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A. Comparing theoretical and geometric complexity
Proof of Proposition 3.4. For any dataset D = {xi}mi=1 of m ≥ 1 points xi ∈ Rd drawn as i.i.d. samples from the
continuous probability distribution µ over Rd, the empirical geometric complexity over D is denoted by GC(f,D). We
start by showing that

ED∼µm [GC(f,D)] = GC(f, µ).

In fact, this follows by computation, keeping in mind that µ is a probability distribution and that the points are independently
sampled. Note that,

ED∼µm [GC(f,D)] = Ex1,...,xm∼µm

[
1

m

m∑
i=1

‖∇xf(xi)‖2F

]

=
1

m

∫
Rm×d

m∑
i=1

‖∇xf(xi)‖2F dµm(x1, . . . , xm)

=
1

m

∫
Rm×d

m∑
i=1

‖∇xf(xi)‖2Fu(x1) · · ·u(xm)dx1 · · · dxm

=
1

m

m∑
i=1

∫
R(m−1)×d

[∫
Rd

‖∇xf(xi)‖2Fu(xi)dxi

]
u(x1) · · · û(xi) · · ·u(xm)dx1 · · · d̂xi · · · dxm

=
1

m

m∑
i=1

[∫
Rd

‖∇xf(xi)‖2Fu(xi)dxi

]

=
1

m

m∑
i=1

[∫
Rd

‖∇xf(xi)‖2F dµ(xi)

]

=
1

m

m∑
i=1

GC(f, µ)

= GC(f, µ).

Let D and D′ be two samples of size m ≥ 1 which differ by exactly one point, say xi in D and x′i in D′. Then since the
map f is L-Lipschitz we have

GC(f,D)−GC(f,D′) =
1

m

(
‖∇xf(xi)‖2F − ‖∇xf(x′i)‖2F

)
≤ L2/m,

and similarly, GC(f,D′)−GC(f,D) ≤ L2/m. Thus, |GC(f,D)−GC(f,D′)| ≤ L2/m and by applying McDiarmind’s
inequality (e.g. (Mohri et al., 2018)), we have that for any ε > 0,

P [GC(f,D)− ED∼µm [GC(f,D)] ≤ ε] ≥ 1− exp(−2mε2/L2). (6)

Thus, since ED∼µm [GC(f,D)] = GC(f, µ) and setting δ/2 = exp(−2mε2/L2) and substituting for ε in (6), we get that
for any δ > 0 with probability as least 1− δ/2 the following holds:

GC(f, µ) ≤ GC(f,D) + L

√
log 2

δ

2m
.

This completes the proof.

B. Proof of Theorem 4.2
Let us restate the theorem and provide the proof:

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

A margin-based multiclass generalization bound via geometric complexity

Theorem B.1. Given a1, a2 be positive reals. Let S = {(x1, y1), . . . , (xm, ym)} be i.i.d. input-output pairs in Rd × {±1}
and suppose the distribution µ of the xi satisfies the Poincaré inequality with constant ρ > 0. Then, for any δ > 0, with
probability at least 1− δ, every margin γ > 0 and network f : Rd → R which satisfies GC(f, µ) ≤ a1 and |Eµ(f)| ≤ a2

P [yf(x) ≤ 0] ≤ R̂S,γ(f) +
12C̃
√
π

γm
+ 3

√
log 2

δ

2m

where R̂S,γ(f) = m−1
∑
i 1yif(xi)≤γ and C̃ = a2 +

√
a1ρ/δ.

The proof follows by combining fairly standard arguments in the literature. We include the full details here for completeness.

Proof. Let F denote the class of differentiable maps

F := {f : Rd → R | GC(f, µ) ≤ a1, |Eµ[f ]| ≤ a2}.

and let F̃ = {z = (x, y) 7→ yf(x) | f ∈ F}. For any γ > 0, define

F̃γ := {(x, y) 7→ `γ(−yf(x)) | f ∈ F}.

