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Road Map of Appendix Our appendix is organized into five sections. The notation table is in
Appendix [A, which contains the mathematical notation and Algorithm [I] which outlines the pipeline
of FEDLGD. Appendix [C|shows the results for RETINA, a real-world medical dataset. Appendix[D
provides a list of ablation studies to analyze FEDLGD, including computation cost, communication
overhead, convergence rate, and hyper-parameter choices. Appendix [E lists the details of our
experiments: [E.1] visualizes the original sample images used in our experiments; visualizes
the local and global distilled images; shows the pixel histogram for the DIGITS and RETINA
datasets for visualizing the heterogeneity of them; shows the model architectures that we used in
the experiments; [E.5| contains the hyper-parameters that we used to conduct all experiments; [E.0|
provides experiments and analysis for the privacy of FEDLGD through membership inference attack.
Finally, Appendix [F| provides a detailed literature review and implementation of the state-of-the-art
heterogeneous FL strategies. Our code and model checkpoints are available in this anonymous link:
https://drive.google.com/drive/folders/1 Hpy8kgPtxC_NMqK6e ALwukFZ]J B7yf8V1?usp:sharin

A  NOTATION TABLE

Table 3: Important notations used in the paper.

Notations Description

d input dimension
d feature dimension
1o global model

0 model parameters
P feature extractor
h projection head

D9,D¢  original global and local data
D9,D¢  global and local synthetic data
f9,fc features of global and local synthetic data

Liotal total loss function for virtual federated training
Lcr cross-entropy loss
LDist Distance loss for gradient matching
LyiMD MMD loss for distribution matching
Lcon Contrastive loss for local training regularization
A coefficient for local training regularization term
T total training iterations
15 local data updating iterations for each call
T5 global data updating iterations for each call
T local global distillation iterations

*The link was created by a new and anonymous account without leaking any identifiable information.
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Algorithm 1 Federated Virtual Learning with Local-global Distillation

Require: f7: Model, 4): Feature extractor, #: Model parameters, D: Virtual data, D: Original data,
L: Losses, G: Gradients.

Distillation Functions:
D¢ « DistributionMatch (D¢, f9)

D¢ « TterativeDistributionMatch(D¢_,, £9)
Dg, | + FederatedGradientMatch(D§, G¥)

Initialization:
D§ < DistributionMatch(D¢

Conds Fona) > Distilled local data for virtual FL training

FEDLGD Pipeline:
fort=1,...,T do
Clients:
for each selected Client do
if t € 7 then > Local-global distillation
D¢ « TterativeDistributionMatch(D¢_,, £9)
G§ < VeLcr(Dg, f7)
else _
D§ « D¢,
G — Vo (Lon(Dg, f7) + Mecon (W (D), v (D5)) )
end if
Uploads G¥ to Server
end for
Server:
G? + Aggregate(GY, ..., GY)
if ¢ € 7 then > Local-global distillation
D¢, + FederatedGradientMatch(D§, G§)

Send D{,, to Clients
end if
f8.1 < ModelUpdate(G¢, f?)
Send f¢ .1 to Clients
end for

14
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B THEORETICAL ANALYSIS

In this section, we show theoretical insights on FEDLGD.

Denote the distribution of global virtual data as P, and the distribution of client local virtual data
as P.. In providing theoretical justification for the efficacy of FEDLGD, we can adopt a similar
analysis approach as demonstrated in Theorem 3.2 of VHL (Tang et al., 2022), where the relationship
between generalization performance and domain misalignment for classification tasks is studied by
considering maximizing the statistic margin (SM) (Koltchinskii & Panchenko, 2002).

To assess the generalization performance of f with respect to the distribution P(x, y), we define the
SM of FEDLGD as follows:

Ef:FEDLGD('Pg(z,y))SMm(faP(way))7 (7)

where m is a distance metric, and f = FEDLGD(P,(z, y)) means that model f is optimized using
FEDLGD with minimizing Eq. [3] Similar to Theorem A.2 of (Tang et al., 2022)), we have the lower
bound

Lemma B.1 (Lower bound of FEDLGD’s statistic margin). Let f = ¢ o p be a neural network
decompose of a feature extractor ¢ and a classifier p. The lower bound of FEDLGD’s SM is

