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Roadmap In the appendix, we present the complete version of our proposed algorithm
and main theorem. as well as rigorous proof. In Section A, we list our notations and some
widely-used mathematical results. In Section B we discuss coordinate-wise embedding – the
sketching technique we propose in this work. We present some commonly used sketching
matrix and their corresponding results. In Section C we discuss how to deal with the
matrix-vector multiplication bottleneck through sketching rigorously. We also present our
main Algorithm 3 and main Theorem D.1. In Section E, we move on to discuss how to deal
with the projection maintenance bottleneck through the lazy update and low-rank update.
In Section F, we present the strength of our approach compared to previous state-of-art
results. We discuss the benefits of being feasible and oblivious of our approach. In Section H,
we compare our sketching approach to the classical ”sketch and solve” approach and discuss
the reasons why the classical approach doesn’t work in our setting.

A Preliminaries

A.1 Notations

For notation convenience, we assume the number of variables n ≥ 10 and there is no
redundant constraints. In particular, this implies that the constraint matrix A is full rank
and n ≥ d.

For a positive integer n, let [n] denote the set {1, 2, · · · , n}.
For any function f , we define Õ(f) to be f · logO(1)(f). In addition to O(·) notation, for two
functions f, g, we use the shorthand f . g (resp. &) to indicate that f ≤ Cg (resp. ≥) for
some absolute constant C.

We use sinhx to denote ex−e−x
2 and coshx to denote ex+e−x

2 .

For vectors a, b ∈ Rn and accuracy parameter ε ∈ (0, 1), we use a ≈ε b to denote that
(1− ε)bi ≤ ai ≤ (1 + ε)bi,∀i ∈ [n]. Similarly, for any scalar t, we use a ≈ε t to denote that
(1− ε)t ≤ ai ≤ (1 + ε)t,∀i ∈ [n].

For a vector x ∈ Rn and s ∈ Rn, we use xs to denote a length n vector with the i-th coordinate
(xs)i is xi · si. Similarly, we extend other scalar operations to vector coordinate-wise.

Given vectors x, s ∈ Rn, we use X and S to denote the diagonal matrix of those two vectors.
We use X

S to denote the diagonal matrix given (XS )i,i = xi/si. Similarly, we extend other scalar

operations to diagonal matrix diagonal-wise. Note that matrix
√

X
S A
>(AX

S A
>)−1A

√
X
S is

an orthogonal projection matrix.

A.2 Inequalities

Lemma A.1. Let x and y are (possibly dependent) random variables such that |x| ≤ cx and
|y| ≤ cy almost surely. Then, we have

Var[xy] ≤ 2c2x ·Var[y] + 2c2y ·Var[x].

Proof. Recall that Var[xy] ≤ E[(xy − t)2] for any scalar t. Hence,

Var[xy] ≤ E[(xy −E[x] E[y])2] = E[(xy − xE[y] + xE[y]−E[x] E[y])2]

≤ 2 E[(xy − xE[y])2] + 2 E[(xE[y]−E[x] E[y])2]

≤ 2c2x ·Var[y] + 2c2y ·Var[x].

A.3 Probability tools

Lemma A.2 (Chernoff bound Chernoff (1952)). Let X =
∑n
i=1Xi, where Xi = 1 with

probability pi and Xi = 0 with probability 1−pi, and all Xi are independent. Let µ = E[X] =
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∑n
i=1 pi. Then

1. Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0 ;
2. Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2), ∀0 < δ < 1.

Lemma A.3 (Hoeffding bound Hoeffding (1963)). Let X1, · · · , Xn denote n independent
bounded variables in [ai, bi]. Let X =

∑n
i=1Xi, then we have

Pr[|X −E[X]| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Lemma A.4 (Bernstein inequality Bernstein (1924)). Let X1, · · · , Xn be independent zero-
mean random variables. Suppose that |Xi| ≤M almost surely, for all i. Then, for all positive
t,

Pr

[
n∑

i=1

Xi > t

]
≤ exp

(
− t2/2∑n

j=1 E[X2
j ] +Mt/3

)
.

We state Khintchine’s inequality

Lemma A.5 (Khintchine’s inequality, Khintchine (1923); Haagerup (1981)). Let σ1, · · · , σn
be i.i.d. sign random variables, and let z1, · · · , zn be real numbers. Then there are constants
C > 0 so that for all t > 0

Pr
[∣∣∣

n∑

i=1

ziσi

∣∣∣ ≥ t‖z‖2
]
≤ exp(−Ct2).

We state Hason-wright inequality here

Lemma A.6 (Hason-wright inequality Hanson & Wright (1971); Rudelson & Vershynin
(2013)). Let x ∈ Rn denote a random vector with independent entries xi with E[xi] = 0 and
|xi| ≤ K. Let A be an n× n matrix. Then, for every t ≥ 0,

Pr[|x>Ax−E[x>Ax]| > t] ≤ 2 · exp(−cmin{t2/(K4‖A‖2F ), t/(K2‖A‖)}).
Lemma A.7 (Lemma 1 on page 1325 of Laurent and Massart Laurent & Massart (2000)).
Let X ∼ X 2

k be a chi-squared distributed random variable with k degrees of freedom. Each
one has zero mean and σ2 variance. Then

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp(−t),

Pr[kσ2 −X ≥ 2
√
ktσ2] ≤ exp(−t).

Lemma A.8 (Tail bound for sub-exponential distribution Foss et al. (2011)). We say
X ∈ SE(σ2, α) with parameters σ > 0, α > 0 if:

E[eλX ] ≤ exp(λ2σ2/2), ∀|λ| < 1/α.

Let X ∈ SE(σ2, α) and E[X] = µ, then:

Pr[|X − µ| ≥ t] ≤ exp(−0.5 min{t2/σ2, t/α}).
Lemma A.9 (Matrix Chernoff bound Tropp (2011); Lu et al. (2013)). Let X be a finite set
of positive-semidefinite matrices with dimension d× d, and suppose that

max
X∈X

λmax(X) ≤ B.

Sample {X1, · · · , Xn} uniformly at random from X without replacement. We define µmin

and µmax as follows:

µmin := n · λmin( E
X∼X

[X]) and µmax := n · λmax( E
X∼X

[X]).

Then

Pr
[
λmin(

n∑

i=1

Xi) ≤ (1− δ)µmin

]
≤ d · exp(−δ2µmin/B) for δ ∈ [0, 1),

Pr
[
λmax(

n∑

i=1

Xi) ≥ (1 + δ)µmax

]
≤ d · exp (−δ2µmax/(4B)) for δ ≥ 0.
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A.4 Fast matrix multiplication

In this work, we use the following fast matrix multiplication results:

� Multiplication of two matrices of size n× n requires nω+o(1) running time, where
ω is the exponent of matrix multiplication. Current value of ω is roughly 2.373
Williams (2012); Le Gall (2014).

� Inverse of a matrix of size n× n also requires nω+o(1) running time.

� Multiplication of two matrices of size n × n and n × na requires n2+o(1) running
time if a ∈ [0, α), where α is the dual exponent of matrix multiplication. Current
value of α is roughly 0.314 Le Gall & Urrutia (2018).

ω(k)

k0

2

0.31389

2.37293

1

Figure 1: Current matrix multiplication time: the blue and green line represents current
running time ω(k) of multiplying matrices of size n×nk and nk×n for k ∈ [0, 1]: when k = 1,
multiplication of two square matrices needs roughly n2.373 running time; when k < 0.314,
multiplication needs n2+o(1) running time

B Sketching

In this section, we discuss the (α, β, δ)-coordinate wise embedding property we proposed in
this work through several commonly used sketching matrices.

We consider several standard sketching matrices:

1. Random Gaussian matrices.

2. Subsampled randomized Hadamard/Fourier transform matrices Lu et al. (2013).

3. AMS sketch matrices Alon et al. (1999), random {−1,+1} per entry.

4. Count-Sketch matrices Charikar et al. (2002), each column only has one non-zero
entry, and is −1,+1 half probability each.

5. Sparse embedding matrices Nelson & Nguyên (2013), each column only has s non-zero
entries, and each entry is − 1√

s
,+ 1√

s
half probability each.

6. Uniform sampling matrices.

We list the definitions and results of above sketching matrices for coordinate-wise embedding
in Table 3.
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Table 3: Roadmap of the results for coordinate-wise embedding

Sketching matrix Definition Expectation Variance Inner Product Concentration
Random Gaussian Definition B.2 Lemma B.11 Lemma B.13 Lemma B.18 Lemma B.24

SRHT Definition B.3 Lemma B.11 Lemma B.12 Lemma B.19 Lemma B.23
AMS Definition B.4 Lemma B.11 Lemma B.12 Lemma B.20 Lemma B.23

Count-sketch Definition B.5 Lemma B.11 Lemma B.14 Lemma B.21 Lemma B.25
Sparse embedding Definition B.6,B.7 Lemma B.11 Lemma B.15 Lemma B.22 Lemma B.28
Uniform sampling Definition B.8 Lemma B.11 Lemma B.16 Lemma B.29

B.1 Definition

Definition B.1 (k-wise independence). H = {h : [m]→ [l]} is a k-wise independent hash
family if ∀i1 6= i2 6= · · · 6= ik ∈ [n] and ∀j1, · · · , jk ∈ [l],

Pr
h∈H

[h(i1) = j1 ∧ · · · ∧ h(ik) = jk] =
1

lk
.

Definition B.2 (Random Gaussian matrix). We say R ∈ Rb×n is a random Gaussian
matrix if all entries are sampled from N (0, 1/b) independently.

Definition B.3 (Subsampled randomized Hadamard/Fourier transform matrix Lu et al.
(2013)). We say R ∈ Rb×n is a subsampled randomized Hadamard transform matrix5 if it is

of the form R =
√
n/bSHD, where S ∈ Rb×n is a random matrix whose rows are b uniform

samples (without replacement) from the standard basis of Rn, H ∈ Rn×n is a normalized
Walsh-Hadamard matrix, and D ∈ Rn×n is a diagonal matrix whose diagonal elements are
i.i.d. Rademacher random variables.

Definition B.4 (AMS sketch matrix Alon et al. (1999)). Let h1, h2, · · · , hb be b random
hash functions picking from a 4-wise independent hash family H = {h : [n]→ {− 1√

b
,+ 1√

b
}}.

Then R ∈ Rb×n is a AMS sketch matrix if we set Ri,j = hi(j).

Definition B.5 (Count-sketch matrix Charikar et al. (2002)). Let h : [n]→ [b] be a random
2-wise independent hash function and σ : [n]→ {−1,+1} be a random 4-wise independent
hash function. Then R ∈ Rb×n is a count-sketch matrix if we set Rh(i),i = σ(i) for all i ∈ [n]
and other entries to zero.

Definition B.6 (Sparse embedding matrix I Nelson & Nguyên (2013)). We say R ∈ Rb×n
is a sparse embedding matrix with parameter s if each column has exactly s non-zero elements
being ±1/

√
s uniformly at random, whose locations are picked uniformly at random without

replacement (and independent across columns) 6.

Definition B.7 (Sparse embedding matrix II Nelson & Nguyên (2013)). Let h : [n]× [s]→
[b/s] be a a ramdom 2-wise independent hash function and σ : [n]× [s]→ {−1, 1} be a 4-wise
independent. Then R ∈ Rb×n is a sparse embedding matrix II with parameter s if we set
R(j−1)b/s+h(i,j),i = σ(i, j)/

√
s for all (i, j) ∈ [n]× [s] and all other entries to zero.7

Definition B.8 (Uniform sampling matrix). We say R ∈ Rb×n is a uniform sampling

matrix if it is of the form R =
√
n/bSD, where S ∈ Rb×n is a random matrix whose rows

are b uniform samples (without replacement) from the standard basis of Rn, and D ∈ Rn×n
is a diagonal matrix whose diagonal elements are i.i.d. Rademacher random variables.

B.2 Coordinate wise embedding

We define coordinate-wise embedding as follows

5In this case, we require logn to be an integer.
6For our purposes the signs need only be O(log d)-wise independent, and each column can be

specified by a O(log d)-wise independent permutation, and the seeds specifying the permutations in
different columns need only be O(log d)-wise independent.

7This definition has the same behavior as sparse embedding matrix I for our purpose.
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Definition B.9 ((α, β, δ)-coordinate wise embedding). We say a randomized matrix R ∈
Rb×n satisfying (α, β, δ)-coordinate wise embedding if

1. E
R∼Π

[g>R>Rh] = g>h,

2. E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
α

b
‖g‖22‖h‖22,

3. Pr
R∼Π

[
|g>R>Rh− g>h| ≥ β√

b
‖g‖2‖h‖2

]
≤ δ.

Remark B.10. Given a randomized matrix R ∈ Rb×n satisfying (α, β, δ)-coordinate wise
embedding and any orthogonal projection P ∈ Rn×n, above definition implies

1. E
R∼Π

[PR>Rh] = Ph,

2. E
R∼Π

[(PR>Rh)2
i ] ≤ (Ph)2

i +
α

b
‖h‖22,

3. Pr
R∼Π

[
|(PR>Rh)i − (Ph)i| ≥

β√
b
‖h‖2

]
≤ δ.

since ‖P‖2 ≤ 1 implies ‖Pi,:‖2 ≤ 1 for all i ∈ [n].

B.3 Expectation and variance

Lemma B.11. Let R ∈ Rb×n denote any of the random matrix in Definition B.2, B.3, B.4,
B.6, B.7, B.8. Then for any fixed vector h ∈ Rn and any fixed vector g ∈ Rn, the following
properties hold:

E
R∼Π

[g>R>Rh] = g>h

Proof.

E
R∼Π

[g>R>Rh] = g> E
R∼Π

[R>R]h = g>Ih = g>h.

Lemma B.12. Let R ∈ Rb×n denote a subsampled randomized Hadamard transform or
AMS sketch matrix as in Definition B.3, B.4. Then for any fixed vector h ∈ Rn and any
fixed vector g ∈ Rn, the following properties hold:

E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
2

b
‖g‖22 · ‖h‖22.

Proof. If Ea[a] = b, it is easy to see that

E
a

[(a− b)2] = E
a

[a2 − 2ab+ b2] = E
a

[a2 − b2]

We can rewrite it as follows:

E
R∼Π

[(g>R>Rh)2 − (g>h)2] = E
R∼Π

[(g>(R>R− I)h)2],

It can be bounded as follows:

E
R∼Π

[(g>(R>R− I)h)2]

= E
R∼Π



(

b∑

k=1

(Rg)k(Rh)k − g>h
)2



= E
R∼Π







b∑

k=1

n∑

i=1

Rk,igi ·
∑

j∈[n]\{i}
Rk,jhj




2


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= E
R∼Π






b∑

k=1

n∑

i=1

Rk,igi ·
∑

j∈[n]\{i}
Rk,jhj


 ·




b∑

k′=1

n∑

i′=1

Rk′,i′gi′ ·
∑

j′∈[n]\{i′}
Rk′,j′hj′






= E
R∼Π






b∑

k=1

n∑

i=1

R2
k,ig

2
i ·

∑

j∈[n]\{i}
R2
k,jh

2
j


+




b∑

k=1

n∑

i=1

R2
k,igihi ·

∑

j∈[n]\{i}
R2
k,jgjhj






=
1

b




n∑

i=1

g2
i

∑

j∈[n]\{i}
h2
j


+

1

b




n∑

i=1

gihi
∑

j∈[n]\{i}
gjhj




≤ 2

b
‖g‖22‖h‖22,

where the second step follows from R2
k,i = 1/b, ∀k, i ∈ [b]× [n], the forth step follows from

E[Rk,iRk,jRk′,i′Rk′,j′ ] 6= 0 only if i = i′, j = j′, k = k′ or i = j′, j = i′, k = k′, the fifth step
follows from Rk,i and Rk,j are independent if i 6= j and R2

k,i = R2
k,j = 1/b, and the last step

follows from Cauchy-Schwartz inequality.

