵ ∈ [0, 1] is a
parameter that quantifies the minimum required level of se-
mantic similarity between the original watermarked output
yw and the perturbed output yp = P (yw).

Assumption: We define the scenario as a black box ad-
versarial problem and we assume that the attacker should
not know the watermark algorithm W , the secret key
k and should not have access to the detector D. The
attacker does not have access to any information about the
feature distribution of the watermark algorithm or the model
architecture.

For watermark algorithm, the goal is to achieve a balance
between robustness and performance. The detector D is
formulated as an optimization problem with the objective of
minimizing classification errors. Specifically, the detector
aims to maximize its accuracy in distinguishing between
human-written text yh and watermarked text yw. The goal
of detector D can represente as:

max
θD

Eyh∼Yh
[log (1−DθD (Wk, yh))]

+ Eyw∼Yw [log (DθD (Wk, yw))] (2)

For attacker, the perturbation function P is defined to mini-
mize the probability that the detector D successfully identi-
fies the watermark in the perturbed output yp, while ensuring
semantic preservation. The goal for P can represente as:

P ∗ = argmin
P

E [D(Wk, P (yw))] (3)

s.t. S(yw, P (yw)) ≥ ϵ (4)

Note that D(Wk, P (yw)) is only used during the evaluation
phase. The attacker does not have access to the detector
during the training or generation stages.
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3.2. Self-information rewrite attack

A primary challenge in watermark removal attacks is identi-
fying the “green token” defined by the watermarking algo-
rithm. Some methods, such as Random Walk (Zhang et al.,
2023), use grammatical group matching to explicitly replace
verbs. In contrast, approaches like DIPPER (Krishna et al.,
2024) and GPT Paraphraser (Liu et al., 2024) delegate the
task of rewriting and removing green token to large language
models through high-level instructions. However, methods
of this type lack transparency and control; relying on LLM
for consistency with original watermarked text.

Our attack is based on a common principle of watermark-
ing algorithms, as discussed in the KGW (Kirchenbauer
et al., 2023; Liu et al., 2023) work: since the watermark
must remain imperceptible to the user, high-entropy tokens
are ideal candidates for embedding. High-entropy tokens
exhibit a more uniform distribution of probabilities, this uni-
formity means that when logits are adjusted to increase the
likelihood of green tokens, it is easier to embed watermarks
effectively without significantly compromising the quality
of the output. Meanwhile this also implied high-entropy
token has lower probability thus higher self-information.

In our approach, we propose a straightforward and easily
implementable solution by leveraging self-information to
identify potential green-list tokens and subsequently rewrite
them. High-entropy tokens are typically associated with
high self-information due to their unpredictability and low
probability of occurrence. Meanwhile, small probability
changes caused by the watermark algorithm can reduce
self-information. By considering both the change in self-
information and high-entropy token inherent nature, we
classify tokens with high or moderate self-information as po-
tential green-list tokens and filter them out to obtain a more
neutral template for LLM rewriting. Empirically, our pre-
liminary experiments show that utilizing self-information,
rather than directly filtering based on high entropy, results in
higher attack success rates. We present a detailed discussion
in Appendix G.

Given a watermarked text y = {y0, y1, . . . , yn}, where yi
represents each token, we employ a base language model
Mattack; Mattack is distinct from the generative model M
used to produce the watermarked text. We use Mattack to
calculate the self-information for each token yt as follows:

I(yt) = − logP (yt|y0, y1, . . . , yt−1;Mattack),

where P (yt|y0, y1, . . . , yt−1;Mattack) denotes the proba-
bility of token yt given its preceding tokens in the sequence,
as estimated by the language model Mattack. To mask the
potential green list tokens, we set a threshold ϵ, and get the
overall paragraph threshold by percentile:

Algorithm 1 Pseudocode for Self-information rewrite attack

1: Input: Watermarked token sequence y =
{y1, y2, . . . , yn}, language model Mattack, self-
information percentile ϵ, instruction s

2: Output: Response token sequence yp without water-
mark.

3: y′ ←Mattack(y) ▷ Paraphrase sequence y′ using
Mattack

4: I← [ ]
5: for i = 1 to n do ▷ Compute self-information for each

token in y
6: I[i]← − logP (yi | context)
7: end for
8: τϵ ← Percentile(I, ϵ) ▷ Determine threshold from ϵ

percentile of I
9: for i = 1 to n do

10: if I[i] > τϵ then
11: yi ← ∅ ▷ Mask token if above threshold
12: end if
13: end for
14: yp ←Mattack(y

′,y, s) ▷ Generate de-watermarked
response yp using Mattack

15: return yp

τϵ ← Percentile(I, ϵ)

Any token with a self-information value I[i] > τϵ is consid-
ered to be a potential token and will be masked and replaced
with a placeholder. In our experiments, we discovered that
using placeholders outperformed directly masking specific
tokens. The placeholders serve as cues, maintaining the
text’s structure, indicating where tokens have been masked
which providing the LLM with hints about the original text’s
length and the likely number of words, allowing for more
high quality reconstructions.

However, the compression will still result in the loss of
watermark text information details. To address this, we
use the base LLM Mattack to rewrite the watermarked text,
creating a reference text. This rewritten text serves as a
reference to preserve semantic integrity during the second
step. The reason we do not use the original watermarked
text is that we find this leads LLM to take shortcuts: LLM
tend to directly take the content from the watermark text,
due to the high similarity between masked and watermark
text.

In the final attack phase, we provide the Mattack with the
masked text, reference text, and instructions for a fill-in-
the-blank task, guiding it to reconstruct the missing content
with greedy decoding strategy. We provide the instructions
we use in Appendix E. The pseduocode of our algorithm is
shown in Algorithm 1.
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Table 1. Comparison of watermark algorithms under different attack methods. The best results are marked in bold and the second best
results are marked in underline. Our most lightweight method outperforms all previous paraphrasing attacks. SIRA-Large achieves 100%
or near 100% attack success rates on all seven tested watermarking algorithms under black-box settings.Due to differing threat models, we
can not conduct a fair comparison with informed watermark attack methods, thus these methods are excluded .