Since `γ has range [0, 1], it follows classic generalization bounds based on the Rademacher complexity (see, for example
Theorem 3.3 in (Mohri et al., 2018)) that, for any δ > 0, with probability at least 1− δ over the draw of an i.i.d. sample S of
size m, we have for all f ∈ F̃γ :

E[`γ(−yf(x))] ≤ 1

n

n∑
i=1

`γ(−yif(xi)) + 2R̂S(F̃γ) + 3

√
log 2

δ

2m
. (7)

We can further simplify the term R̂S(F̃γ) here. Namely, R̂S(F̃γ) = R̂S(`γ ◦F̃) and, since the ramp loss `γ is 1/γ-Lipschitz,
by Talagrand’s lemma (e.g. see Lemma 5.7 of (Mohri et al., 2018)), the empirical Rademacher complexity of `γ ◦ F̃ can be
bounded in terms of the empirical Rademacher complexity of the original hypothesis set F̃ ; that is,

R̂S(`γ ◦ F̃γ) ≤ 1

γ
R̂S(F̃). (8)

Since the yi ∈ {±1}, by computing the empirical Rademacher complexity of F̃ over the set S, we also have R̂S(F̃) =

R̂S(F). Therefore, and by recalling the definition of R̂S,γ(f), (7) becomes

Eµ[`γ(−yf(x))] ≤ R̂S,γ(f) +
2

γ
R̂S(F) + 3

√
log 2

δ

2m
.

Focusing now on the left hand side of (7), note that by definition of the ramp loss, since 1−yf(x)≥0 ≤ `γ(−yf(x)), we have

E[1−yf(x)≥0] ≤ E[`γ(−yf(x))]

and P [yf(x) ≤ 0] = E[1−yf(x)≥0]. Therefore,

P [yf(x) ≤ 0] ≤ R̂S,γ(f) +
2

γ
R̂S(F) + 3

√
log 2

δ

2m
.

Furthermore, by definition of the ramp loss, we have that

P [yf(x) ≤ 0] = µ(−yf(x) ≥ 0)

= Eµ[1−yf(x)≥0]

≤ Eµ[`γ(−yf(x))].
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Therefore,

P [yf(x) ≤ 0] ≤ R̂S,γ(f) +
2

γ
R̂S(F) + 3

√
log 2

δ

2m
. (9)

To complete the proof we can use a form of the Dudley entropy integral to deduce an upper bound on R̂S(F). The Dudley
entropy integral lemma (see Lemma A.5 of (Bartlett et al., 2017)) states that

R̂S(F) ≤ inf
α>0

(
4α√
m

+
12

m

∫ √m
α

√
logN (F|S , ε, ‖ · ‖2)dε

)
.

Examining the integral term above, note that F|S = {f(X) | f ∈ F} where X = SX is the projection of the sample S
onto the inputs, so N (F|S , ε, ‖ · ‖2) = N ({f(X) | f ∈ F}, ε, ‖ · ‖2) and, as in Lemma 4.1 taking C̃ = C̃(a1, a2, ρ, δ) :=
a2 +

√
a1ρ/δ, it follows that N ({f(X) | f ∈ F}, ε, ‖ · ‖2) = 1 for all ε ≥ C̃ since it requires only one ball of radius

greater than or equal to C̃ to cover a ball of radius C̃. Thus, the integrand above is zero for any ε ≥ C̃. We can further upper
bound this integral by swapping the integral limit

√
m with C̃ since the integral of a positive function is no greater than the

integral of that function over a potentially larger domain. Therefore, we get,

R̂S(F) ≤ inf
α>0

{
4α√
m

+
12

m

∫ min(
√
m,C̃)

α

√
logN (F|S , ε, ‖ · ‖2)dε

}

≤ inf
α>0

{
4α√
m

+
12

m

∫ C̃

α

√
logN (F|S , ε, ‖ · ‖2)dε

}
To simplify this, let’s first compute the integral term. By Lemma 4.1,∫ C̃

α

√
logN (F|S , ε, ‖ · ‖2)dε ≤

∫ C̃

α

√
log
(
C̃/ε

)
dε

= ε
√

log
(
C̃/ε

)∣∣∣∣ε=C̃
ε=α

− C̃
√
π

2
erf

(√
log
(
C̃/ε

))∣∣∣∣∣
ε=C̃

ε=α

where erf denotes the error function

erf(z) =
2√
π

∫ z

0

e−t
2

dt.

Evaluating the right hand side fully, we get

∫ C̃

α

√
logN (F|S , ε, ‖ · ‖2)dε ≤ ε

√
log
(
C̃/ε

)∣∣∣∣ε=C̃
ε=α

− C̃
√
π

2
erf

(√
log
(
C̃/ε

))∣∣∣∣∣
ε=C̃

ε=α

= −α
√

log(C̃/α) +
C̃
√
π

2
erf

(√
log
(
C̃/α

))
≤ C̃

√
π

2
− α

√
log(C̃/α),

where in the last inequality we simply used the fact that for any z > 0 we have erf(z) ≤ 1. Therefore, substituting this back
into the entropy bound for R̂S(F) above, and bounding the inf by taking the limit α goes to zero; we get,

