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FBSDiff: Plug-and-Play Frequency Band Substitution of Diffusion
Features for Highly Controllable Text-Driven Image Translation
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ABSTRACT

Large-scale text-to-image diffusion models have been a revolution-
ary milestone in the evolution of generative Al and multimodal
technology, allowing extraordinary image generation with natural-
language text prompts. However, the issue of lacking controllability
of such models restricts their practical applicability for real-life con-
tent creation, for which attention has been focused on leveraging
a reference image to control text-to-image synthesis. This paper
contributes a concise and efficient approach that adapts the pre-
trained text-to-image (T2I) diffusion model to the image-to-image
(I2I) paradigm in a plug-and-play manner, realizing high-quality
and versatile text-driven I2I translation without any model training,
model fine-tuning, or online optimization. To guide T2I generation
with a reference image, we propose to model diverse guiding factors
with different frequency bands of diffusion features in DCT spectral
space, and accordingly devise a novel frequency band substitution
layer that dynamically substitutes a certain DCT frequency band
of diffusion features with the corresponding counterpart of the ref-
erence image along the reverse sampling process. We demonstrate
that our method flexibly enables highly controllable text-driven 121
translation both in the guiding factor and guiding intensity of the
reference image, simply by tuning the type and bandwidth of the
substituted frequency band, respectively. Extensive experiments
verify the superiority of our approach over related methods in
image translation visual quality and versatility.

CCS CONCEPTS

« Computing methodologies — Image processing; Image rep-
resentations; Computational photography.

KEYWORDS

Image-to-image translation, Image manipulation, Diffusion model

1 INTRODUCTION

Text-driven 12 translation is an appealing computer vision problem
that aims to translate a reference image with open-domain text
prompts, and is also a typical application of the booming multi-
modal technology. Since the advent of CLIP [29] bridging vision
and language with large-scale contrastive pre-training, attempts
have been made to instruct image manipulation with text by com-
bining CLIP with generative models. VQGAN-CLIP [6] pioneers
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Figure 1: Based on the pre-trained text-to-image diffusion
model, FBSDiff enables efficient text-driven image-to-image
translation by proposing a plug-and-play reference image
guidance mechanism, which allows flexible control over dif-
ferent guiding factors (e.g., appearance, layout, contour) of
the reference image to the generated image by dynamically
substituting different types of DCT frequency bands during
the sampling process. Better viewed with zoom-in.

text-driven image translation by optimizing VQGAN [9] image em-
bedding with CLIP image-text similarity loss. DiffusionCLIP [16]
fine-tunes diffusion model [12] under CLIP loss to manipulate an
image with a text. DiffuselT [17] combines VIT-based structure loss
[39] and CLIP-based semantic loss to guide the diffusion sampling
process via manifold constrained gradient [5], synthesizing trans-
lated image that complies with the target text while maintaining
the structure of the reference image. However, these methods are
not competitive in generation quality due to limited model capacity
and training data of the backbone generative model.

To promote image translation visual quality, efforts have been
made to train large models on massive data. InstructPix2Pix [2]
employs GPT-3 [3] and Stable Diffusion [31] to synthesize huge
amounts of paired training data, based on which trains a supervised
text-driven 12I mapping for general image manipulation tasks. De-
sign Booster [37] trains a latent diffusion model [31] conditioned
on a joint representation that fuses both text embedding and image
embedding, realizing layout-preserved text-driven I2I translation.
Nevertheless, these methods are remarkably computationally in-
tensive due to the need for training large models on immense data.
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To circumvent formidable training costs, research has been fo-
cused on leveraging off-the-shelf large-scale T2I diffusion models
for text-driven 121 translation. This type of methods further divide
into fine-tuning-based methods and inversion-based methods.

The former type of fine-tuning-based methods represented by
SINE [45] and Imagic [15] fine-tune the pre-trained T2I diffusion
model to reconstruct the reference image before manipulating it
with a target text. These methods require separate fine-tuning of the
entire model for each time of image editing, which is less efficient
and prone to underfitting or overfitting to the reference image.