Epp, SMm(p,P) = Epp, SMm(p, D) - ’E;M—PQ {SMm (p, Pg) — SMm(F%D)} ’
—Eyd(Pe(¢ | y), Py(@ | y)). ®)

Proof. Following proof in Theorem A.2 of (Tang et al.|[2022), the statistical margin is decomposed
as

Epep,SMu(p, P) > Epep, SMp(p, D)
= |Boep, [SMum (9. Py) = SMun(p, D)) |
— [Eperp, [SMun(p, P) = SMy, (p, Py)|
> Epep, SMin(p, D) = [Epep, [SMan (0,Py) = SMun(p, D)]|

—Eyd(P(6]y): Py(¢ | )
O

Another component in our analysis is building the connection between our used gradient matching
strategy and the distribution match term in the bound.

Lemma B.2 (Proposition 2 of (Yu et al., 2023)). First-order distribution matching objective is
approximately equal to gradient matching of each class for kernel ridge regression models following
a random feature extractor.

Theorem B.3. Due to the complexity of data distillation steps, without loss of generality, we consider
kernel ridge regression models with a random feature extractor. Minimizing total loss of FEDLGD
(Eq.|2)) for harmonizing local heterogeneity with global anchors elicits a model with bounded statistic
margin (i.e., the upper bound of the SM bound in Theorem |B.I)).

Proof. The first and second term can be bounded by maximizing SM of local virtual training data
and global virtual data. The large SM of global virtual data distribution P, (z, y) is encouraged by

minimizing cross-entropy L¢ E(ﬁg, y) in our objective function Eq.

The third term represents the discrepancy of distributions of virtual and real data. We denote this
term as DQL(PQ) =E,d (Pc(o | y)7 Py(¢ | v)) and aim to show that DZ;IZ(PQ) can achieve small
upper bound under proper assumptions.

Based on Lemma , the first-order distribution matching objective DZ:%(PQ) is approximately
). Nai

equal to gradient matching of each class, as shown in objective £ p;s (Eq. mely, minimizing
gradient matching objective £ p;s; in FEDLGD implies minimizing DZ;\Z(PQ) in the setting. Hence,
using gradient matching generated global virtual data elicits the model’s SM a tight lower bound.

O
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Remark B.4. The key distinction between FEDLGD and VHL primarily lies in the final term, which
is exactly a distribution matching objective. It is important to note that in VHL, the global virtual data
is generated from an un-pretrained StyleGAN, originating from various Gaussian distributions, which

we denote as P,. The VHL paper only provided a lower bound for DZ;l”y (Pg4) but did not show how

it is upper bounded. However, for the purpose of maximizing SM to achieve strong generalization,
we want to show SM has a tight lower bound. Therefore, upper bounded the last term is desired. In
contrast, our approach employs the gradient matching strategy to synthesize the global virtual data.
To prove our performance improvement, we can show that FEDLGD could achieve a tight lower
bound for SM.
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C EXPERIMENT RESULTS ON REAL-WORLD DATASET

Table 4: Test accuracy for RETINA experiments under different model architectures and IPC=10.
R and C stand for ResNet18 and ConvNet, respectively. We have 4 clients: Drishti(D), Acrima(A),
Rim(Ri), and Refuge(Re), respectively. We also show the average test accuracy (Avg). The best
results on ConvNet are marked in red and in bold for ResNet18. The same accuracy for different
methods is due to the limited number of testing samples.

RETINA D A Ri Re | Avg
FedA R {316 | 71.0 [ 52.0 | 785 | 583
V& | | 694 | 84.0 | 88.0 | 865 | 82.0
redbrox | R | 316 | 70.0 [ 520 [ 78.5 | 580
C | 684|840 | 88.0 | 865 | 81.7

FedNova | R [ 316 [ 710 [ 520 [ 78.5 | 583
Va | o | 684 | 840 | 88.0 | 86.5 | 817
Seatford | K | 316 [ 73.0 [ 49.0 [ 785 | 580
C | 684 | 840|880 | 86.5 | 81.7