Comparison of Watermark Algorithms under Different Attack Methods

Attack
Watermark KGW-1 Unigram UPV EWD DIP SIR EXP

Word delete (Welbl et al., 2020) 22.4% 1.6% 6.6% 22.8% 57.4% 44.0% 9.4%
Synonym Substitution (Yu et al., 2010) 83.2% 17.4% 65.2% 76.2% 99.6% 82.0% 51.0%
GPT Paraphraser 100% 63.9% 71.9% 90.8% 99.8% 58.8% 72.2%
DIPPER-1 (Krishna et al., 2024) 82.4% 37.0% 58.6% 82.2% 99.6% 61.2% 73.6%
DIPPER-2 (Krishna et al., 2024) 95.8% 45.6% 61.8% 89.0% 99.8% 63.6% 82.2%

SIRA-Tiny(Ours) 96.4% 87.6% 84.4% 97.8% 99.8% 75.0% 90.6%
SIRA-Small(Ours) 100% 93.8% 93.0% 100% 99.8% 83.4% 93.4%
SIRA-Large(Ours) 100% 100% 99.6% 100% 100% 98.8% 99.8%

4. Experiments
4.1. Setup

Dataset and Prompts. Following prior watermarking re-
search (Kirchenbauer et al., 2023; Zhao et al., 2023; Liu
et al., 2024; Kuditipudi et al., 2023), we utilize the C4
dataset (Raffel et al., 2020a) for general-purpose text gener-
ation scenarios. We selected 500 random samples from the
test set to serve as prompts for generating the subsequent
230 tokens, using the original C4 texts as non-watermarked
examples.

Watermark generation algorithms and language model.
To conduct a comprehensive evaluation, we select seven
recent watermarking works: KGW (Kirchenbauer et al.,
2023), Unigram (Zhao et al., 2023), UPV (Liu et al., 2023),
EWD (Lu et al., 2024), DIP (Wu et al., 2024), SIR (Liu
et al., 2024), EXP (Aaronson & Kirchner, 2022) in the
assessment. The watermark hyperparameter settings shown
in Appendix A, and the detection settings adhere to the
default/recommendations (Pan et al., 2024) configurations
of the original works. Specifically, for KGW-k, k is the
number of preceding tokens to hash. A smaller k implies
stronger attack robustness yet simpler watermarking rules.
We use KGW-1 in our experiment. For language models, we
follow the previous work setting select (Kirchenbauer et al.,
2023; Liu et al., 2024; Zhao et al., 2023) Opt-1.3B (Zhang
et al., 2022) as the watermark text generation model. Our
SIRA Tiny,SIRA Small, and SIRA Large run on the Llama3
Instruct models (Dubey et al., 2023) with 3B, 8B, and 70B
parameters, respectively.

Baseline Methods. For our method, we use ϵ = 0.3 as thresh-
old. For the attack method, we use word deleteion (Welbl
et al., 2020), synonym substitution (Yu et al., 2010), Dip-
per (Krishna et al., 2024), and GPT Paraphaser (Liu et al.,

2024) to compare with our method. For GPT Paraphaser,
we use the GPT-4o-2024-05-13 (OpenAI, 2024) version.
For DIPPER-1 the lex diversity is 60 without order diver-
sity, and for DIPPER-2 we additionally increase the order
diversity by 40. The word deletion ratio is set to 0.3 and the
synonym substitution ratio is set to 0.5. The synonyms are
obtained from the WordNet synset (Miller, 1995).

Evaluation. We utilize the attack success rate as our primary
metric. The attack success rate is defined as the proportion
of generated attack texts for which the watermark detector
incorrectly classify the attack text as the unwatermarked
sample, compared to the total number of attack texts. To
mitigate the influence of detection thresholds, we follow
prior work (Liu et al., 2024; Zhao et al., 2023) adjust z-
threshold of detector until reaches target false positive rate
in Figure 2 . We used generated 500 attack texts as positive
samples and 500 human-written texts as negative samples.
We dynamically adjust the detector’s thresholds to establish
false positive rates at 1% and 10%, and we report the true
positive rates and F1-scores. Our method runs on NVIDIA
A100 GPUs(Tiny, Small run on a single GPU).

4.2. Experimental Results.

In Table 1, we present the attack success rates of various
watermark removal methods across different watermark-
ing algorithms. The results demonstrate that our approach
consistently outperforms all other methods for each wa-
termarking algorithm. Notably, the closest competitors to
our method are DIPPER (Krishna et al., 2024) and GPT
Paraphraser, which are model-based paraphrasing attacks.
Even Our most lightweight SIRA-Tiny method outper-
forms all previous approaches regarding attack success
rate in our experiments involving seven watermarking algo-
rithms on the C4 dataset (Raffel et al., 2020a). Our Large
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(a) True positive rate with FPR set to 1%. (b) True positive rate with FPR set to 10%. (c) Best F1-score achieved by watermark.

Figure 2. To mitigate the default z-threshold’s impact on the robustness of watermarking algorithms, we dynamically adjust the z-score
threshold until the watermark detector achieves specified false positive rates. The true positive rate (TPR↓) and the best F1 score are
shown. Lower TPR and F1 scores at a given false positive rate (FPR) indicate that the watermark detector struggles to distinguish attack
texts from human-written texts, suggesting a more effective attack. Detailed values for the figures are provided in Appendix C.

method achieves nearly 100% attack success across all
seven tested watermarking algorithms.

To further demonstrate the effectiveness of our method and
avoid the impact of a fixed z-threshold on detector perfor-
mance, we follow previous work by setting the FPR to 1%
and 10%, and report the true positive rate of the detector
on adversarial texts based on the adjusted z-threshold cor-
responding to the FPR. Additionally, we report the best
F1 score that the watermark algorithm can achieve under
different attacks. The results are shown in Figure 2, and
the detailed numbers are provided in Appendix C. Lower
true positive at a given false positive rate indicate that the
watermark detector struggles more to differentiate between
adversarial texts and human-written texts. Our algorithm
achieves optimal attack performance in most cases; suggest-
ing a more effective attack.

4.3. Text quality analysis

To further demonstrate that our method does not adversely
affect text quality, we conduct additional evaluations of
the text generated by the model. We compare Perplex-
ity (PPL) of the text quality. Furthermore, we use a
well-established metric sentence-level embedding similarity
(Sentence-BERT Score (s-BERT)) before and after the
attack to explore whether the attack alters the semantic con-
tent. We also conducted experiments in the Appendix F
using ChatGPT as a judge to measure overall semantic
similarity. The results, shown in Figure 3, indicate that
our method has a smaller impact on text quality compared
to other approaches.Our approach, similar to other model-
based methods, benefits from more powerful large language
models, achieving better performance in terms of the PPL
metric compared to the original watermarked text. Addi-
tionally, our method retains a greater degree of semantic
information. We show the detail numbers of two metrics in
Appendix D.