Therefore,

E
R∼Π

[(g>R>Rh)2 − (g>h)2] = E
R∼Π

[(g>(R>R− I)h)2] ≤ 2

b
‖g‖22‖h‖22.

Lemma B.13. Let R ∈ Rb×n denote a random Gaussian matrix as in Definition B.2. Then
for any fixed vector h ∈ Rn and any fixed vector g ∈ Rn, the following properties hold:

E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
3

b
‖g‖22 · ‖h‖22.

Proof. Note

E
R∼Π

[(g>R>Rh)2]

= E
R∼Π







b∑

k=1

n∑

i=1

Rk,igi ·
n∑

j=1

Rk,jhj




2



= E
R∼Π






b∑

k=1

n∑

i=1

Rk,igi ·
n∑

j=1

Rk,jhj


 ·




b∑

k′=1

n∑

i′=1

Rk′,i′gi′ ·
n∑

j′=1

Rk′,j′hj′






= E
R∼Π

[



b∑

k=1

∑

k′∈[b]\{k}

n∑

i=1

n∑

i′=1

R2
k,iR

2
k′,i′gihigi′hi′


+

(
b∑

k=1

n∑

i=1

R4
k,ig

2
i h

2
i

)

+




b∑

k=1

n∑

i=1

∑

j∈[n]\{i}
R2
k,iR

2
k,jg

2
i h

2
j


+




n∑

k=1

n∑

i=1

n∑

i′∈[n]\{i}
R2
k,iR

2
k,i′gihigi′hi′




+




b∑

k=1

n∑

i=1

∑

j∈[n]\{i}
R2
k,iR

2
k,jgihjgjhi



]

=
b− 1

b

n∑

i=1

n∑

i′=1

gihigi′hi′ +
3

b

n∑

i=1

g2
i h

2
i

+
1

b

n∑

i=1

∑

j∈[n]\[i]
g2
i h

2
j +

1

b

n∑

i=1

∑

i′∈[n]\[i]
gihigi′hi′ +

1

b

n∑

i=1

∑

j∈[n]\[i]
gihjgjhi

≤ (g>h)2 +
3

b
‖g‖22‖h‖22,
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where the third step follows from that for independent entries of a random Gaussian matrix,
E[Rk,iRk,jRk′,i′Rk′,j′ ] 6= 0 only if 1. k 6= k′, i = j, i′ = j′, or 2. k = k′, i = i′ = j = j′, or
3. k = k′, i = i′ 6= j = j′, or 4. k = k′, i = j 6= i′ = j′, or 5. k = k′, i = j′ 6= i′ = j, the
fourth step follows from E[R2

k,i] = 1/b and E[R4
k,i] = 3/b2, and the last step follows from

Cauchy-Schwartz inequality.

Lemma B.14. Let R ∈ Rb×n denote a count-sketch matrix as in Definition B.5. Then for
any fixed vector h ∈ Rn and any fixed vector g ∈ Rn, the following properties hold:

E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
3

b
‖g‖22‖h‖22.

Proof. Note

E
R∼Π

[(g>R>Rh)2]

= E
R∼Π







b∑

k=1

n∑

i=1

Rk,igi

n∑

j=1

Rk,jhj




2



= E
R∼Π






b∑

k=1

n∑

i=1

Rk,igi

n∑

j=1

Rk,jhj


 ·




b∑

k′=1

n∑

i′=1

Rk′,i′gi′
n∑

j′=1

Rk′,j′hj′






= E
R∼Π

[



b∑

k=1

∑

k′∈[b]\{k}

n∑

i=1

n∑

i′∈[n]\{i}
R2
k,iR

2
k′,i′gihigi′hi′


+

(
b∑

k=1

n∑

i=1

R4
k,ig

2
i h

2
i

)

+




b∑

k=1

n∑

i=1

∑

j∈[n]\{i}
R2
k,iR

2
k,jg

2
i h

2
j


+




n∑

k=1

n∑

i=1

n∑

i′∈[n]\{i}
R2
k,iR

2
k,i′gihigi′hi′




+




b∑

k=1

n∑

i=1

∑

j∈[n]\{i}
R2
k,iR

2
k,jgihjgjhi



]

=
b− 1

b

n∑

i=1

∑

i′∈[n]\i
gihigi′hi′ +

n∑

i=1

g2
i h

2
i

+
1

b

n∑

i=1

∑

j∈[n]\{i}
g2
i h

2
j +

1

b

n∑

i=1

∑

i′∈[n]\{i}
gihigi′hi′ +

1

b

n∑

i=1

∑

j∈[n]\{i}
gihjgjhi

≤ (g>h)2 +
3

b
‖g‖22‖h‖22,

where in the third step we are again considering what values of k, k′, i, i′, j, j′ that makes
E[Rk,iRk,jRk′,i′Rk′,j′ ] 6= 0. Since the hash function σ(·) of the count-sketch matrix is 4-wise
independent, ∀k, k′, when i 6= i′ 6= j 6= j′, or i = i′ = j 6= j′ (and the other 3 symmetric
cases), we have that E[Rk,iRk,jRk′,i′Rk′,j′ ] = 0. Since the count-sketch matrix has only one
non-zero entry in every column, when k 6= k′, if i = i′ or i = j′ or j = i′ or j = j′, we
also have E[Rk,iRk,jRk′,i′Rk′,j′ ] = 0. Thus we only need to consider the cases: 1. k 6= k′,
i = j 6= i′ = j′, or 2. k = k′, i = i′ = j = j′, or 3. k = k′, i = i′ 6= j = j′, or 4. k = k′,
i = j 6= i′ = j′, or 5. k = k′, i = j′ 6= i′ = j. And the fourth step follows from E[R2

k,i] = 1/b

and E[R4
k,i] = 1/b, and the last step follows from Cauchy-Schwartz inequality.

Lemma B.15. Let R ∈ Rb×n denote a sparse embedding matrix as in Definition B.6, B.7.
Then for any fixed vector h ∈ Rn and any fixed vector g ∈ Rn, the following properties hold:

2. E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
2

b
‖g‖22 · ‖h‖22.
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Proof. Note

E
R∼Π

[(g>R>Rh)2]

= E
R∼Π







b∑

k=1

n∑

i=1

Rk,igi

n∑

j=1

Rk,jhj




2



= E
R∼Π






b∑

k=1

n∑

i=1

Rk,igi

n∑

j=1

Rk,jhj


 ·




b∑

k′=1

n∑

i′=1

Rk′,i′gi′
n∑

j′=1

Rk′,j′hj′






= E
R∼Π

[



b∑

k=1

n∑

i=1

R2
k,ig

2
i

∑

j∈[n]\{i}
R2
k,jh

2
j


+




b∑

k=1

n∑

i=1

R2
k,igihi

∑

j∈[n]\{i}
R2
k,jgjhj




+


∑

k

∑

i 6=i′
R2
k,iR

2
k,i′gihigi′hi′


+

(∑

k

∑

i

R4
k,ig

2
i h

2
i

)
+


∑

k 6=k′

∑

i 6=i′
R2
k,iR

2
k′,i′gihigi′hi′




+


∑

k 6=k′

∑

i

R2
k,iR

2
k′,ig

2
i h

2
i



]

=
1

b

∑

i 6=j
g2
i h

2
j +

1

b

∑

i6=j
gihigjhj +

1

b

∑

i 6=i′
gihigi′hi′ +

1

s

∑

i

g2
i h

2
i +

b− 1

b

∑

i 6=i′
gihigi′hi′ +

s− 1

s

∑

i

g2
i h

2
i

≤ (g>h)2 +
2

b
‖g‖22‖h‖22,

where the third step follows from the fact that the sparse embedding matrix has independent
columns and s non-zero entry in every column, the fourth step follows from E[R2

k,i] = 1/b,

E[R4
k,i] = 1/(bs), and E[R2

k,iR
2
k′,i] = s(s−1)

b(b−1) · 1
s2 ,∀k 6= k′ and the last step follows from

Cauchy-Schwartz inequality.

Lemma B.16. Let R ∈ Rb×n denote a uniform sampling matrix as in Definition B.8. Then
for any fixed vector h ∈ Rn and any fixed vector g ∈ Rn, the following properties hold:

2. E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
n

b
‖g‖22‖h‖22.

Proof. Note

E
R∼Π

[(g>R>Rh)2]

= E
R∼Π







b∑

k=1

n∑

i=1

Rk,igi

n∑

j=1

Rk,jhj




2



= E
R∼Π






b∑

k=1

n∑

i=1

Rk,igi

n∑

j=1

Rk,jhj


 ·




b∑

k′=1

n∑

i′=1

Rk′,i′gi′
n∑

j′=1

Rk′,j′hj′






= E
R∼Π



(∑

k

∑

i

R4
k,ig

2
i h

2
i

)
+


∑

k 6=k′

∑

i 6=i′
R2
k,iR

2
k′,i′gihigi′hi′






=
n

b

∑

i

g2
i h

2
i +

(b− 1)n

(n− 1)b

∑

i6=i′
gihigi′hi′

≤ (g>h)2 +
n

b
‖g‖22‖h‖22,
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where the third step follows from the fact that the random sampling matrix has one non-zero
entry in every row, the fourth step follows from E[R2

k,iR
2
k′,i′ ] = n/((n−1)b2) for k 6= k′, i 6= i′

and E[R4
k,i] = n/b2.

Remark B.17. Lemma B.16 indicates that uniform sampling fails in bounding variance in
some sense, since the upper bound give here involves n.

B.4 Bounding inner product

Lemma B.18 (Gaussian). Let R ∈ Rb×n be a random Gaussian matrix (Definition B.2).
Then we have:

Pr
[

max
i6=j
|〈R∗,i, R∗,j〉| ≥

√
log(n/δ)√

b

]
≤ Θ(δ).

Proof. Note for i 6= j, R∗,i, R∗,j ∼ N (0, 1
b Ib) are two independent Gaussian vectors. Let

zk = Rk,iRk,j and z = 〈R∗,i, R∗,j〉. Then we have for any |λ| ≤ b/2,

E[eλzk ] =
1√

1− λ2/b2
≤ exp(λ2/b2),

where the first step follows from zk = 1
4 (Rk,i +Rk,j)

2 + 1
4 (Rk,i−Rk,j)2 = b

2 (Q1−Q2) where

Q1, Q2 ∼ χ2
1, and E[eλQ] = 1√

1−2λ
for any Q ∼ χ2

1.

This implies zk ∈ SE(2/b2, 2/b) is a sub-exponential random variable. Thus, we have

z =
∑b
k=1 zk ∈ SE(2/b, 2/b), by sub-exponential concentration Lemma A.8 we have

Pr[|z| ≥ t] ≤ 2 exp(−bt2/4)

for 0 < t < 1. Picking t =
√

log(n2/δ)/b, we have

Pr
[
|〈R∗,i, R∗,j〉| ≥

c
√

log(n/δ)√
b

]
≤ δ/n2.

Taking the union bound over all (i, j) ∈ [n]× [n] and i 6= j, we complete the proof.

Lemma B.19 (SRHT). Let R ∈ Rb×n be a subsample randomized Hadamard transform
(Definition B.3). Then we have:

Pr
[

max
i6=j
|〈R∗,i, R∗,j〉| ≥

√
log(n/δ)√

b

]
≤ Θ(δ).

Proof. For fixed i 6= j, let X = [R∗,i, R∗,j ] ∈ Rb×2. Then X>X =
∑b
k=1Gk, where

Gk = [Rk,i, Rk,j ]
>[Rk,i, Rk,j ] =

[
1
b Rk,iRk,j

Rk,iRk,j
1
b

]
.

Note the eigenvalues of Gk are 0 and 2
b and E[X>X] = b ·E[Gk] = I2 for all k ∈ [b]. Thus,

applying matrix Chernoff bound A.9 to X>X we have

Pr
[
λmax(X>X) ≤ 1− t

]
≤ 2 exp (−t2b/2) for t ∈ [0, 1), and

Pr
[
λmax(X>X) ≥ 1 + t

]
≤ 2 exp (−t2b/8) for t ≥ 0.

which implies the eigenvalues of X>X are between [1−t, 1+t] with probability 1−4 exp (− t2b8 ).

So the eigenvalues of X>X− I2 are between [−t, t] with probability 1−4 exp (− t2b8 ). Picking

t =
c
√

log(n/δ)√
b

, we have

Pr
[
‖X>X − I2‖ ≥

c
√

log(n/δ)√
b

]
≤ δ

n2
.
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Note

X>X − I2 =

[
0 〈R∗,i, R∗,j〉

〈R∗,i, R∗,j〉 0

]
,

whose spectral norm is |〈R∗,i, R∗,j〉|. Thus, we have

Pr
[
|〈R∗,i, R∗,j〉| ≥

c
√

log(n/δ)√
b

]
≤ δ/n2.

Taking a union bound over all pairs (i, j) ∈ [n]× [n] and i 6= j, we complete the proof.

Lemma B.20 (AMS). Let R ∈ Rb×n be a random AMS matrix (Definition B.4). Let
{σi, i ∈ [n]} be independent Rademacher random variables and R ∈ Rb×n with R∗,i =
σiR∗,i, ∀i ∈ [n]. Then we have:

Pr
[

max
i6=j
|〈R∗,i, R∗,j〉| ≥

√
log(n/δ)√

b

]
≤ Θ(δ).

Proof. Note for any fixed i 6= j, R∗,i and R∗,j are independent. By Hoeffding inequality
(Lemma A.3), we have

Pr
[
|〈R∗,i, R∗,j〉| ≥ t

]
≤ 2 exp

(
− 2t2
∑b
i=1( 1

b − (− 1
b ))2

)
≤ 2e−t

2b/2

Choosing t =
√

2 log(2n2/δ)/
√
b, we have

Pr
[
|〈R∗,i, R∗,j〉| ≥

√
2 log(2n2/δ)/

√
b
]
≤ δ

n2
.

Taking a union bound over all pairs (i, j) ∈ [n]× [n] and i 6= j, we complete the proof.

Lemma B.21 (Count-Sketch). Let R ∈ Rb×n be a count-sketch matrix (Definition B.5).
Let {σi, i ∈ [n]} be independent Rademacher random variables and R ∈ Rb×n with R∗,i =
σiR∗,i, ∀i ∈ [n]. Then we have:

max
i 6=j
|〈R∗,i, R∗,j〉| ≤ 1.

Proof. Directly follow the definition of count-sketch matrices.

Lemma B.22 (Sparse embedding). Let R ∈ Rb×n be a sparse embedding matrix with
parameter s (Definition B.6 and B.7). Let {σi, i ∈ [n]} be independent Rademacher random
variables and R ∈ Rb×n with R∗,i = σiR∗,i, ∀i ∈ [n]. Then we have:

Pr
[

max
i 6=j
|〈R∗,i, R∗,j〉| ≥

c
√

log(n/δ)√
s

]
≤ Θ(δ).