R [42.1 [ 71.0 [ 57.0 | 70.0 | 60.0

MOON | = | 579 | 720 | 76.0 | 85.0 | 72.7
R [ 474 [ 62.0 500 | 765 | 59.0

VHL C | 684|780 | 81.0 | 870 | 78.6
R [57.9 | 75.0 [ 59.0 | 770 | 67.2

FEDLGD | - | 789 | 86.0 | 88.0 | 87.5 | 85.1

Dataset. For medical dataset, we use the retina image datasets, RETINA = {Drishti (Sivaswamy et al.}
2014), Acrima(Diaz-Pinto et al., 2019), Rim (Batista et al.,|2020), Refuge (Orlando et al.,[2020)},
where each dataset contains retina images from different stations with image size 96 x 96, thus
forming four clients in FL. We perform binary classification to identify Glaucomatous and Normal.
Example images and distributions can be found in Appendix Each client has a held-out testing
set. In the following experiments, we will use the distilled local virtual training sets for training and
test the models on the original testing sets. The sample population statistics for both experiments are
available in Table[12]and Table[14]in Appendix

Comparison with baselines. The results for RET INA experiments are shown in TableE], where D, A,
Ri, Re represent Drishti, Acrima, Rim, and Refuge datasets. We only set IPC=10 for this experiment
as clients in RETINA contain much fewer data points. The learning rate is set to 0.001. The same
as in the previous experiment, we vary arch € { ConvNet, ResNet18}. Similarly, ConvNet shows
the best performance among architectures, and FEDLGD has the best performance compared to the
other methods w.r.t the unweighted averaged accuracy (Avg) among clients. To be precise, FEDLGD
increases unweighted averaged test accuracy for 3.1%(versus the best baseline) on ConvNet and
7.2%(versus the best baseline) on ResNet18, respectively. The same accuracy for different methods
is due to the limited number of testing samples. We conjecture the reason why VHL (Tang et al.|
2022) has lower performance improvement in RETINA experiments is that this dataset is in higher
dimensional and clinical diagnosis evidence on fine-grained details, e.g., cup-to-disc ratio and disc
rim integrity (Schuster et al., 2020). Therefore, it is difficult for untrained StyleGAN (Karras et al.}
2019) to serve as anchor for this kind of larger images.
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D ADDITIONAL RESULTS AND ABLATION STUDIES FOR FEDLGD

D.1 DIFFERENT RANDOM SEEDS

To show the consistent performance of FEDLGD, we repeat the experiments for DIGITS,
CIFAR10C, and RETINA with three random seeds, and report the validation loss and accuracy
curves in Figure 5 and[6 (The standard deviations of the curves are plotted as shadows.). We use
ConvNet for all the experiments. IPC is set to 50 for CIFAR10C and DIGITS; 10 for RETINA.
We use the default hyperparameters for each dataset, and only report FedAvg, FedProx, Scaffold,
VHL, which achieves the best performance among baseline as indicated in Table[T] [2] and [ for clear
visualization. One can observe that FEDLGD has faster convergence rate and results in optimal
performances compared to other baseline methods.
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Figure 5: Averaged testing loss for (a) DIGITS with IPC = 50, (b) CIFAR10C with IPC = 50, and
(c) RETINA with [PC = 10 experiments.
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Figure 6: Averaged testing accuracy for (a) DIGITS with IPC =50, (b) CIFAR10C with IPC = 50,
and (c) RETINA with IPC = 10 experiments.

D.2 DIFFERENT HETEROGENEITY LEVELS OF LABEL SHIFT

In the experiment presented in Sec[4.3, we study FEDLGD under both label and domain shifts, where
labels are sampled from Dirichlet distribution. To ensure dataset distillation performance, we ensure
that each class at least has 100 samples per client, thus setting the coefficient of Dirichlet distribution
a = 2 to simulate the worst case of label heterogeneity that meets the quality dataset distillation
requirement. Here, we show the performance with a less heterogeneity level (v = 5) while keeping
the other settings the same as those in Sec[4.3] The results are shown in Table 5. As we expect,
the performance drop when the heterogeneity level increases (« decreases). One can observe that
when heterogeneity increases, FEDLGD’s performance drop less except for VHL. We conjecture
that VHL yields similar test accuracy for « = 2 and o = 5 is that it uses fixed global virtual data so
that the effectiveness of regularization loss does not improve much even if the heterogeneity level is
decreased. Nevertheless, FEDLGD consistently outperforms all the baseline methods.
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Table 5: Comparison of different a for Drichilet distribution on CIFAR10C.

o | FedAvg { etal.J2017] | FedProx (Li et al.2020b] | FedNova {Wang et al. 12020] | Scaffold {Karimireddy et al.[2020] | MOON {Li et al.[2021b) | VHL {Tang et al..2022] | FEDLGD
2] 519 519 I 53.2 I 513 I 516 I 552 [ 574
5] 554 | 554 | 554 | 556 | 511 | 554 581

Table 6: Computation cost for each epoch. Nc and Ns stand for the number of updating iteration for
local and global virtual data, and we defaultly set as 100 and 500, respectively. Note that we only set
|7| = 10 iterations, which is a relatively small number compare to total epochs(100).

