
Published as a conference paper at ICLR 2025

OPENPRM: BUILDING OPEN-DOMAIN PROCESS-
BASED REWARD MODELS WITH PREFERENCE TREES

Kaiyan Zhang1 Jiayuan Zhang2 Haoxin Li1 Xuekai Zhu3 Ermo Hua1

Xingtai Lv1 Ning Ding1 Biqing Qi4 Bowen Zhou1,4 ∗

1 Tsinghua University 2 Beihang University 3 Shanghai Jiao Tong University
4 Shanghai Artificial Intelligence Laboratory

ABSTRACT

Scaling inference-time computation is increasingly seen as the next frontier in
scaling laws for large language models. Previous work in mathematics and coding
has demonstrated the remarkable potential for inference-time scaling. During such
scaling, fine-grained supervision through process-based reward models (PRMs) is
essential for enhancement. However, exploration of inference-time scaling and
PRMs in open-domain problems remains limited, where lacking exact answers
and obtaining process supervision prove challenging. In this paper, we explore
the construction of PRMs for open-domain tasks, specifically for instruction-
following tasks. Utilizing existing outcome-based reward models (ORMs), we
develop sentence-level preference trees based on the prefix similarity of parallel
sampled candidates from datasets like UltraFeedback. This setup allows us to
derive weak supervision for processes via back-propagation from outcome-level
rewards. Subsequently, we integrate ORMs and PRMs under the same pairwise
ranking objectives, resulting in our newly developed reward models, named Open-
PRM. This approach significantly enhances the scalability of process-level super-
vision in open domains at minimal cost. We assess the performance of OpenPRM
across various reward benchmarks, demonstrating its competitive edge over tradi-
tional ORMs in open domains and PRMs in specialized domains. Additionally, we
investigate the scalability of inference-time computation for open-domain instruc-
tions. Our results highlight the limitations of ORMs’ scalability, while OpenPRM
shows superior performance in scaled settings. Despite these advances, achiev-
ing automatic fine-grained supervision for open-domain inference-time scaling
remains a substantial challenge. We hope these findings will spur further develop-
ment of process supervision reward models in open-domain scenarios.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 (Achiam et al., 2023), Llama (Touvron et al., 2023;
Dubey et al., 2024), and Gemini (Team et al., 2023; Reid et al., 2024) have garnered interest across
various fields due to their robust performance in numerous tasks and domains. The development
of LLMs involves an official process that includes pre-training on a large-scale unlabeled cor-
pus (Brown, 2020) followed by post-training using labeled instructions derived from real-world
applications. The post-training phase is further categorized into supervised fine-tuning and rein-
forcement learning from human or model feedback (Ouyang et al., 2022), a process known as align-
ment (Ji et al., 2023; Shen et al., 2023). During this phase, reward models are crucial as they act
as human proxies, providing feedback on model behavior and adjusting the models to better align
with human values (Bai et al., 2022). Although current popular alignment algorithms like Direct
Preference Optimization (DPO) (Rafailov et al., 2024) implicitly incorporate the rewarding process
within the loss function, reward models still play a significant role in ensuring long-term alignment
through methods such as online and iterative DPO (Xiong et al., 2023; Guo et al., 2024; Pang et al.,
2024) and rejected sampling (Dong et al., 2023; Liu et al., 2023; Khaki et al., 2024).

∗Corresponding Author (zhoubowen@tsinghua.edu.cn)

1

Published as a conference paper at ICLR 2025

In addition to the training process, reward models are crucial for enhancing the performance of
LLMs during inference-time (Khanov et al., 2024; Deng & Raffel, 2023). Unlike the scaling laws
applied to compute during pre-training (Kaplan et al., 2020; Hoffmann et al., 2022), there is a trend
towards scaling inference-time compute through extensive searches in the decoding space (Snell
et al., 2024; Brown et al., 2024). Reward models play a significant role in pruning the search space
and ultimately selecting the most accurate answers (Welleck et al., 2024).

Recent studies indicate that outcome-level reward models fail to apply scaling laws during repeated
sampling (Brown et al., 2024), particularly due to their coarse granularity on challenging tasks.
Consequently, many researchers are exploring the use of more fine-grained reward models, such
as process-level (Uesato et al., 2022; Lightman et al., 2023) or token-level (Deng & Raffel, 2023),
to enhance search performance in specialized domains like mathematics, coding, and reasoning
tasks (Wang et al., 2024b; Havrilla et al., 2024; Xin et al., 2024; Yuan et al., 2024; Chen et al.,
2024a; Setlur et al., 2024; Xie et al., 2024). These efforts often follow the paradigm established
by AlphaGo (Silver et al., 2016), integrating LLMs with Monte Carlo Tree Search (Coulom, 2006;
Kocsis & Szepesvári, 2006) and a value function, analogous to a reward model. However, process-
level reward models are typically tailored for specific tasks and exhibit limited generalizability in
open-domain applications such as writing and chat. Moreover, there is scant research on developing
process-level reward models for open-domain contexts, primarily due to the high cost of annotation.

Currently, outcome-level reward models (ORMs) are evolving rapidly (Wang et al., 2024a; Cai et al.,
2024; Wang et al., 2024e;c; Vu et al., 2024), prompted by the emergence of datasets and benchmarks
such as Ultrafeedback (Cui et al., 2023) and RewardBench (Lambert et al., 2024), where open-
source reward models trend to outperform proprietary ones. This development raises the question
of whether process-level reward models (PRMs) can be constructed from instance-level rewards
using a weak-to-strong framework (Burns et al., 2023).

In this paper, we propose the development of PRMs in open-domain, leveraging existing ORMs
to provide fine-grained supervision. Our contributions are summarized as follows: (1) We ana-
lyze the potential for extending open-domain ORMs to PRMs, elucidating the characteristic and
relationship between them. This analysis inspires our proposal to develop PRMs with outcome-
level supervision through building preference trees with key process. (2) We integrate the modeling
of PRMs and ORMs under a unified objective and develop OpenPRM. By leveraging only exist-
ing ORMs and employing repeated sampling on prompts, we enhance the performance of ORMs,
achieving a 3∼5% improvement on RewardBench. (3) We further evaluate OpenPRM across vari-
ous downstream applications, including different inference-time scaling settings. Our findings show
that ORMs struggle to provide effective supervision, while our proposed OpenPRM outperforms
previous RMs under these scaling conditions. We also observe that there is a significant journey
ahead to fully realize the potential of RMs in open-domain tasks for test-time scaling.

2 PRELIMINARY

2.1 REWARD MODELING

Reward models play a crucial role in large language models by aligning model outputs with desired
human preferences (Wang et al., 2023). There are primarily two types of reward models based on
the granularity of the supervision signal: outcome-level and process-level reward models. We will
introduce the development of these two methods as follows.

Outcome-level Reward Model (ORM) ORMs are commonly used for preference learning, partic-
ularly after supervised fine-tuning in InstructGPT, where they serve as a proxy for human feedback
to model generations (Ouyang et al., 2022; Lee et al., 2023). Although many studies explore reward
model-free preference learning, such as direct preference optimization (DPO) (Rafailov et al., 2024),
which implicitly models the reward within the policy model training, ORMs continue to be instru-
mental in further model improvements. This includes applications in online or iterative DPO (Guo
et al., 2024; Pang et al., 2024) and rejection sampling (Liu et al., 2023; Dong et al., 2024).

The primary methods for obtaining ORMs involve preparing pairwise responses with preferences
(e.g., chosen and rejected) and fine-tuning instructed models using ranking loss (Ouyang et al., 2022;
Dong et al., 2024). Some studies also consider DPO models as reward models (Lambert et al., 2024),

2

Published as a conference paper at ICLR 2025

Table 1: A comparison with the most related works on process-level reward models.

