
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 BAYES OPTIMALITY OF Q-VALUE ESTIMATES IN BERNOULLI MULTI-ARMED BANDITS

Given an instance of a Bernoulli multi-armed bandit MDP, Mi ∼ M, and trajectory data Υ1:T up
to time T , we would like to show that the probability P (i|Υ1:T) can be determined entirely from
Q-estimates QT

i and action-counts NT
i , as long as the initial belief is uniform or known.

In the following proof, we represent an instance i of K-armed Bandits as a K-dimensional vector
of success probabilities [pi1, ..., piK], such that pulling arm k is associated with reward distribution
P (r = 1|i, k) = pik and P (r = 0|i, k) = (1− pik).

Let the number of times arm k is pulled up to time T be NT
ik, and the number of successes associated

with pulling arm k up to time T be qTik. Given that this is an MDP with just a single state and task
horizon of 1, the Q-estimate associated with arm k is just the average reward for that action, which
is the ratio of successes to counts associated with that action i.e., QT

ik =
qTik
NT

ik

. To reduce the clutter
in the notation, we will drop the superscript T for the rest of the subsection.

Now,

P (i|Υ1:T) = αP (i) · P (Υ1:T |i) (7)

where α is the normalization constant, P (i) is the prior probability of task i (which is assumed to be
known beforehand), and Υ1:T is the sequence of actions and the corresponding rewards up to time
T . Assuming, without loss of generality, that the sequence of actions used to disambiguate tasks is
a given, P (Υ1:T |i) becomes simply the product of probabilities of reward outcomes up to time T ,
noting that the events are independent. Therefore,

P (Υ1:T |i) =
∏

k=1:K

∏
t=1:T

([rtk = 1]pik + [rtk = 0](1− pik)) (8)

=
∏

k=1:K

p
qik
ik · (1− pik)

Nik−qik (9)

=
∏

k=1:K

p
QikNik
ik · (1− pik)

Nik−QikNik (10)

Putting everything together,

P (i|Υ1:T) = αP (i) ·
∏

k=1:K

p
QikNik
ik · (1− pik)

Nik−QikNik (11)

This equation proves that NT
i and QT

i are sufficient statistics to determine P (i|Υ1:T) in this domain,
assuming that the prior over task distribution is known.

A.2 NON-BAYES OPTIMALITY OF Q-VALUE ESTIMATES IN GAUSSIAN MULTI-ARMED
BANDITS

Given an instance of a Gaussian multi-armed bandit MDP, Mi ∼ M, and trajectory data Υ1:T up
to time t, here we derive the closed-form expression of the probability P (i|Υ1:T) and show that it
contains terms other than Q-estimates Qt

i and action-counts N t
i .

In the following proof, we represent an instance i of K-armed Bandits as a 2K-dimensional vector
of means and standard deviations [µi1, ..., µiK , σi1, ..., σiK], such that pulling arm k is associated
with reward distribution P (r|i, k) = 1√

2πσik
exp(r−µik

σik
)2.

Let the number of times arm k is pulled up to time T be NT
ik. Given that this is an MDP with just

a single state and the task horizon is 1, the Q-estimate associated with arm k is just the average

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

reward for that action Avg[rk] up to time T . To reduce the clutter in the notation, we will drop the
superscript T for the rest of the subsection.

As in the previous subsection, we now compute the likelihood P (Υ1:T |i).

P (Υ1:T |i) =
∏

k=1:K

∏
t=1:T

1√
2πσik

exp(
rtk − µik

σik
)2 (12)

Therefore, the log likelihood is

logP (Υ1:T |i) =
∑

k=1:K

∑
t=1:T

(rtk − µik)
2

σ2
ik

− log (2πσik)/2 (13)

=
∑

k=1:K

Nik
Avg[(rtk − µik)

2]

σ2
ik

−Nik log (2πσik)/2 (14)

=
∑

k=1:K

Nik
Avg[r2k]− 2µikAvg[rk] + µ2

ik

σ2
ik

−Nik log (2πσik)/2 (15)

=
∑

k=1:K

Nik
(Var[rk] + Avg[rk]2)− 2µikAvg[rk] + µ2

ik

σ2
ik

−Nik log (2πσik)/2 (16)

=
∑

k=1:K

Nik
Var[rk] + (Qik)

2 − 2µikQik + µ2
ik

σ2
ik

−Nik log (2πσik)/2 (17)

Therefore, computing this expression requires computing the variance in rewards, Var[rk], associ-
ated with each arm up to time T , apart from the Q-estimates and action-counts. This proves that
Q-estimates and action-counts alone are insufficient to completely determine P (i|Υ1:T) in Gaussian
multi-armed bandits domain.