The latter type of inversion-based methods invert the reference
image into diffusion model Gaussian noise space and then generate
the translated image via diffusion sampling process guided by the
target text. A pivotal challenge of this pipeline is that the sampling
trajectory may severely deviate from the inversion trajectory due to
the error accumulation caused by the classifier-free guidance tech-
nique [13], which impairs the correlation between the reference
and the translated image. To remedy this issue, Null-text Inver-
sion [23] optimizes unconditional null-text embedding to align the
sampling trajectory to the inversion trajectory. Prompt Tuning In-
version [8] and StyleDiffusion [18] minimize trajectory divergence
by learning to encode the information of the reference image into
learnable conditional embedding. Pix2Pix-zero [26] penalizes trajec-
tory deviation by matching cross-attention maps between the two
trajectories with least-square loss. These methods apply online opti-
mization at each diffusion time step to calibrate the whole sampling
trajectory, introducing additional time overhead. Moreover, most
of these methods rely on cross-attention control introduced by P2P
[11] for structure preservation, requiring paired source text of the
reference image which is not available in most cases. PAP [40] pro-
poses to use feature maps and self-attention maps extracted from
the denoising U-Net internal layers to maintain image structure,
realizing optimization-free text-driven 121 translation. However, the
algorithm requires detailed layer selection trials to ensure good
performance, the feature extraction process is also time-consuming.

In this paper, we propose a concise and efficient approach termed
FBSDiff, realizing plug-and-play and highly controllable text-driven
I2I translation from a frequency-domain perspective. To guide T2I
generation with a reference image, a key missing ingredient of ex-
isting methods is the mechanism to control the guiding factor (e.g.,
image appearance, layout, contour) and guiding intensity. Since the
guiding factors of the reference image are difficult to isolate in the
spatial domain but are decomposable in the frequency domain, we
consider modeling different guiding factors with the corresponding
frequency bands of diffusion features in the Discrete Cosine Trans-
form (DCT) spectral space. Based on this motivation, we propose
an inversion-based text-driven I2I translation framework charac-
terized by a novel frequency band substitution mechanism, which
realizes plug-and-play and controllable reference image guidance by
dynamically substituting a certain DCT frequency band of diffusion
features with the corresponding counterpart of the reference image
along the reverse sampling process. As displayed in Fig. 1, T2I syn-
thesis with appearance and layout control, pure layout control, and
contour control of the reference image can be respectively realized
by transplanting low-frequency band, mid-frequency band, and
high-frequency band between diffusion features, and thus allowing
controllable and versatile text-driven I2I translation.

Anonymous Authors

The strengths of our approach are fourfold: (I) dynamic reference
image control at inference time, realizing plug-and-play text-driven
121 translation; (IT) conciseness and efficiency, our method dispenses
with the need for paired source text as well as cumbersome atten-
tion modulations as compared with existing methods, while still
achieving leading 121 performance; (III) more generic methodol-
ogy, our method applies frequency band transplantation on the
denoised features along the reverse sampling trajectory, requir-
ing no access to any internal feature embedding of the denoising
network, and thus decouples with the specific diffusion model back-
bone as contrasted with existing methods; (IV) our method allows
to flexibly control the guiding factor and guiding intensity of the
reference image simply by tuning the type and bandwidth of the
substituted frequency band. The effectiveness of our method is fully
demonstrated with both qualitative and quantitative evaluations.
To summarize, we make the following key contributions:

e We provide new insights about controllable diffusion process
from a novel frequency-domain perspective.

e We propose a novel frequency band substitution technology,
realizing plug-and-play text-driven I2I translation without
any model training, fine-tuning, or online optimization.

e We contribute a concise and efficient text-driven I2I frame-
work that is free from source text and cumbersome attention
modulations, highly controllable in both guiding factor and
guiding intensity of the reference image, and invariant to the
used diffusion model backbone, all while achieving superior
I2I translation performance among existing methods.

2 RELATED WORK

2.1 Diffusion Model

Since the advent of DDPM [12], diffusion model has soon dominated
the family of generative models [7]. DDIM [36] and its variants
[20, 20] substantially accelerate diffusion model sampling process.
Palette [32] extends diffusion model to the realm of conditional
image synthesis. Large-scale T2I diffusion models [25, 30, 33] bring
image creation to an unprecedented level, whose computation over-
head is significantly reduced by LDM [31] by training diffusion
model in low-dimensional feature space. ControlNet [43] and T2i-
adapter [24] add spatial control to T2I diffusion models by training
a control module conditioned on certain image priors. SDXL [28]
and DiTs [27] improve diffusion model backbone to larger capacity.
Now, diffusion model has been applied to a wide variety of vision
tasks with noticeable performance gains [1, 19, 21, 22, 34, 38, 42],
and is still making rapid progress in theory and application.