Dataset Vanilla FedAvg | FEDLGD(iters € 7) | FEDLGD(iters ¢ 7) | FEDLGD(server)
DIGITS 238K 2.7K + 3.4K x Nc 4.8K 29K x Ns
CIFAR1OC | 53M 2.7K + 3.4K x Nc 4.8K 29K x Ns
RETINA 1.76M 0.7K + 0.9K x Nc IK 0.9K x Ns

D.3 COMPUTATION COST

Computation cost for DIGITS experiment on each epoch can be found in Table|/} Nc and Ns stand
for the number of updating iterations for local and global virtual data, and as default, we it set as
100 and 500, respectively. The computation costs for FEDLGD in DIGITS and CIFAR10C are
identical since we used virtual data with fixed size and number for training. Plugging in the number,
clients only need to operate 3.9M FLOPs for total 100 training epochs with 7 = 10 (our default
setting), which is significantly smaller than vanilla FedAvg using original data (23.8M and 5,300M
for DIGITS and CIFAR10C, respectively.).

Table 7: Communication overhead for each epoch. Note that the IPC for our global virtual data is 10,
and the clients only need to download it for |7| = 10 times.

Image size | ConvNet | ResNetl8 | Global virtual data
28 x 28 311K 11M 23K x IPC
96 x 96 336K 13M 55K x IPC

D.4 COMMUNICATION OVERHEAD

The communication overhead for each epoch in DIGITS and CIFAR1 0C experiments are identical
since we use same architectures and size of global virtual data (Table.[7 28 x 28). The analysis
of RETINA is shown in row 96 x 96. Note that the IPC for our global virtual data is 10, and the
clients only need to download it for |7| times. Although FEDLGD requires clients to download
additional data which is almost double the original Bytes (311K + 230K), we would like to point
out that this only happens |7| = 10 times, which is a relatively small number compared to total FL
training iterations.

D.5 ANALYSIS OF BATCH SIZE

Batch size is another factor for training the FL. model and our distilled data. We vary the batch
size € {8, 16, 32,64} to train models for CIFAR10C with the fixed default learning rate. We show
the effect of batch size in Table 8 reported on average testing accuracy. One can observe that the
performance is slightly better with moderately smaller batch size which might due to two reasons:
1) more frequent model update locally; and 2) larger model update provides larger gradients, and
FEDLGD can benefit from the large gradients to distill higher quality virtual data. Overall, the results
are generally stable with different batch size choices.

D.6 ANALYSIS OF LOoCAL EPOCH
Aggregating at different frequencies is known as an important factor that affects FL behavior. Here,

we vary the local epoch € {1, 2,5} to train all baseline models on CIFAR10C. Figure[7 shows the
result of test accuracy under different epochs. One can observe that as the local epoch increases, the
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Table 8: Varying batch size in FEDLGD on CIFAR10C. We report the unweighted accuracy. One
can observe that the performance increases when the batch size decreases.

BachSize | 8 | 16 | 32 | 64
CIFARIOC | 59.5 | 58.3 | 57.4 | 56.0

performance of FEDLGD would drop a little bit. This is because doing gradient matching requires the
model to be trained to an intermediate level, and if local epochs increase, the loss of DIGITS models
will drop significantly. However, FEDLGD still consistently outperforms the baseline methods. As
our future work, we will investigate the tuning of the learning rate in the early training stage to
alleviate the effect.
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Figure 7: Comparison of model performances under different local epochs with CIFAR10C.

D.7 DIFFERENT INITIALIZATION FOR VIRTUAL IMAGES

To validate our proposed initialization for virtual images has the best trade-off between privacy and
efficacy, we compare our test accuracy with the models trained with synthetic images initialized by
random noise and real images in Table[9. To show the effect of initialization under large domain
shift, we run experiments on DIGITS dataset. One can observe that our method which utilizes the
statistics (u;, 0;) of local clients as initialization outperforms random noise initialization. Although
our performance is slightly worse than the initialization that uses real images from clients, we do not
ask the clients to share real images to the server which is more privacy-preserving.