R̂S(F) ≤ inf
α>0

{
4α√
m

+
12

m

(
C̃
√
π

2
− α

√
log(C̃/α)

)}

≤ lim
α→0

{
4α√
m

+
12

m

(
C̃
√
π

2
− α

√
log(C̃/α)

)}

=
6C̃
√
π

m

12
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Note that in the inequalities above we are not finding the optimal or tightest upper bounds for R̂S(F) that are possible.
However, given the nature of these expressions it is possible to determine bounds on how sharp these inequalities are. We
simply note for the time being that, although these bounds are not sharp, they are not gross overestimates of the true infimum.
Finally, substituting this bound on R̂S(F) into (9) we get.

P [yf(x) ≤ 0] ≤ R̂S,γ(f) +
12C̃
√
π

γm
+ 3

√
log 2

δ

2m

which completes the proof.

C. Proof of Theorem 1.1
One of the key components of our proof is the Poincaré inequality, originally stated for real-valued functions as in (Evans,
2022). Under similar assumption the Poincaré inequality naturally extends to vector valued maps. We include the proof here.

Let’s now detail the proof of the main covering lemma behind Theorem 1.1. As mentioned previously, the proof follows the
same logic as the idea as case k = 1 only here we need to be a bit more careful about multivariate norms. Note also, the
final ball counting argument on the image in Rk incurs an additional cost resulting in an exponent k which ultimately incurs
a cost of a factor

√
k in our final bound; c.f. (Zhang, 2004).

Proof of Lemma 4.3. Given f ∈ F , let f i denote the component functions of f for i ∈ [k] and define f̃ : Rd → Rk by

f̃ := (f1 − Eµ[f1], . . . , fk − Eµ[fk]).

Thus, Eµ[f̃ ] = 0 ∈ Rk and GC(f̃ , µ) = GC(f, µ) ≤ a1. Futhermore, by extending Chebyshev’s inequality to this
multivariate setting, we get that, for any t ∈ R+,

P
[
‖f̃‖ ≤ t

]
≥ 1−

∑
i Varµ(f̃ i)

t2
.

Note that by the definition of f̃ and since µ satisfies PI(ρ), for each i ∈ [k],

Varµ(f̃ i) =

∫
|f̃ i|2dµ ≤ ρ

∫
‖∇f̃ i‖2dµ = ρGC(f̃ i, µ).

Furthermore, by the definition of GC(f, µ) it follows that

GC(f̃ , µ) =

∫
‖∇xf̃‖2F dµ =

∫ ∑
i,j

∣∣∣∣∣∂f̃ i∂xj

∣∣∣∣∣
2

dµ =
∑
i

GC(f̃ i, µ).

Using this simplification of GC(f̃ , µ) and substituting for Varµ(f̃ i) in the application of Chebyshev’s inequality above, we
get

P
[
‖f̃‖ ≤ t

]
≥ 1− ρGC(f̃ , µ)

t2
≥ 1− a1ρ

t2
.

As before, taking δ = a1ρ/t
2 and solving for t, we get t =

√
a1ρ/δ; thus, for any δ ∈ (0, 1), it follows that

P
[
‖f̃‖ ≤

√
a1ρ/δ

]
≥ 1− δ.

Therefore, since ‖Eµ[f ]‖ ≤ a2, for any f ∈ F with high probability we can bound the image of f within a ball in Rk;
namely,

P
[
‖f‖ ≤ a2 +

√
a1ρ/δ

]
≥ 1− δ.

The rest of the argument follows from a standard ball counting argument in Rk. Given ε > 0, let r := a2 +
√
a1ρ/δ and

take a maximal set of points pi ∈ B(r) such that dist(pi, pj) > ε for i 6= j. It follows that Bpi(ε/2) ∩Bpj (ε/2) = ∅ and

13
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∪iBpi(ε/2) ⊂ B(r(1 + ε/2)). Thus, by construction and taking volumes on both sides,
∑
i |Bpi(ε/2)| ≤ |B(r(1 + ε/2))|.

Let N denote the number of points pi and since |Bpi(ε/2)| = |B(ε/2)| for all i ∈ [N ], we get

N ≤ |B(r(1 + ε/2))|
|B(ε/2)|

= rk(1 + 2/ε)k.

Therefore, for small ε < 1, N ≤ rk(3/ε)k and thus

N ({f(X) | f ∈ F}, ε, ‖ · ‖2) ≤ 3k

εk

(
a2 +

√
a1ρ

δ

)k
.

