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1. Introduction
Forecasting the future states of a system is a fun-

damental challenge in applied science and engineer-
ing, with applications as diverse as atmosphere and
ocean dynamics, astrophysics, biology, and finance,
to cite a few. Traditionally, this problem has been
approached using numerical methods that approxi-
mate the solution of the governing equations [1, 2, 3,
4, 5], thereby providing the future evolution of the
underlying system,
More recently, the emergence of machine learn-

ing (ML) has led to a paradigm shift in forecasting.
ML models learn complex patterns directly from
data, often without enforcing the underlying equa-
tions, providing an alternative to equation-based
models. ML models have demonstrated the abil-
ity to achieve accurate forecasts for both canonical
dynamical systems [6] and real-world applications,
such as weather [7, 8, 9, 10] and climate [11, 12, 13].
However, they often struggle to accurately capture
fine-scale structures in long-term predictions [14]
due to their known spectral bias. Additionally, they
may exhibit instability or unphysical behavior, lim-
iting their reliability in high-fidelity applications.
Several promising strategies have emerged to ad-

dress these challenges, including physics-informed
ML approaches [15], as well as explicit physical con-
straints that enforce the conservation of key physical
quantities [13]. Nevertheless, functioning as a black
box, determining whether the model forecasts ad-
here to established physical principles remains chal-
lenging. Commonly used evaluationmetrics primar-
ily measure the difference between predictions and
actual target values (e.g., mean squared error and its
variants [16, 17]), without assessing the fidelity of the
forecasts under other metrics.
An important aspect that is critically underex-

plored is the dynamical consistency of the fore-
casts. In this work, we focus on this latter aspect,
whereby we use dynamical indices (DI), namely in-
stantaneous dimension (d) and inverse persistence
(θ) derived fromdynamical systems theory [18] to as-
sess dynamical consistency of ML forecasts.
We analyze the dynamical differences in both

direct and recursive ML forecasts across widely
used model architectures, including Convolutional
Neural Networks (CNN), Long Short-Term Mem-
ory (LSTM) networks [19], Transformers [20, 21],
and Graph Neural Networks (GNNs) [22] for 3 syn-
thetic datasets Lorenz 63, Kuramoto–Sivashinsky
(KS) equation and Kolmogorov flow. Additionally,
for weather forecasting, we consider state-of-the-art

models, specifically the Transformer-based Pangu-
Weather [8] and the GNN-based GraphCast [7].
We show that d and θ are closely related to com-

monly used error measures, such as mean squared
error (MSE). Moreover, we propose d- and θ- based
error metrics, which provide complementary infor-
mation on the dynamical consistence of ML fore-
casts.

2. Results and discussion
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Fig. 1: Direct forecast error and dynamical proper-
ties of KS equation

For single-step forecasting, figure 1 presents an
overview of (a) the datasets and forecast samples,
(b) the d-θ phase space, and (c) the relationship be-
tween dynamical characteristics and MSE on the
KS equation dataset. Notably, we observe that MSE
tends to increase for high values of d and θ, indicat-
ing that greater dynamical complexity (high d) and
lower persistence (high θ) are strong predictors of
larger forecast errors. This trend also holds for other
standard error metrics, such as mean absolute error
(MAE) and root mean square error (RMSE), and ex-
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tends to the other datasets investigated. For recur-
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b. Recursive forecast attractor shape (KS, m=3)
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Fig. 2: The true and predicted dynamical phase
space for recursive forecasts

sive forecasting, Figure 2 illustrates the true and pre-
dicted states at different forecast timeswithin the dy-
namical phase space. Themean values of d and θ are
indicated in the plot, along with theWasserstein dis-
tance (WD), which quantifies the difference between
the true and predicted distributions. While the pre-
dicted d and θ closely resemble those of the true sys-
tem over short forecast periods, the error grows sig-
nificantly as the forecast horizon extends, indicat-
ing poor dynamical consistency. Furthermore, we
observe substantial variation across model architec-
tures. For instance, the GNN fails to preserve the
shape of attractor in dynamical phase space, after
forecast horizon reaches 1 LT.

3. Conclusion
In this work, we investigate the dynamical con-

sistency of ML forecasts, demonstrating that the dy-
namics of the underlying data is intrinsically linked
to the forecast errors. In particular, higher values of
d and θ are associatedwith increased forecast errors.
Moreover, we introduced error metrics based on d
and θ as a measure of dynamical consistency.
Our findings underscore the effectiveness of dy-

namical indices as diagnostic tools for ML forecasts,
complementing traditional error metrics such as
MAE, MSE, and RMSE. Our proposed approach ad-
vances the goal of better assessing the fidelity of ML
forecasts by providing error metrics from a dynami-
cal consistency perspective.

4. Data andmethods
4.1 Datasets description
Lorenz 63 system The Lorenz system is a well-

known chaotic dynamical system governed by the
set of ordinary differential equations given in Eq. 1

[23]

dx

dt
= σ(y − x)

dy

dt
= ρ(x− z)− y (1)

dz

dt
= xy − βz.

It is widely used as a benchmark for forecasting
tasks. The Lorenz 63 system is typically simulated
using the standard parameter values: σ = 10,
ρ = 28, β = 2.667.

Kuramoto–Sivashinsky equation The one-
dimensional (1D) Kuramoto–Sivashinsky (KS)
equation is a fourth-order partial differential
equation (PDE) of the form given in Eq. 2

ut + uux + uxx + uxxxx = 0, (2)

describing the evolution of a spatiotemporal system.
Here, u represents the observable, t denotes time,
and x is the spatial coordinate defined over [0, L).

Kolmogorov flow Kolmogorov flow is a 2D shear
flow governed by Navier-Stokes equations with peri-
odic Kolmogorov forcing, as shown in Eq. 3

ut + u · ∇u = −∇p+
1

Re
∇2u+ sin(ny)x̂ (3)

∇u = 0.

Here, u represents the observable, t denotes time, p
is the pressure, and sin(ny) represents the external
force at a given frequency.

Regional Weather The fifth-generation ECMWF
(European Centre for Medium-Range Weather Fore-
casts) atmospheric reanalysis (ERA5) [24] is used
as the ground truth. We consider the state-of-the-
art weather forecast models Pangu-Weather[8] and
GraphCast [7] trained on ERA5 data. Themodel fore-
casts are downloaded fromWeatherBench2 [25].

4.2 Dynamical indices
Dynamical indices offer a mathematically rigor-

ous and purely data-driven framework for analyz-
ing the local, instantaneous, and state-dependent
dynamical properties of complex systems [26]. This
framework includes two dynamical indices: (i) the
local dimension d, which provides information on
the system’s dynamical complexity, and (ii) θ, de-
scribing the clustering of recurring dynamical paths
around a certain state, which is also known as recip-
rocal of the local persistence time Θ = θ−1. For a
more detailed mathematical formulation, we refer
to [18].
Several works have shown that a specific com-

bination of d and θ can provide useful dynamical
and physical insights across various disciplines, in-
cluding atmospheric sciences [18, 27, 28], oceanog-
raphy [29], and fluid mechanics [30].
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