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APPENDIX

A MIP PARAMETER INITIALIZATION

Parameter initialization strategies for regular neural networks have remained fairly stable over the
past half decade. The prevalent method consists of using Glorot or He initializations that are de-
signed to preserve the magnitude of activations during the forward pass and maintain the magnitude
of gradients during the backward pass (Glorot & Bengio, 2010; He et al., 2015).

Typically, the assumptions of these initialization schemes do not hold when applied to hypernet-
work settings. This has prompted the development of several specialized initialization schemes
tailored for hypernetwork formulations (Beck et al., 2023; Chang et al., 2019; Knyazev et al., 2021).
Crucially, these techniques require incorporating the knowledge of the primary network when per-
forming the initialization, and are designed for categorical inputs represented as embedding vectors.
The guarantees these schemes provide do not hold when using magnitude-encoded inputs such as
scalars.

We propose a simple yet effective initialization scheme based on the recommendations from the neu-
ral network literature. First, the hypernetwork weights ω are initialized using common initialization
methods for fully connected layers. Then, the independent parameters θ0 are initialized taking into
consideration their role in the primary network.

We illustrate our initialization rules using examples with the Kaiming He fan-out scheme. Using He
fan-out init, the weights and biases of a neural network layer with nin input neurons and nout output
neurons are sampled

W ∼ N
(
0,

G
√
nout

)
b = 0, (4)

where G is the relative gain of the non-linearity function ϕ(x). For ReLU, we have G = 2 whereas
linear or sigmoid, we have G = 1.

We differentiate the following cases:

• Intermediate Hypernetwork Layer - We initialize a (nin, nout) layer in the hypernetwork
following the scheme we just outlined, i.e., W ∼ N (0, G/(

√
nout) and b = 0.

• Final Hypernetwork Layer – We consider two cases, but we do not consider biases be-
cause they are redundant with θ0.

1. Layer predicting a primary network weight of shape (nin, nout):

W ∼ N
(
0,

1
√
ninnout

)
(5)

2. Layer predicting a primary network bias: W = 0

• Independent Weights θ0 – For fully connected layer with (nin, nout) neurons, we initialize
W ∼ N (0, G/(

√
nout), and b = 0.

From this initialization, we can observe that the set of independent weights θ0 is initialized as if they
were the weights of a regular neural network. Alternatively, if the primary network corresponds to a
pretrained model, the independent weights θ0 are initialized using the pretrained values, and can be
optionally frozen during training.

A.1 IMPLEMENTATION CONSIDERATIONS

Since the θ0 weights are redundant with the bias parameters of the final hypernetwork layer, we
remove bias parameters from the final hypernetwork layer. In our implementation, we use a single
final layer, but we initialize its weights as if it were the multiple smaller layers, since otherwise the
initialization would not follow the recommendations outlined in the previous section.

Under some hypernetwork configurations, all the primary network parameters are predicted in a
single forward pass of the hypernetwork. In this scenario, we implement the parameters θ0 as the
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bias vector terms of the last layer b(n), which proves to be as efficient as the default formulation.
This is correct because we do not have b(n) in our formulation, and b(n) is equivalent to θ0 in the
computational graph, receiving the same gradients. Hence, we initialize b(n) as a one-dimensional
representation of the primary network parameters, subsequently reshaping it to construct θ.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 DATASETS

MNIST. We train models on the MNIST digit classification task. We use the official MNIST
database of handwritten digits. The MNIST database of handwritten digits comprises a training
set of 60,000 examples, and a test set of 10,000 examples. We use the official train-test split for
training data, and further divide the training split into training and validation using a stratified 80%-
20% split. We use the digit labels and consider the 10-way classification problem.

OxfordFlowers-102. We use the OxfordFlowers-102 dataset, a fine-grained vision classification
dataset with 8,189 examples from 102 flower categories (Nilsback & Zisserman, 2006). We utilize
this dataset as it poses a non-trivial learning task that does not quickly converge, and allows us
to better study learning dynamics. We use the official train-test split for training data, and further
divide the training split into training and validation using a stratified 80%-20% split. We perform
data augmentation by considering random square crops of between 25% and 100% of the original
image area and resizing images to 256 by 256 pixels. Additionally, we perform random horizontal
flips and color jitter (brightness 25%, contrast 50%, saturation 50%). For evaluation we take the
central square crop of each image and resize to 256 by 256 pixels.

OASIS We use a version of the open-access OASIS Brains dataset (Hoopes et al., 2022; Marcus
et al., 2007), a medical imaging dataset containing 414 MRI scans from separate individuals, com-
prised of skull-stripped and bias-corrected images that are resampled into an affinely-aligned, com-
mon template space. For each scan, segmentation labels for 24 brain substructures in a 2D coronal
slice are available. We use 64%, 16% and 20% splits for training, validation and test.

