
Published as a conference paper at ICLR 2023

A IMPLEMENTATION DETAILS

This section details the implementation design decisions for each component of NCS. The hyperpa-
rameters of dSLATE are given in Tab. 2.

A.1 BACKGROUND: SLATE BACKBONE

SLATE (Singh et al., 2022a) is an autoencoder architecture that uses slot attention (SA) (Lo-
catello et al., 2020b) as a bottleneck. It preprocesses the image with a discrete variational au-
toencoder (Ramesh et al., 2021) into a grid of image features, encodes these features into a grid
of tokens, infers slots from this token grid with SA, which also produces an attention mask over the
features each slot attends to. These slots are trained using a transformer decoder (Vaswani et al.,
2017; Radford et al., 2018) to autoregressively reconstruct the tokens using the slots as keys/values.

Number of epochs 200
Episodes per epoch 5K
Episode length 5
Batch size 32
Peak LR 0.0002
LR warmup steps 30000
Dropout 0.1

Discrete VAE

Vocabulary Size 4096
Temp. Cooldown 1.0 to 0.1
Temp. Cooldown Steps 30000
LR (no warmup) 0.0003
Image Size 64
Image Tokens Image Size / 4

transformer decoder
Layers 4
Heads 4
Hidden Dim. 192

Slot attention

Slots 5
Iterations 3
Slot Heads 1
Slot Dim. (h) 192
Type Dim. (�z) 96
State Dim. (�s) 96

transformer dynamics
Layers 4
Heads 4
Hidden Dim. 96

Table 2: Hyperparameters for training dSLATE These hyperparameters are almost identical to those found
in Singh et al. (2022a, Fig. 7), but because dSLATE operates on video demonstrations rather than static images,
we changed some hyperparameters to save memory cost. We changed the batch size from 50 to 32, the number
of transformer layers and heads from 8 to 4, the number of slot attention iterations from 7 to 3 without observing
a significant change in performance. Because each video in the experience buffer contains four objects, we used
five slots, one more than the number of objects, following the convention used in Van Steenkiste et al. (2018);
Veerapaneni et al. (2020).

A.2 CONSTRUCTING NODES BY CLUSTERING STATES

We found that we obtained better clusterings when we used the SA attention mask ↵ as the state s
for block-rearrange and when we used the action-dependent part of the SA slot �s as the state s for
robogym-rearrange. We also empirically found that certain choices of distance metric used for K-
means clustering and binding (implemented as nearest-neighbors) depended on which choice
of state representation we used, and this is summarized in Table 3. The K-means implmentation is
adapted from https://github.com/overshiki/kmeans_pytorch.
When applying the trained dSLATE to the experience buffer to construct the graph we found that in-
creasing the number of SA iterations improved the entity representations, so even though we trained
dSLATE with slot attention three iterations, for constructing the graph we used seven iterations.

14

https://github.com/overshiki/kmeans_pytorch

Published as a conference paper at ICLR 2023

Lastly, we found that the number of clusters used to for K-Means is the most important hyperpa-
rameter for creating a graph that reflected the state transitions. We swept over 16 to 50 clusters and
report the optimal number of clusters we found in Table 4.

State representation ↵ �s

isolate distance metric cosine cosine
cluster distance metric IoU squared Euclidean
bind distance metric cosine squared Euclidean

Table 3: Hyperparameters for constructing the transition graph with NCS. This table shows the distance
metrics we use for the isolate, cluster, and bind functions described in 4.1. For block-rearrange we
use the SA attention mask ↵ as the state s, and for robogym-rearrange we use the action-dependent part of the
SA slot �s as the state s.

block-rearrange robogym-rearrange block-stacking

number of clusters 30 45 47

Table 4: Number of clusters used for constructing the nodes of the transition graph.

A.3 ACTION SELECTION

To implement align we use the scipy.optimize.linear sum assignment implementa-
tion of the Hungarian algorithm, with Euclidean distances between the zk’s as the matching cost.
Given the set of current entities ht and goal constraints hg , select-constraint returns the
index k of the goal constraint to satisfy next. By NCS’ construction, the edge between the nodes
that hk

t and hk
g are bound to is the state transition that would be executed if the action associated

to the edge were taken in the environment. If NCS does not find an edge between the two nodes,
such as if hk

t and hk
g were incorrectly bound to the graph, then NCS simply takes a random action.

textttselect-constraint consists of two steps: (1) ranking transitions (2) sampling a transition.