Proof. Note for fixed i 6= j, R∗,i and R∗,j are independent. Assume R∗,i and R∗,j has u
non-zero elements at the same positions, where 0 ≤ u ≤ s, then by Hoeffding inequality
(Lemma A.3), we have

Pr[|〈R∗,i, R∗,j〉| ≥ t] ≤ 2 exp

(
− 2t2∑u

i=1( 1
s − (− 1

s ))2

)
≤ 2 exp(−t2s2/(2u)) (9)

Let t =
√

(2u/s2) log(2n2/δ), we have

Pr
[
|〈R∗,i, R∗,j〉| ≥

√
2s−1 log(2n2/δ)

]
≤ Pr

[
|〈R∗,i, R∗,j〉| ≥

√
2us−2 log(2n2/δ)

]

≤ δ/n2 (10)

since u ≤ s. By taking a union bound over all (i, j) ∈ [n]× [n] and i 6= j, we complete the
proof.
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B.5 Infinite norm bound

Lemma B.23 (SRHT and AMS). Let R ∈ Rb×n denote a subsample randomized Hadamard
transform (Definition B.3) or AMS sketching matrix (Definition B.4). Then for any fixed
vector h ∈ Rn and any fixed vector g ∈ Rn, the following properties hold:

Pr
R∼Π

[
|(g>R>Rh)− (g>h)| > log1.5(n/δ)√

b
‖g‖2‖h‖2

]
≤ Θ(δ).

Proof. We can rewrite (g>R>Rh)− (g>h) as follows:,

(g>R>Rh)− (g>h) =
n∑

i=1

n∑

j∈[n]\i
gihj〈R∗,i, R∗,j〉+

n∑

i=1

gihi(‖R∗,i‖22 − 1)

=
n∑

i=1

n∑

j∈[n]\i
gihj〈σiR∗,i, σjR∗,j〉.

where σi’s are independent Rademacher random variables and R∗,i = σiR∗,i, ∀i ∈ [n], and
the second step follows from ‖R∗,i‖22 = 1,∀i ∈ [n].

We define matrix A ∈ Rn×n and B ∈ Rn×n as follows:

Ai,j = gihj · 〈R∗,i, R∗,j〉, ∀i ∈ [n], j ∈ [n]

Bi,j = gihj ·max
i′ 6=j′

|〈R∗,i′ , R∗,j′〉| ∀i ∈ [n], j ∈ [n]

We define A◦ ∈ Rn×n to be the matrix A ∈ Rn×n with removing diagonal entries, applying
Hason-wright inequality (Lemma A.6), we have

Pr
σ

[|σ>A◦σ| ≥ τ ] ≤ 2 · exp(−cmin{τ2/‖A◦‖2F , τ/‖A◦‖})

We can upper bound ‖A◦‖ and ‖A◦‖F .

‖A◦‖ ≤ ‖A◦‖F
≤ ‖A‖F
≤ ‖B‖F
= ‖g‖2 · ‖h‖2 ·max

i 6=j
|〈R∗,i, R∗,j〉|

≤ ‖g‖2 · ‖h‖2 ·max
i 6=j
|〈R∗,i, R∗,j〉|.

where the forth step follows from B is rank-1.

For SRHT, note R has the same distribution as R. By Lemma B.19 (for AMS, we use
Lemma B.20) with probability at least 1−Θ(δ), we have :

max
i 6=j
|〈R∗,i, R∗,j〉| ≤

√
log(n/δ)√

b
.

Conditioning on the above event holds.

Choosing τ = ‖g‖2 · ‖h‖2 · log1.5(n/δ)/
√
b, we can show that

Pr

[∣∣∣(g>R>Rh)− (g>h)
∣∣∣ ≥ ‖g‖2 · ‖h‖2

log1.5(n/δ)√
b

]
≤ Θ(δ).

Thus, we complete the proof.

Lemma B.24 (Random Gaussian). Let R ∈ Rb×n denote a random Gaussian matrix
(Definition B.2). Then for any fixed vector h ∈ Rn and any fixed vector g ∈ Rn, the following
properties hold:

Pr
R∼Π

[
|(g>R>Rh)− (g>h)| > log1.5(n/δ)√

b
‖g‖2‖h‖2

]
≤ Θ(δ).
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Proof. We follow the same procedure as proving Lemma B.23.

We can rewrite (g>R>Rh)− (g>h) as follows:,

(g>R>Rh)− (g>h) =

n∑

i=1

n∑

j∈[n]\i
gihj〈R∗,i, R∗,j〉+

n∑

i=1

gihi(‖R∗,i‖22 − 1)

=
n∑

i=1

n∑

j∈[n]\i
gihj〈σiR∗,i, σjR∗,j〉+

n∑

i=1

gihi(‖R∗,i‖22 − 1). (11)

where σi’s are independent Rademacher random variables and R has the same distribution
as R.

To bound the first term
∑n
i=1

∑n
j∈[n]\i gihj〈σiR∗,i, σjR∗,j〉, we define matrix A ∈ Rn×n and

B ∈ Rn×n as follows:

Ai,j = gihj · 〈R∗,i, R∗,j〉, ∀i ∈ [n], j ∈ [n]

Bi,j = gihj ·max
i′ 6=j′

|〈R∗,i′ , R∗,j′〉| ∀i ∈ [n], j ∈ [n]

We define A◦ ∈ Rn×n to be the matrix A ∈ Rn×n with removing diagonal entries, applying
Hason-wright inequality (Lemma A.6), we have

Pr
σ

[|σ>A◦σ| ≥ τ ] ≤ 2 · exp(−cmin{τ2/‖A◦‖2F , τ/‖A◦‖})

We can upper bound ‖A◦‖ and ‖A◦‖F .

‖A◦‖ ≤ ‖A◦‖F
≤ ‖A‖F
≤ ‖B‖F
= ‖g‖2 · ‖h‖2 ·max

i 6=j
|〈R∗,i, R∗,j〉|

≤ ‖g‖2 · ‖h‖2 ·max
i 6=j
|〈R∗,i, R∗,j〉|.

where the forth step follows from B is rank-1.

Using Lemma B.18 with probability at least 1−Θ(δ), we have :

max
i 6=j
|〈R∗,i, R∗,j〉| ≤

√
log(n/δ)√

b
.

Conditioning on the above event holds.

Choosing τ = ‖g‖2 · ‖h‖2 · log1.5(n/δ)/
√
b, we can show that

Pr



∣∣∣
n∑

i=1

n∑

j∈[n]\i
gihj〈σiR∗,i, σjR∗,j〉

∣∣∣ ≥ ‖g‖2 · ‖h‖2
log1.5(n/δ)√

b


 ≤ Θ(δ). (12)

To bound the second term
∑n
i=1 gihi(‖R∗,i‖22 − 1), note that b‖R∗,i‖22 ∼ χ2

b for every i ∈ [n].
Applying Lemma A.7, we have

Pr

[∣∣∣‖R∗,i‖22 − 1
∣∣∣ ≥ c

√
log(n/δ)√

b

]
≤ δ/n.

which implies

Pr

[
n∑

i=1

gihi

∣∣∣‖R∗,i‖22 − 1
∣∣∣ ≥ ‖g‖2‖h‖2

c
√

log(n/δ)√
b

]
≤ Θ(δ). (13)

Plugging the bounds Eq. (12) and (13) back to Eq. (11), we complete the proof.

25



Under review as a conference paper at ICLR 2021

Lemma B.25 (Count-sketch). Let R ∈ Rb×n denote a count-sketch matrix (Definition B.5).
Then for any fixed vector h ∈ Rn and any fixed vector g ∈ Rn, the following properties hold:

Pr
R∼Π

[
|(g>R>Rh)− (g>h)| ≥ log(1/δ)‖g‖2‖h‖2

]
≤ Θ(δ).

Proof. We follow the identical procedure as proving Lemma B.23 to apply Hason-wright
inequality (Lemma A.6).

Then note Lemma B.21 shows

max
i6=j
|〈R∗,i, R∗,j〉| ≤ 1

Thus, choosing τ = c‖g‖2 · ‖h‖2 · log(1/δ), we can show that

Pr
[
|(g>R>Rh)− (g>h)| ≥ c‖g‖2 · ‖h‖2 log(1/δ)

]
≤ δ.

which completes the proof.

Lemma B.26 (Count-sketch 2). Let R ∈ Rb×n denote a count-sketch matrix (Definition B.5).
Then for any fixed vector h ∈ Rn and any fixed vector g ∈ Rn, the following properties hold:

Pr
R∼Π

[
|(g>R>Rh)− (g>h)| ≥ 1√

bδ
‖g‖2‖h‖2

]
≤ Θ(δ).

Proof. It is known that a count-sketch matrix with b = ε−2δ−1 rows satisfies the (ε, δ, 2)-JL
moment property (Definition G.6) (see e.g. Theorem 14 of Woodruff (2014)). Using Markov’s
inequality, (ε, δ, 2)-JL moment property implies

Pr
R∼Π

[
|(g>R>Rh)− (g>h)| ≥ ε‖g‖2‖h‖2

]
≤ Θ(δ),

where ε = 1√
bδ

.

Remark B.27. In LP solver, we need δ = 1/ poly(n), thus Lemma B.25 is stronger than
Lemma B.26.

Lemma B.28 (Sparse embedding). Let R ∈ Rb×n denote a sparse-embedding matrix
(Definition B.6 and B.7). Then for any fixed vector h ∈ Rn and any fixed vector g ∈ Rn, the
following properties hold:

3. Pr
R∼Π

[
|(g>R>Rh)− (g>h)| > log1.5(n/δ)√

s
‖g‖2‖h‖2

]
≤ Θ(δ).

Proof. We follow the identical procedure as proving Lemma B.23 to apply Hason-wright
inequality (Lemma A.6).

Then note Lemma B.22 shows with probability at least 1− δ we have

max
i 6=j
|〈R∗,i, R∗,j〉| ≤

c
√

log(n/δ)√
s

.

Conditioning on the above event holds, choosing τ = c′‖g‖2 · ‖h‖2 · log1.5(1/δ), we can show
that

Pr

[
|(g>R>Rh)− (g>h)| ≥ c′ log1.5(n/δ)√

s
‖g‖2 · ‖h‖2

]
≤ Θ(δ).

Thus, we complete the proof.

Lemma B.29 (Uniform sampling). Let R ∈ Rb×n denote a uniform sampling matrix
(Definition B.8). Then for any fixed vector h ∈ Rn and any fixed vector g ∈ Rn, the following
properties hold:

3.|(g>R>Rh)− (g>h)| ≤ (1 +
n

b
)‖g‖2‖h‖2

where I ⊂ [n] be the subset of indexes chosen by the uniform sampling matrix.
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Proof. We can rewrite (g>R>Rh)− (g>h) as follows:,

(g>R>Rh)− (g>h) =
n∑

i=1

n∑

j∈[n]\i
gihj〈R∗,i, R∗,j〉+

n∑

i=1

gihi(‖R∗,i‖22 − 1)

=
n

b

∑

i∈I
gihi −

n∑

i=1

gihi.

where the second step follows from the uniform sampling matrix has only one nonzero entry
in each row.

Let I ⊂ [n] be the subset chosen by the uniform sampling matrix, then ‖R∗,i‖22 = n/b for
i ∈ I and ‖R∗,i‖22 = 0 for i ∈ [n] \ I. So we have

|(g>R>Rh)− (g>h)| =
∣∣∣
∑

i∈I
gihi(

n

b
− 1)−

∑

i∈[n]\I
gihi

∣∣∣

≤ (1 +
n

b
)‖g‖2‖h‖2.

C Sketching Central Path Method

Algorithm 3 Our main algorithm

1: procedure Main(A, b, c, δ) . Theorem D.1

2: ε← 1
40000 logn , εmp ← 1

40000 , bsketch ← 1000ε
√
n log2 n

εmp
.

3: λ← 40 log n, δ ← min( δ2 ,
1
λ ), a← min(α, 2/3).

4: Modify the linear program and obtain an initial x and s according to Ye et al. (1994).
5: MaintainProjection mp
6: mp.Initialize(A, xs , εmp, a, bsketch) . Algorithm 5
7: t← 1 . Initialize t
8: while t > δ2/(32n3) do . We stopped once the precision is good
9: tnew ← (1− ε

3
√
n

)t
10: µ← xs

11: δµ ← ( t
new

t − 1)xs− ε
2 · tnew · ∇Φλ(µ/t−1)

‖∇Φλ(µ/t−1)‖2 . Φλ is defined in Lemma C.12

12: (xnew, snew)← StochasticStep(mp, x, s, δµ, b, ε) . Algorithm 4
13: if Φλ(µnew/tnew − 1) > n3 then . When potential function is large
14: (xnew, snew)← ClassicalStep(x, s, tnew) . Vaidya (1989)

15: mp.Initialize(A, x
new

snew , εmp, a) . Restart the data structure
16: end if
17: (x, s)← (xnew, snew), t← tnew

18: end while
19: return an approximate solution of the original linear program according to Ye et al.

(1994) .
20: end procedure

To decouple the proof in both parts, we will make the following assumption in first part. It
will be verified in the second part.

For simplicity, we assume the sketching matrix R ∈ Rb×n is of (α, β, δ)-coordinate wise
embedding with α = 1, β = log1.5(n/δ), which corresponds to the case of random Gaussian,
SRHT, AMS matrices. For other random matrices we discuss in the paper, the results
extends directly.

Assumption C.1. Assume the following for the input of the procedure StochasticStep
(see Algorithm 4):

� xs ≈0.1 t with t > 0.
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Algorithm 4

1: procedure StochasticStep(mp, x, s, δµ, b, ε) . Lemma C.2,C.3,C.8
2: w ← x

s , ṽ ← mp.Update(w) . Algorithm 5

3: x← x
√

ṽ
w , s← s

√
w
ṽ . It guarantees that x

s = ṽ and xs = xs

4: repeat
5: px, ps ← mp.Query( 1√

XS
δµ) . Algorithm 5

6: δ̃s ← S√
XS

ps . According to (16)

7: δ̃x ← X√
XS

px . According to (15)

8: until ‖s−1δ̃s‖∞ ≤ 1
100 logn and ‖x−1δ̃x‖∞ ≤ 1

100 logn

9: return (x+ δ̃x, s+ δ̃s)
10: end procedure

� mp.Update(w) outputs ṽ such that w ≈εmp
ṽ with εmp ≤ 1/40000.

� ‖δµ‖2 ≤ εt with 0 < ε < 1/(40000 log n).

� b ≥ 1000ε
√
n log2 n/εmp.

C.1 Bounding each quantity of stochastic step

First, we give an explicit formula for our step, which will be used in all subsequent calculations.

Specifically, we show our update can be viewed as an exact solution of the following linear
system:

Xδ̃s + Sδ̃x = δ̃µ,

Aδ̃x = 0, (14)

A>δ̃y + δ̃s = 0,

where

δ̃µ =
√
XSR>R

1√
XS

δµ.

Lemma C.2. The procedure StochasticStep(mp, x, s, δµ, b, ε) (see Algorithm 4) finds a

solution δ̃x, δ̃s ∈ Rn, δ̃y ∈ Rd to Eq. (14) by the formula

δ̃x =
X√
XS

(I − P )R>R
1√
XS

δµ (15)

δ̃s =
S√
XS

PR>R
1√
XS

δµ (16)

δ̃y = − (AS
−1
XA>)−1A

√
X

S
R>R

1√
XS

δµ (17)

and

P =

√
X

S
A>

(
A
X

S
A>
)−1

A

√
X

S
. (18)

Proof. For the first equation of Eq. (14), we multiply AS
−1

on both sides,

AS
−1
Xδ̃s +Aδ̃x = AS

−1
δ̃µ.
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Since the second equation gives Aδ̃x = 0, then we know that AS
−1
Xδ̃s = AS

−1
δ̃µ.

