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APPENDIX

A RELATED WORKS

Positional encoding became a popular topic among the machine learning community after the seminal
work on Transformers by Viswani et al. [2] Since the attention mechanism used in the Transformers
is position-insensitive, they employed a sinusoidal signal to encode the positions before feeding them
to the higher blocks. A contemporary work by Gehring et al. [1] also proposed a convolutional
seq2seq model, adapting a positional encoding mechanism. Since then, using positional encoding in
language models became a common trend [18; 19; 20; 21; 22]. Notably, Wang et al. [23] extended
the embedding space from real numbers to complex values. Another critical aspect of their work
is replacing the pre-defined encoding mechanism with a learnable one. There have also been other
exciting attempts to improve positional encoding, such as extending the sequential positional encoding
to tree-based positional encoding [24], untying the correlations between words and positions while
embedding coordinates [25], and modeling positional encoding using dynamical systems [26].

In parallel, positional encoding is also gaining attention in computer vision, specifically with
coordinate-MLPs. Coordinate-MLPs provide an efficient method to encode objects such as im-
ages [27; 28] and 3D scenes [29; 30; 31] as their weights. Remarkably, Mildenhall et al. [7] and
Zhong et al. [8] found that encoding coordinates with sinusoidal signals allow coordinate-MLPs
to learn high frequency content better. One of the earliest roots of this approach can perhaps be
traced to the work by Rahimi et al. [32], where they used random Fourier features to approximate
an arbitrary stationary kernel function by applying Bochner’s theorem. More recently, Tancik et
al. [16], leveraging the NTK theory [33; 34; 35; 36; 37], recently added theoretical rigor to this
particular practice by showing that such embeddings enable tuning the spectrum of the NTK of the
corresponding MLP. In contrast, the goal of this paper is to show that one does not have to be limited
to the Fourier embedding for positional encoding. We demonstrate that alternative functions can
be used for positional encoding while gaining similar or better performance compared to Fourier
embedding.

B THE ROLE OF STABLE RANK IN TRAINING AN MLP

A bulk of our derivations stem from the fact that the stable rank plays a key role in determining the
performance of the positional embedding. Therefore, it is compelling to observe the connection of
the stable rank to the performance and behavior of a network during training.

In this experiment, we consider real signals and random signals as the targets. For the real signals, we
pick 10 random rows of the Pepper image. Similarly, we obtain 10 random signals from a Gaussian
distribution. We train a 4-layer MLP with ReLU activation for 2000 epochs with Adam optimizer.
The learning rate for original coordinates is 1e−3, and for others, it is 1e−4. The averaged results
over each of the 10 rows are reported in Fig. 10. As illustrated, when no encoding mechanism is used,
the network attempts to increase the stable rank in each layer, before mapping down to the target, to
obtain better performance during the training process. This leads to a considerably higher training
time. This trend is common to both real and random signals, although for the random signal, stable
rank increases more rapidly. However, since the random signal has no redundancy, the network cannot
achieve the desired stable rank, leading to poor performance. In the case of sinusoidal embedder,
performance is slightly better since the rank of the input is slightly higher. In contrast, with the RFF
and the Gaussian embedder the inputs have sufficient rank, and the network does not have to put effort
into increasing the rank. This results in more rapid convergence and better performance. However,
the random signals still demand a very high stable rank, causing the networks to demonstrate sub-par
performance. Further, observe that the memorization of the training data becomes better as the stable
rank of the embedding scheme increase, as predicted in theory.

C THEORETICAL RESULTS

Proposition 1. Consider a set of coordinates x = [x1, x2, · · · , xN ]T , corresponding outputs y =
[y1, y2, · · · , yN ]T , and a d dimensional embedding Ψ : R→ Rd. Assuming perfect convergence, the
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Figure 10: Connection of the stable rank to the performance and behavior of an MLP. As depicted,
if the stable rank of the inputs is too low, the network attempts to increase the stable rank of the
hidden layers, causing poor performance and longer training time. As the stable rank of the positional
embedding increases, the network demonstrates a lower stable rank at hidden layers, leading to better
performance and rapid convergence.

necessary and sufficient condition for a linear model to perfect memorize of the mapping between x
and y is for X = [Ψ(x1) Ψ(x2) . . . Ψ(xN )] to have full rank.