Table 9: Comparison of different initialization for synthetic images DIGITS

DIGITS MNIST | SVHN | USPS | SynthDigits | MNIST-M | Average
Noise (M (0, 1)) 96.3 75.9 93.3 72.0 83.7 84.2
Ours (N (144, 04)) 97.1 77.3 94.6 78.5 86.1 86.7
Real images 97.7 78.8 94.2 82.4 89.5 88.5
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E EXPERIMENTAL DETAILS

E.1 VISUALIZATION OF THE ORIGINAL IMAGES

E.1.1 DIGITS DATASET

Figure 8: Visualization of the original digits dataset. (a) visualized the MNIST client; (b) visualized
the SVHN client; (c) visualized the USPS client; (d) visualized the SynthDigits client; (e) visualized
the MNIST-M client.

E.1.2 RETINA DATASET

(@) (b) (d)
Figure 9: Visualization of the original retina dataset. (a) visualized the Drishti client; (b) visualized

the Acrima client; (c) visualized the Rim client; (d) visualized the Refuge client.

E.1.3 CiFAR10C DATASET

21



Under review as a conference paper at ICLR 2024

Figure 10: Visualization of the original CIFAR10C. Sampled images from the first six clients.

E.2 VISUALIZATION OF OUR DISTILLED GLOBAL AND LOCAL IMAGES

E.2.1 DIGITS DATASET

Figure 11: Visualization of the global and local distilled images from the digits dataset. (a) visualized
the MNIST client; (b) visualized the SVHN client; (c) visualized the USPS client; (d) visualized the
SynthDigits client; (e) visualized the MNIST-M client; (f) visualized the server distilled data.

E.2.2 RETINA DATASET

E.2.3 CIiFAR10C DATASET
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(a)

Figure 12: Visualization of the global and local distilled images from retina dataset. (a) visualized
the Drishti client; (b) visualized the Acrima client; (c) visualized the Rim client; (d) visualized the
Refuge client; (e) visualized the server distilled data.

Figure 13: (a)-(f) visualizes the distailled images for the first six clients of CIFAR10C. (g) visualizes
the global distilled images.

E.3 VISUALIZATION OF THE HETEROGENEITY OF THE DATASETS

E.3.1 DIGITS DATASET

f §'N

(a) MNIST (b) SVHN (c) USPS (d) SynthDigits (e) MNIST-M

Mt e e e

Figure 14: Histogram for the frequency of each RGB value in original DIGITS. The red bar
represents the count for R; the green bar represents the frequency of each pixel for G; the blue bar
represents the frequency of each pixel for B. One can observe the distributions are very different.
Note that figure (a) and figure (c) are both greyscale images with most pixels lying in 0 and 255.
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Figure 15: Histogram for the frequency of each RGB value in original RETINA. The red bar

represents the count for R; the green bar represents the frequency of each pixel for G; the blue bar
represents the frequency of each pixel for B.

E.3.2 RETINA DATASET

E.3.3 CIFAR10C DATASET

() (b) (©)

() © ®
Figure 16: Histogram for the frequency of each RGB value in the first six clients of original

CIFAR1OC. The red bar represents the count for R; the green bar represents the frequency of each
pixel for G; the blue bar represents the frequency of each pixel for B.

E.4 MODEL ARCHITECTURE

For our benchmark experiments, we use ConvNet to both distill the images and train the classifier.
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Table 10: ResNet 18 architecture. For the convolutional layer (Conv2D), we list parameters with a
sequence of input and output dimensions, kernel size, stride, and padding. For the max pooling layer
(MaxPool2D), we list kernel and stride. For a fully connected layer (FC), we list input and output
dimensions. For the BatchNormalization layer (BN), we list the channel dimension.