Ranking The goal of the ranking step is to compute a ranking among the indices of (h1
g, ..., h

K
g) to

choose which index k to actually select to affect with an action. Intuitively, we should rank indices k
according to how different skt and skg are because a large difference would indicate that the constraint
hk
g is not satisfied, which means we would need to take an action to move the corresponding object

represented by hk
t . We reuse the distance metric d(·, ·) used for isolate to implement this ranking.

Sampling Given our ranking, the goal of the sampling step is to select a k 2 {1, ...,K} whose
associated entity we will affect with an action. One way to do this is to simply choose k as
k = argmaxk02{1,...,K̃} d(s

k0

t , sk
0

t+1) as in isolate, but we empirically found that sampling k

from a categorical distribution whose pre-normalized probabilities are given by d(sk
0

t , sk
0

t+1) resulted
in better task performance so we used this stochastic sampling approach. One explanation for why
using the argmax may be worse is that it relies on the distance metric d(·, ·), and the state represen-
tation s, to be such that the distance metric flawlessly assigns high value to entities k that need to
be moved and low value to entities k that do not need to be moved. But because the state space S
is learned through the dSLATE training process without explicit supervision on the geometry of the
space, a pair of points that should be farther apart than another set of points may not be accurately
reflected by using a fixed distance metric d(·, ·). Future work will investigate imposing explicit
supervision on the geometry of S .

B BASELINE IMPLEMENTATION DETAILS

Random (Rand) The random policy takes actions using env.action space.sample().

Behavior cloning (BC) This approach trains a policy to output the actions directly taken in the
provided dataset. We use an MSE loss to train the policy to imitate the actions.

15

Published as a conference paper at ICLR 2023

Figure 7: An example of solving a task in the robogym rearrange environment used in this paper.

Implicit Q-learning (IQL) IQL is a simple, offline RL approach that uses temporal difference
(TD) learning with the dataset actions and trains a behavior policy value function. To produce an
optimal value function, IQL estimates the maximum of the Q-function using expectile regression
with an asymmetric MSE using the following objectives:

LV () = E(s,a)⇠D[L
⌧
2(Q✓̂(s, a)� V (s))] where L⌧2(u) = |⌧ � (u < 0)|u2 (1)

LQ(✓) = E(s,a,s0)⇠D[(r(s, a) + �V (s
0)�Q✓(s, a))

2] (2)
L⇡(�) = E(s,a)⇠D[exp (�(Q✓̂(s, a)� V (s))) log ⇡�(a|s)]. (3)

The V (s) estimates are used for TD-backups and the optimal policy is extracted with advantage-
weighted behavioral cloning.

Model predictive control (MPC) This approach uses model predictive control with the cross en-
tropy method (CEM) to select actions, using the transformer dynamics model of dSLATE to perform
rollouts in latent space. This is similar to the approached used in OP3 (Veerapaneni et al., 2020),
except that we use more recently proposed architectural components (slot attention (Locatello et al.,
2020b) instead of IODINE (Greff et al., 2019), a transformer instead of a graph network (Battaglia
et al., 2018; Van Steenkiste et al., 2018; Chang et al., 2016)) so our MPC results are not directly
comparable to that of OP3. We use the same dSLATE checkpoint that was used for NCS.
We implement this MPC baseline using the mbrl-lib library (Pineda et al., 2021) with 10 CEM
iterations, an elite ratio of 0.05, and a population size of 250 which was the best configuration
we found that fit within a wall clock budget of two days for 8 objects and 100 test episodes.
We swept over CEM iterations of [5, 10, 20], elite ratio of [0.05, 0.1, 0.2], and population sizes of
[250, 500, 1000], and found that the elite ratio was the most important hyperparameter.
The cost function is computed by first aligning the predicted slots hT and goal constraints hg using
the same align procedure in Appendx. A.3, and then adding up the squared Euclidean distance
between slots as cost =

P
k(h

k
T � hk

g)
2.

Non-factorized graph search (NF) This approach is an ablation to NCS that does not construct a
graph over state transitions of individual entities but instead constructs a graph over state transition
over entity sets, i.e. each transition is (s, a, s0) rather than (sk, a, sk0). As with MPC, we use the
same dSLATE checkpoint that was used for NCS.
The purpose of this ablation is to elucidate the benefit of factorizing the transition graph over indi-

vidual entities rather than entity sets. Because nodes in the transition graph for NF represent a set
of entity states rather than individual entity states, we use Dijkstra’s algorithm, as in (Eysenbach
et al., 2019; Yang et al., 2020; Zhang et al., 2018) to plan a unbroken path from the node the initial
observation is bound to to the node a goal observation is bound to. For each time-step, we plan a
path along the nodes using Dijkstra’s algorithm, then return the action associated with the first edge
along that path. Like NCS, NF is a non-parametric model, which means that for a set of entities to
be bound to a node in the graph, that node must contain the exact set of entity states corresponding
to the states of the entities. If we do not successfully bind to the graph, or if we do not find a path
between the current node and the goal node, we sample a random action as NCS does.