Proof: Let us refer to the row vectors of X as [p1, . . . ,pd]
T . In order to perfectly reconstruct y

using a linear learner with weights w = [w1, w2, . . . , wd] as

y =

d∑
i=1

wipi + b, (7)

one needs X to be of rank N (since y needs to completely span {pi}di=1). If d > N then there is no
unique solution to {w, b} without some regularization. In the unlikely scenario that the row vectors
of X have zero mean, then X needs to be of rank N − 1 since the bias term b can account for that
missing linear basis.

Proposition 2. Let the Gaussian embedder be denoted as ψ(t, x) = exp(−‖t−x‖
2

2σ2 ). With a sufficient
embedding dimension, the stable rank of the embedding matrix obtained using the Gaussian embedder
is min(N, 1

2
√
πσ

) where N is the number of embedded coordinates. Under the same conditions, the

embedded distance between two coordinates x1 and x2 is D(x1, x2) = exp(−‖x1−x2‖2
4σ2 ).

Proof: Let us define the Gaussian embedder as ψ(t, x) = exp(−‖t−x‖
2

2σ2 ), where σ is the standard
deviation. Given d samples points [t1, . . . , td] and N input coordinates [x1, . . . , xN ], the elements of
the embedding matrix are

Ψi,j = ψ(ti, xj). (8)

To make sure the stable rank is saturated, we assume that d and N is large enough. Then, Ψ is
approximately a circulant matrix. We know that the singular value decomposition of a circulant
matrix C, whose first row is c, can be written as

C =
1

n
F−1n diag(Fnc)Fn, (9)

where Fn is the Fourier transform matrix. This means the singular values of a circulant matrix is the
Fourier transform of first row. When N is large enough, we can approximate the first row of Ψ as a
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continuous signal, which is ψ(x, t = 0) = exp(−‖x‖
2

2σ2 ), so the singular values are

s(ξ) = F(ψ(x; t = 0)) =
√

2πσ exp(−2σ2‖πξ‖2). (10)

Therefore, we can calculate stable rank directly from the definition,

Stable Rank(Ψ) =

N∑
i=1

s2i
s21

=

∫ +∞

−∞

s(ξ)

s(0)

2

dξ =

∫ +∞

−∞
exp(−4σ2‖πξ‖2)dξ =

1

2
√
πσ

. (11)

Considering the general case, where N might not be large enough, the stable rank will be
min(N, 1

2
√
πσ

).

The distance (or similarity) between two embedded coordinates can be obtained via the inner product:

D(x1, x2) =

∫ +∞

−∞
ψ(t, x1)ψ(t, x2)dt

=

∫ +∞

−∞
e−

(t−x1)2

2σ2 e−
(t−x2)2

2σ2 dt

=

∫ +∞

−∞
e−

(t−x1)2+(t−x2)2

2σ2 dt

=

∫ +∞

−∞
e−

t2−2x1t+x
2
1+t2−2x2t+x

2
2

2σ2 dt

=

∫ +∞

−∞
e−

2t2−2(x1+x2)t+
(x1+x2)2

2
+

(x1−x2)2

2
2σ2 dt

=

∫ +∞

−∞
e−

(t− x1+x2
2

)2

σ2 e−
(x1−x2)2

4σ2 dt

= e−
(x1−x2)2

4σ2

∫ +∞

−∞
e−

(t− x1+x2
2

)2

σ2 dt

=
√
πσe−

(x1−x2)2

4σ2 .

(12)

which is also a Gaussian with a standard deviation of
√

2σ. We can empirically define that the
distance between two embedded coordinates x1 and x2 is preserved if D(x1, x2) ≥ 10−k, for an
interval x1 − x2 ≤ l, where k is a threshold. In the Gaussian embedder, we can analytically obtain a
σ for an arbitrary l using the relationship σ = l

2
√
k ln 10

.