2.2 Computer Vision in Frequency Perspective

Neural networks are mostly used to tackle vision tasks in the spatial
or temporal domain, some research improves model performance
from a frequency-domain perspective. For example, Ghosh et al.
[10] introduce DCT to CNN to accelerate network convergence.
Xie et al. [41] propose a frequency-aware dynamic network for
lightweight image super-resolution. Cai et al. [4] impose Fourier
frequency spectrum consistency to image translation tasks for bet-
ter identity preservation. FreeU [35] improves image generation
quality by selectively enhancing or depressing different frequency
components of diffusion model U-Net features.
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Figure 2: Overview of FBSDiff. The whole framework contains an inversion process that inverts the reference image into the
Gaussian noise space of the latent diffusion model, based on which a reconstruction process is applied to reconstruct the
reference image, providing intermediate denoised results as pivotal guidance features that guide the text-driven sampling
process by dynamically transplanting certain DCT frequency bands with frequency band substitution layer.
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Figure 3: Illustration of the proposed frequency band sub-
stitution (FBS) layer. The FBS layer takes in two diffusion
features and substitutes a certain DCT frequency band of one
feature with the corresponding frequency band of the other
feature, where the frequency band extraction and transplan-
tation are implemented with binary masking.

3 METHOD

In this section, we first describe the overall model architecture,
then elaborate on the frequency band substitution mechanism, and
finally summarize the algorithm and show implementation details.
For the diffusion model background, please refer to the appendix.

3.1 Overall Architecture

Built on the pre-trained Latent Diffusion Model (LDM), FBSD-
iff adapts it from T2I generation to text-driven I2I translation by
proposing a plug-and-play reference image guidance mechanism,
realizing controllable guiding factor and guiding intensity of the
reference image via dynamic frequency band substitution.

As Fig. 2 shows, FBSDiff comprises three diffusion trajectories:
(i) inversion trajectory (zg — z7;,,); (ii) reconstruction trajectory
(z1;,, = 2T — 20 = z0); (iii) sampling trajectory (7 — Zp). Starting
from the initial feature zyp = E(x) extracted from the reference
image x by the encoder E, a Tj,,-step DDIM inversion is employed
to project z¢ into the Gaussian noise latent space conditioned on
the null-text embedding vg, based on the assumption that the ODE

process can be reversed in the limit of small steps:
Zt+1 = Va1 fy(ze,1,09) + V1 — Grra€g(ze, t,09), (1)
zr — V1 — areg(zs, t,vg)
Jo(zt.t,00) = = ; @

a

where {a;} are schedule parameters that follows the same setting as
DDPM [12], €y is the denoising U-Net of the pre-trained LDM. The
Gaussian noise z7;,, obtained after the Tj,,-step DDIM inversion
is directly used as the initial noise feature of the subsequent recon-
struction trajectory, which is a T-step DDIM sampling process that
reconstructs Zy ~ zg from the inverted noise feature Zr = zT,

Zt-1 = th—lfe(it, t, Uq)) + V1 - dt_leg(ft, t, U@), (3)
in which fy (%, t,vg) follows the same form as Eq. 5. The length of
the reconstruction trajectory could be much smaller than that of
the inversion trajectory (i.e., T < Tjny) to save inference time. The
same null-text embedding vy is conditioned in the reconstruction
trajectory to ensure feature reconstructability (i.e., Zg = zo).