Multiplying AS
−1
X on both sides of the third equation of (14), we have

−AS−1
XA>δ̃y = AS

−1
Xδ̃s = AS

−1
δ̃µ.

Thus,

δ̃y = − (AS
−1
XA>)−1AS

−1
δ̃µ,

δ̃s = A>(AS
−1
XA>)−1AS

−1
δ̃µ,

δ̃x = S
−1
δ̃µ − S

−1
XA>(AS

−1
XA>)−1AS

−1
δ̃µ.

Recall we define P as Eq. (18) and δ̃µ as Eq. (6), then we have

δ̃s =
S√
XS
·

√
X

S
A>(A

X

S
A>)−1A

√
X

S
· 1√

XS
δ̃µ =

S√
XS

P
1√
XS

δ̃µ =
S√
XS

PR>R
1√
XS

δµ,

and

δ̃x = S
−1
δ̃µ −

X√
XS
·

√
X

S
A>(A

X

S
A>)−1

√
X

S
· 1√

XS
δ̃µ

=
X√
XS

(I − P )
1√
XS

δ̃µ =
X√
XS

(I − P )R>R
1√
XS

δµ,

and

δ̃y = − (AS
−1
XA>)−1A

√
X

S

1√
XS

δ̃µ = −(AS
−1
XA>)−1A

√
X

S
R>R

1√
XS

δµ,

which match Eq. (16), (15) and (17).

To see why the StochasticStep outputs δ̃x, δ̃s satisfying (16) and (15), we note that

px = (I −
√
Ṽ A>

(
A
X

S
A>
)−1

A
√
Ṽ )R>R

1√
XS

δµ = (I − P )R>R
1√
XS

δµ

ps =
√
Ṽ A>

(
A
X

S
A>
)−1

A
√
Ṽ R>R

1√
XS

δµ = PR>R
1√
XS

δµ

because of Theorem E.1.

Using the explicitly formula, we are ready to bound all quantities we needed in the following
two subsubsections.

C.2 Bounding δ̃s, δ̃x and δ̃µ

Lemma C.3. Under the Assumption C.1, the two vectors δ̃x and δ̃s found by
StochasticStep satisfy :

1. ‖E[s−1δ̃s]‖2 ≤ 2ε, ‖E[x−1δ̃x]‖2 ≤ 2ε, ‖E[s−1δ̃s]‖2 ≤ 2ε, ‖E[x−1δ̃x]‖2 ≤
2ε, ‖E[µ−1δ̃µ]‖2 ≤ 4ε.

2. Var[s−1
i δ̃s,i] ≤ 2ε2/b,Var[x−1

i δ̃x,i] ≤ 2ε2/b,Var[s−1
i δ̃s,i] ≤ 2ε2/b,Var[x−1

i δ̃x,i] ≤
2ε2/b,Var[µ−1

i δ̃µ,i] ≤ 8ε2/b.

3. ‖s−1δ̃s‖∞ ≤ ε, ‖s−1δ̃s‖∞ ≤ 2ε, ‖x−1δ̃x‖∞ ≤ ε, ‖x−1δ̃x‖∞ ≤ 2ε, ‖µ−1δ̃µ‖∞ ≤ 2ε.

Remark C.4. For notational simplicity, the E and Var in the proof are for the case without
resketching (Line 8). Since the all the additional terms due to resketching are polynomially
bounded and since we can set failure probability to an arbitrarily small inverse polynomial
(see Claim C.7), the proof does not change and the result remains the same.
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Claim C.5 (Part 1, bounding the `2 norm of expectation).

‖E[s−1δ̃s]‖2 ≤ 2ε, ‖E[x−1δ̃x]‖2 ≤ 2ε, ‖E[s−1δ̃s]‖2 ≤ 2ε, ‖E[x−1δ̃x]‖2 ≤ 2ε, ‖E[µ−1δ̃µ]‖2 ≤ 4ε.

Proof. For ‖s−1δ̃s‖∞, we consider the i-th coordinate of the vector

s−1
i δ̃s,i =

1√
xisi

n∑

j=1

(PR>R)i,j
δµ,j√
xjsj

.

Then, we have

E
[
s−1
i δ̃s,i

]
=

1√
xisi

n∑

j=1

(E[PR>R])i,j
δµ,j√
xjsj

=
1√
xisi

n∑

j=1

P i,j
δµ,j√
xjsj

, (19)

where the second step follows by E[R>R] = I. Since xs ≈0.1 t and ‖δµ‖2 ≤ εt, we have

‖ δµ√
xs
‖2 ≤ 1.1εt√

t
. Since P is an orthogonal projection matrix, we have ‖P δµ√

xs
‖2 ≤ ‖ δµ√

xs
‖2.

Putting all above facts together, we can show

∥∥∥E[s−1δ̃s]
∥∥∥

2

2
=

n∑

i=1


 1√

xisi

n∑

j=1

P i,j
δµ,j√
xjsj




2

=
n∑

i=1

1

xisi




n∑

j=1

P i,j
δµ,j√
xjsj




2

≤ 1

0.9t

n∑

i=1




n∑

j=1

P i,j
δµ,j√
xjsj




2

=
1

0.9t
‖P δµ√

xs
‖22

≤ 1

0.9t
‖ δµ√

xs
‖22

≤ (1.1)2

0.9t
· (εt)2

t

≤ 1.4ε2,

where the third step follows by xs = xs ≈0.1 t. It implies that
∥∥∥E[s−1δ̃s]

∥∥∥
2
≤ 1.2ε. (20)

Notice that the proof for x is identical to the proof for s because (I − P ) is also a projection
matrix. Further, since s ≈0.1 s and x ≈0.1 x by Assumption C.1, the next two inequalities in
Claim C.5 can be easily shown.

Now, we are ready to bound ‖E[µ−1δ̃µ]‖2 by

‖E[µ−1δ̃µ]‖2 = ‖E[s−1x−1(xδ̃s + sδ̃x)]‖2 ≤ ‖E[s−1δ̃s]‖2 + ‖E[x−1δ̃x]‖2 ≤ 4ε.

where the first step follows by µ = xs = xs and xδ̃s+sδ̃x = δ̃µ defined in (14), the second step

follows by triangle inequality, and last step follows by ‖E[s−1δ̃s]‖2, ‖E[x−1δ̃x]‖2 ≤ 2ε.

Claim C.6 (Part 2, bounding the variance per coordinate).

Var[s−1
i δ̃s,i] ≤ 2ε2/b,Var[x−1

i δ̃x,i] ≤ ε2/b,Var[s−1
i δ̃s,i] ≤ 2ε2/b,Var[x−1

i δ̃x,i] ≤ 2ε2/b,Var[µ−1
i δ̃µ,i] ≤ 8ε2/b.
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Proof. Consider the i-th coordinate of the vector

s−1
i δ̃s,i =

1√
xisi

(
PR>R

δµ√
xs

)
i
.

For variance of s−1
i δ̃s,i, we have

Var[s−1
i δ̃s,i] ≤ E[(s−1

i δ̃s,i)
2]−E[s−1

i δ̃s,i]
2

≤ 1

xisi

(
P

δµ√
xs

)2

i
+

1

xisi

‖ δµ√
xs
‖22

b
− 1

xisi

(
P

δµ√
xs

)2

i

≤ 1

xisi

‖ δµ√
xs
‖22

b

≤ 1.3

t2
‖δµ‖22
b

≤ 1.3ε2

b
, by xisi = xisi ≈1/10 t

where the second step follows by (1, log1.5(n/δ), δ)-coordinate wise embedding and Eq. (19),
the fourth step follows by xisi = xisi ≈0.1 t, and the last step follows by ‖δµ‖2 ≤ εt in
Assumption C.1.

The proof for the next three inequalities in Claim C.6 are identical, which are omit here.

For the variance of µ−1
i δ̃µ,i,

Var[µ−1
i δ̃µ,i] = Var[x−1

i s−1
i (xiδ̃s,i + siδ̃x,i)]

≤ 2 Var[x−1
i xis

−1
i δ̃s,i] + 2 Var[s−1

i six
−1
i δ̃x,i]

= 2 Var[s−1
i δ̃s,i] + 2 Var[x−1

i δ̃x,i]

≤ 8ε2/b.

where the first step follows by µ = xs = xs and xδ̃s + sδ̃x = δ̃µ defined in (14), the second

step follows by triangle inequality, and the last step follows by Var[s−1
i δ̃s,i],Var[x−1

i δ̃x,i] ≤
2ε2/b.

Claim C.7 (Part 3, bounding the probability of success). Let b ≥ 10 log3(2n2/δ). Without
resketching, the following holds with probability 1− δ.

‖s−1δ̃s‖∞ ≤ ε, ‖s−1δ̃s‖∞ ≤ 2ε, ‖x−1δ̃x‖∞ ≤ ε, ‖x−1δ̃x‖∞ ≤ 2ε, ‖µ−1δ̃µ‖∞ ≤ 2ε.

With resketching, it always holds.

Proof. Note by Eq. (19), we have

s−1
i δ̃s,i −E[s−1

i δ̃s,i] =
1√
xisi

((PR>R− P )
δµ√
xs

)i

Using `∞ bound in (1, log1.5(n/δ), δ)-coordinate wise embedding property, we have

Pr

[
|s−1
i δ̃s,i −E[s−1

i δ̃s,i]| ≥
1√
xisi

log1.5(n/δ)√
b

· ‖ δµ√
xs
‖2
]
≤ δ

As long as

b ≥ 10 log3(2n2/δ)

we have with probability 1− δ/2n,

|s−1
i δ̃s,i −E[s−1

i δ̃s,i]| ≤
1

0.9
√
t
· 0.5 · εt

0.9
√
t
≤ ε.
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Taking a union bound, we can show

‖s−1δ̃s‖∞ ≤ ε.
The next three inequalities can be shown in identical way. To show the last inequality, we
have

|µ−1
i δ̃µ,i| = |x−1

i s−1
i (xiδ̃s,i + siδ̃x,i)| = |s−1

i δ̃s,i|+ |x−1
i δ̃x,i| ≤ 2ε,

where the first step follows by µ = xs = xs and xδ̃s + sδ̃x = δ̃µ defined in (14), the second

step follows by triangle inequality, and the last step follows by ‖s−1δ̃s‖∞, ‖x−1δ̃x‖∞ ≤ ε.

C.3 Bounding µnew − µ

Lemma C.8. Let ε ≤ εmp and b ≥ √n. Under the Assumption C.1, the vector µnew
i

def
=

(xi + δ̃x,i)(si + δ̃s,i) satisfies

1. ‖E[µ−1(µnew − µ− δ̃µ)]‖2 ≤ 10εmp · ε and ‖E[µ−1(µnew − µ)]‖2 ≤ 5ε.

2. Var[µ−1
i µnew

i ] ≤ 50ε2/b for all i.
3. ‖µ−1(µnew − µ)‖∞ ≤ 3ε.

Claim C.9 (Part 1 of Lemma C.8).

‖E[µ−1(µnew − µ− δ̃µ)]‖2 ≤ 10εmp · ε, and ‖E[µ−1(µnew − µ)]‖2 ≤ 5ε.

Proof. We write

µnew = (x+ δ̃x)(s+ δ̃s) = µ+ xδ̃s + sδ̃x + δ̃xδ̃s = µ+ xδ̃s + sδ̃x︸ ︷︷ ︸
δ̃µ

+ (x− x)δ̃s + (s− s)δ̃x + δ̃xδ̃s︸ ︷︷ ︸
εµ

.

Taking the expectation on both sides, we have

E[µnew − µ− δ̃µ] = (x− x) E[δ̃s] + (s− s) E[δ̃x] + E[δ̃xδ̃s].

Hence, we have

‖µ−1 E[µnew − µ− δ̃µ]‖2
≤ ‖µ−1(x− x)s · s−1 E[δ̃s]‖2 + ‖µ−1(s− s)x · x−1 E[δ̃x]‖2 + ‖µ−1 E[δ̃xδ̃s]‖2
≤ ‖µ−1(x− x)s‖∞ · ‖s−1 E[δ̃s]‖2 + ‖µ−1(s− s)x‖∞ · ‖x−1 E[δ̃x]‖2 + ‖µ−1 E[δ̃xδ̃s]‖2
≤ εmp · ‖s−1 E[δ̃s]‖2 + εmp · ‖x−1 E[δ̃x]‖2 + ‖µ−1 E[δ̃xδ̃s]‖2
≤ 4εmp · ε+ ‖µ−1 E[δ̃xδ̃s]‖2, (21)

where the first step follows by triangle inequality, the second step follows by ‖ab‖2 ≤
‖a‖∞ · ‖b‖2, the third step follows by ‖µ−1(x − x)s‖∞ ≤ εmp and ‖µ−1(s − s)x‖∞ ≤ εmp

(since x ≈εmp
x, s ≈εmp

s), the last step follows by ‖E[s−1δ̃s]‖2 ≤ 2ε and ‖E[x−1δ̃x]‖2 ≤ 2ε
(Part 1 of Lemma C.3).

To bound the last term, note E[δ̃s] = δs and E[δ̃x] = δx, so we have

E[δ̃x,iδ̃s,i] = δx,iδs,i + E[(δ̃x,i − δx,i)(δ̃s,i − δs,i)].
Hence,

‖µ−1 E[δ̃xδ̃s]‖2 ≤ ‖µ−1δxδs‖2 +

(
n∑

i=1

(
E
[
x−1
i (δ̃x,i − δx,i) · s−1

i (δ̃s,i − δs,i)
])2
)1/2

≤ 4ε2 +
1

2

(
n∑

i=1

(
Var[x−1

i δ̃x,i] + Var[s−1
i δ̃s,i]

)2
)1/2
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≤ 4ε2 +
1

2

(
n∑

i=1

2(Var[x−1
i δ̃x,i])

2 + 2(Var[s−1
i δ̃s,i])

2

)1/2

≤ 4ε2 + 2
√
n · ε4/b2

≤ 4ε2 + 2ε2

≤ 6ε2, (22)

where the first step follows by triangle inequality, the second step follows by ‖µ−1δxδs‖2 ≤
‖x−1δx‖2 · ‖s−1δs‖2 ≤ 4ε2 (Part 1 of Lemma C.3) and 2ab ≤ a2 +b2, the third step follows by

(a+b)2 ≤ 2a2 +2b2, the fourth step follows by Var[x−1
i δ̃x,i] ≤ 2ε2/b and Var[s−1

i δ̃s,i] ≤ 2ε2/b
(Part 2 of Lemma C.3), the last step follows by b ≥ √n.

Combining (21) and (22), we have that

‖µ−1(E[µnew − µ− δ̃µ])‖2 ≤ 4εmp · ε+ ‖µ−1 E[δ̃xδ̃s]‖2
≤ 4εmp · ε+ 6ε2

≤ 10εmp · ε.
where we used ε ≤ εmp in Assumption C.1.

From Part 1 of Lemma C.3, we know that ‖µ−1 E[δ̃µ]‖2 ≤ 4ε. Thus using triangle inequality,
we know

‖µ−1(E[µnew − µ])‖2 ≤ 10εmp · ε+ 4ε ≤ 5ε.