Name
Data Acquisition Training & Inference Release

Domain Task Backbone Annotation Size Labeling Objective Search Data Model

DEEPMIND PRM
(Uesato et al., 2022) Math GSM8K N/A Human 10k 0/1 N/A BoN ✗ ✗

OPENAI PRM
(Lightman et al., 2023) Math MATH GPT-4 Human 800k -1/0/1 CE Loss BoN ✓ ✗

TS-LLM
(Feng et al., 2023)

Math
Decision

GSM8K,GAME24,
ProntoQA,RLHF,
Chess Endgame

LLaMA2-7B Golden Ans. ∼150k 0∼1 MSE Loss
MCTS-α
+Rollout

100×17 leaf
✗ ✓

MATH-SHEPHERD
(Wang et al., 2024b) Math GSM8K LLemma-7B Golden Ans. 445k 0/1 CE Loss MCTS

16×64 leaf ✓ ✓

GLORE
(Havrilla et al., 2024) Math GSM8K Llama2-7B Golden Ans. N/A 0/1 CE Loss BoN ✗ ✗

MIPS
(Wang et al., 2024f) Math/Code GSM8K, MATH

MBPP PaLM 2-S/L Golden Ans. ∼14k 0∼1 MSE Loss MCTS
32×32 leaf ✗ ✗

MCTS-DPO
(Xie et al., 2024)

Math
Common

-sense

GSM8K,MATH
ARC,AI2Science,

OpenBookQA,
CommonSenseQA

Mistral-7B Golden Ans. ∼24k 0∼1 MSE Loss MCTS
4/5 leaf ✗ ✗

SUPER MARIO
(Chen et al., 2024a) Math GSM8K,MATH DeepSeek-

MathBase-7B Golden Ans. 15k 0∼1 MSE Loss MCTS
5 leaf ✓ ✗

STEP-DPO
(Lai et al., 2024) Math MetaMath, MMIQC Qwen2-7B/72B LLM 10k 0/1 Ranking Loss BoN ✓ ✗

OMEGAPRM
(Luo et al., 2024) Math MATH Gemini Pro Golden Ans. 1.5m 0∼1 MSE Loss MCTS ✗ ✗

REST-MCTS*
(Zhang et al., 2024) Math MATH Mistral-7B Golden Ans. ∼700k 0∼1 MSE Loss MCTS

3 leaf ✓ ✗

though the effectiveness of these models in iterative optimization still requires further exploration.
Additionally, self-play learning (Chen et al., 2024b; Tao et al., 2024) has recently been applied to
continually improve reward models, presenting a promising method to enhance the capabilities of
ORMs autonomously (Wang et al., 2024c). Our approach on OpenPRM can also be considered a
method for continuously improving ORMs through their own annotations.

Process-level Reward Model (PRM) The primary challenge with ORMs is their coarse-grained
nature of rewards; even if the final answer is correct, errors may still exist within the solution steps.
To address this, there is a growing trend to develop more fine-grained, process-level RMs. The main
challenge in developing PRMs lies in obtaining accurate supervision signals for each process within
a solution. There are three main approaches: 1) Human Annotation: This method requires experts
to annotate each process step as neutral, bad, or good. While human annotation can provide precise
process supervision, it is difficult to scale and very costly (Uesato et al., 2022; Lightman et al., 2023).
2) Golden Answer.: For mathematical or coding problems, accurate final answers or feedback from
exact matching or interpreters are available. Common methods involve computing the probability
of nodes along the path toward the final, accurate answers, integrating with Monte Carlo Search
methods (Wang et al., 2024b; Havrilla et al., 2024; Luo et al., 2024). 3) Model-based Judgment
or Reward Models: The final approach involves obtaining rewards from model-based judgments or
reward models (Lai et al., 2024). Some research utilizes outcome-level rewards to estimate process
rewards (Lu et al., 2024), reducing the high costs associated with extensive sampling.

For training PRMs, two main methods are used, depending on the data format required: 1) Single
Sample: Each step in the solution process is labeled, and losses such as Cross-Entropy (CE) (Light-
man et al., 2023; Wang et al., 2024b; Havrilla et al., 2024) and Mean Squared Error (MSE) (Feng
et al., 2023; Wang et al., 2024f) loss are typically used. 2) Pair Sample: Each question is associ-
ated with chosen and rejected processes, and pairwise ranking loss is employed (Lai et al., 2024).
This method is typically used in the training ORMs (Dong et al., 2024). We provide a detailed
survey in Table 1. Currently, many ORMs in open domains benefit from the development of bench-
marks (Lambert et al., 2024; Wang et al., 2024e). However, the true effectiveness of these ORMs
and the feasibility of developing PRMs from ORMs are still subjects of ongoing exploration.

2.2 DERIVATION OF PRM FROM ORM

ORM is typically trained to predict the quality of the final outcome, while PRM supervises the
intermediate steps of the process. The modeling of ORM can be formalized with a pairwise ranking

3

Published as a conference paper at ICLR 2025

p=1 p=2 p=3 p=4 p=-1
first-n process

70

75

80

85

90

95

100

Ac
cu

ra
cy

InternRM

p=1 p=2 p=3 p=4 p=-1
first-n process

65

70

75

80

85

90

95

100
FsfirX

p=1 p=2 p=3 p=4 p=-1
first-n process

70

75

80

85

90

95

LlamaUF
RB. Chat RB. Chat Hard RB. Reason RB. Safety RB. Avg

Figure 1: Results of reward models based on rewarding processes of varying lengths within the
evaluated content. The results indicate that the initial segments of responses are particularly critical
for challenging tasks such as Chat-Hard and Reasoning, where longer content holds length bias.

loss function based on the outcome-level feedback (Ouyang et al., 2022):

LORM(θ) = −E(x,yc,yr)∼D [log (σ (rθ(x, yc)− rθ(x, yr)))] (1)

Here, rθ(x, yc) and rθ(x, yr) are the model’s scores for the chosen and rejected outcomes, respec-
tively. While ORM performs well in outcome-based supervision, it has limitations when applied
to process-level supervision, due to the cumulative error effect. This effect arises because ORM
focuses on the final result, neglecting errors in intermediate steps that can propagate through the
sequence and affect the final outcome (Lightman et al., 2023).

Previous works (Uesato et al., 2022; Havrilla et al., 2024) have shown that in cases where the base
model for response generation is sufficiently strong and the task is relatively simple, the cumulative
error may be negligible. In such scenarios, ORM can be effectively used as a substitute for PRM.

However, for more complex tasks, the cumulative error can be significant, necessitating additional
process-level supervision. To address this issue, we propose a joint modeling approach that inte-
grates both ORM and PRM by introducing supervision at key process of answer. Specifically, we
identify the most divergent process between chosen and rejected outcomes, denoted as pc and pr,
and introduce additional supervision at these critical points. The loss function can be defined as:

L(θ) = LORM(θ) + λLPRM(θ) (2)

where λ is a hyper-parameter that balances the outcome-based and process-based losses. The
process-based loss LPRM supervises the divergent steps pc and pr, and can be expressed as:

LPRM(θ) = − log (σ (rθ(x, pc)− rθ(x, pr))) (3)

Here, rθ(x, pc) and rθ(x, pr) represent the scores for the critical steps in the chosen and rejected
sequences, respectively. By focusing on these key steps, the cumulative error is mitigated as early
errors are corrected at critical junctures. We provide more details in Appendix A. In conclusion, the
above analysis leads to the following theorem:

Theorem 1 Given a dataset D consisting of pairs of responses (yc, yr) with outcome-based pref-
erences yc > yr, and a learned outcome-based reward model rθ(x, y), the cumulative error of
process supervision can be significantly reduced. This is achieved by identifying the key divergent
steps (pc, pr), such that ∆(pc, pr) is maximized, and incorporating these steps into a joint modeling
framework. Thus, under this framework, the cumulative error in process supervision decreases as
the discrepancy ∆(pc, pr), supervision strength S, and model sensitivity γ increase.

2.3 EMPIRICAL EVALUATION OF OPEN-DOMAIN ORM IN PROCESS ASSESSMENT

In this section, we conduct an empirical evaluation of open-domain ORMs as process evaluators and
examine some unique phenomena associated with their performance. Specifically, we assess popu-
lar reward models such as FsfirX (Wang et al., 2024a), InternRM (Cai et al., 2024), and UltraFeed-
back (Cui et al., 2023) (trained on the Llama-3 8B model (Dubey et al., 2024)) using RewardBench
(named RB) (Lambert et al., 2024). We focus on the primary categories of RB, including Chat,
Chat-Hard, Reasoning, and Safety tasks. We provide more details about experiments in § 4.1.

4

Published as a conference paper at ICLR 2025

PromptsModel CA1 CA2 CA3 CA4

R1

R2

R3

R4

R3

R4

R2

R1

Sampling

Rewarding

P11

P21

P31 P32

P12

P22 P23

P11 P21 P31 > P11 P21 P32

P12 P22 > P12 P23
𝑲 ORMs
𝑹(𝒙, 𝒚)

{
∑𝟎$𝒋$𝑲𝑹𝒊

𝒋

𝑲
}

Segment

Back-Propagation

Process Preference

...Aggregate

𝒙𝒊, 𝒚𝒊 𝒊&𝟎
𝑵Candidate

Answers

OpenPRM
Training

𝑦" = 0

𝑦! = 1

Similar Answer
Prefix

Key Process

𝑦+
/

𝑦&
/

𝑽 𝑷𝒊𝒋 =
∑𝒌∈𝑳 𝑷𝒊𝒋 𝑹𝒌
𝑳(𝑷𝒊𝒋)

Outcome RM (ORM)

Process RM (PRM)

R1

R2

R3

O
R
M

PRM

R12

R11 R21 R31

R33

Unpaired

𝑳𝒐 = 𝑹 𝒙 − 𝒚 𝟐

𝑳𝑷 =/
𝒊&𝟎

𝑵

𝑹 𝒙𝒊 − 𝒚𝒊 𝟐

R
ew
ar
d
M
od
el
(R
M
)

𝑦!" = 1 𝑦!! = 1 𝑦!# = 0 𝑦!$ = 0

𝑦"" = 1 𝑦"! = 0 𝑦"# = 1 𝑦"$ = 1

𝑦" = 0.5

𝑦% = 0

𝑦! = 1

Pairwise
𝑦" = 0

𝑦! = 1... 𝑳 = −𝒍𝒐𝒈(𝝈(𝒓𝜽 𝒙, 𝒚𝒄
−𝒓𝜽(𝒙, 𝒚𝒓)))𝑦&'()*%

𝑦+*,*&-*.

