
A More details of 3D-CoreNet

A.1 Network architecture

The detailed architecture of our correspondence-refinement network (3D-CoreNet) is shown in Table
1. We take the vertices of the identity and pose meshes as inputs. Both of them are fed into the
feature extractor and the adaptive feature block. The feature extractor consists of three Conv1d-
InstanceNorm-LeakyReLU blocks. Then we can calculate the optimal matching matrix with their
features by solving an optimal transport problem. With the matrix, we warp the pose mesh to the
coarse warped mesh. Finally, the warped mesh is better refined in the mesh refinement module with a
set of elastic instance normalization residual blocks. The modulation parameters in the normalization
layers are learned with elastic instance normalization.

The design of our elastic instance normalization (ElaIN) is shown in Figure 1. At first, we normalize
the features of the warped mesh hiwarp with instance normalization and get the mean µi and standard
deviation σi. Then, the features of the identity mesh are fed into a simple convolution layer to get
hiid, which shares the same size with hiwarp. We calculate the mean of hiwarp, hiid and concatenate
them in the channel dimension. A fully-connected layer is employed to compute an adaptive weight
wi. We blend γi, σi and βi, µi elastically with wi to get the modulation parameters γ′ and β′, where
γi and βi are learned from hiid with two convolution layers. Finally, we scale the normalized hiwarp

with γ′ and shift it with β′.
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Figure 1: The detailed design of our elastic instance normalization. Here, we normalize the
features of the warped mesh hiwarp with InstanceNorm and get the mean µi and standard deviation
σi. Then, the features of the identity mesh are fed into a convolution layer to get hiid, which shares
the same size with hiwarp. We calculate the mean of hiwarp, hiid and concatenate them in channel
dimension. A fully-connected layer is employed to compute an adaptive weight wi. We blend γi, σi

and βi, µi elastically with wi to get γ′ and β′. γi and βi are learned from hiid. Finally, we scale the
normalized hiwarp with γ′ and shift it with β′. The value on the parameter flow means the weight.
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Table 1: The network architecture of 3D-CoreNet. N indicates the number of vertices, D is the
number of feature channels. We give an example when training on SMPL [4]. The number of vertices
is 6890. (1× 1) means the kernel size of the convolution layer is 1× 1.

Module Layers Output (N ×D)

Feature extractor
Conv1d (1× 1)
Conv1d (1× 1)
Conv1d (1× 1)

6890× 64

6890× 128

6890× 256

Correspondence Learning Adaptive feature block
Resblock × 4

Conv1d (1× 1)
6890× 256

6890× 256

Optimal transport Matching matrix 6890× 6890

Warping Warped mesh 6890× 3

Mesh Refinement Refinement

Conv1d (3× 3)
Conv1d (1× 1)
ElaIN Resblock
Conv1d (1× 1)
ElaIN Resblock
Conv1d (1× 1)
ElaIN Resblock
Conv1d (1× 1)

6890× 1024

6890× 1024

6890× 1024

6890× 512

6890× 512

6890× 256

6890× 256

6890× 3

A.2 Solving OT problem with Sinkhorn algorithm

In this section, we solve the optimal transport (OT) problem defined in the main paper (Section 3.1)
with Sinkhorn algorithm [5]. Following [3], we introduce an entropic regularization term to solve the
OT problem efficiently,

Tm = argmin
T∈RNid×Npose

+

∑
ij

Z(i, j)T(i, j) + εT(i, j)(logT(i, j)− 1)

s.t. T1Npose = 1Nid
N−1id , T>1Nid

= 1NposeN
−1
pose.

(1)

where T, Z and Tm are the transport matrix, cost matrix and optimal matching matrix respectively,
1Nid

∈ RNid and 1Npose ∈ RNpose are vectors whose elements are all 1, ε is the regularization
parameter. The details of the solving process are shown in Algorithm 1.

Algorithm 1 Optimal transport problem with Sinkhorn algorithm.
Input: Cost matrix Z, regularization parameter ε, iteration number imax.
Output: Optimal matching matrix Tm.
U← exp(−Z/ε);
a← 1Nid

N−1id ;
for i = 0, ..., imax − 1 do
b← (1Npose

N−1pose)/(U
>a);

a← (1Nid
N−1id )/(Ub);

end for
Tm ← diag(a)Udiag(b).
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A.3 More implementation details

In Algorithm 1, we set ε = 0.03 and imax = 5. ε in Eq. 5 is 1e-5. We train our model on one RTX
3090 GPU. The training time is about 24 hours on the human data and about 36 hours on the animal
data.