Claim C.10 (Part 2 of Lemma C.8). Var[µ−1
i µnew

i ] ≤ 50ε2/b for all i.

Proof. Recall that

µnew = µ+ δ̃µ + (x− x)δ̃s + (s− s)δ̃x + δ̃xδ̃s.

We can upper bound the variance of µ−1
i µnew

i by,

Var[µ−1
i µnew

i ] ≤ 4 Var[µ−1
i δ̃µ,i] + 4 Var[µ−1

i (xi − xi)δ̃s,i] + 4 Var[µ−1
i (si − si)δ̃x,i] + 4 Var[µ−1

i δ̃x,iδ̃s,i]

≤ 32
ε2

b
+ 4

ε2

b
+ 4

ε2

b
+ Var[µ−1

i δ̃x,iδ̃s,i]

= 40
ε2

b
+ Var[x−1

i δ̃x,i · s−1
i δ̃s,i]

≤ 40
ε2

b
+ 2 Sup[(x−1

i δ̃x,i)
2] ·Var[s−1

i δ̃s,i] + 2 Sup[(y−1
i δ̃y,i)

2] ·Var[x−1
i δ̃x,i]

≤ 40
ε2

b
+ 2 · (2ε)2 · ε

2

b
+ 2 · (2ε)2 · ε

2

b

≤ 50
ε2

b
.

where the first step follows by Cauchy-Schwartz inequality, the second step follows by

Var[µ−1
i δ̃µ,i] ≤ 8ε2/b (Part 2 of Lemma C.3) and

Var[µ−1
i (xi − xi)δ̃s,i] = Var[x−1

i (xi − xi)s−1
i δ̃s,i] ≤ 2ε2mp Var[s−1

i δ̃s,i] ≤ ε2/b.

and a similar inequality for Var[µ−1
i (si − si)δ̃x,i] ≤ ε2/b, the third step follows by µ = xs,

the fourth step follows by Var[xy] ≤ 2 Sup[x2] Var[y] + 2 Sup[y2] Var[x] (Lemma A.1) with
Sup denoting the deterministic maximum of the random variable, the fifth step follows by

Var[s−1
i δ̃s,i] ≤ 2ε2/b and Var[x−1

i δ̃x,i] ≤ 2ε2/b (Part 2 of Lemma C.3).

Claim C.11 (Part 3 of Lemma C.8). ‖µ−1(µnew − µ)‖∞ ≤ 3ε.
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Proof. We again note that

µnew = µ+ δ̃µ + (x− x)δ̃s + (s− s)δ̃x + δ̃xδ̃s.

Hence, we have

|µ−1
i (µnew

i − µi − δ̃µ,i)|
≤ |(x− x)iµ

−1
i δ̃s,i|+ |(s− s)iµ−1

i δ̃x,i|+ |µ−1
i δ̃x,iδ̃s,i|

= |(x− x)ix
−1
i | · |s−1

i δ̃s,i|+ |(s− s)is−1
i | · |x−1

i δ̃x,i|+ |x−1
i δ̃x,i| · |s−1

i δ̃s,i|
≤ εmp|s−1

i δ̃s,i|+ εmp|x−1
i δ̃x,i|+ |s−1

i δ̃s,i||x−1
i δ̃x,i|

≤ εmp · (2ε) + εmp · (2ε) + (2ε)2

≤ ε,

where the first step follows by triangle inequality, the second step follows by µi = xisi, the

third step follows by x ≈εmp x and s ≈εmp s, the fifth step follows by |s−1
i δ̃s,i| ≤ 2ε and

|x−1
i δ̃x,i| ≤ 2ε (Part 3 of Lemma C.3).

Since we know that |µ−1
i δ̃µ,i| ≤ 2ε (Part 3 of Lemma C.3), we have

|µ−1
i (µnew

i − µi)| ≤ ε+ 2ε ≤ 3ε.

C.4 Stochastic central path

First, we give some basic properties of Φλ.

Lemma C.12 (Basic properties of potential function, Cohen et al. (2019b)). Let Φλ(r) =∑n
i=1 cosh(λri) for some λ > 0. For any vector r ∈ Rn,

1. For any vector ‖v‖∞ ≤ 1/λ, we have that

Φλ(r + v) ≤ Φλ(r) + 〈∇Φλ(r), v〉+ 2‖v‖2∇2Φλ(r).

2. ‖∇Φλ(r)‖2 ≥ λ√
n

(Φλ(r)− n).

3.
(∑n

i=1 λ
2 cosh2(λri)

)1/2 ≤ λ√n+ ‖∇Φλ(r)‖2.

The following lemma shows that the potential Φ is decreasing in expectation when Φ is large.

Lemma C.13. Let n ≥ b ≥ √n and λε ≤ 1/1000. Under the Assumption C.1, we have

E

[
Φλ

(
µnew

tnew
− 1

)]
≤ Φλ

(µ
t
− 1
)
− λε

15
√
n

(
Φλ

(µ
t
− 1
)
− 10n

)
.

Proof. Let εµ = µnew − µ− δ̃µ. From the definition, we have

µnew − tnew = µ+ δ̃µ + εµ − tnew,

which implies

µnew

tnew
− 1 =

µ

tnew
+

1

tnew
(δ̃µ + εµ)− 1

=
µ

t

t

tnew
+

1

tnew
(δ̃µ + εµ)− 1

=
µ

t
+
µ

t
(
t

tnew
− 1) +

1

tnew
(δ̃µ + εµ)− 1

=
µ

t
− 1 +

µ

t
(
t

tnew
− 1) +

1

tnew
(δ̃µ + εµ)

︸ ︷︷ ︸
v

. (23)
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Let v = µ
t ( t
tnew − 1) + 1

tnew (δ̃µ + εµ), we have

E[v] =
µ

t
(
t

tnew
− 1) +

1

tnew
(E[δ̃µ] + E[εµ])

=
µ

t
(
t

tnew
− 1) +

1

tnew
(δµ + E[εµ])

=
µ

t
(
t

tnew
− 1) +

1

tnew

((
(
tnew

t
− 1)µ− ε

2
tnew ∇Φλ(µ/t− 1)

‖∇Φλ(µ/t− 1)‖2

)
+ E[εµ]

)

= − ε

2

∇Φλ(µ/t− 1)

‖∇Φλ(µ/t− 1)‖2
+

1

tnew
E[εµ], (24)

where the third step follows by definition of δµ defined in Algorithm 3.

Next, we bound the ‖v‖∞ as follows:

‖v‖∞ ≤
∥∥∥∥
µ

t
(
t

tnew
− 1)

∥∥∥∥
∞

+

∥∥∥∥
1

tnew
(δ̃µ + εµ)

∥∥∥∥
∞

≤ ε√
n

+
‖µ−1(µnew − µ)‖∞

0.9

≤ ε√
n

+
3ε

0.9

≤ 4ε

≤ 1

λ
.

where the second step follows by definition of tnew defined in Algorithm 3 and Part 1 of
Assumption C.1, the third step follows by Part 3 of Lemma C.8, and the last step follows by
ε ≤ 1

4λ .

Since ‖v‖∞ ≤ 1
λ , we can apply Part 1 of Lemma C.12 and get

E

[
Φλ

(
µnew

tnew
− 1

)]
= E[Φλ(µ/t+ v − 1)]

≤ Φλ(µ/t− 1) + 〈∇Φλ(µ/t− 1),E[v]〉+ 2 E[‖v‖2∇2Φλ(µ/t−1)]

= Φλ(µ/t− 1)− ε

2
‖∇Φλ(µ/t− 1)‖2 +

t

tnew
〈∇Φλ(µ/t− 1),E[t−1εµ]〉+ 2 E[‖v‖2∇2Φλ(µ/t−1)]

≤ Φλ(µ/t− 1)− ε

2
‖∇Φλ(µ/t− 1)‖2 +

t

tnew
‖∇Φλ(µ/t− 1)‖2 · ‖E[t−1εµ]‖2 + 2 E[‖[v]‖2∇2Φλ(µ/t−1)]

≤ Φλ(µ/t− 1)− ε

2
‖∇Φλ(µ/t− 1)‖2 + 10εmp · ε‖∇Φλ(µ/t− 1)‖2 + 2 E[‖v‖2∇2Φλ(µ/t−1)],

where the third step follows by substituting E[v] by (24), the fourth step follows by 〈a, b〉 ≤
‖a‖2 · ‖b‖2, the fifth step follows by ‖E[t−1εµ]‖2 ≤ 10εmp · ε (from Part 1 of Lemma C.8 and
µ ≈0.1 t).

To bound the last term E[‖v‖2∇2Φλ(µ/t−1)], we first bound E[v2
i ],

E[v2
i ] ≤ 2 E

[(
µi
t

(
t

tnew
− 1)

)2
]

+ 2 E

[(
1

tnew
(δ̃µ,i + δ̂µ,i)

)2
]

≤ ε2/n+ 2.5 E
[
((µnew

i − µi)/µi)2
]

= ε2/n+ 2.5 Var[(µnew
i − µi)/µi] + 2.5(E[(µnew

i − µi)/µi])2

≤ ε2/n+ 125ε2/b+ 2.5(E[(µnew
i − µi)/µi])2

≤ 126ε2/b+ 3(E[(µnew
i − µi)/µi])2, (25)

where the first step follows by definition of v (see Eq. (23)), the second step follows by
µ ≈0.1 t and (t/tnew − 1)2 ≤ ε2/(4n), the third step follows by E[x2] = Var[x] + (E[x])2, the
fourth step follows by Part 2 of Lemma C.8, and the last step follows by n ≥ b.
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Now, we are ready to bound E[‖v‖2∇2Φλ(µ/t−1)]

E[‖v‖2∇2Φλ(µ/t−1)]

= λ2
n∑

i=1

E[Φλ(µ/t− 1)iv
2
i ]

≤ λ2
n∑

i=1

Φλ(µ/t− 1)i · (126ε2/b+ 3(E[(µnew
i − µi)/µi])2)

= 126
λ2ε2

b
Φλ(µ/t− 1) + 3λ2

n∑

i=1

Φλ(µ/t− 1)i · (E[(µnew
i − µi)/µi])2

≤ 126
λ2ε2

b
Φλ(µ/t− 1) + 3λ

(
n∑

i=1

λ2Φλ(µ/t− 1)2
i

)1/2

· ‖E[µ−1(µnew − µ)]‖24

≤ 126
λ2ε2

b
Φλ(µ/t− 1) + 3λ

(
λ
√
n+ ‖∇Φλ(µ/t− 1)‖2

)
· (5ε)2,

where the first step follows by defining Φλ(x)i = cosh(λxi), the second step follows from
Eq. (25), the fourth step follows from Cauchy-Schwarz inequality, the fifth step follows from
Part 3 of Lemma C.12 and the fact that ‖E[µ−1(µnew−µ)]‖24 ≤ ‖E[µ−1(µnew−µ)]‖22 ≤ (5ε)2

(Lemma C.8).

Plugging back, we have

E

[
Φλ

(
µnew

tnew
− 1

)]
= E[Φλ(µ/t+ v − 1)]

≤ Φλ(µ/t− 1)− (
ε

2
− 10εmp · ε)‖∇Φλ(µ/t− 1)‖2 + 252

λ2ε2

b
Φλ(µ/t− 1)

+ 150λ2ε2
√
n+ 150λε2‖Φλ(µ/t− 1)‖2

≤ Φλ(µ/t− 1)− ε

3
‖∇Φλ(µ/t− 1)‖2 + 252

λ2ε2

b
Φλ(µ/t− 1) + 150λ2ε2

√
n

≤ Φλ(µ/t− 1)− λε

3
√
n

(Φλ(µ/t− 1)− n) + 252
λ2ε2

b
Φλ(µ/t− 1) + 150λ2ε2

√
n

≤ Φλ(µ/t− 1)− λε

3
√
n

(Φλ(µ/t− 1)/5− 2n),

where the third step follows from 1000λε ≤ 1 and 1000εmp ≤ 1, the fourth step follows from
Part 2 of Lemma C.12, and the last step follows from b ≥ 1000

√
nλε.

As a corollary, we have the following:

Lemma C.14. During the Main algorithm, Assumption C.1 is always satisfied. Further-
more, the ClassicalStep happens with probability O( 1

n2 ) each step.

Proof. The second and the fourth assumptions simply follow from the choice of εmp and b.

Let Φ(k) be the potential at the k-th iteration of the Main. The ClassicalStep ensures
that Φ(k) ≤ n3 at the end of each iteration. By the definition of Φ and the choice of λ in
Main, we have that

∥∥∥xs
t
− 1
∥∥∥
∞
≤ ln(2n3)

λ
≤ 0.1.

This proves the first assumption xs ≈0.1 t with t > 0.

For the third assumption, we note that

‖δµ‖2 =

∥∥∥∥
(
tnew

t
− 1

)
xs− ε

2
· tnew · ∇Φλ(µ/t− 1)

‖∇Φλ(µ/t− 1)‖2

∥∥∥∥
2
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≤
∣∣∣∣
tnew

t
− 1

∣∣∣∣ ‖xs‖2 +
ε

2
tnew

≤ ε

3
√
n
· 1.1√nt+ 1.01 · ε

2
t ≤ εt,

where we used xs ≈0.1 t and the formula of tnew. Hence, we proved all assumptions in
Assumption C.1.

Now, we bound the probability that ClassicalStep happens. In the beginning of the Main,
Ye et al. (1994) is used to modify the linear program with parameter min( δ2 ,

1
λ ). Hence, the

initial point x and s satisfies xs ≈1/λ 1. Therefore, we have Φ(0) ≤ 10n. Lemma C.13 shows

E[Φ(k+1)] ≤ (1− λε
15
√
n

) E[Φ(k)] + λε
15
√
n

10n. By induction, we have that E[Φ(k)] ≤ 10n for

all k. Since the potential is positive, Markov inequality shows that for any k, Φ(k) ≥ n3 with
probability at most O( 1

n2 ).

C.5 Analysis of cost per iteration

To apply the data structure for projection maintenance (Theorem E.1), we need to first
prove the input vector w does not change too much for each step.

Lemma C.15. Let xnew = x+ δ̃x and snew = s+ δ̃s. Let w = x
s and wnew = xnew

snew . Then
we have

n∑

i=1

(E[lnwnew
i ]− lnwi)

2 ≤ 64ε2,

n∑

i=1

(Var[lnwnew
i ])

2 ≤ 1000ε2.

Proof. From the definition, we know that

wnew
i

wi
=

1

s−1
i xi

xi + δ̃x,i

si + δ̃s,i
=

1 + x−1
i δ̃x,i

1 + s−1
i δ̃s,i

.

Part 1. For each i ∈ [n], we have

E[lnwnew
i ]− lnwi = E

[
ln(1 + x−1

i δ̃x,i)− ln(1 + s−1
i δ̃s,i)

]

≤ 2|E[x−1
i δ̃x,i − s−1

i δ̃s,i]| by |s−1
i δ̃s,i|, |x−1

i δ̃x,i| ≤ 0.2,Lemma C.3

≤ 2|E[x−1
i δ̃x,i]|+ 2|E[s−1

i δ̃s,i]|. by triangle inequality

Thus, summing over all the coordinates gives

n∑

i=1

(E[lnwnew
i ]− lnwi)

2 ≤
n∑

i=1

8(E[x−1
i δ̃x,i])

2 + 8(E[s−1
i δ̃s,i])

2 ≤ 64ε2.

where the first step follows by Cauchy-Schwartz inequality, the last step follows by

‖E[s−1δ̃s]‖22, ‖E[x−1δ̃x]‖22 ≤ 4ε2 (Part 1 of Lemma C.3).