R
ew
ar
d
M
od
el
in
g

𝒚𝒄 → 𝒚𝒄
𝒑 𝒚𝒓 → 𝒚𝒓

𝒑

Figure 2: This figure illustrates the differences between outcome-level and process-level reward
models in the top left, including their common training strategies with paired and unpaired data.
The training of OpenPRM is depicted on the right and below (mainly blue area).

As illustrated in Figure 1, a consistent trend is observed across various reward models, indicating
that RMs perform better on simpler Chat tasks as the evaluated process lengthens. However, this
effect reverses in more challenging Chat and Reasoning tasks, where accuracy first increases and
then decreases as the length of the evaluated process extends. In conclusion, these results support
our Theorem 1, which posits that ORMs can function as PRMs, but their performance deteriorates
due to cumulative errors, particularly in harder tasks.

3 METHODOLOGY

3.1 PROCESS-LEVEL PREFERENCE TREE

To obtain process-level rewards, we construct process-level preference trees using readily available
outcome reward models. The pipeline for building preference trees consists of three steps:

Step 1. Repeated Sampling on Prompts We initially prompt open-source language models to
generate a large number of parallel candidate responses through repeated sampling. To ensure broad
representation, we primarily include models at the 7B and 70B parameter levels.

Step 2. Aggregation on Sentences For each output, we segment it into a collection of sentences
and construct a tree using depth-first search algorithms. We calculate the edit distance (Ristad &
Yianilos, 1998) between sentences from different outputs and merge sentences into a single node
based on a predefined threshold. This helps us reduce the cost of building prefix trees.

Step 3. Backpropagation on Rewards Once outputs with their respective rewards are segmented
into sentence collections, which serve as nodes in the preference tree, we designate the outcome
rewards for the leaf nodes. For each process node, we compute the process-level rewards using
backpropagation. Given the rewards of the leaf nodes, Rk (outcome-level rewards), we can compute
the rewards of the inner nodes, Pij , using backpropagation, as detailed in Monte Carlo Tree Search.
Notably, the rewards of the inner nodes, denoted as V (Pij), can be calculated using the formula

V (Pij) =

∑
k∈L(Pij)

Rk

|L(Pij)|
,

where L(Pij) represents the set of all leaf nodes descending from Pij .

About Rationality of Process Aggregation Unlike previous works in mathematics and coding that
reuse partial answers for subsequent answer generations (Lightman et al., 2023; Luo et al., 2024),

5

Published as a conference paper at ICLR 2025

our method involves directly sampling a large number of candidates and merging identical sentences,
akin to state aggregation in Monte-carlo algorithms (Hostetler et al., 2014; Jang et al., 2021). This
approach enables the RMs to learn high-level actions and logic within the shared sentences. We
provide a real example of question-answering for reference in the Appendix B.3.

3.2 PROCESS-LEVEL REWARD MODELING

During the development of OpenPRMs, we enhance the models by integrating rewards and domains,
aiming to create more robust process-level reward models from the following two perspectives:

Mixture of Rewards Considering the completeness of outputs, output-level rewards serve as spe-
cific instances of process-level rewards, where the output encompasses the entire process. Therefore,
we blend rewards from both the process and output levels to develop more robust reward models.

Mixture of Domains Existing process-level reward models predominantly focus on domains such
as mathematics, and reasoning tasks, which provide certain answers for supervision. To leverage the
strengths of these domains, we also integrate them with general domain preferences to enhance the
versatility and applicability of OpenPRMs. We provide details about dataset in Appendix B.1.

At the training stage, we treat all preference data as a pairwise ranking task. This involves using the
input prompt along with chosen and rejected completions (including both process and output). Using
this unified format, we train the PRM with the Bradley-Terry objective, as defined in Equations 1
and 3. This formulation ensures consistent training across both process- and outcome-level datasets.

3.3 APPLICATION OF PROCESS-LEVEL REWARD MODELS

Best-of-N Sampling At inference time, we can generate a large number of candidate answers for
given questions. Subsequently, we can determine the final answer through a majority vote (James,
1998) (referred to as Vote@N); however, this method is primarily applicable to questions that re-
quire exact answers, such as those found in mathematics and reasoning tasks. For open-ended ques-
tions, it is more common to apply reward models to all answers and select the one with the highest
rewards, a method known as best-of-N sampling (Stiennon et al., 2020) (BoN@N). When imple-
menting process-level reward models in the BoN context, there are two approaches to computing
rewards: one approach treats the outcome as a special process and computes rewards directly on the
outcome, while the other calculates rewards for each process and selects the minimal one (Lightman
et al., 2023; Wang et al., 2024b) to derive the outcome rewards.

Process-level Decoding Another significant application of PRMs is in the decoding phase. By
evaluating the generated process, we can expand the beam search strategy (Sutskever et al., 2014)
from token-level to process-level. As a result, we maintain N sentences at each step and reward each
sentence during generation until the completion of the answer, a technique termed process-level
beam search (PBS@N). Additionally, we can integrate advanced operations akin to those employed
in Monte Carlo Tree Search (MCTS) (Browne et al., 2012), such as simulation, retrospection, and
memory functions. However, these operations may extend the required processing time and lead to
increased inference costs. Previous research (Chen et al., 2024a; Snell et al., 2024) has indicated
that PBS@N can achieve performance comparable to MCTS but at a reduced cost.

4 EXPERIMENTAL SETUP

4.1 DATASET

In developing OpenPRM, we first construct extensive preference trees based on open-domain in-
struction dataset, as described in § 3.1. This construction utilizes the UltraFeedback (Cui et al.,
2023) and ScienceQA (Lu et al., 2022) datasets, which provide a highly diverse and high-quality
range of instructions. Additionally, we incorporate the MATH (Hendrycks et al., 2021) dataset to
further enhance the math reasoning capabilities of our reward system. For each prompt within this
instruction pool, we sample 64 candidate responses from Llama-3 models (Dubey et al., 2024).

6

Published as a conference paper at ICLR 2025

4.2 MODELS

Reward Models. We compare our reward models with state-of-the-art (SOTA) open-source reward
models. Due to concerns with inference efficiency, we primarily evaluate classifier-based models,
which perform comparably to generative models but are more scalable. We compare our models
with ORMs, such as FsfairX (Dong et al., 2024), Eurus (Yuan et al., 2024), and UltraRM (Cui et al.,
2023), and PRMs like TS-LLM (Chen et al., 2024a), MathShepherd (Wang et al., 2024b).

Chat Models. We assess the effectiveness of our reward models using state-of-the-art open-sourced
chat models, including Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct (Dubey et al., 2024), and
Mistral-Nemo-Instruct-2407 1. The latter can be regarded as an out-of-distribution evaluation.

4.3 EVALUATIONS

Evaluation of Reward Models. Given the lack of established benchmarks for evaluating process-
based reward models, we primarily compare our process-based models against established outcome-
based reward benchmarks, such as UltraFeedback (Cui et al., 2023) and RewardBench (Lambert
et al., 2024). RewardBench is designed to assess the capabilities and safety of reward models
across four categories: Chat, Hard Chat, Reasoning, and Safety. We employ the primary dataset
from RewardBench to evaluate the out-of-domain generalization capabilities of our reward mod-
els. We evaluate the effectiveness of process supervision of reward models solely on the test set
of PRM800k (Lightman et al., 2023), which features high-quality human annotations. Especially,
we evaluate PRMs using specific aggregation strategies, such as selecting the minimal reward across
steps. Detailed descriptions of the different aggregation strategies are provided in the Appendix D.1.

Evaluation of Chat Models. To comprehensively evaluate the impact of reward models on chat
models, we test the chat models across a variety of benchmarks, primarily referencing the Open
LLM Leaderboard 2. This evaluation includes benchmarks in: 1) Instruction following tasks such as
Alpaca Eval 2 (Dubois et al., 2024) and IFEval (Zhou et al., 2023); 2) General domain tasks such as
MixEval Hard (Ni et al., 2024), MMLU-Pro (Wang et al., 2024d), and GPQA (Rein et al., 2023); 3)
Specific math domain tasks like MATH500 (Lightman et al., 2023). Additional details about these
evaluation tasks and methodology are provided in Appendix C.

4.4 SETTINGS FOR INFERENCE

During inference, we primarily evaluate two methods: majority vote and best-of-N. For the best-of-
N method, we adhere to the following protocol (Chen et al., 2021): initially, we sample N responses,
where N is set to 128. We then sample K responses from these, repeating the process M times to
average the results. The values for K range from 1, 2, 4, 8, 16, 32, 64, to 128, and M is set to 5. This
approach allows us to reduce inference costs and achieve robust results through multiple averaging.
For process-based beam search, we set the beam size to

√
N to maintain an approximately equivalent

decoding cost with best-of-N, as described in (Snell et al., 2024).