B More experimental results

B.1 More results on the human and animal data

In Figure 2 and Figure 3, we show more results generated by our 3D-CoreNet on SMPL [4] and
SMAL [8] respectively.

B.2 Generalization capability

In Figure 4, we show more results generated by 3D-CoreNet on FAUST [2] and MG-Dataset [1]. To
further test the generalization capability of our model, we compare it with NPT [7]. Since DT [6]
needs reference meshes as the additional inputs and there are no reference meshes when testing on
the new dataset, we do not compare with DT in this section. As we can see, the results generated by
our method are more smooth and realistic than NPT. The results generated by NPT always have some
artifacts on the arms.

B.3 Shape correspondence

In Figure 5 and Figure 6, we visualize the learned shape correspondence between different meshes,
the vertices of the meshes are shuffled randomly before input.

B.4 Robustness to noise

To test the robustness of our model, we add noise to the vertex ordinates of the pose mesh. The results
are shown in Figure 7, our model still produces high-quality results.

B.5 Average inference times

In this section, we compare the average inference times for every pose transfer of different methods
in the same experimental settings. As shown in Table 2, the traditional deformation transfer method
[6] takes the longest time compared to the deep learning-based methods. For [7], they do not learn
the correspondence between meshes, so they have the shortest inference time but the generation
performance is degraded. 3D-CoreNet achieves notable improvements in generating high-quality
results while the inference time is also acceptable. The fourth and the fifth columns show that solving
the optimal transport problem takes a very short time while improving the generation results.

Table 2: Average inference times of different methods. 3D-CoreNet (C) means 3D-CoreNet with
the correlation matrix and 3D-CoreNet (Tm) means 3D-CoreNet with the optimal matching matrix.

Method [6] [7] 3D-CoreNet (C) 3D-CoreNet (Tm)
Time 3.3352s 0.0068s 0.0124s 0.0131s

B.6 Limitations

Although our method produces satisfactory results in most cases and has better performance than
previous works, there are still some limitations that need to be solved in the future.

For example, when testing on the animal data as shown in Figure 3, the tails of the animals are
difficult to handle properly (the third row and the sixth row). When evaluating our model on new
identity meshes in Figure 4, if the generated mesh reveals some parts of the human body that were
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Table 3: Licenses of the assets used in this paper.

Data License websites
SMPL [4] https://smpl.is.tue.mpg.de/modellicense
SMAL [8] https://smal.is.tue.mpg.de/license

MG-Dataset [1] https://github.com/bharat-b7/MultiGarmentNetwork
FAUST [2] http://faust.is.tue.mpg.de/data_license

not exposed in the original identity mesh, such as the underarms, it will produce some artifacts (the
fourth row).

C Licenses of the assets

The licenses of the assets used in this paper are shown in Table 3. Their licenses are given in the
websites.

D Broader impact

We propose a novel method which has potential applications in animated movies and games by
generating new poses for existing shapes with less human intervention. Our research can also have
a positive impact in the vision and graphics community to inspire new ideas to generate meshes
efficiently. However, new meshes generated by the model could be abused to synthesize fake content,
which is the negative aspect of this research. Such issues have already drawn a lot of attention from
the public. And many approaches have been proposed to solve them technologically and legally.
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Identity Pose Ours Ground Truth

Figure 2: More results generated by 3D-CoreNet on SMPL [4].
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Identity Pose Ours Ground Truth

Figure 3: More results generated by 3D-CoreNet on SMAL [8].
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Identity Pose NPT Ours

Figure 4: More results generated by 3D-CoreNet on FAUST [2] and MG-Dataset [1]. The
identity meshes are from FAUST and MG-Dataset. We compare our method with NPT [7] to test the
generalization capability of our 3D-CoreNet.
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Figure 5: Visualization of the learned correspondence between different human meshes. We
select several corresponding vertices on two human meshes to visualize. The vertices of the meshes
are shuffled randomly before input.

Figure 6: Visualization of the learned correspondence between different animal meshes. We
select several corresponding vertices on two animal meshes to visualize. The vertices of the meshes
are shuffled randomly before input.
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Identity Pose Ours Pose Ours

Figure 7: Robustness to noise. Here, we add noise to the pose mesh. Our model can still produce
high-quality results.
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