B.2 BAYESIAN NEURAL NETWORKS

Primary Network. For the MNIST task, we use a LeNet architecture variant that uses ReLU acti-
vations as they have become more prevalent in modern deep learning models. Moreover, we replace
the first fully-connected layer with two convolutional layers of 32 and 64 features. We found this
change did not impact test accuracy in non-hypernetwork models, but it lead to more stable initial-
izations for the default hypernetworks.

For the OxfordFlowers-102 task, the primary network f features a ResNet-like architecture with
five downsampling stages with (16, 32, 64, 128, 128) feature channels respectively. For experiments
including normalization layers, such as BatchNorm and LayerNorm, the learnable affine parameters
of the normalization layers are not predicted by the hypernetworks and are optimized like in regular
neural networks via backpropagation.

Training. We train using a categorical cross entropy loss. For both optimizers we use learning
rate η = 3× 10−4. Nevertheless, we found consistent results with the ones we report using learning
rates in the range η = [10−4, 3× 10−3]. We sample γ from the uniform distribution U [0, 1].
Evaluation. For evaluation we use top-1 accuracy on the classification labels. In order to get a more
fine-grained evolution of the test accuracy, we evaluate on test set at 0.25 epoch increments during
training. We report results with five model replicas with different random seeds.

B.3 HYPERMORPH

HyperMorph, a learning based strategy for deformable image registration learns models with differ-
ent loss functions in an amortized manner. In image registration, the γ hypernetwork input controls
the trade-off between the reconstruction and regularization terms of the loss.

Primary Network. For our primary network f we use a U-Net architecture (Ronneberger et al.,
2015) with a convolutional encoder with five downsampling stages with two convolutional layers
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per stage of 32 channels each. Similarly, the convolutional decoder is composed of four stages
with two convolutional layers per stage of 32 channels each. We found that models with more
convolutional filters performed no better than the described architecture.

Training. We train using the setup described in HyperMorph (Hoopes et al., 2022) using mean
squared error for the reconstruction loss and total variation for the regularization of the predicted
flow field. For the Adam optimizer we use β1 = 0.9 and β2 = 0.999 with decoupled de-
cay Loshchilov & Hutter (2017) and η = 10−4, but we found that learning rates [10−4, 3 × 10−3]
lead to similar convergence results. For SGD with momentum, we tested learning rates η =
{3× 10−2, 10−2, 3× 10−3, 10−3, 3× 10−4, 10−4, 3× 10−5, 10−5, }. In all cases the default hyper-
network formulation failed to meaningfully train. We train for 3000 epochs, and sample γ uniformly
in the range [0, 1] like in the original work.

Evaluation. Like Hoopes et al. (2022), we use segmentation labels as the main means of evaluation
and use the predicted flow field to warp the segmentation label maps and measure the overlap to
the ground truth using the Dice score (Dice, 1945), a popular metric for measuring segmentation
quality. Dice score quantifies the overlap between two regions, with a score of 1 indicating perfect
overlap and 0 indicating no overlap. For multiple segmentation labels, we compute the overall Dice
coefficient as the average of Dice coefficients for each label. We report results with five model
replicas with different random seeds.

B.4 SCALE-SPACE HYPERNETWORKS

We evaluate on a task where the hypernetwork input γ controls architectural properties of the pri-
mary network. We use γ to determine the amount of downsampling in the pooling layers. Instead of
using pooling layers that rescale by a fixed factor of two, we replace these operations by a fractional
bilinear sampling operation that rescales the input by a factor of γ.

Primary Network. For classification tasks, our primary network f features a ResNet-like archi-
tecture with five downsampling stages with (16, 32, 64, 128, 128) feature channels respectively.
For experiments including normalization layers, such as BatchNorm and LayerNorm, the learnable
affine parameters of the normalization layers are not predicted by the hypernetworks and are opti-
mized like in regular neural networks via backpropagation.

For segmentation tasks, we model the primary network f using a U-Net architecture (Ronneberger
et al., 2015) with a convolutional encoder with five downsampling stages with two convolutional
layers per stage of 32 channels each. Similarly, the convolutional decoder is composed of four
stages with two convolutional layers per stage of 32 channels each.