Layer Details
1 Conv2D(3, 64,7, 2, 3), BN(64), ReLU
2 Conv2D(64, 64, 3, 1, 1), BN(64), ReLU
3 Conv2D(64, 64, 3, 1, 1), BN(64)
4 Conv2D(64, 64, 3, 1, 1), BN(64), ReLU
5 Conv2D(64, 64, 3, 1, 1), BN(64)
6 Conv2D(64, 128, 3, 2, 1), BN(128), ReLU
7 Conv2D(128, 128, 3, 1, 1), BN(64)
8 Conv2D(64, 128, 1, 2, 0), BN(128)
9 Conv2D(128, 128, 3, 1, 1), BN(128), ReLU
10 Conv2D(128, 128, 3, 1, 1), BN(64)
11 Conv2D(128, 256, 3, 2, 1), BN(128), ReLU
12 Conv2D(256, 256, 3, 1, 1), BN(64)
13 Conv2D(128, 256, 1, 2, 0), BN(128)
14 Conv2D(256, 256, 3, 1, 1), BN(128), ReLU
15 Conv2D(256, 256, 3, 1, 1), BN(64)
16 Conv2D(256, 512, 3, 2, 1), BN(512), ReLU
17 Conv2D(512, 512, 3, 1, 1), BN(512)
18 Conv2D(256, 512, 1, 2, 0), BN(512)
19 Conv2D(512, 512, 3, 1, 1), BN(512), ReLU
20 Conv2D(512, 512, 3, 1, 1), BN(512)
21 AvgPool2D
22 FC(512, num_class)

Table 11: ConvNet architecture. For the convolutional layer (Conv2D), we list parameters with a
sequence of input and output dimensions, kernel size, stride, and padding. For the max pooling layer
(MaxPool2D), we list kernel and stride. For a fully connected layer (FC), we list the input and output
dimensions. For the GroupNormalization layer (GN), we list the channel dimension.

Layer Details

1 Conv2D(3, 128, 3, 1, 1), GN(128), ReLU, AvgPool2d(2,2,0)
2 Conv2D(128, 118, 3, 1, 1), GN(128), ReLU, AvgPool2d(2,2,0)
3 Conv2D(128, 128, 3, 1, 1), GN(128), ReLU, AvgPool2d(2,2,0)
4 FC(1152, num_class)

E.5 TRAINING DETAILS

We provide detailed settings for experiments conducted in Table [I2 for DIGITS, Table [I3 for
CIFAR10C, and Table[I4 for RETINA. The experiments are run on NVIDIA GeForce RTX 3090

Graphics cards with PyTorch.
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Table 12: DIGITS settings for all federated learning, including the number of training and testing

examples, and local update epochs. Image per class is the number of distilled images used for
distribution matching only in FEDLGD. The image size is set to 28 x 28.

DataSets MNIST SVHN USPS SynthDigits MNIST-M
Number of clients 1 1 1 1 1
Number of Training Samples 60000 73257 7291 10000 10331
Number of Testing Samples 10000 26032 2007 2000 209
Image per Class 10,50 10,50 10,50 10,50 10,50
Local Update Epochs 12,5 1,2,5 1,2,5 12,5 1,2,5
Local Distillation Update Epochs | 50, 100, 200 50, 100, 200 50, 100, 200 50, 100, 200 50, 100, 200
global Distillation Update Epochs | 200, 500, 1000 200, 500, 1000 200, 500, 1000 200, 500, 1000 200, 500, 1000
A 10 10

10 10 10

Table 13: CIFARIOC settings for all federated learning, including the client ratio for training and

testing examples, and local update epochs. Image per class is the number of distilled images used for
distribution matching only in FEDLGD. The image size is set to 28 x 28.

o 2 5
Number of clients 57 57
Averaged Number of Training Samples 21790 15000
Standard Deviation of of Training Samples 6753 1453
Averaged Number of Testing Samples 2419 1666
Standard Deviation of Number of Testing Samples 742 165
Image per Class 10,50 10,50
Local Update Epochs 1,2,5 1,2,5
Local Distillation Update Epochs 50, 100, 200 50, 100, 200
global Distillation Update Epochs 200, 500, 1000 200, 500, 1000
A 1 1

Table 14: RETINA settings for all federated learning, including the number of training and testing

examples and local update epochs. Image per class is the number of distilled images used for
distribution matching only in FEDLGD. The image size is set to 96 x 96.