Part 2. For each i ∈ [n], we have

Var[wnew
i ] ≤E

[
(lnwnew

i − lnwi)
2
]

= E



(

ln
1 + x−1

i δ̃x,i

1 + s−1
i δ̃s,i

)2



≤ 2 E[(x−1
i δ̃x,i − s−1

i δ̃s,i)
2]

≤ 2 E[2(x−1
i δ̃x,i)

2 + 2(s−1
i δ̃s,i)

2]

= 4 E[(x−1
i δ̃x,i)

2] + 4 E[(s−1
i δ̃s,i)

2]

= 4 Var[x−1
i δ̃x,i] + 4(E[x−1

i δ̃x,i])
2 + 4 Var[s−1

i δ̃s,i] + 4(E[s−1
i δ̃s,i])

2
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≤ 16ε2/b+ 4(E[x−1
i δ̃x,i])

2 + 4(E[s−1
i δ̃s,i])

2,

where the last step follows by Var[x−1
i δ̃x,i],Var[s−1

i δ̃s,i] ≤ 2ε2/b (Part 2 of Lemma C.3).

Thus summing over all the coordinates

n∑

i=1

(Var[wnew
i ])

2 ≤ 512nε4

b2
+ 64

n∑

i=1

(
(E[x−1

i δ̃x,i])
4 + (E[s−1

i δ̃s,i])
4
)

≤ 512nε4

b2
+ 2048ε4 ≤ 1000ε2,

where the last step follows by ‖E[s−1δ̃s]‖22, ‖E[x−1δ̃x]‖22 ≤ 4ε2 and b ≥ √nε.

Now, we analyze the cost per iteration in procedure Main. This is a direct application of
our projection maintenance result.

Lemma C.16. For ε ≥ 1√
n

, each iteration of Main (Algorithm 3) takes

n1+a+o(1) + ε · (nω−1/2+o(1) + n2−a/2+o(1))

expected time per iteration in amortized where 0 ≤ a ≤ α controls the batch size in the data
structure and α ∈ [0, 1] is the dual exponent of matrix multiplication.

Proof. Lemma C.14 shows that ClassicalStep happens with only O(1/n2) probability

each step. Since the cost of each step only takes Õ(n2.5), the expected cost is only Õ(n0.5).

Lemma C.15 shows that the conditions in Theorem E.1 holds with the parameter C1 =
O(ε), C2 = O(ε), εmp = Θ(1).

In the procedure StochasticStep, Theorem E.1 shows that the amortized time per iteration
is mainly dominated by two steps:

1. mp.Update(w): O(ε · (nω−1/2+o(1) + n2−a/2+o(1))).

2. mp.Query( 1√
XS

δ̃µ): O(n1+b+o(1) + n1+a+o(1)).

D Main result

The goal of this section is to putting everything together and prove the following main
theorem:

Theorem D.1 (Main result). Given a linear program minAx=b,x≥0 c
>x with no redundant

constraints. Assume that the polytope has diameter R in `1 norm, namely, for any x ≥ 0
with Ax = b, we have ‖x‖1 ≤ R.

Then, for any 0 < δ ≤ 1, Main(A, b, c, δ) outputs x ≥ 0 such that

c>x ≤ min
Ax=b,x≥0

c>x+ δ · ‖c‖∞R and ‖Ax− b‖1 ≤ δ · (R‖A‖1 + ‖b‖1)

in expected time
(
nω+o(1) + n2.5−α/2+o(1) + n2+1/6+o(1)

)
· log(n/δ)

where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplica-
tion.

For the current value of ω ∼ 2.38 and α ∼ 0.31, the expected time is simply nω+o(1) log(nδ ).
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Proof. In the beginning of the Main algorithm, Ye et al. (1994) is called to modify the linear
program. Then, we run the stochastic central path method on this modified linear program.

When the algorithm stops, we obtain a vector x and s such that xs ≈0.1 t with t ≤ δ2

32n3 .

Hence, the duality gap is bounded by
∑
i xisi ≤ (δ/4n)2. Ye et al. (1994) shows how to

obtain an approximate solution of the original linear program with the guarantee needed
using the x and s we just found.

Since t is decreased by 1− ε
3
√
n

factor each iteration, it takes O(
√
n
ε · log(nδ )) iterations in

total. In Lemma C.16, we proved that each iteration takes

n1+a+o(1) + ε · (nω−1/2+o(1) + n2−a/2+o(1)).

and hence the total runtime is

O(n2.5−a/2+o(1) + nω+o(1) + ε−1n1.5+a+o(1)) · log(n/δ).

Since ε = Θ( 1
logn ), the total runtime is

O(n2.5−a/2+o(1) + nω+o(1) + n1.5+a+o(1)) · log(n/δ).

Finally, we note that the optimal choice of a is min( 2
3 , α), which gives the promised runtime.

E Projection Maintenance

In this section, we present how to resolve the second bottleneck. The main idea is similar
to Cohen et al. (2019b). We need to maintain the query structure Ph, where P is the
projection matrix as shown in Figure 2. We use the idea of lazy update and low-rank update
as discussed in the main body. Here, we supplement the explanation of constructing a copy
of W in the main body by using a 2-person chasing game, as shown in Figure 3.

Algorithm 5 Projection Maintenance Data Structure

1: datastructure MaintainProjection . Theorem E.1
2:
3: members
4: w ∈ Rn . Target vector
5: v, ṽ ∈ Rn . Approximate vector
6: A ∈ Rd×n
7: M ∈ Rn×n . Approximate projection matrix

8: Q ∈ Rn×nbL . Sketched version approximate projection matrix

9: R1,∗, R2,∗, · · ·RL,∗ ∈ Rnb×n . Sketching matrices
10: l ∈ N+, L ∈ N+

11: εmp ∈ (0, 1/4) . Tolerance
12: a ∈ (0, α] . Batch Size for Update (na)
13: end members
14:
15: procedure Initialize(A,w, εmp, a) . Lemma E.4
16: w ← w, v ← w, εmp ← εmp, A← A, a← a
17: M ← A>(AV A>)−1A

18: Choosing R1,∗, R2,∗ · · · , RL,∗ ∈ Rnb×n to be sketching matrices
19: R← [R∗,1, R∗,2 · · · , R∗,L]

20: Q←M
√
V R>

21: l← 1
22: end procedure
23:
24: end datastructure
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Algorithm 6 Update

1: datastructure MaintainProjection
2:
3: procedure Update(w) . Lemma E.5
4: yi ← lnwi − ln vi, ∀i ∈ [n]
5: r ← the number of indices i such that |yi| ≥ εmp/2.
6: if r < na then
7: vnew ← v
8: Mnew ←M
9: l← l + 1

10: else
11: Let π : [n]→ [n] be a sorting permutation such that |yπ(i)| ≥ |yπ(i+1)|
12: while 1.5 · r < n and |yπ(d1.5·re)| ≥ (1− 1/ log n)|yπ(r)| do
13: r ← min(d1.5 · re, n)
14: end while

15: vnew
π(i) ←

{
wπ(i) i ∈ {1, 2, · · · , r}
vπ(i) i ∈ {r + 1, · · · , n}

16:
17: . Compute Mnew = A>(AV newA>)−1A via Matrix Woodbury
18: ∆← diag(vnew − v) . ∆ ∈ Rn×n and ‖∆‖0 = r
19: Γ← diag(

√
vnew −√v)

20: Let S ← π([r]) be the first r indices in the permutation.
21: Let MS ∈ Rn×r be the r columns from S of M .
22: Let MS,S ,∆S,S ∈ Rr×r be the r rows and columns from S of M and ∆.

23: Mnew ←M −M∗,S · (∆−1
S,S +MS,S)−1 · (M∗,S)>

24: Re-generate R
25: Qnew ← Q+ (Mnew · Γ) ·R> + (Mnew −M) ·

√
V ·R>

26: l← 1
27: end if
28: v ← vnew

29: M ←Mnew

30: Q← Qnew

31: ṽi ←
{
vi if | lnwi − ln vi| < εmp/2

wi otherwise
32: return ṽ
33: end procedure
34:
35: end datastructure
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.

.

√
W A A>

−1

W A A> √
W

Figure 2: A visualization of projection matrix.

E.1 Main result

The goal of this section is to prove the following theorem:

Theorem E.1 (Projection maintenance). Given a full rank matrix A ∈ Rd×n with n ≥ d and
a tolerance parameter 0 < εmp < 1/4. Given any positive number a such that a ≤ α where α

is the dual exponent of matrix multiplication. Let R1,∗, · · · , RL,∗ ∈ Rnb×n denote a list of
sketching matrices, where b ∈ [0, 1]. There is a deterministic data structure (Algorithm 5)
that approximately maintains the projection matrices

√
WA>(AWA>)−1A

√
W

for positive diagonal matrices W through the following two operations:

1. Update(w): Output a vector ṽ such that for all i,

(1− εmp)ṽi ≤ wi ≤ (1 + εmp)ṽi.

2. Query(h): Output
√
Ṽ A>(AṼ A>)−1A

√
Ṽ (R>)∗,lRl,∗h for the ṽ outputted by the

last call to Update.

The data structure takes n2dω−2 time to initialize and each call of Query(h) takes time

n1+b+o(1) + n1+a+o(1).

Furthermore, if the initial vector w(0) and the (random) update sequence w(1), · · · , w(T ) ∈ Rn
satisfies

n∑

i=1

(
E[lnw

(k+1)
i ]− lnw

(k)
i

)2

≤ C2
1 and

n∑

i=1

(Var[lnw
(k+1)
i ])2 ≤ C2

2

with the expectation and variance is conditional on w
(k)
i for all k = 0, 1, · · · , T − 1. Then,

the amortized expected time8 per call of Update(w) is

(C1/εmp + C2/ε
2
mp) · (nω−1/2+o(1) + n2−a/2+o(1)).

Remark E.2. For our linear program algorithm, we have C1 = O(1/ log n), C2 = O(1/ log n)
and εmp = Θ(1). See Lemma C.15.

To verify the correctness of our updates, we have the following lemma:

Lemma E.3 (Correctness of the algorithm). The output of Update(w) in Algorithm 6
satisfies

M = A>(AV A>)−1A and

Q = M
√
V R>

8If the input is deterministic, so is the output and the runtime.
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A,B

(a) round 0

A

B

(b) round 1

A

B

C

(c) round 2

A,B

(d) round 3

Figure 3: Visualization of projection maintenance: we model the task as a game of person
A chasing person B, where person A needs to report the approximate location of person
B in each round while moving as little as possible. Person A brings a drone C which can
only fly in one direction. The location of Person B represents the exact projection matrix,
the location of Person A represents the projection matrix we store in the datastructure, the
location reported in each round represents the output of our algorithm. In the beginning,
they start off at the same location. At round 1, person B moves but is still close to person
A. In this case, person A stays idol and reports its location. This case corresponds to the
situation that the projection changes little in all coordinates, so we use the idea of lazy
updates. At round 2, person B moves far away from A only in one direction. In this case,
person A keeps its location and releases drone C to chase person B in the direction where
person B moves a lot. And we report the location of the drone C.This case corresponds to
the situation that the projection only changes a lot in few coordinates, so we use the idea of
low-rank updates while keeping lazy on updating the stored projection matrix. In round
3, person B moves far away from A in all directions. In this case, person A moves to the
location of person B and reports its location. This case corresponds to the situation that the
projection changes a lot in many coordinates, so we update the stored projection matrix.

The output of Query(h) in Algorithm 7 satisfies

ps = P̃ (R>)∗,lRl,∗h

px = (I − P̃ )(R>)∗,lRl,∗h

where P̃ =
√
Ṽ A>(AṼ A>)−1A

√
Ṽ , and Ṽ is outputted by Update(w).

Proof. For Update(w) procedure, note vnew only differs from w in entries correspond to the
set S. Thus, by Matrix Woodbury Identity and definition of Mnew, we have

A>(AV newA>)−1A = A>(A(V + ∆)A>)−1A

= A>
(

(AV A>)−1 − (AV A>)−1A∗,S ·
(

∆−1
S,S + (A>)S,∗(AV A

>)−1A∗,S
)−1

· (A>)S,∗(AV A
>)−1

)
A

= A>(AV A>)−1A−A>(AV A>)−1A∗,S ·
(

∆−1
S,S + (A>)S,∗(AV A

>)−1A∗,S
)−1

· (A>)S,∗(AV A
>)−1A

= M −M∗,S
(

∆−1
S,S +MS,S

)−1

MS,∗

= Mnew.

Note the output M = Mnew and V = V new, so we have the output satisfying M =
A>(AV A>)−1A.

As for Q, notice by definition

Qnew = Q+ (Mnew · Γ) ·R> + (Mnew −M) ·
√
V ·R>
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= M
√
V R> +Mnew(

√
V new −

√
V )R> + (Mnew −M)

√
V R>

= Mnew
√
V newR>

Again, since the output Q = Qnew, M = Mnew and V = V new, we have the output satisfying
Q = M

√
V R>.

For Query(h) procedure, by definition we have

pm =
√
Ṽ · (M∗,S̃) · (∆̃−1

S̃,S̃
+MS̃,S̃)−1 · (QS̃,l +MS̃,∗ · Γ̃ · (R>)∗,l) ·Rl,∗ · h

=
√
Ṽ · (M∗,S̃) · (∆̃−1

S̃,S̃
+MS̃,S̃)−1 ·MS̃,∗ · Ṽ · (R>)∗,l ·Rl,∗ · h.

Thus,

ps =
√
Ṽ · (Q∗,l +M · Γ̃ · (R>)∗,l) ·Rl,∗ · h− pm

=
√
Ṽ ·M · Ṽ · (R>)∗,l ·Rl,∗ · h− pm

=
√
Ṽ (M −M∗,S̃(∆̃−1

S̃,S̃
+MS̃,S̃)−1MS̃,∗)Ṽ (R>)∗,lRl,∗h.

Note Ṽ only differs from V in entries correspond to the set S̃, again by Matrix Woodbury
Identity and definition of M , we have

A>(AṼ A>)−1A = A>(A(V + ∆̃)A>)−1A

= A>
(

(AV A>)−1 − (AV A>)−1A∗,S̃ ·
(

∆̃−1

S̃,S̃
+ (A>)S̃,∗(AV A

>)−1A∗,S̃

)−1

· (A>)S̃,∗(AV A
>)−1

)
A

= A>(AV A>)−1A−A>(AV A>)−1A∗,S̃ ·
(

∆̃−1

S̃,S̃
+ (A>)S̃,∗(AV A

>)−1A∗,S̃

)−1

· (A>)S̃,∗(AV A
>)−1A

= M −M∗,S̃
(

∆̃−1

S̃,S̃
+MS̃,S̃

)−1

MS̃,∗,

which implies

ps =
√
Ṽ A>(AṼ A>)−1AṼ (R>)∗,lRl,∗h = P̃ (R>)∗,lRl,∗h.

Further,

px = (R>)∗,lRl,∗h− ps = (I − P̃ )(R>)∗,lRl,∗h,

which completes the proof.

Above lemma verifies our algorithm. Now we consider the running time of the projection
maintenance, which consists of Initialization time, update time and query time, as discussed
below.