C ENVIRONMENT DETAILS

Environments Block-rearrange is implemented in PyBullet (Coumans & Bai, 2016) while
robogym-rearrange is implemented in Mujoco (Todorov et al., 2012).
Robogym-rearrange (see figures 7 and 8) is adapted from the rearrange environment in OpenAI’s
Robogym simulation framework (OpenAI, 2020) and removes the assumption from block-rearrange

that all objects are the same size, shape, and orientation and the assumption of predefined locations.
Furthermore, due to 3D perspective, the objects can look slightly different in different locations.

16

Published as a conference paper at ICLR 2023

Figure 8: The original Robogym rearrange setup

Objects are uniformly sampled from a set of 94 meshes consisting of the YCB object set Calli et al.
(2015) and a set of basic geometric shapes, with colors sampled from a set of 13. The camera angle
is a bird’s eye view over the table, and the size of each object is normalized by its longest dimension,
so tall thin objects appear smaller. The objects’ target positions are randomly sampled such that they
don’t overlap with each other or any of the initial positions, and the target orientation is set to be
unchanged. Because locations take continuous values, we define a match threshold of at most 0.05
for both the initial pick position and the goal placement (the table dimensions are 0.6 by 0.8).

Sensorimotor interface Each observation is a tuple of an initial image displaying the current
observation and a goal image displaying constraints to be satisfied – the goal locations of the objects.
Each action is a tuple (w,�w), where w is a three-dimensional Cartesian coordinate (x, y, z) in the
environment arena. Objects are initialized at random non-overlapping locations that also do not
overlap with their goal locations. For these tasks the z (height) coordinate is always fixed. An object
is picked if w is within a certain threshold of its location. For block-rearrange where object locations
are fixed points in a grid, the object is snapped to the nearest grid location to w +�w. Constraints
are considered satisfied if objects are placed within a certain threshold of their target location.

D ADDITIONAL RESULTS

This section presents additional results and analyses of NCS.

D.1 ANALYSIS OF KEY HYPERPARAMETERS

In this section, we analyze the sensitivity of task performance to several hyperparameters used
in NCS when creating the graph: the number of clusters, the number of examples from the ex-
perience buffer to use, and the number of slots used in slot attention. We perform this evaluation
in the robogym environment with four objects in the complete goal specification. As Fig. 9 shows,
performance depends on the number of initialized clusters and the number of batches from the train-
ing set used to construct the graph. With too few clusters, the clusters are too coarse-grained to
differentiate objects in significantly different positions. With too many, the performance deterio-
rates as the data is needlessly split into duplicate clusters. Performance improves with more data,
as the graph has better coverage. Although NCS performs worse when there are insufficient slots to
represent all objects present in the environment, performance is barely impacted by having double
the number of necessary slots. Our method can thus still work in environments with an unknown
but upper-bounded number of objects.

D.2 MORE COMPUTATION TIME FOR MODEL-BASED BASELINES

We tested whether doubling the computation time for the model-based baselines would improve
their performance to be comparable to NCS’s. For the results in the main paper, we capped the
length of the episode as 4x the minimum number of actions required to solve the task. In Fig. 10, we

17

Published as a conference paper at ICLR 2023

Figure 9: The performance of our method as the number of initialized clusters and batches from the training set
used to construct the graph, and the number of slots are varied.

vary this interaction horizon multiplier from 1x to 8x. NCS degrades less with shorter interaction
horizons compared to the baselines. We find that NF performs similar to the random baseline. Since
NF takes a random action if it cannot bind the given entity set to its graph, this result suggests that
the space of subsets of entities is so combinatorially large that NF does not successfully bind to the
graph most of the time. We verified that this is the case by inspecting when NF takes random actions.
MPC performs the worst out of all the methods, performing worse than random. We tested that the
cost function described in Appdx. B ranks latents that match the goal constraint with a lower cost
than randomly sampled latents, which suggests that the main source of error is due to the inaccuracy
in the prediction rollouts. This can be expected, as learned models suffer from compounding errors
when rolled out (Janner et al., 2019) and prior methods that use MPC for object-centric methods
only roll out for very short horizons (Veerapaneni et al., 2020).