A.3 OBJECT-LEVEL Q-ESTIMATES AND META-LEVEL VALUES

Proof of Equation 4: In standard meta-RL, the only observed variable in the POMDP state s̄t =
[st, i] at time t is the state st of the current MDP i.e., ω̄t = st, while the task identity i is hidden.
However, in RL3, ω̄t includes the vector of Q-estimates Qt

i(st) for the hidden task, which means that
the meta-level observation function Ō(ω̄|b̄, a) factors in the probability that a particular Q-esimate
will be observed following an action a given an initial belief b̄ state. (Note that we will use b̄(s̄) and
b̄(i) interchangeably since i is the only hidden variable in s̄). In practice, such Q-value estimates
provide excellent evidence (see Appendix D) for task identification. This allows for robust belief
recovery even if the initial belief is not Bayes-optimal (or altogether not maintained), especially as
the Q-estimates converge and stabilize in the limit, leading to two cases:

Case 1: The observed Q-values are unique to MDP Mi. In this case, the belief distribution will
collapse rapidly to zero for tasks j ̸= i, and thus maxa∈A Qi(s, a) = V̄ ∗(b̄).

Case 2: The observed Q-values are not unique. In this case, belief will not collapse to a single MDP.
However, belief will still reduce to zero for tasks not compatible with the observed Q-values. The
meta-level value function V̄ ∗(b̄), which will be an expectation over object-level values, will simplify
to maxa∈A Qi(s, a) since Q-values for all remaining tasks are identical, where i may represent any
of the (identical Q-valued) tasks with non-zero belief.

This proves equation 4. Note that in the limit, the task can be identified perfectly from the stream
of experiences as all state-action pairs are explored, and the meta-level value function becomes
equivalent to the optimal object-level value function of the identified (or current) task. However,
the above proof demonstrates that RL3 can infer this equivalency implicitly in the limit without
relying on the stream of experiences or identifying the task fully, and furthermore, directly model
the meta-value function in terms of the supplied object-level value function.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof of Equation 6: We first write the Bellman equation for the optimal meta-level POMDP value
function in its belief-MDP representation:

V̄ ∗(b̄) = max
a∈A

[∑
s̄∈S̄

b̄(s̄)R̄(s̄, a) + γ
∑
ω̄∈Ω̄

Ō(ω̄|b̄, a)V̄ ∗(b̄′)
]
. (18)

However, given that in the POMDP state s̄ = [s, i], the only hidden variable is the task i, we can
re-write this as

V̄ ∗(b̄) = max
a∈A

[∑
Mi∈M

b̄(i)Ri(s, a) + γ
∑
ω̄∈Ω̄

Ō(ω̄|b̄, a)V̄ ∗(b̄′)
]
, (19)

where b̄(i) denotes the meta-level belief that the agent is operating in MDP Mi, and Ri(s, a) is the
reward experienced by the agent if it executes action a in state s in MDP Mi. Here, b̄′ may be
calculated via the belief update as in §3.1.

B ARCHITECTURE

B.1 RL2

Our modified implementation of RL2 uses transformer decoders (Vaswani et al., 2017) instead of
RNNs to map trajectories to action probabilities and meta-values, in the actor and the critic, respec-
tively, and uses PPO instead of TRPO for outer RL. The decoder architecture is similar to (Vaswani
et al., 2017), with 2 layers of masked multi-headed attention. However, we use learned position
embeddings instead of sinusoidal, followed by layer normalization. Our overall setup is similar
to (Esslinger et al., 2022).

For each meta-episode of interactions with an MDP Mi, the actor and the critic transformers look
at the entire history of experiences up to time t and output the corresponding action probabilities
π1...πt and meta-values V̄1...V̄t, respectively. An experience input to the transformer at time t
consists of the previous action at−1, the latest reward rt−1, the current state st, episode time step
tτ , and the meta-episode time step t, all of which are normalized to be in the range [0, 1]. In order to
reduce inference complexity, say at time step t, we append t new attention scores (corresponding to
experience input t w.r.t. the previous t−1 experience inputs) to a previously cached (t−1)× (t−1)
attention matrix, instead of recomputing the entire t × t attention matrix. This caching mechanism
is implemented for each attention head and reduces the inference complexity at time t from O(t2)
to O(t).