5 EXPERIMENTAL RESULTS

5.1 RESULTS OF REWARD BENCHMARKS

As shown in Table 2, we compare OpenPRMs with standard ORMs and specialized PRMs across
both general outcome-based and specific process-reward benchmarks. Based on the results, we can
draw the following conclusions:

OpenPRMs outperform ORMs Utilizing off-the-shelf ORMs and corresponding preference
datasets, we have developed advanced reward models that demonstrate superior performance on
RewardBench, particularly in the Chat Hard and Reasoning tasks. Additionally, the process-based
preferences built upon our method consistently enhance the performance of the base reward models,

1https://mistral.ai/news/mistral-nemo/
2https://hf.co/spaces/open-llm-leaderboard/open_llm_leaderboard

7

https://mistral.ai/news/mistral-nemo/
https://hf.co/spaces/open-llm-leaderboard/open_llm_leaderboard

Published as a conference paper at ICLR 2025

Table 2: Results of outcome-level and process-level reward models on instance-level reward bench-
marks. Models marked with an asterisk (*) were trained using data compiled by our team.

Model / Task Training
Data

UltraFeedback
Test

RewardBench PRM800k
TestOverall Chat Chat Hard Safety Reasoning

Open-Source ORMs

ULTRARM-13B UltraFeedback (UF) 74.8 68.5 96.4 55.5 59.9 62.4 50.8

LLAMA-3-8B* UF Binarized 77.8 84.8 97.5 66.9 85.5 89.2 51.8

EURUS-RM-7B UltraInteract 73.5 82.8 98.0 65.6 81.4 86.3 60.6

FSFAIRX-7B Mixture Preference 74.5 84.4 99.4 65.1 86.8 86.4 53.3

INTERN2-7B-RM Unknown 77.4 87.6 99.2 69.5 87.2 94.5 61.0
LLAMA-3-8B* HelpSteer (HS) 2 71.8 86.8 95.3 76.8 85.9 89.2 53.7

Open-Source PRMs (Merely Math Domain)

MS-7B-PRM Math-Shepherd 53.5 56.6 62.3 51.3 39.6 73.2 56.9

TS-LLM Unknown 52.7 57.6 66.8 50.0 55.3 58.4 57.7

LLAMA-3-8B* Math-Step-DPO 70.2 73.2 98.0 58.8 59.9 76.1 61.3

OPENPRM (FsfairX) UF Tree + HS 2 72.8 89.4 95.5 81.1 88.7 92.1 64.3

OPENPRM (InternRM) UF Tree + HS 2 78.5 91.1 98.0 81.6 89.5 95.1 68.1

showcasing their generalization capabilities. These findings validate the effectiveness of our prefer-
ence tree construction strategy discussed in § 3.1. Moreover, the results substantiate our ability to
enhance weaker existing models, achieving weak-to-strong generalization (Burns et al., 2023).

OpenPRMs outperform specific PRMs Beyond outcome-level reward benchmarks, we also com-
pare OpenPRMs with publicly available PRMs, which predominantly originate from the math do-
main, as many previous PRMs are not available. We present some results evaluated using Math-
Shepherd (Wang et al., 2024b), TS-LLM (Feng et al., 2023) and Llama-3 trained on (Lai et al.,
2024). Due to the domain gap, these math-specific PRMs underperform in open-domain bench-
marks, whereas OpenPRMs demonstrate superior performance even on tasks like PRM800k.

5.2 RESULTS OF APPLICATIONS IN DECODING

To validate the effectiveness of PRMs, we evaluated OpenPRM under various decoding settings
across multiple popular open-domain tasks, comparing strategies such as majority vote, best-of-N,
and process-level beam search. We summarize the experimental results of OpenPRM as follows:

OpenPRM Performs Effectively with BoN and PBS As illustrated in Table 3, OpenPRM achieves
superior performance in both BoN@16 and PBS@4 compared to Vote@16 with the Llama-3.1-
8B and 70B models across nearly all tasks. These results confirm the effectiveness of OpenPRM.
Additionally, even the out-of-distribution models, such as Mistral-Nemo (compared to the Llama
series), validate the advantages of OpenPRM. We also observed that beam search algorithms outper-
form BoN, benefiting from the fine-grained evaluation of processes. However, further exploration
of decoding strategies (like MCTS) in open-domain settings will be necessary in the future.

Scaling Inference-Time Achieves a High Upper Boundary We further analyze the results of scal-
ing inference-time by progressively increasing sampling times from 1 (20) to 128 (27). The results
depicted in Figures 3 demonstrate that the models can achieve exceptional performance with opti-
mal reward models (refer to coverage@N and pass@N settings (Chen et al., 2021)). The coverage
accuracies nearly reach 100% on most open-domain tasks. These findings in open-domain tasks are
consistent with prior studies in mathematical and coding domains (Brown et al., 2024; Bansal et al.,
2024), suggesting the emergence of a new scaling law at inference time in open-domain as well. We
also include the sampling curves for the Llama 70B and Mistral model in Appendix D.4.

OpenPRMs Optimize Inference-Time Utilization Compared to the coverage accuracy depicted
by the red curve, nearly all the reward models struggle to scale as inference-time increases. This
indicates that significant advancements are still required to develop more effective reward models
for inference-time scaling. Among these previous models, InternRM performs best on most tasks
on average, notably on MMLU-Pro and IFEval, though it still lags significantly behind the coverage

8

Published as a conference paper at ICLR 2025

Table 3: Results of majority vote, best-of-N sampling, and process-level search on open-domain
tasks. The findings from BoN@16 and PBS@16 demonstrate the effectiveness of OpenPRMs. No-
tably, we have reproduced part of the results, taking into account differences in dataset usage.

Model / Task
Alpaca Eval 2 MixEval IFEval GPQA MMLU-P* MATH*

LC% WC% Acc Avg. Acc Acc Acc

GPT-4O (0806) 57.5 51.3 64.7 85.6 75.9 74.68 53.1

GPT-4-TURBO 55.0 46.1 62.6 84.4 73.4 63.71 49.3

CLAUDE-3.5-SONNET 52.4 40.6 68.1 88.0 71.1 76.12 59.4

LLAMA-3.1-8B
INSTRUCT

REPORTED 20.9 21.8 45.6 79.5 45.0 40.8 23.7

REPRODUCED 34.6 33.3 39.7 76.5 24.3 37.2 45.6

VOTE@16 26.8 43.4 56.4

BON@16 35.8 35.1 46.5 80.7 30.8 50.5 58.8

PBS@4 39.9 42.2 47.2 75.59 31.3 47.8 52.8

MISTRAL-NEMO
INSTRUCT-202407

REPRODUCED 45.0 37.5 35.7 64.2 31.9 36.6 31.4

VOTE@16 35.2 44.4 40.7

BON@16 48.4 39.0 36.6 69.5 35.5 48.2 52.3

PBS@4 53.2 49.8 42.0 63.4 37.9 44.0 47.8

LLAMA-3.1-70B
INSTRUCT

REPORTED 38.1 29.9 55.9 85.8 65.8 55.0 41.9

REPRODUCED 42.4 41.6 59.1 85.4 45.7 55.4 63.6

VOTE@16 51.4 60.3 70.7

BON@16 44.4 42.9 61.9 87.7 49.8 67.1 72.0

curve. In contrast, our proposed OpenPRM outperforms InternRM, showing promising results in
scaling up the best-of-N sampling. However, achieving scaling comparable to the coverage curve
remains a substantial challenge. We will release all of these sampling data to the public to encourage
further study on process and outcome reward models for inference-time scaling.

6 DISCUSSION

6.1 ABLATION STUDY OF PRM TRAINING

We conducted an ablation study on OpenPRM training, focusing on data sources and model config-
urations. As illustrated in Table 4a, we compared the effects of continuously fine-tuning InternRM
and FsfairX using process pairs built upon preference trees and outcome pairs. The results indicate
that process pairs yield superior outcomes, thus validating the effectiveness of our method described
in Section 3.1. Additionally, the performance of InternRM, when using a shared prefix, was inferior
to configurations using distinct prefixes for chosen and rejected pairs, emphasizing the importance
of semantic consistency. Furthermore, while using only UltraFeedback data showed promising re-
sults in Chat tasks, maintaining diversity and generalization for open-domain applications is crucial.
Therefore, we opted to integrate additional reasoning and STEM questions.

6.2 REWARDS SHAPE AND LENGTH BIAS

We compare the reward shapes of OpenPRM with other reward models in Figure 5. We analyze
the rewards of chosen and rejected candidates for each instruction in RewardBench and observe that
while all reward models can generally distinguish between chosen and rejected candidates, indicated
by a shift in distributions, there remains some overlap. However, OpenPRM exhibits the minimal
overlap among them, similar to the parent reward model (i.e., InternRM).