4.4. Ablation Experiment

In this section, we aim to further scrutinize the self-
information rewrite attack and emphasize the potential of
this attack. We utilize Opt-1.3b and a random sample of
50 prompts from the C4 dataset to generate watermarked
responses. Unless otherwise specified, we use Llama-3-
8b (SIRA-Small) as the base model for our attack. The
temperature for the base model is set to 0.7.

How does the self-information threshold affect final per-
formance? In this experiment, we use UPV as the water-
marking algorithm. We varied the value of ϵ from 0.25 to
0.70 in increments of 0.05 to test its impact on the success
rate of the attack using the UPV algorithm. The results are
shown in Table 2.

We observed that the attack success rate and sentence-bert is
directly influenced by the value of ϵ. For the UPV algorithm,
setting the threshold to 0.3 results in a highly effective attack.
A significant performance gap is observed when ϵ increases
from 0.60 to 0.65. Additionally, there is a tradeoff between
attack effectiveness and semantic preservation. When ϵ is
below 0.25, the generated attack text tends to lose more
detailed information from the original watermarked text.
Considering both performance and semantic preservation,
we recommend setting ϵ between 0.2 and 0.3. For less
robust algorithms, setting ϵ between 0.4 and 0.5 is sufficient
to achieve an attack success rate exceeding 90%. Setting ϵ
to 0.3 effectively removes the watermark while preserving
the original semantics.

Self-information mask versus Random mask and Itera-
tive Paraphrase(twice) In this experiment, we replace self-
information-based selective masking with a random mask-
ing strategy and Iterative Paraphrase(twice), while keeping
all other steps unchanged. We use the same masking ratios,
ranging from 0.4 to 0.8 in increments of 0.1, and compare
the resulting attack success rates. The Unigram watermark-
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(a) Performance of PPL. (b) Performance of s-BERT.

Figure 3. Performance comparison of watermark methods against various attack methods based on PPL (Perplexity↓) and s-BERT
(Sentence-BERT score↑). The word delete will significantly increase the PPL and lead to overflow. We marked the overflow data with
NaN in the Figure 3a. The synonym substitution will also increase the PPL. The paraphrased text has better text quality than the original
watermark text for our method and GPT Paraphraser. The detailed number are shown in Appendix D.

Table 2. Effect of self-information Threshold on the Attack Success Rate and Semantic Preservation of the UPV Algorithm
self-information threshold ϵ 0.25 0.30 0.35 0.40 0.45 0.5 0.55 0.60 0.65 0.70

Attack Success Rate 96% 94% 94% 88% 80% 76% 72% 70% 58% 32%
Sentence-BERT 0.68 0.77 0.78 0.78 0.79 0.79 0.82 0.81 0.83 0.86

Table 3. Comparison with Random Masking Strategy and Iterative
Paraphrase. Iterative Paraphrase is independent of the mask ratio.
For clearer comparison, we place its results under the 0.7 (default
mask ratio) column. Notice here the random mask performance
also benefits from other steps like rewriting in our framework. The
vanilla random mask has a similar attack success rate as word
deletion.

Mask Ratio 0.4 0.5 0.6 0.7 0.8
Iterative Paraphrase - - - 56% -

Random Mask 52% 66% 78% 80% 82%
Self-information Mask 80% 88% 92% 96% 100%

ing method is employed to generate the watermarked text.
The results are presented in Table 3. To ensure fair compar-
isons, the random masking strategy is executed five times,
and the final average attack success rate is reported.

The results indicate that, at any given mask ratio, the self-
information-based masking method significantly outper-
forms the random strategy. The random masking approach
also has a bottleneck, with limited improvement in attack
success rates beyond a ratio of 0.6. This is due to the ran-
dom mask not make sure all target green tokens are removed.
Also,This experiment ruled out the possibility that the attack
effectiveness is primarily caused by the double paraphrasing
process. For a single watermarked text with fixed mask
ratio, our method is deterministic, as the same tokens are
masked each time. In contrast, the random approach does
not provide this guarantee.

Does the success of the attack due to paraphrased refer-
ence text? We used the Unigram watermarking algorithm to

Table 4. Comparison of Attack Success Rate and Average z-score.
The reference text is generated by asking the base model to para-
phrase the watermarked response, while the attack text is generated
using our two-step approach.

Text Attack Success Rate Average z-score
Human-written Text N/A 0.12

Reference Text 64% 3.75
Attack Text 94% 1.85

generate watermarked text. We set the detector’s z threshold
to 4 according to its default settings. For a given input, the
detector calculates its z-score, and if the score exceeds 4,
the text is classified as watermarked.

We measured the attack success rate for each of the follow-
ing stages: the reference text generated in the first step of
our algorithm, and the final attack text. Additionally, we cal-
culated the average z-score for each stage and reported the
z-score of human-written text as a reference. The result are
shown in Table 4. We observed that the attack success rate
for the reference text is lower than that of the final attack text.
Paraphrase strategies tend to preserve more n-grams from
the original text, which may still be detectable by the wa-
termark detection algorithm. In contrast, our attack reduces
the presence of such n-grams by utilizing self-information
filtering. Additionally, the z-score produced by our method
is closer to that of human-written text compared to simple
paraphrasing approaches.

8
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5. Conclusion
In this paper, we present the Self-Information Rewrite At-
tack (SIRA), a lightweight and effective method for re-
moving watermarks from LLM-generated text by targeting
anomalous tokens. Empirical results show that SIRA outper-
forms existing methods in attack success rates across multi-
ple watermarking techniques while preserving text quality
and requiring minimal computational resources. By ex-
ploiting vulnerabilities in current watermarking algorithms,
SIRA highlights the need for more robust and adaptive wa-
termarking approaches in watermark embedding. We will
release our code to the community to facilitate further re-
search in developing responsible AI practices and advancing
the robustness of watermarking algorithms.

Impact Statement
In this work, we aim to provide an approach to test the
robustness of Large Language Models watermark. We pro-
pose a method that can remove different watermarks in
LLM-generated text. We are aware of the potential risks
that our work entails for the security and safety of LLMs,
as they are increasingly adopted in various domains and
applications. Nevertheless, we also believe that our work
advances open and transparent research on the challenges
and limitations of the LLM watermark, which is crucial for
devising effective solutions and protections. Similarly, the
last few years the exploration of adversarial attacks (Wei
et al., 2023; Madry et al., 2017; Krishna et al., 2024) has led
to the improvement of responible AI and led to techniques to
safeguard against such vulnerabilities,e further coordinated
with them before publicly releasing our results. We also
emphasize that, our ultimate goal in this paper is to identify
the weaknesses of existing methods.
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Contents of the appendix
The contents of the supplementary material are organized as follows:

• In Appendix A, we list the hyperparameters of the watermarking algorithm we used in experiment Section 4.