B.2 RL3

The input of the transformer in RL3 includes a vector of Q estimates (in practice, they are supplied as
the vector of advantage estimates (Q− maxaQ) along with the value function (maxaQ) separately)
and a vector of action counts at each step t for the corresponding state. As mentioned in Section
4.2, this is implemented in our code simply by converting MDPs in the problem set to VAMDPs
using a wrapper and running our implementation of RL2 thereafter. The pseudocode is shown in the
algorithm 1. The Markov version of RL3 uses a dense neural network, with two hidden layers of 64
nodes each, with the ReLU activation function.

For object-level RL, we use model estimation followed by value iteration (with discount factor
γ = 1) to obtain Q-estimates. The transition probabilities and the mean rewards are estimated using
maximum likelihood estimation (MLE), with Laplace smoothing (coefficient = 0.1) for transition
probabilities estimation. For unseen actions, rewards are assumed to be zero, and transitions equally
likely to other states. States are added to the model incrementally when they are visited, so that
value iteration does not compute values for unvisited states. Moreover, value iteration is carried out
only for iterations equal to the task horizon (which is 1, 10, 250, 350 for Bandits, MDPs, 11x11
GridWorld, 13x13 GridWorld domains, respectively), unless the maximum Bellman error drops
below 0.01.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1 Value-Augmenting Wrapper for Discrete MDPs
procedure RESETMDP(vamdp)

vamdp.t← 0; vamdp.tτ ← 0
vamdp.N [s, a]← 0; vamdp.Q[s, a]← 0 ∀s ∈ S, a ∈ A
vamdp.rl← INITRL()
s = RESETMDP(vamdp.mdp)
return ONEHOT(s) ·Q[s] ·N [s]

procedure STEPMDP(vamdp, a)
s← mdp.s
r, s′ ← STEPMDP(vamdp.mdp, a)
d← TERMINATED(vamdp.mdp)
vamdp.t, vamdp.N [s, a], vamdp.tτ ← += 1
vamdp.Q← UPDATERL(vamdp.rl, s, a, r, s′, d)
if d or vamdp.tτ ≥ task horizon then

vamdp.tτ ← 0
s′ ← RESETMDP(vamdp.mdp)

return r, ONEHOT(s′) ·Q[s′] ·N [s′] ▷ Concatenate state, Q-estimates and action counts
procedure TERMINATED(vamdp)

return vamdp.t ≥ H

B.3 RL3-COARSE

During model estimation in RL3-coarse, concrete states in the underlying MDP are incrementally
clustered into abstract states as they are visited. When a new concrete state is encountered, its
abstract state ID is set to that of a previously visited state within a ‘clustering radius’, unless that
previous state is already part of a full cluster (determined by a maximum ‘cluster size’ parameter).
If multiple visited states satisfy the criteria, the ID of the closet one is chosen. If none of the visited
states that satisfy the criteria, then the new state is assigned a new abstract state ID, increasing the
number of abstract states in the model. It is worth noting that this method of deriving abstractions
does not take advantage of any structure in the underlying domain. However, this simplicity makes
it general purpose, efficient, and impartial, while still leading to excellent performance. For our
GridWorld domain, we chose a cluster size of 2 and a clustering radius such that only non-diagonal
adjacent states are clustered (Manhattan radius of 1).

The mechanism for learning the transition function and the reward function in the abstract MDP is
the same as before. For estimating Q-values for a given concrete state, value iteration is carried out
on the abstract MDP and the Q-estimates of the corresponding abstract state are returned.

C TRAINING

Figs. 5, and 6 show the training curves for MDPs, and GridWorld environments, respectively, across
3 random seeds. The results in the main text correspond to the median model. We ran the experi-
ments on Nvidia GeForce RTX 2080 Ti GPUs for context length ≤ 256 which took approximately
12-24 hours, and on Nvidia A100 GPUs for higher context lengths, which took 1-2 days.

D ADDITIONAL ANALYSIS

In this section, we show that Q-estimates, though imperfect, produce reasonable signals for task
identification. Here, we test this claim thoroughly with 3 analyses.

D.1 REQUIREMENTS FOR A UNIQUE Q∗-FUNCTION

Throughout, we assume fixed state space and action space. Below, we show that if the transition
function is fixed, then two Q∗-tables will be identical if and only if both reward functions are also
equal. First, we show that identical Q∗ functions imply identical reward functions. Given the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