Language model-based judgers often suffer from length bias, typically awarding higher rewards to
longer responses. We address this issue in our analysis of OpenPRM, visualizing the correlation
between OpenPRM and InterRM in Figure 4b. The results indicate that OpenPRM maintains a cor-
relation of 0.05, compared to 0.37 for InterRM, suggesting that process-level modeling effectively
reduces length bias. This also demonstrates the effectiveness and necessity of developing PRMs.

9

Published as a conference paper at ICLR 2025

21 23 25 27

Number of Samples (N)

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Llama-3.1-8B-Instruct,MMLU-Pro

21 23 25 27

Number of Samples (N)

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Llama-3.1-8B-Instruct,GPQA

21 23 25 27

Number of Samples (N)

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Llama-3.1-8B-Instruct,MATH

21 23 25 27

Number of Samples (N)

78

80

82

84

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

Llama-3.1-8B-Instruct,IFEval

21 23 25 27

Number of Samples (N)

38

40

42

44

46

48

50

Ac
cu

ra
cy

 (%
)

Llama-3.1-8B-Instruct,MMLU-Pro

21 23 25 27

Number of Samples (N)

22

24

26

28

30

32

34

36

Ac
cu

ra
cy

 (%
)

Llama-3.1-8B-Instruct,GPQA

21 23 25 27

Number of Samples (N)

45.0

47.5

50.0

52.5

55.0

57.5

60.0

Ac
cu

ra
cy

 (%
)

Llama-3.1-8B-Instruct,MATH

21 23 25 27

Number of Samples (N)

77

78

79

80

81

Ac
cu

ra
cy

 (%
)

Llama-3.1-8B-Instruct,IFEval

Coverage Marj@N BoN@N,fsFairx BoN@N,HS2 BoN@N,UF BoN@N,Intern BoN@N,OpenPRM

Figure 3: Results of scaling inference-time for Llama-3.1-8B-Instruct on open-domain tasks. These
results illustrate the effectiveness of OpenPRMs relative to existing reward models, yet they also
highlight the distance to the upper boundary of coverage accuracy (red curve).

Model Data RB Avg.

InternRM
PrefTree Pairs 91.1

w/ Shared Prefix 90.8

FsfairX PrefTree Pairs 89.4
Llama-3-8B-It PrefTree Pairs 87.2

InternRM Outcome Pairs 88.4
FsfairX Outcome Pairs 87.7

Llama-3-8B-It Outcome Pairs 86.8

(a) Ablation Study of OpenPRM.

5 0 5 10
Reward

0

200

400

600

800

1000

Le
ng

th

Corr(Orig) = 0.37
Corr(Our) = 0.05

Model
Orig
Our

0.0

0.1

0.2

De
ns

ity

Model
Orig
Our

0.000 0.001
Density

Model
Orig
Our

(b) Rewards VS. Length

Figure 4: Ablation Study of OpenPRM

7 CONCLUSION

In this paper, we explore the development of process-based reward models (PRMs) in the open do-
main. We begin by generalizing rewards from outcome-level to process-level, significantly reducing
data annotation costs. We then propose the construction of preference trees with parallel candidates
for open-domain instructions, from which we derive process pairs using back-propagation. Leverag-
ing this data, our trained OpenPRM achieves excellent results on reward benchmarks and performs
well under scaling inference-time search conditions. However, our findings also highlight that there
is still considerable progress to be made in building open-domain PRMs to achieve high coverage
accuracy. In conclusion, we try to unify ORMs and PRMs in the open domain, paving a new path
for PRM development that diverges from domains such as mathematics and coding. We hope that
OpenPRM will spark new insights into this topic and stimulate further research.

ACKNOWLEDGMENTS

This work is supported by the National Science and Technology Major Project (2023ZD0121403),
Young Elite Scientists Sponsorship Program by CAST (2023QNRC001), and National Natural Sci-
ence Foundation of China (No. 62406165).

10

Published as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Hritik Bansal, Arian Hosseini, Rishabh Agarwal, Vinh Q Tran, and Mehran Kazemi. Smaller,
weaker, yet better: Training llm reasoners via compute-optimal sampling. arXiv preprint
arXiv:2408.16737, 2024.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbren-
ner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong general-
ization: Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390,
2023.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song,
Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang,
Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong,
Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo
Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang, Hui
Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng Zou,
Xipeng Qiu, Yu Qiao, and Dahua Lin. Internlm2 technical report, 2024.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process. arXiv preprint arXiv:2405.03553, 2024a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024b.

Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help
mitigate overoptimization. arXiv preprint arXiv:2310.02743, 2023.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

11

Published as a conference paper at ICLR 2025

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Haikang Deng and Colin Raffel. Reward-augmented decoding: Efficient controlled text generation
with a unidirectional reward model. arXiv preprint arXiv:2310.09520, 2023.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-
like tree-search can guide large language model decoding and training. arXiv preprint
arXiv:2309.17179, 2023.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from
online ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis, Jane Dwivedi-Yu, Maksym Zhuravin-
skyi, Eric Hambro, and Roberta Railneau. Glore: When, where, and how to improve llm reasoning
via global and local refinements. arXiv preprint arXiv:2402.10963, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Jesse Hostetler, Alan Fern, and Tom Dietterich. State aggregation in monte carlo tree search. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 28, 2014.

Gareth Michael James. Majority vote classifiers: theory and applications. Stanford University,
1998.

Youngsoo Jang, Seokin Seo, Jongmin Lee, and Kee-Eung Kim. Monte-carlo planning and learning
with language action value estimates. In International Conference on Learning Representations,
2021.

Jiaming Ji, Tianyi Qiu, Boyuan Chen, Borong Zhang, Hantao Lou, Kaile Wang, Yawen Duan,
Zhonghao He, Jiayi Zhou, Zhaowei Zhang, et al. Ai alignment: A comprehensive survey. arXiv
preprint arXiv:2310.19852, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Saeed Khaki, JinJin Li, Lan Ma, Liu Yang, and Prathap Ramachandra. Rs-dpo: A hybrid rejection
sampling and direct preference optimization method for alignment of large language models.
arXiv preprint arXiv:2402.10038, 2024.

12

Published as a conference paper at ICLR 2025

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. Args: Alignment as reward-guided search.
arXiv preprint arXiv:2402.01694, 2024.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of llms. arXiv preprint arXiv:2406.18629,
2024.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi.
Rewardbench: Evaluating reward models for language modeling, 2024.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif: Scaling reinforcement learning
from human feedback with ai feedback. arXiv preprint arXiv:2309.00267, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
Jialu Liu. Statistical rejection sampling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023.

Jianqiao Lu, Zhiyang Dou, Hongru Wang, Zeyu Cao, Jianbo Dai, Yingjia Wan, Yinya Huang, and
Zhijiang Guo. Autocv: Empowering reasoning with automated process labeling via confidence
variation. arXiv preprint arXiv:2405.16802, 2024.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. In The 36th Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, and
Yang You. Mixeval: Deriving wisdom of the crowd from llm benchmark mixtures. arXiv preprint
arXiv:2406.06565, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733, 2024.

Junsoo Park, Seungyeon Jwa, Meiying Ren, Daeyoung Kim, and Sanghyuk Choi. Offsetbias: Lever-
aging debiased data for tuning evaluators. arXiv preprint arXiv:2407.06551, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

13

Published as a conference paper at ICLR 2025

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. arXiv preprint arXiv:2311.12022, 2023.

Eric Sven Ristad and Peter N Yianilos. Learning string-edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(5):522–532, 1998.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl on
incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. arXiv preprint
arXiv:2406.14532, 2024.

Tianhao Shen, Renren Jin, Yufei Huang, Chuang Liu, Weilong Dong, Zishan Guo, Xinwei Wu,
Yan Liu, and Deyi Xiong. Large language model alignment: A survey. arXiv preprint
arXiv:2309.15025, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger
(eds.), Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/
file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei
Huang, Dacheng Tao, and Jingren Zhou. A survey on self-evolution of large language models.
arXiv preprint arXiv:2404.14387, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Tu Vu, Kalpesh Krishna, Salaheddin Alzubi, Chris Tar, Manaal Faruqui, and Yun-Hsuan Sung.
Foundational autoraters: Taming large language models for better automatic evaluation. arXiv
preprint arXiv:2407.10817, 2024.

Haoxiang Wang, Yong Lin, Wei Xiong, Rui Yang, Shizhe Diao, Shuang Qiu, Han Zhao, and Tong
Zhang. Arithmetic control of llms for diverse user preferences: Directional preference alignment
with multi-objective rewards. arXiv preprint arXiv:2402.18571, 2024a.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024b.

Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu,
Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-taught eval-
uators. arXiv preprint arXiv:2408.02666, 2024c.