Meanwhile, an equal-length sampling trajectory is applied in
parallel with the reconstruction trajectory to synthesize the target
image. The sampling trajectory is also a T-step DDIM sampling
that progressively denoises a randomly initialized Gaussian noise
feature x7 ~ N(0,I) into X( conditioned on the target-text em-
bedding v. To amplify the effect of text guidance, classifier-free
guidance technique [13] is utilized which interpolates conditional
(target-text) and unconditional (null-text) noise prediction at each
time step with a guidance scale w during the sampling trajectory:

Zr—1 = Var-1fp(Zs, t, 0, Uq)) + V1 —ar—1€9(Zs, t,0,0p), (4)
— V1 — aseq(Zs, t,v,09)

f@(ztst o, U@) = — > (5)
ay

€g(Z,1,0,09) = w - €g(Zr, 1,0) + (1 — ©) - €g(Zs, t,0p).  (6)

Due to the inherent property of DDIM inversion and DDIM sam-
pling, the reconstruction trajectory forms a deterministic denoising
mapping towards the reference image. Therefore, the intermediate
denoising results {Z;} along the reconstruction trajectory can be
used as pivotal guidance features to calibrate the corresponding
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counterpart {Z;} along the sampling trajectory to establish the cor-
relation between the reference image and the generated image, and
thus enables text-driven I2I translation. Specifically, we implement
feature calibration by inserting a plug-and-play frequency band sub-
stitution (FBS) layer in between the reconstruction trajectory and
the sampling trajectory. FBS layer substitutes a certain frequency
band of Z; with the same frequency band of Z; along the sampling
process to impose a certain guiding effect of the reference image,
where both the guiding factor (e.g., appearance, layout, contour)
and guiding intensity are flexibly controllable by tuning the type
and bandwidth of the substituted frequency band, respectively.

To balance image guidance and generation quality, we parti-
tion the sampling trajectory into a calibration phase and a non-
calibration phase separated by the time step AT. In the former cal-
ibration phase (27 — Z,1), dynamic frequency band substitution
is applied at each time step for stable calibration of the sampling
process; in the latter non-calibration phase (271 — Zo), we re-
move FBS layer to avoid over-constrained sampling results, fully
unleashing the generative power of the diffusion model to improve
image generation quality. Here A denotes the ratio of the length of
the non-calibration phase to that of the entire sampling trajectory.

At last, the final result Zy of the sampling trajectory is converted
to the translated image X via the decoder D, i.e., X = D(Zp).

3.2 Frequency Band Substitution Layer

AsFig. 3 illustrates, the FBS layer takes in a pair of diffusion features
z; and Z;, converts them from the spatial domain into the frequency
domain with 2D-DCT, then transplants a certain frequency band in
the DCT spectrum of Z; to the same position in the DCT spectrum of
Z;. Finally, 2D-IDCT is applied to transform the fused DCT spectrum
back into the spatial domain as the calibrated z;.

In 2D DCT spectrum, elements with smaller coordinates (nearer
to the top-left origin) encode lower-frequency image information,
larger-coordinate elements correspond to higher-frequency image
components, and most of the DCT spectral energy is occupied by a
small proportion of low-frequency elements.

In the FBS layer, the sum of 2D coordinates is used as thresholds
to extract DCT frequency bands of different types and bandwidths
through binary masking. Specifically, we design three types of
binary masks which are respectively termed the low-pass mask
(Maskj,), high-pass mask (Masky,,), and mid-pass mask (Maskmyp):

Maskyy(x,y) =1 if x+y < thy, else 0,
Maskpp(x,y) =1 if x+y > thp, else 0,
Maskmp (x,y) =1 if thmpr <x+y < thmpa else 0,

where thy, is the threshold of the low-pass filtering; thp,, is the
threshold of the high-pass filtering; thmp1 and thyps are respec-
tively the lower and upper bound of the mid-pass filtering. Given a
binary mask Mask. € {Masky,, Maskpy, Maskmyp}, the frequency
band substitution operation in the FBS layer can be formulated as:

Z; = IDCT(DCT (%) - Mask« + DCT(Z;) - (1 — Mask.)), (7)

where DCT and IDCT refers to the 2D-DCT and 2D-IDCT transfor-
mations respectively, which are described in detail in the Appendix.
The usage of the low-pass mask Masky,, high-pass mask Mask,,
and mid-pass mask Maskpm, respectively corresponds to the extrac-
tion and substitution of the low-frequency band, high-frequency

Anonymous Authors

Algorithm 1 Complete algorithm of FBSDiff

Input: the reference image x and the target text.
Output: the translated image x.
1: Extract the initial latent feature zg = E(x).
: fort =0to Tjpy — 1 do
compute z;41 from z; via Eq. 1;
: end for{DDIM inversion}
: Initialize ZT from the isotropic Gaussian distribution.
: fort=Tto AT +1do
compute Z;_1 from Z via Eq. 3;
compute Z;_1 from Z via Eq. 4;
calibrate z;_1 with 2;_; via Eq. 7;
: end for{DDIM sampling in the calibration phase}
: fort = AT to 1 do
compute Z;_1 from Z via Eq. 4;
: end for{DDIM sampling in the non-calibration phase}
: Obtain Zp and the final translated image X = D(Zj).