(a) Rand (b) NF (c) MPC (d) NCS

Figure 10: Varying interaction horizon. The performance of the NF (b) and MPC (c) baselines compared
to NCS (d, reproduced from Fig. 11) and the random baseline (a) on robogym-rearrange as we vary the interac-
tion horizon (as a multiple of the minimum steps needed to complete the task). Note that the scale of the y-axis

is not the same. While a longer horizon improves performance, NCS still achieves at least 50x better accuracy
with an interaction horizon multiplier of 1 than the performance obtained by increasing the interaction horizon
multiplier for the model-based baselines to 8.

D.3 MORE CHALLENGING SETTINGS

Finally, we analyzed NCS in more challenging settings that crudely emulate the noisy nature of
real-world robotics. As Fig. 11 (left) shows, NCS is more robust than the baselines to the addition
of Gaussian noise to the action at every time step, up until the noise variance is comparable to the
maximum distance for successful picking and goal placements. The performance remains high given
significantly fewer interaction steps (Fig. 11, right). Nevertheless, our success rate is still nowhere
perfect, signifying much more work to do in scaling NCS to the real world.

E COMBINATORIAL SPACE

This section details the calculation of the combinatorial size of the task space described in § 5. The
number of object configurations in the initial state is

�|S|
k

�
. In the complete specification setting,

all objects must be moved, so t � k. At each step, any of the k occupied grid cells can be moved
to any of the

�|S|
k

�
unoccupied grid cells, so the number of successor states is k ⇥ (|S| � k). For

block-rearrange |S| = 16 so with k = 7 the number of possible trajectories is � 4.5⇥ 1016.

F LIMITATIONS AND FUTURE WORK.

NCS relies on a nonparametric, non-learning-based approach for control to highlight the general-
ization capability of our representation of the combinatorial task space, but this limits NCS to only

18

Published as a conference paper at ICLR 2023

Figure 11: Stress testing NCS This figure shows the performance of NCS on robogym-rearrange as we vary
the amount of noise added to the actions (left) and vary the interaction horizon, defined as a multiple of the
minimum steps needed to complete the task (right).

composing previously seen transitions for previously seen entities. Collapsing the combinatorial
space along state transitions already provides significant gains but does not adapt to the introduction
of novel objects at test time. NCS is currently implemented with tools such as SLATE and K-means
that have much potential for improvement. We expect future variations of NCS will improve upon
our results by replacing SLATE and K-means with their future successors.
Beyond the challenge of improving object-centric models to robustly model real pixels, extending
our method to real world environments, such as those studied in Gokhale et al. (2019); Chang et al.
(2020) would require overcoming the additional challenge of translating our high-level pick-and-
move action primitives into motor torques for a real robot in a way that handles different object
geometries, masses, and properties. Given that many works in learning robotics (e.g. Devin et al.
(2020); Yang et al. (2021)) tackle this exact problem of goal-conditioned object grasping and ma-
nipulation, one potential approach to scale our method to real world environments is to train such
goal-conditioned policies as the pick-and-move primitives for NCS to compose.
In this paper, we have assumed objects can be moved independently. Preliminary experiments sug-
gest that NCS can be augmented to support tasks like block-stacking that involve dependencies
among objects, but how to handle these dependencies would warrant a standalone treatment in fu-
ture work.

G WHY THE NAME “NEURAL CONSTRAINT SATISFACTION?”

NCS can be seen as physically solving a embodied constraint satisfaction probem, where states
are variables, identities are variable values, and actions carry out variable assignments. Crucially
the variables, their domains, the assignment operator, and the constraints are all learned from the
sensorimotor interface, hence the name Neural Constraint Satisfaction.

19

	Introduction
	Related Work
	Goal-Conditioned Reinforcement Learning with Entities
	Neural Constraint Satisfaction
	Modeling
	Control

	Experiments
	Results
	Analysis

	Discussion
	Implementation Details
	Background: SLATE backbone
	Constructing nodes by clustering states
	Action selection

	Baseline Implementation Details
	Environment Details
	Additional Results
	Analysis of key hyperparameters
	More computation time for model-based baselines
	More challenging settings

	Combinatorial Space
	Limitations and future work.
	Why the name ``Neural Constraint Satisfaction?''