Proposition 3. Let the RFF embedding be denoted as γ(x) = [cos 2πbx, sin 2πbx], where b are
sampled from a Gaussian distribution. When the embedding dimension is large enough, the stable
rank of RFF will be min(N,

√
2πσ), where N is the numnber of embedded coordinates. Under

the same conditions, the embedded distance between two coordinates x1 and x2 is D(x1, x2) =∑
j cos 2πbj(x1 − x2).

Proof: Given d
2 samples for b as [b1, . . . , b d

2
] from a Gaussian distribution with a standard deviation σ

and N input coordinates [x1, . . . , xN ], RFF embedding is defined as γ(x) = [cos 2πbxi, sin 2πbxi].

To make sure the stable rank is saturated, we assume that the d and N is large enough. Although RFF
embedding matrix is not circulant, it is naturally frequency based so we already know its spectrum,
which is its singular value distribution

s(ξ) =
1√
2πσ

exp(− ξ2

2σ2
). (13)

Similarly,

Stable Rank(γ) =

N∑
i=1

s2i
s21

=

∫ +∞

−∞

s(ξ)

s(0)

2

dξ =

∫ +∞

−∞
exp(− ξ2

2σ2
)dξ =

√
2πσ, (14)
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Considering the general case, the stable rank is min(N,
√

2πσ).

From basic trigonometry, it can be easily deduced that D(x1, x2) =
∑
j cos 2πbj(x1 − x2). When d

is extremely large it can be considered as f(ξ) = cos 2πξ(x1 − x2) where ξ is a Gaussian random
variable with standard deviation σ. Then the above sum can be replaced with the integral,

D(x1, x2) =

∫ +∞

−∞
e−

ξ2

2σ2 cos 2πξ(x1 − x2)dξ

= 2

∫ +∞

0

e−
ξ2

2σ2 cos 2πξ(x1 − x2)dξ

= 2

∫ +∞

0

e−
ξ2

2σ2
1

2
(ei2π(x1−x2)ξ + e−i2π(x1−x2)ξ)dξ

=

∫ +∞

0

e−
ξ2

2σ2
+i2π(x1−x2)ξ + e−

ξ2

2σ2
−i2π(x1−x2)ξdξ.

(15)

Further, ∫ +∞

0

e−ax
2+bxdx = e−

b2

4a

∫ +∞

0

e−a(x−i
b
2a )

2

dx =
1

2
(1 + erfi(

b

2
√
a

))

√
π

a
e−

b2

4a . (16)

Let a = 1
2σ2 and b = ±2π(x1 − x2). Then, we have

D(x1, x2) =
√

2πσe−2π
2σ2(x1−x2)

2

. (17)

D SAMPLING IN HIGHER DIMENSIONS

In cases where there are restrictions with the used the MLP, one can always increase the rank of
the embedding matrix by sampling the embedder along multiple directions (as opposed to only
two directions). Fig. 11 depicts this. As shown, by sampling along four directions, the Gaussian
embedder is able to obtain distance preservation along more directions and on-par results against
the RFF embedder. In this experiment, for each embedding dimension and each sampling method
in Gaussian embedding, we conduct a linear search for the standard deviation that gives the best
test PSNR. For RFF, a constant standard deviation performed equally for all variants. For Gaussian
embedder, regardless of the sampling method, the empirical best standard deviation is related to the
number of samples along each direction, which is σ = k

4d
√
ln 10

where d is the embedding dimension
and k = 3.5 from experimental results.
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Figure 11: Comparison of the test performance and distance preservation across different sampling
methods in Gaussian embedding and RFF, when encoding 2-D signals. Note that in the context of
RFF, sampling refers to sampling of the frequencies. Left: By sampling along four directions, the
Gaussian embedder is able to achieve improved performance. When the embedding dimension is low,
sampling in an equidistant grid on the x− y plane (2D method) results in sparse sampling, leading to
sub-par performance. However, as the embedding dimension increases, this method demonstrates
superior performance. Right: Distance preservation depends on the sampling method for both RFF
and the Gaussian embedder.
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