Y N U Wy

I
AW N = O

band, and mid-frequency band, which controls different guiding
factors of the reference image to the finally generated image:

e Low-frequency band substitution enables low-frequency
information guidance of x, realizing appearance (e.g., color,
luminance) and layout control over the generated image X.

¢ High-frequency band substitution enables high-frequency
information guidance of the reference image x, realizing
contour control over the generated image x.

e Mid-frequency band substitution enables mid-frequency
information guidance of the reference image x. By filter-
ing out higher-frequency contour information and lower-
frequency appearance information in the DCT spectrum, it
realizes pure layout control over the generated image x.

The DCT masking type and the corresponding thresholds used
in the FBS layer are algorithm hyper-parameters, which could be
flexibly modulated to enable diverse guiding factors and continuous
guiding intensity of the reference image to the generated image.

3.3 Implementation Details

We use the pre-trained Stable Diffusion v1.5 as backbone dif-
fusion model and set the classifier-free guidance scale w = 7.5.
We use 1000-step DDIM inversion to ensure high-quality recon-
struction, i.e., Tjnp=1000, and use 50-step DDIM sampling for the
reconstruction and sampling trajectory, i.e., T=50. Along the sam-
pling trajectory, we allocate 55% time steps to the calibration phase
and the remaining 45% steps for the non-calibration phase, i.e.,
A=0.45. For the default DCT masking thresholds used in the FBS
layer, we set th;,=80 for the low-frequency band substitution (low-
FBS); thp,=>5 for the high-frequency band substitution (high-FBS);
thmp1=5, thmp2=80 for the mid-frequency band substitution (mid-
FBS). The complete algorithm of FBSDiff is described in Alg. 1.

4 EXPERIMENTS

In this section, we first present and analyze the qualitative results
of our method; then delve into the frequency band substitution
with ablation studies; and finally show quantitative evaluations.
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Figure 4: Qualitative results of our method with different types of frequency band substitution. Better viewed with zoom-in.
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Figure 5: Comparison between 12I control effects achieved
by low-FBS, mid-FBS, and high-FBS, respectively.

4.1 Qualitative Results

Example text-driven I2I translation results of our method are shown
in Fig. 4. Our method effectively decomposes different guiding fac-
tors of the reference image by dynamically transplanting different
types of DCT frequency bands between diffusion features during
sampling. The low-FBS transfers low-frequency information of the
reference image into the sampling trajectory, making the generated
result inherit the original image appearance and layout. In the mode
of high-FBS, high-frequency components of the reference image are

Text prompt:

“picture of a robot”

\ \ \

Reference Unique sampling result of Null-text Inversion

Figure 6: Our method enables diverse sampling results for
fixed reference image and text prompt.

dynamically transplanted, the resulting generated image is aligned
with the reference image in high-frequency contours while the
low-frequency appearance is not restricted. The mid-FBS mainly
imposes image layout control by filtering out lower-frequency ap-
pearance information and higher-frequency contour information
of the reference image in the DCT domain. For all three types of
frequency band substitution, the image translation results exhibit
high visual quality and high fidelity to the text prompts, both for
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Figure 7: Qualitative method comparisons. Our FBSDiff with low-FBS is more adept at appearance preservation, which better suits
to I2I task pursuing appearance consistency (top panel). Our method with high-FBS remarkably facilitates image appearance
change compared with related methods, which better suits to I2I task pursuing appearance divergence (bottom panel).
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Figure 8: Comparison between the results of our method with and without frequency band substitution.
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Figure 9: Our method well adapts to varying degrees of semantic discrepancy between the reference image and the target text.

real-world and artistic reference images. The control over different
guiding factors of the reference image is more clearly shown in Fig.
5, our method controls image appearance and layout with low-FBS;
controls image contours while allowing appearance change with
high-FBS; and controls pure image layout with mid-FBS.