• In Appendix B, we perform the comparison of execution time and VRAM consumption between our algorithm and
other baseline methods.

• In Appendix C, we present the specific data points corresponding to the figure shown in Section 4.2.

• In Appendix D, we provide the precise data underlying the figure depicted in Section 4.3.

• In Appendix E, we provide the prompt we used to generate attack text.

• In Appendix F, we conducted extensive experiments to evaluate the overall preservation of the semantic meaning of the
original watermarked text.

• In Appendix G, we offer a brief discussion about the change in self-information under the influence of the watermark
algorithm.

• In Appendix H, we provide the full proof of our proposed method attack success rate upper bound and lower bound,
together with the proof of lemma.

• In Appendix I, we provide a visual comparison of the text generated by our method with watermarked text, non-
watermarked text, and text generated by other attack methods.

• In Appendix J, we provide extended experiments, including a comparison between our methods and baseline approaches
on the OpenGen dataset, as well as the performance of our methods against Adaptive Watermark and Waterfall
Watermark schemes.
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A. Watermark algorithm setting
In this section, we list the hyperparameters of the watermarking algorithm we used in Section 4 below.

1 {
2 "algorithm_name": "KGW",
3 "gamma": 0.5,
4 "delta": 2.0,
5 "hash_key": 15485863,
6 "prefix_length": 1,
7 "z_threshold": 4.0
8 }

Listing 1. configuration KGW

1 {
2 "algorithm_name": "Unigram",
3 "gamma": 0.5,
4 "delta": 2.0,
5 "hash_key": 15485863,
6 "z_threshold": 4.0
7 }

Listing 2. configuration Unigram

1 {
2 "algorithm_name": "UPV",
3 "gamma": 0.5,
4 "delta": 2.0,
5 "z_threshold": 4.0,
6 "prefix_length": 1,
7 "bit_number": 16,
8 "sigma": 0.01,
9 "default_top_k": 20,

10 }

Listing 3. configuration UPV

1 {
2 "algorithm_name": "EWD",
3 "gamma": 0.5,
4 "delta": 2.0,
5 "hash_key": 15485863,
6 "prefix_length": 1,
7 "z_threshold": 4.0
8 }

Listing 4. configuration EWD

1 {
2 "algorithm_name": "DIP",
3 "gamma": 0.5,
4 "alpha":0.45,
5 "hash_key": 42,
6 "prefix_length": 5,
7 "z_threshold": 1.513,
8 "ignore_history": 1
9 }

Listing 5. configuration DIP
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1 {
2 "algorithm_name": "SIR",
3 "delta": 1.0,
4 "chunk_length": 10,
5 "scale_dimension": 300,
6 "z_threshold": 0.0,
7 }

Listing 6. configuration SIR

1 {
2 "algorithm_name": "EXP",
3 "prefix_length": 4,
4 "hash_key": 15485863,
5 "threshold": 2.0,
6 "sequence_length": 230
7 }

Listing 7. configuration EXP
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B. Execution time and VRAM consumption comparison
In this section, We conducted the attack experiments using 50 distinct watermark texts, each containing approximately 230 ±
20 tokens. For each method, we measured both execution time and VRAM usage. The reported execution time reflects the
average for a single attack instance. The experiments were run on NVIDIA A100 40GB GPUs, utilizing a sequential device
map for baseline methods requiring multiple GPUs. The configuration for the GPT Paraphraser follows the setup described
in Section 4.1. The results are shown in Table 5.

One of the main limitations of current model-based watermark removal attacks is their substantial resource consumption.
For instance, DIPPER built on the T5-XXL model, necessitates two 40GB A100 GPUs for effective operation. Similarly, the
GPT parser introduces considerable costs due to its dependence on a proprietary model that employs token-based billing.The
total time consumption for SIRA consists of two parts: two generations by the base model and the self-information mask.
Using SIRA-Tiny as example, The self-information mask is nearly negligible, as it does not require any text generation (less
than 0.1 seconds). The other two generations take around 2.6 seconds per generation on a single A100 GPU. Thus the total
execution time is around 10 seconds. We use the huggingface library in our experiment.

The DIPPER method utilizes a specially fine-tuned T5-XXL model for text paraphrasing. This model needs at least 40 GB
VRAM to run and one-time generation requires around 15 seconds on two A100GPU.

Our proposed pipeline operates with a minimal configuration of the LLaMA3-3b model, which is lightweight enough
to run on mobile-level devices. This ensures compatibility with many consumer-grade GPUs, significantly reducing
hardware requirements. Notably, even our most lightweight approach, SIRA-Tiny, outperforms all previous methods in our
experiments while consuming far fewer resources.

Moreover, our method is independent of specific LLM architectures, allowing it to be seamlessly transferred to the latest
language models to leverage their superior performance at no additional cost. As demonstrated in Table 5, the data was
generated using bf16; our VRAM consumption can be further reduced by employing mixed precision or quantized models,
further enhancing efficiency.

Table 5. Comparison of Execution Time and VRAM Usage for Different Methods.
Method Execution Time (s) VRAM Usage (GB)

GPT Paraphraser 12.8 N/A
DIPPER 14.7 44.56

SIRA-Tiny 5.3 7.06
SIRA-Small 10.3 18.20
SIRA-Large 37.2 138.60

We also provide a comprehensive cost analysis of our method in comparison to third-party paraphrasing services. Specifically,
we estimate the cost of processing 1 million tokens of watermarked text. According to OpenAI’s pricing, paraphrasing using
GPT-4o (GPT Paraphraser) costs

$0.01× 2× 10 = $20,

where $0.01 is the cost per 1M tokens (input or output), the factor 2 accounts for both input and output, and 10 iterations are
assumed.

In contrast, our method (SIRA-Small), based on LLaMA3-8B deployed via AWS Bedrock, incurs a significantly lower cost:

$0.22× 2× 2 = $0.88,

where $0.22 is the per-1M-token cost (input or output), the first factor of 2 accounts for input and output, and the second
factor of 2 accounts for two rewriting iterations. The cost can be further reduced using SIRA-Tiny (LLaMA3-3B).