Training. We sample the hypernetwork input γ uniformly in the range [0, 0.5] where γ = 0.5
corresponds to downsampling by 2. We train the multi-class classification task using a categorical
cross-entropy loss, and train with a weight decay factor of 10−3, and with label smoothing Good-
fellow et al. (2016); Szegedy et al. (2016) the ground truth labels with a uniform distribution of
amplitude ϵ = 0.1. For the segmentation tasks we train using a cross-entropy loss and then fine-
tune using a soft-Dice loss term, as in Ortiz et al. (2023). For both optimizers we use learning
rate η = 1× 10−4. Nevertheless, we found consistent results with the ones we report using learning
rates in the range η = [1× 10−4, 3× 10−3].

16



Under review as a conference paper at ICLR 2024

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 NUMBER OF INPUT DIMENSIONS

In this experiment, we study the effect of the number of dimensions of the input to the hypernetwork
model on the hypernetwork training process, both for the default parametrization and for our MIP
parametrization. We evaluate using the Bayesian Hypernetworks, since we can vary the number of
dimensions of the input prior without having to define new tasks. We train models with geometrically
increasing number of input dimensions, dim(γ) = 1, 2, . . . , 32. We apply the input encoding to each
dimension independently. We study two types of input distribution: uniform U(0, 1) and Gaussian
N (0, 1). For MIP, we apply a sigmoid to the Gaussian inputs to constrain them to the [0,1] range as
specified by our method. We evaluate on the Bayesian hypernetworks task on the OxfordFlowers-
102 dataset with a primary convolutional network optimized with Adam.

Figure 6 shows the convergence curves during training. Results indicate that the proposed MIP
parametrization leads to improvements in model convergence and final model accuracy for all num-
ber of input dimensions to the hypernetwork and for both choices of input distribution. Moreover, we
observe that the gap between MIP and the default parametrization does not diminish as the number
of input dimensions grows.

(a) Uniform Inputs (Γi = U(0, 1))
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(b) Gaussian Inputs (Γi = N (0, 1))

0 2000 4000
Epoch

1.5

2.0

2.5

3.0

3.5

Te
st

 L
os

s

dim( ) = 1

0 2000 4000
Epoch

dim( ) = 2

0 2000 4000
Epoch

dim( ) = 4

0 2000 4000
Epoch

dim( ) = 8

0 2000 4000
Epoch

dim( ) = 16

0 2000 4000
Epoch

dim( ) = 32

Hypernet
Default
MIP (ours)

0 2000 4000
Epoch

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

dim( ) = 1

0 2000 4000
Epoch

dim( ) = 2

0 2000 4000
Epoch

dim( ) = 4

0 2000 4000
Epoch

dim( ) = 8

0 2000 4000
Epoch

dim( ) = 16

0 2000 4000
Epoch

dim( ) = 32

Hypernet
Default
MIP (ours)

Figure 6: Number of dimensions of hypernetwork input. Test loss (top row) and test accuracy
(bottom row) for Bayesian hypernetworks trained on the OxfordFlowers classification task for in-
creasing number of dimensions of the hypernetwork input γ. We report results for different prior
input distributions: Uniform (a) and Gaussian (b). For each setting, we train 3 independent repli-
cas with different random initialization and report the mean (solid line) and the standard deviation
(shaded region). We see significant improvements in model training convergence when the hyper-
network uses the proposed MIP parametrization.
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C.2 CHOICE OF HYPERNETWORK ARCHITECTURE

In this experiment we test whether increasing the choice of hypernetwork architecture size has an
effect on the improvements achieved by incorporating Magnitude Invariant Parametrizations (MIP).
We study varying the width (the number of neurons per hidden layer) and the depth (the number
of hidden layers) independently as well as jointly. For the depth, we consider networks with 3, 4
and 5 layers. For width, we consider having 16 neurons per layer, 128 neurons per layer, or having
an exponentially growing number of neurons per layer (exp), following the expression Dim(xn) =
16 · 2n.

We compare training networks using the default hypernetwork parametrization and MIP for the
HyperMorph task. Figure 7 shows convergence curves for the evaluated settings, for several random
initializations. Additionally, Figure 8 shows the distribution of final model performances for the
range of inputs γ ∈ [0, 1]. We find that MIP models converge faster without sacrificing final model
accuracy.
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Figure 7: Model convergence for several configurations of depth and width of the hypernetwork
architecture for default and MIP hypernetworks. Results are for HyperMorph on OASIS. Shaded
regions measure standard deviation across hypernetwork initializations.
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Figure 8: Test dice score for several configurations of depth and width of the hypernetwork ar-
chitecture for default and MIP hypernetworks. Results are for HyperMorph on OASIS. Box-plots
are reported over the range of hypernetwork inputs γ. For all hypernetwork architectures, MIP
parametrizations consistently lead to more accurate models.
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C.3 CHOICE OF NONLINEAR ACTIVATION FUNCTION

While our method is motivated by the training instability present in hypernetworks with (Leaky)-
ReLU nonlinear activation functions, we explored applying it to other popular choices of activation
functions. We consider popular activation functions GELU and SiLU (also known as Swish) that are
close to the ReLU formulation, as well as the Tanh nonlinear function Hendrycks & Gimpel (2016);
Ramachandran et al. (2017).