We qualitatively compare our method with SOTA text-driven
121 translation methods including PAP [40], Null-text Inversion
(Null-text) [23], Pix2Pix-zero [26], InstructPix2Pix (InsPix2Pix) [2],
Prompt Tuning Inversion (PT-inversion) [8], StyleDiffusion [18],
and VQGAN-CLIP (VQCLIP) [6], results are displayed in Fig. 7. The
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Figure 10: Demonstration of our method in controlling the appearance guiding intensity by varying th;, in low-FBS.
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Figure 11: Demonstration of our method in controlling the
contour guiding intensity by varying th;,; in mid-FBS.

top panel of Fig. 7 shows that our method with low-FBS achieves
better appearance consistency between the reference and the trans-
lated image than related approaches, and is thus better suited to
image creation scenario that favors borrowing the appearance and
style from an existing image as much as possible. The bottom panel
of Fig. 7 shows that existing SOTA text-driven I2I methods strug-
gle at producing I2I results with large appearance change, while
our method with high-FBS excels in generating results with sig-
nificantly different visual appearance, and is thus more suitable
to image creation scenario where appearance divergence is pur-
sued. Among the compared approaches, our method is the only
one that enables flexible control over different guiding factors of
the reference image, and is also the only approach that simulta-
neously dispenses with model training, model fine-tuning, online
optimization, and diffusion backbone attention modulations.

An advantage of our approach over related methods is sampling
diversity. As displayed in Fig. 6, our FBSDiff can produce diverse 121
results for fixed reference image and target text by randomly sam-
pling X from isotropic Gaussian distribution, while other inversion-
based methods [8, 18, 23, 26, 40] lack such sampling diversity due
to directly initializing X7 with the inverted image embedding.
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Figure 12: Ablation study w.r.t. different FBS manners.

The importance of FBS in reference image control is clearly
shown in Fig. 8, from which we see that removing FBS leads to
the sampled results with no correlation to the reference images.
Moreover, as Fig. 9 displays, our method well adapts to varying
degrees of semantic discrepancy between the reference image and
the target text prompt. The generated image of our method can still
comply with the target text with satisfying visual quality even in
the case of large text-image semantic discrepancy.

Besides the controllability in the guiding factors of the reference
image, the guiding intensity is also controllable by modulating the
bandwidth of the substituted frequency band. Results displayed
in Fig. 10 demonstrate the appearance consistency control of our
method by adjusting the low-pass filtering threshold th;,, in low-
FBS. Increasing the value of th, widens the bandwidth of the trans-
planted frequency band and thus increases the amount of guiding
information of the reference image, leading to the translated images
with more resemblance to the reference images. Conversely, lower-
ing the value of thy,, brings more variations of the generated results
to the reference images. Likewise, results in Fig. 11 demonstrate the
structure consistency control of our method by tuning the mid-pass
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Table 1: Quantitative evaluations of the text-driven I12I translation methods.

Emphasis Pursuing image appearance consistency Pursuing image appearance divergence

Metrics | Structure LPIPS()) AdalN Style CLIP Aesthetic | Structure  AdalN Style CLIP Aesthetic

Methods Similarity(T) Loss(]) Similarity(T)  Score(7) | Similarity(T) Loss(T) Similarity(T)  Score(?)
PAP [40] 0.954 0.278 20.525 0.316 6.583 0.957 27.848 0.306 6.439
Null-text [23] 0.950 0.247 17.627 0.310 6.514 0.952 25.667 0.293 6.325
Pix2Pix-zero [26] 0.952 0.242 16.745 0.308 6.490 0.955 25.152 0.295 6.287
InsPix2Pix [2] 0.959 0.265 25.796 0.312 6.266 0.960 31.660 0.286 6.195
PT-inversion [8] 0.946 0.249 22.926 0.313 6.481 0.951 29.245 0.292 6.269
StyleDiffusion [18] 0.945 0.251 24.667 0.311 6.497 0.944 26.585 0.290 6.255
FBSDiff (ours) 0.962 0.240 15.302 0.314 6.566 0.958 34.725 0.309 6.464

The red font indicates the top-ranked value and the blue font indicates the second-ranked value.

filtering upper bound threshold ¢k, in mid-FBS. When increas-
ing the value of thpy2, more high-frequency components of the
reference image are included and transplanted in the DCT domain,
leading to higher structure consistency of the generated images
(e.g., more accurate contours of the reference image transferred
into the generated result). Decreasing the value of thpp2, on the
contrary, shrinks the transplanted high-frequency information and
thus leads to weaker structure consistency.