This completes the proof.

Using this covering lemma we can now prove our main Theorem 1.1. In fact, the argument follows the same lines as the
case k = 1 with only slight modification to account for margin operator in the multi-class setting and the application of the
Dudley entropy formula when bounding the empiricial Rademacher complexity.

Let us restate the theorem and provide the proof:

Theorem C.1. Given a1, a2 be positive reals. Let S = {(x1, y1), . . . , (xm, ym)} be i.i.d. input-output pairs in Rd ×
{1, · · · , k} and suppose the distribution µ of the xi satisfies the Poincaré inequality with constant ρ > 0. Then, for any
δ > 0, with probability at least 1− δ, every margin γ > 0 and network f : Rd → Rk which satisfies GC(f, µ) ≤ a1 and
‖Eµ(f)‖ ≤ a2 satisfy

P
[
arg min

j
f(x)j 6= y

]
≤ R̂S,γ(f) +

36C̃
√
kπ

γm
+ 3

√
log 2

δ

2m

where R̂S,γ(f) = m−1
∑
i 1yif(xi)≤γ and C̃ = a2 +

√
a1ρ/δ.

Proof of Theorem 1.1. Let F denote the class of differentiable maps

F := {f : Rd → Rk | GC(f, µ) ≤ a1, ‖Eµ[f ]‖ ≤ a2}

and for any γ > 0 define
F̃γ := {(x, y) 7→ `γ(−M(f(x), y) | f ∈ F}

where M(·, ·) denotes the margin operator M : Rk × {1, . . . , k} → R defined by M(v, y) = vy − maxi6=y vi and
`γ : R→ R+ denotes the usual ramp loss.

Similar to the proof of Theorem 4.2, since `γ has range [0, 1] and it follows from classic generalization bounds based on the
Rademacher complexity (e.g., Theorem 3.3 in (Mohri et al., 2018)) that, for any δ > 0, with probability at least 1− δ over
the draw of an i.i.d. sample S of size m, we have for all f ∈ F̃γ :

E[`γ(−M(f(x), y))] ≤ R̂S,γ(f) + 2R̂S(F̃γ) + 3

√
log 2

δ

2m
(10)

where now R̂S,γ(f) = m−1
∑
i `γ(−M(f(xi), yi)).

We can lower bound the left hand side of (10) (see Lemma A.4 of (Bartlett et al., 2017)) so that P [arg maxi f(x)i 6= y] ≤
E[`γ(−M(f(x), y))] and, via Talagrand’s lemma, we can also upper bound R̂S(F̃γ) on the right hand side to get

P
[
arg max

i
f(x)i 6= y

]
≤ R̂S,γ(f) +

2

γ
R̂S(F) + 3

√
log 2

δ

2m

It remains to bound R̂S(F) which we can again accomplish through the Dudley entropy integral, as in the proof of Theorem
4.2, with only a very slight modification when using the covering number bound afforded by Lemma 4.3. Namely, taking
as before C̃ = C̃(a1, a2, ρ, δ) := a2 +

√
a1ρ/δ, then N (F|S , ε, ‖ · ‖2) ≤ (3C̃/ε)k. Following the same argument to
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A margin-based multiclass generalization bound via geometric complexity

evaluate the integral we can obtain a comparable bound on the empirical Rademacher complexity of F over S, but now
paying a cost of

√
k; i.e.,

R̂S(F) ≤ inf
α>0

{
4α√
m

+
12
√
k

m

(
3C̃
√
π

2
− α

√
log(3C̃/α)

)}
≤ 18C̃

√
k
√
π

m
.

Thus, collecting terms we get

P
[
arg min

j
f(x)j 6= y

]
≤ R̂S,γ(f) +

36C̃
√
kπ

γm
+ 3

√
log 2

δ

2m
.

D. Experiment details
We trained a ResNet18 (He et al., 2016) with SGD on CIFAR10 and CIFAR-100 with both original and random labels.
During training we trained with batch size 256 for 100000 steps with learning rate 0.05. Here we plot the curves for the
excess risk (test accuracy - train accuracy) and compare with the geometric complexity during training.

Figure 2. Analysis of ResNet-18 (He et al., 2016) trained with SGD on CIFAR-10 (left) and CIFAR-100 (right) with both original and
with random labels. The triangle-marked curves plot the excess risk across training epochs (on a log scale). Circle-marked curves track
the geometric complexity (GC). Note that the GC tightly correlates with excess risk in both settings. Normalizing the GC by the margin
neutralizes growth across epochs.
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