E.2 Initialization time, update time

To formalize the amortized runtime proof, we first analyze the initialization time (Lemma E.4),
update time (Lemma E.5), and query time (Lemma E.6) of our projection maintenance
data-structure.

Lemma E.4 (Initialization time). The initialization time of data-structure MaintainPro-
jection (Algorithm 5) is O(n2dω−2).

Proof. Given matrix A ∈ Rd×n and diagonal matrix V ∈ Rn×n, computing A>(AV A>)−1A
takes O(n2dω−2).

Lemma E.5 (Update time). The update time of data-structure MaintainProjection
(Algorithm 6) is O(rgrn

2+o(1)) where r is the number of indices we updated in v.
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Proof. The proof is identical to Cohen et al. (2019b); Lee et al. (2019). We omit the details
here.

E.3 Query time

Algorithm 7 Query

1: datastructure MaintainProjection
2:
3: procedure Query(h) . Lemma E.6

4: Let S̃ be the indices i such that | lnwi − ln vi| ≥ εmp/2.

5: ∆̃← Ṽ − V
6: Γ̃←

√
Ṽ −

√
V

7: pm ←
√
Ṽ · (M∗,S̃) · (∆̃−1

S̃,S̃
+MS̃,S̃)−1 · (QS̃,l +MS̃,∗ · Γ̃ · (R>)∗,l) ·Rl,∗ · h

8: ps ←
√
Ṽ · (Q∗,l +M · Γ̃ · (R>)∗,l) ·Rl,∗ · h− pm

9: px ← (R>)∗,l ·Rl,∗ · h− ps
10: return (px, ps)
11: end procedure
12:
13: end datastructure

Lemma E.6 (Query time). The query time of data-structure MaintainProjection (Al-
gorithm 5) is O(n1+b+o(1) + n1+a+o(1)).

Proof. Notice by the algorithm we have |S̃| ≤ na. Thus, Γ̃ is a sparse diagonal matrix with
at most na non-zero elements. The running time mainly comes from three parts.

Part 1. Computing pm:

� Compute Rl,∗ · h: matrix-vector multiplication between matrix of size nb × n and
vector of size n× 1, this takes n1+b time.

� Compute (R>)∗,l ·(Rl,∗h): matrix-vector multiplication between matrix of size n×nb
and vector of size nb × 1, this takes n1+b time.

� Compute Γ̃·(R>l,∗Rl,∗h): matrix-vector multiplication between sparse diagonal matrix
with at most na non-zero elements and vector of size n× 1, this takes na time.

� Compute MS̃,∗ · (Γ̃R>l,∗Rl,∗h): matrix-vector multiplication between matrix of size

at most na × n and sparse vector with at most na non-zero elements, this takes n2a

time.

� Compute QS̃,l · (Rl,∗h): matrix-vector multiplication between matrix of size at most

na × nb and vector of size nb × 1, this takes na+b time.

� Compute (∆̃−1

S̃,S̃
+ MS̃,S̃)−1: inverse of matrix of size at most na × na, this takes

naω time.

� Compute (∆̃−1

S̃,S̃
+MS̃,S̃)−1 · [(QS̃,l +MS̃,∗Γ̃(R>)∗,l)Rl,∗h]: matrix-vector multiplica-

tion between matrix of size at most na × na and vector of size at most na × 1, this
takes n2a time.

� Compute
√
Ṽ · (M∗,S̃): matrix-matrix multiplication between diagonal matrix of

size n× n and matrix of size at most n× na, this takes n1+a time.
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� Compute [
√
Ṽ M∗,S̃ ] · [(∆̃−1

S̃,S̃
+MS̃,S̃)−1(QS̃,l +MS̃,∗Γ̃(R>)∗,l)Rl,∗h]: matrix-vector

multiplication between matrix of size at most n × na and vector of size at most
na × 1, this takes n1+a time.

To conclude, we can compute pm in O(n1+b + naw + n1+a) time.

Part 2. Computing ps:

� Compute Rl,∗h and Γ̃R>l,∗Rl,∗h in same way as in calculating pm: take n1+b and

O(n1+b + na) time respectively.

� Compute
√
Ṽ ·Q∗,l: matrix-matrix multiplication between diagonal matrix of size

n× n and matrix of size n× nb, takes n1+b time.

� Compute [
√
Ṽ Q∗,l] · [Rl,∗h]: matrix-vector multiplication between matrix of size

n× nb and vector of size nb × 1, takes n1+b time.

� Compute M · [Γ̃R>l,∗Rl,∗h]: matrix-vector multiplication between matrix of size n×n
and sparse vector with at most na non-zero elements, takes O(n1+a) time.

� Compute
√
Ṽ · [M Γ̃R>l,∗Rl,∗h]: matrix-vector multiplication between diagonal matrix

of size n× n and vector of size n× 1, takes n time.

To conclude, we can compute ps in O(n1+b + n1+a) time.

Part 3. Computing px:

� Compute R>l,∗Rl,∗h in same way as in calculating pm: take O(n1+b) time.

Thus, overall the running time is

O(n1+a + n1+b + naω).

Finally, we note that ω ≤ 3 − α ≤ 3 − a (see Cohen et al. (2019b)) and hence a · ω ≤
a(3− a) ≤ 1 + a. Therefore, the final running time it takes is O(b1+b+o(1) + n1+a+o(1)).

F Comparison to state-of-art results

The major goal of this section is to explain the solutions of one-step central path equation (a
linear system) are different in two previous works and this paper. Let us just believe adding
a sparse diagonal D and using a sketching matrix R is able to reduce the computational cost.
We won’t explain the reason why it can reduce the computational cost.

We compare our approach to the state-of-art results Cohen et al. (2019b); Lee et al. (2019).
Though all methods shares the same running time up to subpolynomial factors, they use
different randomization techniques.

Table 4: Summary of different approaches to reduce dimensionality

References Sampling/Sketching How? Feasible? Oblivious?

Cohen et al. (2019b) Sampling on the right
√
WA>(AWA>)−1A

√
WDh Yes No

Lee et al. (2019) Sketching on the left R>R
√
WA>(AWA>)−1A

√
Wh No Yes

This work Sketching on the right
√
WA>(AWA>)−1A

√
WR>Rh Yes Yes

Note that the major question in fast central path method is how to speed up the following
calculation √

WA>(AWA>)−1A
√
W · h. (26)
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F.1 Feasible vs Infeasible

Lee, Song, Zhang’19. The approach of Lee et al. (2019) can be interpreted as sketching

on the left. Let R ∈ R
√
n×n be a sketching matrix. Let T denotes the total number of

iterations of the algorithms. We pick T independent sketching matrices at the beginning of
the algorithm. In each iteration, we are computing

R> ·R
√
WA>(AWA>)−1A

√
W · h (27)

which can be viewed as an approximated solution to the linear system in the classical
central path method:

Xδs + Sδx = δ̃µ,

Aδx = 0, (28)

A>δy + δs = 0,

where

δ̃µ = δµ

They choose δx, δs and δy as follows

δx =
X√
XS

(I −R>RP )
1√
XS

δµ

δs =
S√
XS

R>RP
1√
XS

δµ (29)

δy = − (A
X

S
A>)−1A

√
X

S

1√
XS

δµ

Note that plugging the above solution back to Eq. (28), we can see line 2 and 3 (primal and
dual feasibility conditions) of the linear system does not hold exactly, which results in an
infeasible issue in each iteration. Specifically,

For the first line of Eq. (28), we have the left hand side becomes

LHS = Xδs + Sδx.

The right hand side becomes

RHS = δ̃µ = Xδs + Sδx.

Thus, LHS = RHS.

For the second line of Eq. (28), i.e., the primal feasible condition, we have the left hand side
becomes

LHS = Aδx

= A
X√
XS

(I −R>RP )
1√
XS

δµ

=
A

S
δµ −A

√
X

S
R>R

√
X

S
A>(A

X

S
A>)−1A

1

S
δµ

while the right hand side is always 0 and does not match the left hand side. Therefore,
Eq. (29) does not satisfy the primal feasible condition in each iteration.

For the third line of Eq. (28), i.e., the dual feasible condition, we have the left hand side
becomes

LHS = A>δy + δs

= −A>(A
X

S
A>)−1A

√
X

S

1√
XS

δµ +
S√
XS

R>RP
1√
XS

δµ

= A>(A
X

S
A>)−1A

√
X

S

1√
XS

δµ +

√
S

X
R>R

√
X

S
A>(A

X

S
A>)−1A

√
X

S

1√
XS

δµ

while the right hand side is always 0 and does not match the left hand side. Therefore,
Eq. (29) does not satisfy the dual feasible condition in each iteration.
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Cohen, Lee, Song’19. The approach of Cohen et al. (2019b) can be interpreted as
sampling on the complementarity gap h. Let D denote a random diagonal sampling matrix,
Cohen et al. (2019b) approximates Eq. (26) by

√
WA>(AWA>)−1A

√
W︸ ︷︷ ︸

P

·D · h,

where D roughly only has
√
n non-zero entries on the diagonal. The approach can also be

viewed as explicit solving the following linear system in each iteration:

Xδs + Sδx = δ̃µ,

Aδx = 0, (30)

A>δy + δs = 0,

where

δ̃µ = Dδµ.

The above system (consists of three equations) can be solved exactly by:

δx =
X√
XS

(I − P )
1√
XS

Dδµ,

δs =
S√
XS

P
1√
XS

Dδµ, (31)

δy = (A
X

S
A>)−1A

√
X

S

1√
XS

Dδµ.

which means Cohen et al. (2019b) is a feasible method.

This paper. Our methods sketching on the right as follows:√
WA>(AWA>)−1A

√
WR> ·R · h.

Our method can be interpreted as an exact solution to the new linear system we construct:

Xδs + Sδx = δ̃µ,

Aδx = 0, (32)

A>δy + δs = 0,

where

δ̃µ =
√
XSR>R

1√
XS

δµ.

The above linear system (Eq. (32)) can be solved exactly by

δx =
X√
XS

(I − P )R>R
1√
XS

δµ,

δs =
S√
XS

PR>R
1√
XS

δµ, (33)

δy = − (A
X

S
A>)−1A

√
X

S
R>R

1√
XS

δµ,

which means our method is feasible.

F.2 Oblivious vs non-oblivious

Cohen, Lee, Song’19. The explicit construction for the sampling matrix D in Eq. (31)
is given by Cohen et al. (2019b):

δ̃µ,i =

{
δµ,i/pi, with probability pi = k · ( δ2µ,i∑

l δ
2
µ,l

+ 1
n )

0, else.

Therefore, Cohen et al. (2019b) is a non-oblivious approach since the sampling matrix D
depends on the value of δµ.
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Lee, Song, Zhang’19. The sketching matrix R in Eq. (29) does not depend on the value
of δµ, meaning it is an oblivious method.

This paper The sketching matrix R in our approach (33) does not depend on the value
of δµ as shown in Algorithm 3, which makes ours an oblivious method.

To conclude, we summarize above discussion in Table 4. Compare to previous results,
our method is both feasible and oblivious. These advantages help to implement expensive
calculations in the pre-processing stage and have a much simpler analysis, which gives the
potential to generalize to other optimization problems.
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G Comparison to JL, SE and AMP

In this section we compare the guarantees of coordinate-wise embedding (CE, Definition 2.1)
with three different guarantees: Johnson-Lindenstrauss embedding (JL, Johnson & Linden-
strauss (1984)), `2-subspace embedding (SE, Sarlós (2006); Woodruff (2014)), and approx-
imate matrix product (AMP, Sarlós (2006)). We also consider the JL moment property
(JLM, Kane & Nelson (2012)) which is closely related to AMP. We first state the definitions
of these embeddings and properties here.

Definition G.1 (Coordinate-wise embedding (CE), restatement of Definition 2.1). Given
parameters α, β ∈ R and δ ∈ (0, 1), we say a randomized matrix R ∈ Rb×n from a distribution
Π satisfies (α, β, δ)-coordinate-wise embedding property if for any fixed vector g, h ∈ Rn, we
have

1. E
R∼Π

[g>R>Rh] = g>h,

2. E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
α

b
‖g‖22‖h‖22,

3. Pr
R∼Π

[
|g>R>Rh− g>h| ≥ β√

b
‖g‖2‖h‖2

]
≤ δ.

From now on we will refer to the three properties of CE as CE1, CE2, and CE3.

Definition G.2 (Johnson-Lindenstrauss embedding (JL) Johnson & Lindenstrauss (1984),
restatement of Definition 2.2). Given ε, δ ∈ (0, 1), a finite point set S ⊂ Rn with |S| = m,
we say a randomized matrix R ∈ Rb×n from a distribution Π satisfies (ε, δ,m)-Johnson-
Lindenstrauss property if

Pr
R∼Π

[
(1− ε)‖g‖22 ≤ ‖Rg‖22 ≤ (1 + ε)‖g‖22, ∀g ∈ S

]
≥ 1− δ.

Definition G.3 (Subspace embedding (SE) Sarlós (2006), restatement of Definition 2.3).
Given ε ∈ (0, 1), any matrix A ∈ Rn×d, we say a randomized matrix R ∈ Rb×n from a
distribution Π satisfies (ε, δ, d)-subspace embedding for the column space of A if

Pr
R∼Π

[
(1− ε)‖Ax‖22 ≤ ‖RAx‖22 ≤ (1 + ε)‖Ax‖22, ∀x ∈ Rd

]
≥ 1− δ.

Definition G.4 (Approximate matrix product (AMP) Sarlós (2006)). Given ε, δ ∈ (0, 1),
any two matrices A,B each with n rows, we say a randomized matrix R ∈ Rb×n from a
distribution Π satisfies (ε, δ)-approximate matrix product for A and B if

Pr
R∼Π

[
‖A>R>RB −A>B‖F > ε‖A‖F ‖B‖F

]
≤ δ.

Remark G.5. More generally, we can also define a matrix C that satisfies ‖C−A>B‖F ≤ ε
with high probability.

Definition G.6 (JL moment property (JLM) Kane & Nelson (2012)). Given ε, δ ∈ (0, 1),
we say a randomized matrix R ∈ Rb×n from a distribution Π satisfies (ε, δ)-JL moment
property if

E
R∼Π

[(‖Rg‖22 − 1)2] ≤ ε2 · δ, ∀g ∈ Rn such that ‖g‖2 = 1.

Remark G.7. More generally, we can also define (ε, δ, l)-JL moment property for l ≥ 2 as

E
R∼Π

[|‖Rg‖22 − 1|l] ≤ εl · δ, ∀g ∈ Rn.

We compare the coordinate-wise embedding defined in this paper with the other four
guarantees in Remark G.8 and G.9. Then we summarize the relations of all the five
guarantees in Remark G.10.

The first remark shows that CE3, JL, and SE can be viewed as the same `2-norm guarantee,
but over different number of vectors.
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Remark G.8 (`2-norm guarantee over different number of vectors). Consider the following
`2-norm guarantee: For any fixed set S ⊆ Rn of certain type. Let b be a number that depends
on n, ε, δ, |S|. There is a distribution Π over Rb×n such that

Pr
R∼Π

[
(1− ε)‖g‖22 ≤ ‖Rg‖22 ≤ (1 + ε)‖g‖22, ∀g ∈ S

]
≥ 1− δ.

CE3 When S only contains one vector, i.e., S = {g} for some g ∈ Rn, this `2-norm
guarantee is the same as the third property of coordinate-wise embedding. Note that
it is equivalent to let S contain O(1) vectors by losing a constant factor in δ.