C. Best F1 score and TPR/FPR
In Table 6, we list the specific data from the figure in Figure 2, which reflects different attack method’s performance of
dynamically adjusting the watermark detector’s z-threshold until a specified false positive rate is achieved. We report
both the F1 score and the true positive rate. It can be observed that, in most cases, our attack method achieves the best
performance.
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Table 6. In this experiment, we dynamically adjust the z-score threshold of the watermarking algorithm until achieving specified false
positive rates for the watermark detector. Lower TPR and F1 scores indicate that the watermark detector struggles more to differentiate
between attack texts and human-written texts, suggesting a more effective attack.

Method Attack Type 1% FPR 10% FPR Best F1 (%)

TPR (%) F1 (%) TPR (%) F1 (%) F1 (%)

KGW-1

No attack 100 99.5 100 95.2 99.8
DIPPER -1 1.6 3.1 7.8 13.3 66.6
DIPPER -2 0.8 1.6 7.0 12.1 66.6

GPT Paraphraser 1.8 3.6 8.7 14.0 66.8
SIRA Tiny 26.4 41.4 60.0 70.6 79.2

SIRA-Small 1.1 2.1 8.4 14.0 66.6
SIRA Large 1.1 2.1 8.0 13.6 66.6

Unigram

No attack 100 99.5 100 95.2 99.8
DIPPER -1 89.0 93.7 97.6 95.8 95.4
DIPPER -2 86.0 91.8 96.8 94.2 94.6

GPT Paraphraser 73.6 84.3 91.7 91.6 91.6
SIRA Tiny 42.2 58.9 71.4 78.7 82.5

SIRA-Small 29.0 44.6 62.2 72.7 80.0
SIRA Large 25.8 40.7 59.2 69.9 78.8

UPV

No attack 100 99.5 100 95.2 99.8
DIPPER -1 74.8 85.2 94.4 93.1 93.1
DIPPER -2 67.8 80.4 91.6 91.6 91.6

GPT Paraphraser 53.0 69.2 82.2 86.2 86.9
SIRA Tiny 40.8 57.5 74.4 80.7 83.4

SIRA-Small 27.0 42.3 65.6 75.4 81.4
SIRA Large 25.2 39.9 65.0 74.3 80.3

EWD

No attack 100 99.5 100 95.2 99.8
DIPPER -1 66.2 79.2 91.4 90.8 90.8
DIPPER -2 54.8 70.3 83.2 81.2 81.2

GPT Paraphraser 46.6 63.1 75.4 81.3 83.8
SIRA Tiny 22.0 35.8 52.2 64.4 77.0

SIRA-Small 10.2 18.3 35.8 49.1 71.6
SIRA Large 7.4 13.7 31.2 44.2 71.3

DIP

No attack 100 99.5 100 95.2 99.8
DIPPER -1 5.4 10.0 24.0 36.1 67.7
DIPPER-2 2.2 4.3 16.4 26.2 66.7

GPT Paraphraser 4.3 8.3 20.4 32.0 76.6
SIRA Tiny 1.4 2.7 11.8 19.4 66.7

SIRA-Small 1.6 3.1 11.2 18.7 66.7
SIRA Large 1.0 1.9 11.4 18.8 66.7

SIR

No attack 100 99.5 100 95.2 99.8
DIPPER -1 64.6 78.0 82.4 85.6 85.6
DIPPER -2 57.6 72.6 72.6 83.4 83.4

GPT Paraphraser 66.2 79.2 85.2 87.3 87.3
SIRA Tiny 52.8 68.7 77.6 82.7 85.1

SIRA-Small 42.8 59.5 70.2 77.9 82.4
SIRA Large 48.4 64.8 77.4 82.6 84.1

EXP

No attack 100 99.5 100 95.2 99.8
DIPPER -1 0.8 1.6 1.2 2.1 66.6
DIPPER -2 0.4 0.8 2.0 3.8 66.7

GPT Paraphraser 0.4 0.8 2.0 3.8 82.6
SIRA Tiny 0.6 1.2 4.4 7.7 66.6

SIRA-Small 0.4 0.8 9.3 15.6 66.6
SIRA Large 0.4 0.8 6.2 10.7 66.6
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D. Detail number of PPL and sentence bert score
In this section, we list the detail number of PPL and sentence-bert score we present in the Section 4.3.

Attack
Watermark KGW-1 Unigram UPV EWD DIP SIR EXP

PPL(↓) s-BERT(↑) PPL(↓) s-BERT(↑) PPL(↓) s-BERT(↑) PPL(↓) s-BERT(↑) PPL(↓) s-BERT(↑) PPL(↓) s-BERT(↑) PPL(↓) s-BERT(↑)
No attack 12.00 0.55 11.49 0.56 9.27 0.56 11.64 0.57 10.60 0.57 11.76 0.56 16.48 0.54

Word delete NaN 0.03 NaN 0.03 NaN 0.03 NaN 0.01 NaN 0.04 NaN 0.03 NaN 0.04
Synonym Substitution 252.85 0.01 252.85 0.01 252.85 0.01 252.85 0.00 252.85 0.01 252.85 0.02 252.85 0.02

GPT Paraphraser 9.19 0.88 8.96 0.87 8.28 0.87 9.20 0.88 8.79 0.88 9.52 0.87 11.98 0.86
DIPPER-1 12.00 0.80 11.80 0.79 10.31 0.81 11.87 0.76 11.93 0.80 12.43 0.79 16.56 0.77
DIPPER-2 12.15 0.79 11.80 0.79 10.34 0.80 11.96 0.76 11.86 0.79 12.42 0.78 16.45 0.76

SIRA-Tiny (Ours) 9.97 0.77 9.14 0.76 8.93 0.76 10.45 0.76 9.43 0.77 10.09 0.77 10.96 0.75
SIRA-Small (Ours) 10.59 0.78 9.37 0.78 8.91 0.77 9.10 0.78 9.02 0.77 9.74 0.78 10.93 0.75
SIRA-Large (Ours) 10.14 0.80 8.62 0.77 9.39 0.81 10.22 0.81 8.93 0.77 10.35 0.81 11.32 0.79

Table 7. Performance of different attack methods against various watermark techniques, including SIRA variants.

E. Fill in blank instruction
We present our generation prompts(final step) and reference text generation prompts below. The reference text generation
followed the same prompt of (Sadasivan et al., 2023). During the generation process, the reference text and the masked text
are replaced by the two texts obtained in the first step.