14

https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

Published as a conference paper at ICLR 2025

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark, 2024d.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng Shang,
Xin Jiang, and Qun Liu. Aligning large language models with human: A survey. arXiv preprint
arXiv:2307.12966, 2023.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. Helpsteer2: Open-source dataset for training
top-performing reward models. arXiv preprint arXiv:2406.08673, 2024e.

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo, Le Hou, Hongkun Yu, and Jingbo Shang.
Multi-step problem solving through a verifier: An empirical analysis on model-induced process
supervision. arXiv preprint arXiv:2402.02658, 2024f.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms
for large language models. arXiv preprint arXiv:2406.16838, 2024.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
arXiv preprint arXiv:2405.00451, 2024.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024.

Wei Xiong, Hanze Dong, Chenlu Ye, Han Zhong, Nan Jiang, and Tong Zhang. Gibbs sam-
pling from human feedback: A provable kl-constrained framework for rlhf. arXiv preprint
arXiv:2312.11456, 2023.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin
Chen, Ruobing Xie, Yankai Lin, et al. Advancing llm reasoning generalists with preference trees.
arXiv preprint arXiv:2404.02078, 2024.

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm self-
training via process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

15

Published as a conference paper at ICLR 2025

A DETAILS ABOUT DERIVATION OF PRM FROM ORM

The cumulative error from supervising only the outcome can be expressed as follows:

Cumulative Error =
T∑

i=1

ϵi ·
1− αT−i+1

1− α
(4)

where ϵi is the error at step i, and α represents the degree to which errors propagate to subsequent
steps.

The reduction in cumulative error can be expressed as:

Cumulative Errornew =

T∑
i=i∗

β · ϵi ·
1− αT−i+1

1− α
(5)

where β is a reduction factor that depends on the discrepancy between pc and pr, and the strength
of the supervision. We define β as follows:

β =
1

1 + γ ·∆(pc, pr) · S
(6)

where ∆(pc, pr) is the discrepancy between the key steps, γ is a model-dependent factor repre-
senting the model’s sensitivity to supervision, and S is the strength of the supervision signal. As
∆(pc, pr) and S increase, the factor β decreases, leading to a significant reduction in cumulative
error.

B DETAILS ABOUT OPENPRM TRAINING

B.1 DATASETS FOR PREFERENCE TREE BUILDING

Dataset Orig Retain Outcome? Process?

UltraFeedback 59,876 N/A ✓ ✗
+PTS N/A 70,068 ✗ ✓

ScienceQA 6,508 N/A ✓ ✗
+PTS N/A 12,958 ✗ ✓

MATH 7,500 N/A ✓ ✗
+PTS N/A 19,913 ✗ ✓

HelpSteer 2 N/A 7,221 ✓ ✗

Table 4: Statistics of training datasets. PTS is preference
tree sampling strategy proposed in § 3.1.

As introduced in Section 4.1, we con-
struct preference tree data primarily
using UltraFeedback, which consists
of a mixture of instructions in the
open domain. Additionally, we incor-
porate instructions from the Math and
STEM domains to enhance the gen-
eralization and reasoning capabilities
of open-domain models. Beyond pro-
cess pairs built with preference trees,
we also include some outcome-level
preference pairs to maintain the capa-
bilities of ORMs, which can be seen
as a specific case of PRMs. We provide all the statistics of the datasets used in Table 4.

Training Data Format. When preparing the training data for the PRM, we reformat all process-
level and outcome-level pairs into a unified format: [Q,C, Pc, Pr], where Pc and Pl represent the
chosen (preferred) and rejected (non-preferred) answers, respectively, based on the same context C.
For outcome-level pairs, [C,Pc] and [C,Pr] represent the complete answers. For process-level pairs,
these concatenations represent partial answers.

B.2 HYPER-PARAMETERS FOR TRAINING

For building preference trees, we compute the edit distance on segments of different response can-
didates, splitting the entire responses using “.\n”. The threshold for segment aggregation is set dif-
ferently for all tasks based on the distribution of similarity, and the rewards gap threshold between
process pairs is 1.0 for UltraFeedback and 0.2 for Math and ScienceQA. For both Llama-3.1-8B-
Instruct and Llama-3.1-70B-Instruct, we sample 64 candidate responses for each instruction. Due to

16

Published as a conference paper at ICLR 2025

constraints on inference cost, we randomly sample 10,000 instructions from UltraFeedback for the
Llama-3.1-70B-Instruct model. We set the temperature to 0.5 and top-p to 1.0 for repeated sampling
with vLLM engine 3.

For reproducing the UltraFeedback and HelpSteer2 reward models, we finetune Llama-3-8B-Instruct
using a learning rate 5 × 10−6 over 1 epoch. Meanwhile, we finetune InternRM and FsfairX on
process pairs using a learning rate 1 × 10−6 over 1 epoch. All models are finetuned with a batch
size of 64 and a maximum sequence length of 2048.

B.3 TREE BUILDING EXAMPLE

As illustrated in Figure 2 (mainly segment and aggregate), we first split each answer into sentences
and then merge similar sentences across all answers sequentially. For each merging operation, the
candidate sentences are sourced from the same parent node and indexed consistently across their
respective answers. To clarify, we provide a toy example along with the corresponding tree for
merging three answers from ScienceQA in Table 5.

Table 5: Example for similarity-based sentence merging for preference building.

Node(Depth0): “Question:\nWhich logical fallacy is used in the text?\nBefore I refute my
opponent’s argument, I would like to draw attention to the fact that he is sweating and clearly does
not have much experience on the debate team.\nOptions:\nA. ad hominem: an attack against
the person making the argument, rather than the argument itself\nB. bandwagon fallacy: the
assumption that the popular choice is automatically correct\nC. appeal to nature: the assumption
that natural things are always good\nAnswer: Let’s think step by step.” — Reward: [] — Reply
Indices: []

Node(Depth1): “To identify the logical fallacy used in the text, let’s analyze the situation step
by step” — Reward: [0, 1] — Reply Indices: [0, 2]

Similar sentences: “To identify the logical fallacy used in the text, let’s analyze the situation
step by step” ——— “To identify the logical fallacy in the text, let’s break down the reasoning
process step by step”

Node(Depth2): “The text states that the speaker wants to refute their opponent’s argument,
but instead of addressing the argument itself, they choose to comment on their opponent’s phys-
ical appearance (sweating) and a supposed lack of experience on the debate team. This kind of
comment is meant to discredit the opponent rather than engaging with the argument they pre-
sented” — Reward: [0] — Reply Indices: [0]

Node(Depth3): “The key phrase here is ’attack against the person making the argument,
rather than the argument itself,’ which is the definition of the ad hominem fallacy. \n\nTherefore,
the correct answer is:\nA. ad hominem: an attack against the person making the argument, rather
than the argument itself.” — Reward: [0] — Reply Indices: [0]

Node(Depth2): “The text states, ’Before I refute my opponentś argument, I would like to
draw attention to the fact that he is sweating and clearly does not have much experience on the
debate team.’ This statement does not address the opponentś argument itself but instead makes
a personal attack on the opponentś appearance (sweating) and experience, implying that these
characteristics make his argument weak” — Reward: [1] — Reply Indices: [2]

Node(Depth3): “Now, let’s analyze the options:\n\nA. ad hominem (A): This type of
fallacy involves attacking the person making the argument rather than addressing the argument
itself. In this case, the statement attacks the opponent’s person (by mentioning their sweating
and lack of experience) rather than addressing the merits of their argument” — Reward: [1] —
Reply Indices: [2]

Node(Depth4): “B. bandwagon fallacy (B): This fallacy occurs when it is assumed
that something is correct or good because it is popular. There is no indication in the text that
the opponent’s argument is being rejected because it is unpopular, but rather because of personal
characteristics” — Reward: [1] — Reply Indices: [2]

3https://github.com/vllm-project/vllm

17

https://github.com/vllm-project/vllm

Published as a conference paper at ICLR 2025

Node(Depth5): “C. appeal to nature (C): This fallacy involves assuming that some-
thing is good or true because it is natural. The text does not mention anything about what is
natural or unnatural, so this option does not apply” — Reward: [1] — Reply Indices: [2]

Node(Depth6): “Given the analysis, the correct answer is A. ad hominem, as the
text attacks the opponent’s person rather than addressing the argument itself.” — Reward: [1] —
Reply Indices: [2]

Node(Depth1): “To identify the logical fallacy in the text, let’s break it down step by
step:\n\n1. **Identify the claim and the counterargument**: The text claims that the oppo-
nent’s argument is flawed but before refuting it, it mentions that the opponent is sweating and
lacks experience on the debate team. This is an attempt to undermine the opponent’s credibility
without addressing the argument itself” — Reward: [1] — Reply Indices: [7]

Node(Depth2): “2. **Analyze the nature of the attack**: The attack is not on the argu-
ment’s merits but on the opponent’s character (sweating, lack of experience). Sweating can be a
sign of nervousness, which isn’t inherently indicative of the validity of one’s argument. Lack of
experience is also not directly related to the quality of the argument unless it’s the first time the
opponent is making an argument, which isn’t specified” — Reward: [1] — Reply Indices: [7]

Node(Depth3): “3. **Classify the fallacy based on the analysis**: The attack is focused
on undermining the opponent personally rather than addressing the argument. This matches
the description of the ”ad hominem” fallacy, which involves attacking the person making an
argument rather than addressing the argument itself” — Reward: [1] — Reply Indices: [7]

Node(Depth4): “Therefore, the logical fallacy used in the text is **ad hominem**”
— Reward: [1] — Reply Indices: [7]

Node(Depth5): “The final answer is: A” — Reward: [1] — Reply Indices: [7]

B.4 RESULTS OF REWARD SHAPE

15 10 5 0 5
Reward Model Score

0

25

50

75

100

125

Fr
eq

ue
nc

y

FsfairX-8B
Chosen
Rejected

40 20 0 20
Reward Model Score

HelpSteer2-8B

2 0 2 4
Reward Model Score

Intern-7B

5 0 5
Reward Model Score

OpenPRM

Figure 5: Rewards on chosen and rejected content of various RMs.