4.2 Ablation Study

We also explore other designs of frequency band substitution, in-
cluding substituting the frequency band only once at AT time step
rather than along the whole calibration phase (which we denote as
Once Substitution) and substituting the full DCT spectrum rather
other only a partial frequency band of it (which we refer to as
Full Substitution). Results in Fig. 12 show that Once Substitution
fails to produce reasonable images, this indicates that step-by-step
FBS along the whole calibration phase is of crucial importance for
smooth information injection and stable information fusion. Since
image content is basically formed in the early stage of the diffusion
sampling process, removing feature calibration of FBS in the early
stage inevitably leads to large mismatch between the sampling and
the reconstruction trajectory. This causes severely incoherent DCT
space after replacing a frequency band at an intermediate time
step and thus leads to abnormal results. Besides, it shows that Full
Substitution fails to manipulate image semantics as per the text.
This is because substituting the full DCT spectrum is equivalent to
absolute feature replacement, which makes the sampling trajectory
in the early calibration phase totally the same as the reconstruction
trajectory. Therefore, the content of the generated image has been
formed to be basically the same as the reference image after the
early calibration phase, and is difficult to be noticeably changed
in the latter non-calibration phase which focuses on improving
low-level details but has minor impact on content manipulation.

4.3 Quantitative Evaluations

For quantitative evaluation, we separately evaluate methods on the
text-driven I2I translation task pursuing image appearance consis-
tency and the task pursuing image appearance divergence. For the
former task, we assess models’ layout and appearance preservation
ability by measuring structure similarity (T), perceptual similarity
(7), and style distance (]) between each pair of reference image and

translated image. For the latter task, we assess models’ structure
preservation and appearance modification abilities by measuring
structure similarity (T) and style distance (T). We use DINO-ViT self-
similarity distance [39] to measure structure similarity, use LPIPS
[44] to measure perceptual similarity, and use AdalN style loss [14]
to measure style discrepancy between the reference and the trans-
lated image. Besides, CLIP similarity (T) is evaluated to measure
semantic consistency between the target text and the translated
image, i.e., the text fidelity of the I2I translation results. Finally,
we evaluate the aesthetic score of the translated images with the
pre-trained LAION Aesthetics Predictor V2 model.

We sample reference images from the LAION Aesthetics 6.5+
dataset for quantitative evaluation. For the above-mentioned two
tasks, we separately sample 300 reference images for each task
and manually design 2 editing texts for each image, resulting in
600 evaluation samples (the reference image and target text pairs)
for each task. For our method, we use low-FBS for the I12I task
pursuing appearance consistency and use high-FBS for the task
pursuing appearance divergence. The average values are reported
in Tab. 1. Our method achieves top rankings in all the metrics for
both two tasks, indicating superiority of our method in preserving
image layout and appearance in the former task, and modifying
image appearance while maintaining image structure in the latter
task. Moreover, the competitive results in CLIP similarity score and
aesthetic score reflect that our method can generate 121 translation
results with high text fidelity and visual quality.

5 CONCLUSION

This paper proposes FBSDIff, a novel plug-and-play method that
adapts the pre-trained T2I diffusion model to highly controllable
text-driven I2I translation. The kernel ingredient of our method is
decomposing different 121 guiding factors in the diffusion feature
DCT space, and dynamically transplanting a certain DCT frequency
band of the reference image into the diffusion sampling trajectory
via our proposed frequency band substitution layer. Experiments
demonstrate that our method allows flexible control over both
guiding factors and guiding intensity of the reference image by
tuning the type and bandwidth of the substituted frequency band,
respectively. In summary, our FBSDIff provides a novel solution for
text-driven I2I translation from a frequency-domain perspective,
integrating advantages in versatility, controllability, high visual
quality, and plug-and-play efficiency.
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