Generation Prompts

You will be shown one reference paragraph and one incomplete paragraph. Your task is to write a complete paragraph
using incomplete paragraph. The complete paragraph should have similar length with reference paragraph. You
need to include all the information in the reference. but do not take the expression and words in the reference
paragraph. You should only answer the complete paragraph.
reference: [reference text]
incomplete paragraph: [mask text]

Reference Parapharse Prompts

You are a paraphraser. You are given an input passage ’INPUT’. You should paraphrase ’INPUT’ to print ’OUTPUT’.
’OUTPUT’ should be diverse and different as much as possible from ’INPUT’ and should not copy any part verbatim
from ’INPUT’. However, ’OUTPUT’ should preserve the information in the INPUT. You should print ’OUTPUT’
and nothing else so that it is easy for me to parse.:

F. GPT Semantic Judge

GPT Semantic Judge Prompts

You are a helpful assistant. You will receive a original text and a pharased text .Please act as an impartial judge and
evaluate how much the pharased text keep the original text semantic meaning. Be as objective as possible. Rate the
response on a scale from 1 to 10. A rating of 1 signifies the pharased text has totally different meaning with the
original text. A rating of 10 signifies the pharased text has same meaning with the original text . Your answer should
strictly be the format: [Rating].
Here’s the original text: [Watermarked text]
Here’s the pharsed text:[Attack text]

In this section, we conduct extensive experiments to evaluate the overall preservation of the semantic meaning of the original
watermarked text. We use ChatGPT (OpenAI, 2024) as an impartial judge to obtain the quantitative results.

The attack success rate alone is not a sufficient metric for evaluating an attack method. It is also crucial to assess whether
the original and paraphrased outputs preserve similar semantics. The Sentence-BERT score (Reimers & Gurevych, 2019),
presented in Section 4.3 , measures the sentence-level similarity between the original watermarked text and the adversarial
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text. However, it falls short in determining whether the overall semantics are preserved. Inspired by the LLM jailbreak work
PAIR (Chao et al., 2023), which leverages carefully crafted prompts and the powerful capabilities of ChatGPT to score
attack texts and targets for quantitative evaluation, we adapted their prompts to use ChatGPT for assessing the semantic
similarity between watermarked texts and attack texts . This approach allows us to obtain semantic similarity scores that
more closely align with human perception. We show the judge prompt in Appendix F and the result in shown in Table 8.

Table 8. Semantic Preservation for Different Methods
Word Delete Synonym GPT Paraphraser DIPPER-1 DIPPER-2 SIRA-Tiny SIRA-Small SIRA-Large

Semantic Preservation 2.59 2.63 8.25 5.28 6.34 6.10 6.84 8.02

We observed that using GPT for paraphrasing alone best preserves the original text’s semantics, whereas methods like word
deletion and synonym replacement were largely ineffective. Our approach demonstrated superior semantic preservation
compared to the DIPPER method.
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G. Self-information, Entropy and Probability
We provide a brief explanation of how the watermark algorithm changes the self-information. To begin, we introduce the
definitions of self-information.

Self-Information (I(x)): This measures the amount of information or ”surprise” associated with a specific token x. It
quantifies how unexpected the occurrence of a token is in a given context:

I(x) = − log2 P (x)

When considering the context h, it becomes the conditional self-information:

I(x | h) = − log2 P (x | h)

where P (x | h) is the probability of token x occurring given the preceding context h.

We first analyze the non-conditional scenario, assuming that watermarking slightly increases the probability of certain tokens
by a small amount δ, while adjusting the probabilities of other tokens to maintain normalization. The δ change in token
influenced by watermark algorithm is usually very small (e.g less than 1e-3).

The adjusted probability for the watermarked token xw is:

P ′(xw) = P (xw) + δ

The adjusted probabilities for other tokens xi (i ̸= w) are:

P ′(xi) = P (xi)− ϵi

where
∑

i ̸=w ϵi = δ.

The change in entropy due to these adjustments is given by:

∆H = H(P ′)−H(P ) = −
∑
i

[P ′(xi) logP
′(xi)− P (xi) logP (xi)]

The partial derivative of entropy with respect to P (xw) is:

∂H

∂P (xw)
= − logP (xw)− 1

The change in entropy due to a small change δ in P (xw) is approximately:

∆H ≈ ∂H

∂P (xw)
δ = −(logP (xw) + 1)δ

In high-entropy contexts, where P (xw) is small, logP (xw) becomes a large negative value. Therefore, logP (xw) + 1 is
still negative, and the product with the small δ results in a tiny ∆H(decrease in logarithmically). This attribute makes the
watermark algorithm need to embed patterns in high-entropy tokens, otherwise it will significantly compromise the
quality of the output.

For self-information, the change in self-information is:

∆I(xw) = − logP ′(xw) + logP (xw)

The derivative of self-information with respect to P (xw) is:

dI(xw)

dP (xw)
= − 1

P (xw)
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For small P (xw), 1
P (xw) is large, making ∆I(xw) more significant for small δ compared to ∆H .

Similarly, for conditional self-information, The uniform distribution serves as a theoretical upper bound for high entropy for
a given probability space and helps illustrate high-entropy scenarios where probability mass is thinly spread. In such cases,
we assume that the model predicts N possible next tokens with equal probability. Where:

P (x | Context) =
1

N

For large N , P (x | Context) becomes small.

The adjusted probability for the watermarked token xw is:

P ′(xw | Context) =
1

N
+ δ

The adjusted probabilities for other tokens xi (i ̸= w) are:

P ′(xi | Context) =
1

N
− δ

N − 1
, for xi ̸= xw

The change in Conditional Self-Information is:

∆I(xw | Context) = I ′(xw | Context)− I(xw | Context) = − log

(
1

N
+ δ

)
+ logN

Using a Taylor series approximation for small δ:

log

(
1

N
+ δ

)
≈ log

(
1

N

)
+Nδ

The approximate change in conditional self-information is:

∆I(xw | Context) ≈ −Nδ

Compared to the change in entropy, it is obvious self-information are more sensitive metric:

∆H ≈ ∂H

∂P (xw)
δ = −(logP (xw) + 1)δ

When P (x | Context) is small, the magnitude of the derivative is large, this indicates that small changes in P (x | Context)
result in bigger changes in I(x | Context). As a result, the green token influenced by the watermark change will have less
self-information than the original.

High-entropy tokens are usually associated with medium,high self-information due to their unpredictability and low
probability of occurrence. Considering the reduced self-information, these potential green tokens generally will exhibit high
or moderate self-information values. Therefore in practice, we filter out all tokens with high or moderate self-information.
This ensures we can comprehensively eliminate potential tokens.
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H. Theoretical Proof
H.1. Preliminaries and Notation

Watermarked Text. Let y = {y1, y2, . . . , yn} be a sequence of n tokens generated by a watermarked language model M .
A subsetW ⊆ {1, 2, . . . , n} denotes the indices of “green” (watermarked) tokens.