JL When S is a finite set of vectors, i.e., S = {g1, g2, · · · , gm} for g1, g2, · · · , gm ∈ Rn,
this `2-norm guarantee is the same as JL guarantee.

SE When S is a subspace of Rn and contains infinite number of vectors, i.e., S = {g =
Ax|x ∈ Rd} for some matrix A ∈ Rn×d, this `2-norm guarantee is the same as the
subspace embedding guarantee.

JL and SE parts are straightforward. The equivalence of CE3 is as follows. On the one
hand, if we know that for any vectors h, g ∈ Rn, |〈Rg,Rh〉 − 〈g, h〉| ≤ ε‖g‖2‖h‖2 is satisfied
with probability at least 1− δ, then by setting g = h, we have ‖Rh‖22 = (1± ε)‖h‖22. On the
other hand, if for any h, g ∈ Rn, ‖Rv‖2 = (1± ε)‖v‖2 is satisfied for v = h, g, (h− g) with
probability at least 1− δ, without loss of generality we assume ‖h‖2 = ‖g‖2 = 1, then

〈Rg,Rh〉 =
1

2
(‖Rg‖22 + ‖Rh‖22 − ‖Rg −Rh‖22)

=
1

2

(
(1± ε)‖g‖22 + (1± ε)‖h‖22 − (1± ε)‖g − h‖22

)

= 〈g, h〉 ± ε

2
(‖g‖22 + ‖h‖22 + ‖g − h‖22)

= 〈g, h〉 ± ε,
which gives the other guarantee.

The second remark shows that CE2 is equivalent to JLM under the assumption of CE1.

Remark G.9 (CE1 and CE2 implies JLM). We show that together the first two properties
of coordinate-wise embedding with parameter α = bε2δ implies JL moment property with
parameters ε and δ.

Let h = g where g is any vector in Rn that satisfies ‖g‖2 = 1, CE2 with parameter α = bε2δ
implies JL moment property with parameters ε and δ as follows:

E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
α

b
‖g‖22‖h‖22 =⇒ E

R∼Π
[‖Rg‖42] ≤ 1 + ε2δ ⇐⇒ E

R∼Π
[(‖Rg‖22 − 1)2] ≤ ε2δ,

where the first step follows from h = g and ‖g‖22 = 1, the second step follows from CE1 that
ER∼Π[R>R] = I, and hence ER∼Π[‖Rg‖22] = 1.

In the third remark we summarize the relations between all five guarantees.

Remark G.10 (Summary of the relations between five guarantees). We summarize the the
relations between five guarantees in Figure 4.

� JL =⇒ CE3. JL gives bound over a set which implies the CE3 bound over one
vector. See Remark G.8.

� CE3 =⇒ JL. Directly follows from Union bound over the m vectors of JL. See
Remark G.8.

� JL =⇒ SE. Suppose a matrix R ∈ Rb×n satisfies the JL guarantee with size b =
b(ε, δ,m), where m ∈ N+ is the number of vectors, ε ∈ (0, 1) is the error parameter,
and δ ∈ (0, 1) is the probability parameter. Then using the same construction of R
but with size b = b(ε, δ, 2d), R satisfies the subspace embedding guarantee.
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CE3 JL SE

CE1,2 JLM AMP

(ε, δ,m ≥ 3)-JL =⇒ (ε, δ)-CE3

(β ≤ ε
√
b, δ)-CE3 =⇒ (ε, δm,m)-JL

when S ⊆ {Ax|x ∈ Rd}, (ε, δ, d)-SE =⇒ (ε, δ,m)-JL

(ε, δ, 2d)-JL =⇒ (ε, δ, d)-SE

(α ≤ bε2δ)-CE1,2 =⇒ (ε, δ)-JLM (ε, δ)-JLM =⇒ (ε, δ)-AMP

(ε, δ/m)-JLM
=⇒ (ε, δ,m)-JL

(ε/d, δ)-AMP
=⇒ (ε, δ, d)-SE

Figure 4: Summary of the relations between five guarantees. See Remark G.10.

A proof sketch is as follows: w.l.o.g. we consider the subspace with unit vectors
S = {y ∈ Rn|y = Ax, x ∈ Rd, ‖y‖2 = 1}. We choose a ε-net of S, which is a
set N ⊆ S that satisfies ∀y ∈ S, ∃w ∈ N such that ‖y − w‖2 ≤ 1/2. We build a
matrix R ∈ Rb×n that satisfies the JL guarantee for the set N . Note that the size
b = b(ε, δ, 2d) since the ε-net N has size |N | = O(2d). The ε-net ensures that any
vector y ∈ Rn can be decomposed as y =

∑∞
i=0

1
2i y

(i) where all y(i) ∈ N . Thus the
guarantee ‖Ry‖2 = (1± ε)‖y‖2 is satisfied for all vectors y ∈ Rn.

For more details see page 12-13 of Woodruff (2014).

� SE =⇒ JL. When the set S of JL is chosen as a subset of subspace {Ax|x ∈ Rd},
SE trivially implies JL. See Remark G.8.

� CE1,2 =⇒ JLM. See Remark G.9.

� JLM =⇒ JL. Directly follows from Markov’s inequality and Union bound over
the m vectors of JL.

� JLM =⇒ AMP. See Theorem 13 of Woodruff (2014). The AMP guarantee of
different sketching matrices are usually proved from JLM, e.g., count-sketch matrix
(Theorem 14 of Woodruff (2014)).

� AMP =⇒ SE. See proof of Theorem 9 of Woodruff (2014) (page 25).

Next we summarize the required size of the different sketching matrices to achieve CE, JL,
SE, and AMP guarantees in Table 5, 6, 7, 8. We restate the definitions of the different types
of sketching matrices R ∈ Rb×n.

Random Gaussian matrix All entries of R are sampled from N (0, 1/b) independently.

SRHT matrix Lu et al. (2013) Let R =
√
n/bSHD, where S ∈ Rb×n is a random

matrix whose rows are b uniform samples (without replacement) from the standard
basis of Rn, H ∈ Rn×n is a normalized Walsh-Hadamard matrix, and D ∈ Rn×n is
a diagonal matrix whose diagonal elements are i.i.d. Rademacher random variables.

AMS sketch matrix Alon et al. (1999) Let Ri,j = hi(j), where h1, h2, · · · , hb are b
random hash functions picking from a random hash family H = {h : [n] →
{− 1√

b
,+ 1√

b
}}.

Count-sketch matrix Charikar et al. (2002) Let Rh(i),i = σ(i) for all i ∈ [n] and other
entries to zero, where h : [n] → [b] and σ : [n] → {−1,+1} are random hash
functions.

Sparse embedding matrix Nelson & Nguyên (2013) Let R(j−1)b/s+h(i,j),i =

σ(i, j)/
√
s for all (i, j) ∈ [n] × [s] and all other entries to zero, where

h : [n]× [s]→ [b/s] and σ : [n]× [s]→ {−1, 1} are random hash functions.
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Sketching matrix for CE α β Lemma
Random Gaussian O(1) O(log1.5(n/δ)) B.13, B.24

SRHT O(1) O(log1.5(n/δ)) B.12, B.23
AMS O(1) O(log1.5(n/δ)) B.12, B.23

Count-sketch O(1) O(
√
b log(1/δ) or O( 1√

δ
) B.14, B.25, B.26

Sparse embedding∗ O(1) O(
√
b/s log1.5(n/δ) B.15, B.28

Uniform sampling O(n) O(n/
√
b) B.16, B.29

Table 5: Summary for different sketching matrices for coordinate embedding. Restatement
of the first three columns of Table 2. The sketching matrix R has size b× n. α, β ∈ R are
the two error parameters, δ ∈ (0, 1) is the probability parameter, and s ∈ N+ is the number
of non-zero entries in each column of the sparse embedding matrices.

Sketching mat. for JL b Time for R · x Reference

Random Gaussian ε−2 log(m/δ) bn Theorem 4 of Woodruff (2014)

SRHT ε−2 log(m/δ) n logn+ nε−2 log(m/δ) Ailon & Chazelle (2006), see Page 15 of Woodruff (2014)

AMS ε−2 log(m/δ) bn Achlioptas (2003), see Page 14 of Woodruff (2014)

Count-sketch† ε−2δ−1m b+ n Theorem 14 of Woodruff (2014)

Sparse embedding∗ ε−2 log(m/δ) sn Kane & Nelson (2012), see Page 14 of Woodruff (2014)

Table 6: Summary for different sketching matrices for JL lemma. The sketching matrix
R has size b × n. m ∈ N+ is the number of vectors, ε ∈ (0, 1) is the error parameter, and
δ ∈ (0, 1) is the probability parameter. ∗ In sparse embedding matrices, each column has
s = Ω(ε−1 log(m/δ)) non-zero entries. † Count-sketch matrices satisfy the (ε, δ)-JL moment
property when b = Ω(ε−2δ−1). Then using Markov inequality and union bound over all m
vectors, we have b = Ω(ε−2δ−1m) suffices for JL guarantee with m vectors.

H Comparison to classical “sketch and solve”

In this section, we compare our sketching approach to the classical “sketch and solve”
approach.

“Sketch and solve” algorithm. First we explain the procedure of the “sketch and solve”
approach. Consider the least squares problem as an example. Given A ∈ Rn×d, and b ∈ Rn,
we try to solve

min
x∈Rd

‖Ax− b‖2,

whose solution is x∗ = A†b = (A>A)−1A>b and it takes O(ndω−1 + dω) running time to
compute.

To speed it up, in a over-constrained case where n is much larger than d, the “sketch and
solve” approach chooses a b× n random matrix R from a certain distribution Π on matrices,
where b� n. Consider the following algorithm for least squares regression:

1. Sample a random matrix R ∼ Π.

2. (Sketch) Compute R ·A and R · b.
3. (Solve) Output the exact solution x′ to the regression problem minx∈Rd ‖(RA)x−

(Rb)‖2.

Analysis. To ensure the accuracy of above approach, they require the sketching matrix S
to satisfy the subspace embedding guarantee (Definition G.3).

Theorem H.1 (SE gives approximate regression, Theorem 21 of Woodruff (2014)). When
R ∈ Rb×n used in the “sketch and solve” algorithm satisfies the subspace embedding guarantee
with parameters ε/2 and δ, then with probability 1− δ, the output x′ satisfies

‖Ax′ − b‖2 ≤ (1 + ε) min
x∈Rd

‖Ax− b‖2.
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Sketching mat. for SE b Time for R · A Reference

Random Gaussian ε−2(d+ log(1/δ)) Tmat(b, n, d) Thm. 6 of Woodruff (2014)

SRHT ε−2(
√
d+
√

logn)2 log(d/δ) nd log(ε−1d(logn)) Thm. 7 of Woodruff (2014)

AMS ε−2(d+ log(1/δ)) Tmat(b, n, d) Follow from JL guarantee

Count-sketch‡ ε−2δ−1d2 nnz(A) Thm. 9 of Woodruff (2014)

Sparse embedding∗ ε−2d · poly log(d/(εδ)) ε−1 nnz(A) poly log(d/(εδ)) Thm. 10 (2) of Woodruff (2014)

Sparse embedding† ε−2d1+γ ε−1 nnz(A) poly(1/γ) Thm. 10 (1) of Woodruff (2014)

Table 7: Summary for different sketching matrices for subspace embedding. The sketching
matrix R has size b×n. The vectors are from the column subspace of matrix A with size n×d.
ε ∈ (0, 1) is the error parameter, and δ ∈ (0, 1) is the probability parameter. Tmat(a, b, c)
denotes the running time of fast matrix multiplication of two matrices with size a× b and
b × c. ∗ In the first sparse embedding matrix, each column has s ≥ ε−1 poly log(d/(εδ))
non-zero entries; † In the second sparse embedding matrix, each column has s ≥ ε−1 poly(1/γ)
non-zero entries, γ > 0 is a tunable parameter that gives different trade-offs, and δ can be
as small as 1/ poly(d). ‡ For count-sketch matrices, the subspace embedding guarantee is
proved from JL moment property, instead of directly from JL guarantee.

Sketching mat. for AMP b Time for A>R>RB Reference

Random Gaussian ε−2δ−1 Tmat(dA, b, dB) + Tmat(dA, n, b) Lem. 10 of Boutsidis et al. (2016)(v1)

SRHT ε−2δ−1 n · dA · log(ε−1dA logn) + Tmat(dA, b, dB) Lem. 32 of Clarkson & Woodruff (2013)

AMS ε−2δ−1 Tmat(dA, b, dB) + Tmat(dA, n, b) Lem. 32 of Clarkson & Woodruff (2013)

Count-sketch ε−2δ−1 nnz(A) + nnz(B) + Tmat(dA, b, dB) Thm. 14 of Woodruff (2014)

Sparse embedding ε−2δ−1 s · nnz(A) + s · nnz(B) + Tmat(dA, b, dB) Lem. 32 of Clarkson & Woodruff (2013)

Table 8: Summary for different sketching matrices for approximate matrix product. The
sketching matrix R has size b× n. The matrices A has size n× dA and B has size n× dB,
and w.l.o.g. assume dA ≥ dB. ε ∈ (0, 1) is the error parameter, and δ ∈ (0, 1) is the
probability parameter. Tmat(a, b, c) denotes the running time of fast matrix multiplication of
two matrices with size a × b and b × c. For sparse embedding matrix, s is the number of
non-zero entries in its columns. Note that these sketching matrices all have the same size,
and this can be easily seen from the fact that they all have the same parameter α for CE2
(Table 2) and CE1,2 =⇒ JLM =⇒ AMP.

Proof. Let x∗ = arg minx∈Rd ‖Ax− b‖2. We have

‖Ax′ − b‖2 ≤ (1 + ε/2)‖RAx′ −Rb‖2 ≤ (1 + ε/2)‖RAx∗ −Rb‖2 ≤ (1 + ε)‖Ax∗ − b‖2.
where the first and the third steps follow from the subspace embedding guarantee, and the
second step follows from x′ = arg minx∈Rd ‖RAx−Rb‖2.

Remark H.2 (Better regression time using AMP). We remark that by using approximate
matrix product (AMP) guarantee, sometimes the size of the sketching matrix can be further
reduced for the “sketch and solve” algorithm.

Let R ∈ Rb×n be a sketching matrix sampled from distribution Π. We use bSE(ε, δ, d) to
denote the minimum size of R to achieve (ε, δ, d)-subspace embedding, and we use bAMP(ε, δ)
to denote the minimum size of R to achieve (ε, δ)-approximate matrix product.

The previous theorem showed that we can solve (1 + ε)-approximate linear regression with
probability 1− δ using sketching matrices with size

b ≥ bSE(ε, δ, d).

In fact, it suffices with size

b ≥ bSE(1/2, δ, d) + bAMP(
√
ε/d, δ).

For example, for count-sketch matrices, bSE(ε, δ, d) = ε−2δ−1d2 (Table 7) and bAMP(ε, δ) =
ε−2δ−1 (Table 8). Let δ = 0.01. Only using SE guarantee, we need sketch size b ≥ ε−2d2. But
using SE guarantee together with AMP guarantee, we can reduce the sketch size to b ≥ ε−1d2.

For more details see Theorem 23 of Woodruff (2014).
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Comparison with our algorithm. Therefore, instead of sketching before solving the
problem, we open up the iterations of the classical central path method and apply sketching
inside each iteration. Our ”iterate and sketch” approach in this work differs from the classical
”sketch and solve” approach.
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