C DETAILS ABOUT EVALUATIONS

We summarize the open-domain datasets used in our evaluations as follows:

• Alpaca Eval 2 (Dubois et al., 2024): A popular benchmark for evaluating instruction-based
language models using automatic evaluators such as GPT-4. It features approximately 800
open-domain prompts. Given the length bias in GPT-4 evaluations, Alpaca Eval 2 employs
length-controlled win-rates.

• MixEval Hard (Ni et al., 2024): A ground-truth-based dynamic benchmark derived from
established benchmark mixtures. It evaluates LLMs using a highly capable model rank-
ing system. MixEval Hard includes both free-form and multiple-choice questions, each
category containing 500 questions.

• MATH500 (Lightman et al., 2023): A subset of the MATH test dataset from OpenAI,
featuring 12,500 challenging competition mathematics problems. We use the MATH500
version, which contains 500 samples that maintain IID consistency with the original test
dataset, to evaluate the mathematics abilities of LLMs under scaled inference-time settings.

18

Published as a conference paper at ICLR 2025

• MMLU-PRO (Wang et al., 2024d): An enhanced benchmark designed to evaluate models
across broader and more challenging tasks. Built upon the MMLU dataset, MMLU-PRO
integrates more challenging, reasoning-focused questions and increases the number of an-
swer choices per question from four to ten, significantly raising the difficulty and reducing
the chance of success through random guessing. We randomly sample 500 questions from
the test data for our evaluations.

• GPQA (Rein et al., 2023): Consists of PhD-level STEM questions generated by experts in
biology, physics, and chemistry. The original GPQA dataset is divided into main, diamond,
and extended parts. We utilize the diamond split to align with OpenAI results, which
includes about 200 questions.

• IFEval (Zhou et al., 2023): Designed to evaluate the instruction-following abilities of chat
models. It focuses on a set of verifiable instructions and includes over 500 prompts with
tasks such as “write an article with more than 800 words” and “wrap your response with
double quotation marks.”

During implementation, we use zero-shot chain-of-thought promtps for MATH and GPQA datasets
based on prompt code in openai simple-evals repository 4. For Alpaca Eval 2, MixEval, IFE-
val and MMLU-Pro dataset, we use the evaluation code from the official GitHub repository 5 6 7.
Specifically, we found that Mistral-Nemo struggles to adhere to answer format instructions; there-
fore, we opted to use few-shot Chain of Thought (CoT) examples instead of zero-shot CoT.

D ADDITIONAL RESULTS

D.1 DIFFERENT AGGREGATION STRATEGIES

For applying PRM to outcome-level pairs, we explored several aggregation strategies for calculating
step-based rewards, as detailed below:

• Last Step: Use the reward of the final step as the overall reward, similar to ORM.

• Max/Min Step: Select the maximum or minimum reward among all steps.

• Simple Average: Calculate the average reward across all steps.

• Weighted Average: Apply a positional weight, giving later steps higher importance. The
formula is: r = 1

N

∑N
i=1

i
N ri.

• Dynamic Aggregation: Utilize uncertainty-weighted optimization (UWO) (Coste et al.,
2023), which dynamically adjusts weights based on intra-ensemble variance. This penal-
izes policies generating outputs with high disagreement across steps.

• Max/Min Delta: Inspired by recent research, we also compute the delta (difference) be-
tween step rewards and use the maximum or minimum delta as the final reward.

Different Performance on Chat Category. As shown in Table 2 and 7, OpenPRM’s scores in
the Chat category decrease, while performance in the Chat Hard category improves. This reflects
the inherent trade-off between optimizing for simpler conversational tasks (Chat Easy) and more
complex reasoning tasks (Chat Hard), which is a known challenge in reward model optimization, as
also noted in RewardBench (Lambert et al., 2024). The distinction between these categories lies in
their data sources: the Chat category includes datasets like AlpacaEval and MT Bench, while Chat
Hard is derived from MT Bench and LLMBar. The decreased scores in the Chat category are largely
due to AlpacaEval, as there is a distributional shift between this dataset and our training data, which
is sourced from UltraFeedback.

4https://github.com/openai/simple-evals/
5https://github.com/tatsu-lab/alpaca_eval
6https://github.com/Psycoy/MixEval
7https://github.com/TIGER-AI-Lab/MMLU-Pro

19

https://github.com/openai/simple-evals/
https://github.com/tatsu-lab/alpaca_eval
https://github.com/Psycoy/MixEval
https://github.com/TIGER-AI-Lab/MMLU-Pro

Published as a conference paper at ICLR 2025

Table 6: Overall score of RewardBench (including Chat, Chat Hard, Safety and Reasoning) and
PRM800k Test Results with different aggregation strategies.

Models Aggregation Overall Chat Chat Hard Safety Reasoning PRM800k Test
intern2-7b-RM ORM 87.6 99.2 69.5 87.2 94.5 61.0
intern2-7b-RM + FT ORM 89.6 87.7 84.2 92.4 94.1 63.4

OpenPRM (intern)

Last Step 91.1 98.0 81.6 89.5 95.1 68.1
Min Step 91.9 96.7 83.6 91.6 95.7 68.1
Max Step 88.7 95.0 80.5 88.2 91.1 68.1

Simple Avg 91.3 97.2 83.3 89.9 94.8 68.1
Weight Avg 91.4 98.0 82.7 89.7 95.0 68.1

Dynamic 91.6 97.8 83.3 90.4 95.0 68.1
Min Delta 77.8 64.3 75.7 76.4 95.1 68.1
Max Delta 77.7 77.4 69.5 74.3 89.5 68.1

D.2 EVALUATE RMS WITH OFFSETBIAS

In addition to benchmarks like RewardBench, UltraFeedback, and PRM800k, we evaluated our
reward models using OffsetBias (Park et al., 2024), which provides a more granular assessment of
bias in reward models. The results are summarized in the table below, showcasing the effectiveness
of OpenPRM across various bias metrics in Table 7.

Table 7: OffsetBias Evaluation Results

Models Concreteness Content/
Continuation

Empty
Reference

Familiar Knowledge
Preference

Length
Bias

Nested
Instruction Overall

Eurus-RM-7B 71.4 66.7 84.6 33.3 41.2 66.7 60
FsfairX-LLaMA3-RM 100 91.7 53.8 91.7 41.2 58.3 71.3
FsfairX-LLaMA3-RM
+ OffsetBias 92.9 100 46.2 58.3 82.4 83.3 77.5

LLaMA3-8B-Instruct
+ OffsetBias 100 95.8 92.3 83.3 85.3 50 85

Intern2-7b-RM 1 1 1 58.3 58.8 91.7 84.8
Intern2-7b-RM
+ OpenPRM (Our) 92.86 83.3 1 83.3 88.2 91.7 89.9

D.3 COMPARISON WITH MCTS METHODS

We compared the computational efficiency of our method with MCTS-based approaches under sim-
ilar sampling budgets. The experimental setup and results are as follows:

• OpenPRM: We start from 60k samples, with 64 responses per sample, producing approx-
imately 3.84M question-answer pairs in 24 hours. From this, 90k pairs were selected for
training.

• MCTS: We start from 10k samples, with 4 responses per sample. Responses were split into
sentences, resulting in 240k partial outputs. Sampling 8 full paths for each pair of partial
outputs produced 3.84M question-answer pairs in 24 hours. Of these, 97k pairs were used
for training.

The results of PRM trained with OpenPRM and MCTS are shown in Table 8. In fact, the MCTS
method remains a powerful baseline but is significantly more resource-intensive, requiring up to 10
times the computational cost of our approach. With a larger sampling budget, the MCTS method
could still be effectively utilized. However, our method offers a more efficient alternative and can be
further optimized with more accurate similarity computation techniques, such as embedding-based
methods. While these approaches may increase the time required to construct the tree, they hold
great potential for improving performance. We plan to explore these optimizations in future work to
further enhance the efficiency and accuracy of our method.