Base (Attack) Model. Let Mattack be a language model distinct from M . Under Mattack, each token yi has probability

P (yi | y1, . . . , yi−1; Mattack).

Self-Information. The self-information of yi under Mattack is defined as

I(yi) = − logP
(
yi | y1, . . . , yi−1; Mattack

)
.

A larger I(yi) indicates yi is more “surprising” or low-probability under Mattack.

Attack Strategy.

• Threshold Selection: Choose a threshold τ (e.g., a certain percentile τϵ) and mask tokens whose self-information
exceeds τ .

• Rewrite Step: Provide the masked text plus a reference text to an LLM, instructing it to fill the placeholders.

• Success Criterion: The attack is considered successful if all watermarked tokens are significantly altered so that the
watermark is no longer detectable.

H.2. Lemmas on Self-Information Changes Due to Watermarking

Lemma H.1 (Bound on Self-Information Shift). Suppose a watermarking algorithm increases the probability of a single
token xw from P (xw) to P ′(xw) = P (xw) + δ, where δ is small (i.e., δ ≪ 1) and P (xw)≪ 1. Let

I(xw) = − logP (xw), I ′(xw) = − logP ′(xw).

Then the drop in self-information, defined as

∆I(xw) = I ′(xw)− I(xw),

is bounded by
∆I(xw) ≤ − log

(
1 + δ

Pmax

)
,

where Pmax is a small upper bound on P (xw) in the high self-information region.

Proof. Step 1: Express ∆I(xw).

∆I(xw) = [− log(P (xw) + δ)]− [− logP (xw)] = − log
(
P (xw) + δ

)
+ logP (xw).

Step 2: Normalize by P (xw).

∆I(xw) = − log
[
P (xw)

(
1 + δ

P (xw)

)]
+ logP (xw) = − log

(
1 + δ

P (xw)

)
.

Step 3: Bound using Pmax. Since P (xw) ≤ Pmax and Pmax ≪ 1, we have

1 + δ
P (xw) ≥ 1 + δ

Pmax
.

Hence,
− log

(
1 + δ

P (xw)

)
≤ − log

(
1 + δ

Pmax

)
,
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giving
∆I(xw) ≤ − log

(
1 + δ

Pmax

)
.

Thus, even after watermarking, a low-probability token remains in a high-self-information regime (downward shift is
limited).

Lemma H.2 (Concentration in High Self-Information Region). Consider a watermarking process that selectively increases
the probability of certain tokens by δ. Let Iα be the α-quantile of self-information values under Mattack, i.e.,

Pr
yi∼Mattack

[
I(yi) ≥ Iα

]
= α.

For sufficiently small δ, any watermarked token yi satisfies

I(yi) ≥ Iα − Cδ,

where Cδ is a small constant capturing the maximum self-information drop due to δ.

Proof. Let yi ∈ W be a watermarked token. Its probability is raised from P (yi) to P (yi) + δ. Using Lemma H.1,

I(yi)− I ′(yi) ≤ − log
(
1 + δ

Pmax

)
= Cδ.

We denote
Cδ = sup

x

∣∣∆I(x)
∣∣.

Because tokens subject to watermarking are chosen (pre-watermark) from the high self-information region (I(yi) ≥ Iα
except possibly some edge cases), their self-information remains at least Iα − Cδ after the slight probability increase. Thus,

I ′(yi) ≈ I(yi) ≥ Iα − Cδ,

showing that watermarked tokens are still near or above Iα − Cδ .

H.3. Bounds on Attack Success Rate

Definition H.3 (Attack Success). Let Wi be the event “token yi is watermarked,” and let Ai be the event “token yi is
removed (masked) by the attack.” The overall attack is considered successful if every watermarked token is removed:

Success(y) =
∧
i∈W

Ai.

Equivalently, Success(y) requires I(yi) ≥ τϵ for all i ∈ W , where τϵ is the chosen self-information threshold (i.e., the
ϵ-percentile).

Theorem H.4 (Attack Success Probability Bounds). Let τϵ be the self-information threshold chosen by the attacker. Then:

1. Lower Bound:

Pr
[
Success(y)

]
≥

(
min
i∈W

Pr[I(yi) ≥ τϵ | Wi]

)|W|

.

2. Upper Bound:
Pr
[
Success(y)

]
≤ Pr

[ ⋂
i∈W
{ I(yi) ≥ τϵ}

]
.

Proof. Step 1: Success Event. The event Success(y) is equivalent to⋂
i∈W
{I(yi) ≥ τϵ}.
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If any watermarked token yi has I(yi) < τϵ, it is not masked and the watermark may remain, so the attack fails.

Step 2: Lower Bound. Let
αi = Pr[I(yi) ≥ τϵ | Wi].

Under (conditional) independence or a suitable lower-bounding assumption,

Pr
[ ⋂
i∈W
{I(yi) ≥ τϵ}

∣∣∣ Wi for each i
]
≥

∏
i∈W

αi.

Then, ∏
i∈W

αi ≥
(
min
i∈W

αi

)|W|
.

This implies

Pr
[
Success(y)

]
≥

(
min
i∈W

Pr[I(yi) ≥ τϵ | Wi]
)|W|

.

Step 3: Upper Bound. Clearly,

Pr
[
Success(y)

]
= Pr

[ ⋂
i∈W
{I(yi) ≥ τϵ}

]
≤ Pr

[ ⋂
i∈W
{I(yi) ≥ τϵ}

]
.

In other words, the event that all watermarked tokens exceed τϵ (and hence are masked) is the maximum possible success
scenario for the attacker.

H.4. Corollary: Optimal Threshold in Randomized Watermarking

Corollary H.5 (Optimal Threshold under Random Watermarking). Suppose a watermarking scheme targets tokens above
the γ-quantile Iγ . If the attacker sets τϵ ≈ Iγ , then asymptotically:

Pr
[
Success(y)

]
≈ (1− η)|W|,

where η is a small factor that captures the mismatch in the shifted distribution (i.e., how many tokens originally near Iγ
drop below τϵ after probability adjustments).

Proof. Step 1: Setup. Under the random watermarking assumption, tokens are chosen in the top γ-quantile of self-
information (i.e., I(yi) ≥ Iγ). After adding a small δ, their self-information decreases by at most Cδ (Lemma H.1).

Step 2: Define η. Let
η = Pr

[
I ′(yi) < τϵ

∣∣∣ I(yi) ≥ Iγ

]
.

If τϵ ≈ Iγ and δ is small, η is small because the shift from I(yi) to I ′(yi) is minor.