2.0k 4.0k 6.0k 8.0k
Iterations

140

160

180

200

M
et

a-
E

pi
so

de
 R

et
ur

n

RL²
RL³

(a) H = 128

2.0k 4.0k 6.0k 8.0k
Iterations

250

300

350

400

450

M
et

a-
E

pi
so

de
 R

et
ur

n

RL²
RL³

(b) H = 256

2.0k 4.0k 6.0k 8.0k
Iterations

500

600

700

800

900

M
et

a-
E

pi
so

de
 R

et
ur

n

RL²
RL³

(c) H = 512

2.0k 4.0k 6.0k 8.0k 10.0k 12.0k
Iterations

1000

1250

1500

1750

2000

M
et

a-
E

pi
so

de
 R

et
ur

n

RL²
RL³

(d) H = 1024

2.5k 5.0k 7.5k 10.0k 12.5k 15.0k
Iterations

1500

2000

2500

3000

M
et

a-
E

pi
so

de
 R

et
ur

n

RL²
RL³

(e) H = 1500

2.5k 5.0k 7.5k 10.0k 12.5k 15.0k
Iterations

2500

3000

3500

4000

M
et

a-
E

pi
so

de
 R

et
ur

n

RL²
RL³

(f) H = 2048

Figure 5: Average meta-episode return vs PPO iterations for MDPs domain for different interaction budgets.

Figure 6: Average meta-episode return vs PPO iterations for GridWorld 11x11 (left) and 13x13 (right).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Bellman equations,

Q∗
1(s, a) = R1(s, a) + γ

∑
s′

T (s, a, s′)maxa′Q∗
1(s

′, a′) (20)

Q∗
2(s, a) = R2(s, a) + γ

∑
s′

T (s, a, s′)maxa′Q∗
2(s

′, a′) (21)

Substituting Q∗
2 = Q∗

1 in Equation equation 21, we get

Q∗
1(s, a) = R2(s, a) + γ

∑
s′

T (s, a, s′)maxa′Q∗
1(s

′, a′) (22)

Subtracting Equation equation 20 from Equation equation 22, we get R1(s, a) = R2(s, a). Thus,
(Q∗

1 = Q∗
2) ∧ (T1 = T2) =⇒ (R1 = R2).

Now, if two MDPs have the same reward and transition function, they are the same MDP and will
have the same optimal value function. So, (R1 = R2) ∧ (T1 = T2) =⇒ (Q∗

1 = Q∗
2).

Since encountering similar Q∗-tables is thus dependent on both transitions and rewards ‘balancing’
each other, the question is then for practitioners: How likely are we to get many MDPs that all
appear to have very similar Q∗-tables?

D.2 EMPIRICAL TEST USING MAX NORM

Given an MDP with 3 states and 2 actions, we want to find the probability that ||Q∗
1 −Q∗

2||∞ < δ,
where Q∗

1 and Q∗
2 are 6-entry (3 states × 2 actions) Q∗-tables. The transition and reward functions

are drawn from distributions parameterized by α and β, respectively. Transition probabilities are
drawn from a Dirichlet distribution, Dir(α), and rewards are sampled from a normal distribution,
N (1, β). In total, we ran 3 combinations of α and β, each with 50,000 MDPs, a task horizon of
10, and δ = 0.1. To get the final probability, we test all ((50, 000− 1)2)/2 non-duplicate pairs and
count the number of max norms less than δ.

Results: For α = 1.0, β = 1.0, we found the probability of a given pair of MDPs having duplicate
Q∗-table to be ϵ = 2.6 × 10−9. For α = 0.1, β = 1.0, which is a more deterministic setting, we
found ϵ = 4.6× 10−9. Further, with α = 0.1, β = 0.5, where rewards are more closely distributed,
we found ϵ = 1.1×10−7. Overall, we can see that even for a set of very small MDPs, the probability
of numerically mistaking one Q∗-table for another is vanishingly small.

D.3 PREDICTING TASK FAMILIES

The near uniqueness of Q∗-functions is encouraging, but max norm is not a very sophisticated
metric. Here, we test whether a very simple multi-class classifier (1 hidden layer of 64 nodes),
can accurately identify individual tasks based on their Q-estimates. Moreover, we track how the
classification accuracy improves as a function of the number of steps taken within the MDP as the
estimates improve. In this experiment, the same random policy is executed in each MDP for 50 time
steps. As before, our MDPs have 3 states and 2 actions.