20

Published as a conference paper at ICLR 2025

Table 8: Comparison with MCTS methods

Models Aggregation Overall Chat Chat Hard Safety Reasoning PRM800k Test
intern2-7b-RM ORM 87.6 99.2 69.5 87.2 94.5 61
intern2-7b-RM
+ outcome labels ORM 89.6 87.71 84.21 92.43 94.06 63.4

OpenPRM (intern) Min Step 91.9 96.7 83.6 91.6 95.7 68.1
MCTS (intern) Min Step 91.4 95.5 81.6 93.2 95.4 68.2

D.4 RESULTS ON MORE LANGUAGE MODELS

Scaling Effect of PBS. We have analyzed the scaling effects of Process Beam Search (PBS), where
beam search is conducted at the sentence level, selecting the top N generated outputs based on PRM
rewards. As presented in Figure 6, the results indicate that OpenPRM consistently outperforms Bag
of N-grams (BoN) in PBS settings, showcasing its effectiveness and reliability in these scenarios.
However, we also observed significant variance in the scaling effect of PBS across different tasks, in
contrast to the more consistent scaling effect seen with best-of-N methods. This variance can likely
be attributed to differences in the data distributions across tasks, which highlight the need for further
investigation into handling data mixtures effectively. We plan to continue exploring this issue in
future work to better understand and address these challenges.

22 24 26 28

Number of Samples (N)

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Ac
cu

ra
cy

 (%
)

Llama-3.1-8B-Instruct, GPQA

Marj@N
BoN@N,fsFairx
BoN@N,HS2
BoN@N,UF
BoN@N,Intern
BoN@N,OpenPRM
PBS@N,OpenPRM

22 24 26 28

Number of Samples (N)

38

40

42

44

46

48

50

Ac
cu

ra
cy

 (%
)

Llama-3.1-8B-Instruct, MMLU-Pro
Marj@N
BoN@N,fsFairx
BoN@N,HS2
BoN@N,UF
BoN@N,Intern
BoN@N,OpenPRM
PBS@N,OpenPRM

Figure 6: Scaling Effect of Process Beam Search

Scaling Effect of BoN. We present the remaining tasks, in addition to those shown in Figure 3, in
Figure 7. We provide additional results for the Llama-3.1-70B-Instruct and Mistral-Nemo model
regarding inference-time scaling in Figures 8, 9, 10 and 11, which support the same conclusions as
those drawn from the Llama-3.1-8B-Instruct in Figure 3.

21 23 25 27

Number of Samples (N)

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Llama-3.1-8B-Instruct,MixEval

21 23 25 27

Number of Samples (N)

35

40

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

Llama-3.1-8B-Instruct,AlpacaEval2

21 23 25 27

Number of Samples (N)

40

41

42

43

44

45

46

47

Ac
cu

ra
cy

 (%
)

Llama-3.1-8B-Instruct,MixEval

21 23 25 27

Number of Samples (N)

34.0

34.5

35.0

35.5

36.0

36.5

Ac
cu

ra
cy

 (%
)

Llama-3.1-8B-Instruct,AlpacaEval2
Coverage Marj@N BoN@N,fsFairx BoN@N,HS2 BoN@N,UF BoN@N,Intern BoN@N,OpenPRM

Figure 7: Results of scaling inference-time for Llama-3.1-8B-Instruct on the rest tasks of Figure 3.

21

Published as a conference paper at ICLR 2025

21 23 25 27

Number of Samples (N)

60

70

80

90

Ac
cu

ra
cy

 (%
)

Llama-3.1-70B-Instruct,MMLU-Pro

21 23 25 27

Number of Samples (N)

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Llama-3.1-70B-Instruct,GPQA

21 23 25 27

Number of Samples (N)

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

Llama-3.1-70B-Instruct,MATH

21 23 25 27

Number of Samples (N)

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Llama-3.1-70B-Instruct,MixEval

21 23 25 27

Number of Samples (N)

50

60

70
Ac

cu
ra

cy
 (%

)
Llama-3.1-70B-Instruct,AlpacaEval2

21 23 25 27

Number of Samples (N)

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

Llama-3.1-70B-Instruct,IFEval

Coverage Marj@N BoN@N,fsFairx BoN@N,HS2 BoN@N,UF BoN@N,Intern BoN@N,OpenPRM

Figure 8: Results of scaling inference-time for Llama-3.1-70B-Instruct on open-domain tasks.

21 23 25 27

Number of Samples (N)

54

56

58

60

62

64

66

Ac
cu

ra
cy

 (%
)

Llama-3.1-70B-Instruct,MMLU-Pro

21 23 25 27

Number of Samples (N)

42

44

46

48

50

52

Ac
cu

ra
cy

 (%
)

Llama-3.1-70B-Instruct,GPQA

21 23 25 27

Number of Samples (N)

64

66

68

70

72

Ac
cu

ra
cy

 (%
)

Llama-3.1-70B-Instruct,MATH

21 23 25 27

Number of Samples (N)

56

58

60

62

Ac
cu

ra
cy

 (%
)

Llama-3.1-70B-Instruct,MixEval

21 23 25 27

Number of Samples (N)

42.5

43.0

43.5

44.0

Ac
cu

ra
cy

 (%
)

Llama-3.1-70B-Instruct,AlpacaEval2

21 23 25 27

Number of Samples (N)

85.5

86.0

86.5

87.0

87.5

Ac
cu

ra
cy

 (%
)

Llama-3.1-70B-Instruct,IFEval

Coverage Marj@N BoN@N,fsFairx BoN@N,HS2 BoN@N,UF BoN@N,Intern BoN@N,OpenPRM

Figure 9: Results of scaling inference-time for Llama-3.1-70B-Instruct on open-domain tasks.

22

Published as a conference paper at ICLR 2025

21 23 25 27

Number of Samples (N)

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Mistral-Nemo-Instruct-2407,MMLU-Pro

21 23 25 27

Number of Samples (N)

40

60

80

100

Ac
cu

ra
cy

 (%
)

Mistral-Nemo-Instruct-2407,GPQA

21 23 25 27

Number of Samples (N)

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Mistral-Nemo-Instruct-2407,MATH

21 23 25 27

Number of Samples (N)

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Mistral-Nemo-Instruct-2407,MixEval

21 23 25 27

Number of Samples (N)
40

50

60

70

80
Ac

cu
ra

cy
 (%

)

Mistral-Nemo-Instruct-2407,AlpacaEval2

21 23 25 27

Number of Samples (N)

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

Mistral-Nemo-Instruct-2407,IFEval

Coverage Marj@N BoN@N,fsFairx BoN@N,HS2 BoN@N,UF BoN@N,Intern BoN@N,OpenPRM

Figure 10: Results of scaling inference-time for Mistral-Nemo on open-domain tasks.

21 23 25 27

Number of Samples (N)

35.0

37.5

40.0

42.5

45.0

47.5

50.0

Ac
cu

ra
cy

 (%
)

Mistral-Nemo-Instruct-2407,MMLU-Pro

21 23 25 27

Number of Samples (N)

32

34

36

38

Ac
cu

ra
cy

 (%
)

Mistral-Nemo-Instruct-2407,GPQA

21 23 25 27

Number of Samples (N)

30

35

40

45

50

55

Ac
cu

ra
cy

 (%
)

Mistral-Nemo-Instruct-2407,MATH

21 23 25 27

Number of Samples (N)

34

35

36

37

Ac
cu

ra
cy

 (%
)

Mistral-Nemo-Instruct-2407,MixEval

21 23 25 27

Number of Samples (N)

41

42

43

44

Ac
cu

ra
cy

 (%
)

Mistral-Nemo-Instruct-2407,AlpacaEval2

21 23 25 27

Number of Samples (N)

64

66

68

70

Ac
cu

ra
cy

 (%
)

Mistral-Nemo-Instruct-2407,IFEval

Coverage Marj@N BoN@N,fsFairx BoN@N,HS2 BoN@N,UF BoN@N,Intern BoN@N,OpenPRM

Figure 11: Results of scaling inference-time for Mistral-Nemo on open-domain tasks.

23

	Introduction
	Preliminary
	Reward Modeling
	Derivation of PRM from ORM
	Empirical Evaluation of Open-Domain ORM in Process Assessment

	Methodology
	Process-level Preference Tree
	Process-level Reward Modeling
	Application of Process-level Reward Models

	Experimental Setup
	Dataset
	Models
	Evaluations
	Settings for Inference

	Experimental Results
	Results of Reward Benchmarks
	Results of Applications in Decoding

	Discussion
	Ablation Study of PRM Training
	Rewards Shape and Length Bias

	Conclusion
	Details about Derivation of PRM from ORM
	Details about OpenPRM Training
	Datasets for Preference Tree Building
	Hyper-Parameters for Training
	Tree Building Example
	Results of Reward Shape

	Details about Evaluations
	Additional Results
	Different Aggregation Strategies
	Evaluate RMs with OffsetBias
	Comparison with MCTS methods
	Results on More Language Models