Step 3: Success Probability. By Theorem H.4, each watermarked token has at least (1− η) probability of lying above τϵ, so

Pr
[
Success(y)

]
≥ (1− η)|W|.

Similarly, it cannot exceed the intersection probability that all watermarked tokens are above τϵ, and (1− η)|W| is a good
approximation when η ≪ 1. Thus the success probability is high.

The lemmas and theorems above show how minimal probability boosts (δ) ensure that watermarked tokens remain in the
high self-information region. By selecting a threshold τϵ near that region, the attacker can mask or replace the majority of
these tokens. Key points include:
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• Local Context Benefits: Self-information depends on the context, making it more precise than a global entropy
measure.

• Small δ Requirement: Watermarking must keep δ small to avoid degrading output quality, which in turn prevents
drastic drops in self-information for chosen tokens.

• Success Probability Bounds: Theorem H.4 establishes that success probability can be arbitrarily close to 1 for an
appropriate threshold.

• Near-Optimal Threshold: Corollary H.5 suggests an attacker should roughly match the watermark’s targeted quantile
for best results.

The theoretical proof for the self-information rewrite attack shows that by a well-chosen filter we could remove the watermark
in the given text effectively. Our lemmas and bounds show that, under small-δ constraints, high-entropy tokens remain
detectable as high self-information tokens. This explains why token-level self-information filtering outperforms global,
context-agnostic entropy filtering. Consequently, an attacker can remove most or all watermarked tokens while maintaining
strong semantic coherence in the final paraphrased text.

I. Visualization
In this section, we present a visual comparison of our algorithm with other model-based paraphrasing methods, along with
the corresponding z-scores after the attack. For discrete methods, green tokens are marked in green, and red tokens in red.
In the watermarking algorithm, the detector identifies the embedded watermark through green tokens and calculates the
z-score; fewer green tokens or a lower z-score indicate a more successful attack. For continuous methods, the shade of color
denotes the weight of the watermarked token, with darker colors representing higher weights. In the case of attacked text,
lighter colors indicate a more successful attack.

Figure 4. Comparison of different paraphrasing methods on KGW watermarks. Each word’s color indicates whether it is a green or red
token. Fewer green words/lower z-scores suggest a more effective paraphrasing approach. The unwatermarked text represents the
model’s output without the influence of the watermarking algorithm. The example demonstrates that our method achieves a better z-score
than the unwatermarked text..
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Figure 5. Comparison of different paraphrasing methods on Unigram watermarks.
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Figure 6. Comparison of different paraphrasing methods on UPV watermarks. The color of each word indicates whether it belongs to
a green token or a red token. Less green signifies a more effective paraphrasing approach. Our methods show better performance in
removing original watermark text green token.

Figure 7. Comparison of different paraphrasing methods on EWD watermarks.
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Figure 8. Comparison of different paraphrasing methods on EXP watermarks. The color of each word indicates whether it is a green or
red token. For EXP, lighter word colors and higher z-scores indicate a more effective attack.

Table 9. Comparison of watermark algorithms under different attack methods on the OpenGen dataset. Our proposed methods SIRA-Tiny
and SIRA-Small outperform all previous paraphrasing-based attacks under black-box settings.

Attack Success Rate (%) on OpenGen Dataset

Attack
Watermark KGW-1 Unigram UPV EWD DIP SIR EXP

Word delete 21.8 0.8 9.6 17.6 64 36.8 6.6
Synonym 77.4 16.8 67.8 72 98 71.4 47.4
GPT 69 58.2 57.4 73.4 98.2 58.8 74.2
DIPPER-1 89.4 67.8 71.4 88.8 98.8 74.6 83.2
DIPPER-2 89.2 71.2 78.8 92.2 99.0 72.8 85.6

SIRA-Tiny (Ours) 92 84 74.8 94.2 99.6 74.6 81.8
SIRA-Small (Ours) 93.8 91.2 80.6 94.8 99.6 80.2 86.2

J. Extend Experiments
We conduct additional experiments on the OpenGen dataset (Krishna et al., 2024), which consists of sampled passages from
WikiText-103. Specifically, we use a subset of 500 chunks as prompts, following the same experimental protocol described
in our main evaluation—namely, we prompt a target LLM with each chunk and assess the ability of different watermark
removal methods to induce decoding failures in the watermark verifier. We report the attack success rate (ASR) as our
primary metric. As shown in Table 9, our proposed methods consistently achieve the highest ASR across all watermarking
algorithms, demonstrating strong generalization and robustness beyond the training or development set used in previous
sections.

We observe that the performance of DIPPER improves significantly on the OpenGen dataset compared to its performance on
C4. We hypothesize that this may be attributed to distributional similarity between OpenGen and the supervised training
data used to train the DIPPER paraphraser, as both originate from the same source corpus introduced in Krishna et al. (2024).
Despite this advantage, our proposed method SIRA-Small still consistently achieves the highest attack success rates across
all watermarking algorithms, demonstrating stronger generalization to diverse data distributions.
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Table 10. Attack success rate (ASR) on Adaptive Watermark and Waterfall Watermark. Sample size = 200. Our methods outperform all
baselines across both settings.

Adaptive Watermark Waterfall Watermark

Attack ASR (%) Attack ASR (%)

Word delete 5.6 Del 4.4
Synonym 92.4 Syn 55.6
GPT-4o Paraphraser 61.4 GPT 80.0
DIPPER-1 60.6 DIPPER-1 73.8
DIPPER-2 65.6 DIPPER-2 80.0
SIRA-Tiny (Ours) 96.2 SIRA-T (Ours) 88.4
SIRA-Small (Ours) 98.2 SIRA-S (Ours) 90.8

To further evaluate the generalizability of our proposed methods, we conduct additional experiments on two recently
introduced watermarking schemes: Adaptive Watermark (Liu & Bu, 2024) and Waterfall Watermark (Lau et al., 2024).
Following the same black-box threat model, we apply both baseline and our proposed attack methods to 200 samples from
C4 dataset for each setting. As shown in Table 10, SIRA-Tiny and SIRA-Small achieve significantly higher attack success
rates (ASR) compared to all baselines, including the strong GPT-4o paraphraser and DIPPER variants. Notably, on Adaptive
Watermark, SIRA-Small reaches 98.2% ASR, while the strongest baseline only achieves 92.4%. Similarly, for Waterfall
Watermark, SIRA-Small obtains 90.8% ASR, outperforming the closest baseline by over 10 percentage points. These results
demonstrate the superior robustness and transferability of our attack methods across different watermarking designs.
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