We instantiate 10,000 MDPs whose transition and reward functions are drawn from the same distri-
bution as before: transitions from a Dirichlet distribution with α = 0.1 and rewards sampled from
a normal distribution N(1, 0.5). Thus, this is a classification problem with 10,000 classes. A priori,
this exercise seems relatively difficult given the number of tasks and the parameters chosen for the
distributions. Fig. 7 shows a compelling result given the simplicity of the model and the relative
difficulty of the classification problem. Clearly, Q-estimates, even those built from only 20 experi-
ences, provide a high signal-to-noise ratio w.r.t. task identification. And this is for a random policy.
In principle, the meta-RL agent could follow a much more deliberate policy that actively disam-
biguates trajectories such that the Q-estimates evolve in a way that leads to faster or more reliable
discrimination.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 7: The task-identification power of Q-estimates. Left: Fraction of δ-duplicates, with δ = 0.1, as a
function of time steps in a set of 5,000 random MDPs. Right: Accuracy of a simple multi-class classifier in
predicting task ID given Q-table estimates, as function of time step. Both figures are generated using the same
policy.

E DOMAIN DESCRIPTIONS

E.1 BERNOULLI MULTI-ARMED BANDITS

We use the same setup described by Duan et al. (2016). At the beginning of each meta-episode, the
success probability corresponding to each arm is sampled from a uniform distribution U(0, 1). To
test OOD generalization, we sample success probabilities from N (0.5, 0.5)

E.2 RANDOM MDPS

We use the same setup described by Duan et al. (2016). The MDPs have 10 states and 5 actions. For
each meta-episode, the mean rewards R(s, a) and transition probabilities T (s, a, s′) are initialized
from a normal distribution (N (1, 1)) and a flat Dirichlet distribution (α = 1), respectively. More-
over, when an action a is performed in state s, a reward is sampled from N (R(s, a), 1). To test
OOD generalization, the transition probabilities are initialized with Dirichlet α = 0.25.

Each episode begins at state s = 1 and ends after task horizon = 10 time steps.

E.3 GRIDWORLDS

A set of navigation tasks in a 2D grid environment. We experiment with 11x11 (121 states)
and 13x13 (169 states) grids. The agent always starts in the center of the grid and needs to
navigate through obstacles to a single goal location. The goal location is always at a mini-
mum of min goal manhat Manhattan distance from the starting tile. The grid also contains
slippery wet tiles, fatally dangerous tiles and warning tiles surrounding the latter. There are
num obstacle sets set of obstacles, and each obstacle set spans obstacle set len tiles,
in either horizontal or vertical configuration. There are num water sets set of wet regions and
each wet region always spans water set length, in either a horizontal or vertical configuration.
Entering wet tiles yields an immediate reward of -2. There are num dangers danger tiles and en-
tering them ends the episode and leads to a reward of -100. Warning tiles always occur as a set of 4
tiles non-diagonally surrounding the corresponding danger tiles. Entering warning tiles causes -10
reward. Normal tiles yield a reward of -1 to incentivize the agent to reach the goal quickly. On all
tiles, there is a chance of slipping sideways with a probability of 0.2, except for wet tiles, where the
probability of slipping sideways is 1.

The parameters for our canonical 11x11 and 13x13 GridWorlds are: num obstacle sets = 11,
obstacle set len = 3, num water sets = 5, water set length = 2, num dangers
= 2, and min goal manhat = 8. The parameters for the OOD variations are largely the same
and the differences are as follows. For DETERMINISTIC variation, the slip probability on non-wet
tiles is 0. For DENSE variation, obstacle set len is increased to 4. For WATERY variation,
num water sets is increased to 8. For DANGEROUS variation, num dangers is increased to

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 3: RL2 /RL3 Hyperparameters

Hyperparameter Value

Learning Rate (Actor and Critic) 0.0003 (Bandits, MDPs)
0.0002 (GridWorlds)

Adam β1, β2, ϵ 0.9, 0.999, 10−7

Weight Decay (Critic Only) 10−2

Batch size 32768
Rollout Length Interaction Budget (H)
Number of Parallel Envs Batch Size ÷H
Minibatch Size 4096
Entropy Regularization Coeff 0.1 with decay (MDPs)

0.04 (GridWorlds)
0.01 (Bandits)

PPO Iterations See training curves
Epochs Per Iteration 8
Max KL Per Iteration 0.01
PPO Clip ϵ 0.2
GAE λ 0.3
Discount Factor γ 0.99
Decoder Layers 2
Attention Heads 4
Activation Function gelu
Decoder Size (d model) 64

4. For CORNER variation, min goal manhat is set to 12, so that the goal is placed on one of the
corners of the grid.

There is no fixed task horizon for this domain. An episode ends when the agent reaches the goal
or encounters a danger tile. In principle, an episode can last through the entire meta-episode if a
terminal state is not reached.

When a new grid is initialized at the beginning of each meta-episode, we ensure that the optimal,
non-discounted return within a fixed horizon of 100 steps is between 50 and 100. This is to ensure
that the grid both has a solution and the solution is not trivial.

21