Datasets Drishti Acrima RIM Refuge
Number of clients 1 1 1 1
Number of Training Samples 82 605 385 1000
Number of Testing Samples 19 100 100 200
Image per class 10 10 10 10
Local Distillation Update Epochs 100 100 100 100
global Distillation Update Epochs 500 500 500 500
A 0.1 0.1 0.1 0.1
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E.6 MEMBERSHIP INFERENCE ATTACK

Studies show that neural networks are prone to suffer from several privacy attacks such as Membership
Inference Attacks (MIA) (Shokri et al., 2017). In MIA, the attackers have a list of query data, and the
purpose is to determine whether the query data belongs to the original training set. As discussed in
(Dong et al.| [2022; | Xiong et al.,|[2022), using distilled data to train a target model can defend against
multiple attacks up to a certain level. We will especially apply MIA to test whether our work can
defend against privacy attacks. In detail, we perform MIA directly on models trained with FedAvg
(using the original data set) and FEDLGD (using the synthetic dataset). We show the attack results in
Figure[E following the evaluation in (Carlini et al.| 2022a). If the ROC curve intersects with the
diagonal dashed line (representing a random membership classifier) or lies below it (indicating that
membership inference performs worse than random chance), it signifies that the approach provides
a stronger defense against membership inference compared to the method with a larger area under
the ROC curve. It can be observed that models trained with synthetic data exhibit ROC curves
that are more closely aligned with or positioned below the diagonal line, suggesting that attacking
membership becomes more challenging.
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Figure 17: MIA attack results on models trained with FedAvg (using original dataset) and FEDLGD
(using distilled virtual dataset). If the ROC curve is the same as the diagonal line, it means the
membership cannot be inferred. One can observe the ROC curve for the model trained with synthetic
data is closer to the diagonal line, which indicates the membership information is harder to be
inferred.

F OTHER HETEROGENEOUS FEDERATED LEARNING METHODS USED IN
COMPARISON

FL trains the central model over a variety of distributed clients that contain non-iid data. We detailed
each of the baseline methods we compared in Section 4] below.

FedAvg (McMahan et al.,2017) The most popular aggregation strategy in modern FL, Federated
Averaging (FedAvg) (McMabhan et al., 2017), averages the uploaded clients’ model as the updated

server model. Mathematically, the aggregation is represented as w't! = w! — n Y ic s, “f;‘ Aw! (Li

et al.,2021a). Because FedAVG is only capable of handling Non-IID data to a limited degree, current
FL studies proposed improvements in either local training or global aggregation based on it.

FedProx (Li et al.,2020a) FedProx improves local training by directly adding a Lo regularization
term, u, &||w — w'|[|* controlled by hyperparameter 1, in the local objection function to shorten the
distance between the server and the client distance. Namely, this regularization enforces the updated
model to be as close to the global optima as possible during aggregation. In our experiment, we
carefully tuned p to achieve the current results.
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FedNova (Wang et al.,|2020) FedNova aims to tackle imbalances in the aggregation stage caused
by different levels of training (e.g., a gap in local steps between different clients) before updating
from different clients. The idea is to make larger local updates for clients with deep level of local
training (e.g., a large local epoch). This way, FedNova scales and normalizes the clients’ model
before sending them to the global model. Specifically, it improves its objective from FedAvg to
witl = gt — s DT s~ IDUAwL 4o a1 1021 a).

n 1€St nT;

Scaffold (Karimireddy et al.,2020) Scaffold introduces variance reduction techniques to correct
the ‘clients drift’ caused by gradient dissimilarity. Specifically, the variance on the server side is
represented as v, and on the clients’ side is represented as v;. The local control variant is then
added as v; — v + ﬁ (w' — w?). At the same time, the Scaffold adds the drift on the client side as

w' = w' — n(A(wy; b) — v! + v) (Li et all2021a).

Virtual Homogeneous Learning (VHL) (Tang et al., [2022) VHL proposes to calibrate local
feature learning by adding a regularization term with global anchor for local training objectives
B y~p (o 0 (@), y) + E@y)~p,l(p o ¥(),y) + AEyd(Pi(4(x)|y), Pe(v(2)]y)). They the-
oretically and empirically show that adding the term can improve the FL performance. In the
implementation, they use untrained StyleGAN (Karras et al., 2019) to generate global anchor data
and leave it unchanged during training.

A comprehensive experimental study of FL can be found here (Li et al.,[2021a). Also, a survey of
heterogeneous FL is here (Zhu et al.| 2021).
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