We evaluate on the Bayesian hypernetworks task on the OxfordFlowers-102 dataset with a primary
convolutional network trained optimized with Adam. Figure 9 shows the convergence curves for
Bayesian hypernetworks with a primary convolutional network trained on the OxfordFlowers clas-
sification task optimized with Adam. We see that MIP consistently helps for all choices of nonlinear
activation function, and the improvements are similar to those of the LeakyReLU models.
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Figure 9: MIP on alternative nonlinear activation functions Test loss (top row) and test accu-
racy (bottom row) for Bayesian hypernetworks trained on the OxfordFlowers classification task for
various choices of nonlinear activation function in the hypernetwork architecture: GELU, SiLU and
Tanh. For each setting, we train 3 independent replicas with different random initialization and
report the mean (solid line) and the standard deviation (shaded region). We see significant improve-
ments in model training convergence when the hypernetwork uses the proposed MIP parametriza-
tion.
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C.4 FINAL MODEL PERFORMANCE

Table 1: Final model results on the test set for the considered tasks and models. We report the
average performance averaged across the range of γ inputs. We find MIP does not decrease model
performance in any setting, while providing substantial improvements in several of them, especially
when using the SGD optimizer. Standard deviation across random initializations is included in
parentheses.

Adam SGD
Task Data Default MIP Default MIP

Bayesian NN MNIST 98.1 (1.1) 99.1 (0.3) 99.2 (0.2) 99.0 (0.2)
OxfordFlowers-102 78.1 (1.9) 83.2 (0.3) 1.4 (0.1) 75.4 (0.5)

HyperMorph OASIS 71.0 (0.3) 72.1 (0.3) 54.3 (0.4) 70.5 (0.2)

Scale-Space HN OASIS 81.4 (0.3) 84.4 (0.6) 75.3 (2.7) 78.8 (1.4)
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C.5 NORMALIZATION STRATEGIES

Before developing MIP parametrizations we tested the viability of existing normalization strategies
(such as Layer or Weight normalization) to deal with the identified proportionality phenomenon.
While normalizing inputs and activations is a common practice in neural network training, hyper-
networks present different challenges, and applying these techniques can actually be detrimental
to the training process. Hypernetworks predict network parameters, and many of the assumptions
behind parameter initialization and activation distribution do not easily translate between classical
networks and hypernetworks.

An important distinction is that the main goal of our formulation is to ensure that the hypernetwork
input has constant magnitude, not that is normalized (i.e., zero mean, unit variance). A normal-
ized variable z ∼ N (0, 1) does not have constant magnitude (i.e., L2 norm), over its support, so
normalization techniques do not solve the identified magnitude dependency and can actually lead
to undesirable formulations. To show this, let x ∈ Rk be a hypernetwork activation vector, and
γ ∈ [0, 1] the hypernetwork input. Then, according to the identified proportionality in Section 3.2,
we know that x = γz. Here x is the activation when the input is γ and z is a vector independent of
γ. The normalization output will be

Norm(x) =
x− E[x]
Stdev[x]

=
γz − E[γz]
Stdev[γz]

=
γz − γE[z]
|γ|Stdev[z]

=
z − E[z]
Stdev[z]

,

making the output independent of the hypernetwork input γ. Following this reasoning, strategies like
layer norm, instance norm or group norm in the hypernetwork will make the output of the model
independent of the hypernetwork input, rendering the hypernetwork unusable for scalar inputs. For
batch normalization cases it depends upon whether different hypernetwork inputs are used for each
element in the minibatch. If not, the same logic applies as in the feature normalization strategies.
Otherwise, the proportionality will still hold as the batch mean and standard deviation will be the
same for all entries in the minibatch. Our experimental results confirm this. Hypernetworks with
layer normalization fail to train in most settings. In contrast, we found consistently that training
substantially improves when using our MIP formulation. See Figure 5a in the main body which
shows that none of the tested normalization strategies is competitive with MIP in terms of model
convergence or final model accuracy.

Batch Normalization - Applying batch normalization fails to deal with the proportionality phe-
nomenon because it normalizes statistics that are independent of the magnitude of γ keeping the
proportionality (Ioffe, 2017). In our experiments, batch normalization performed similar to the
default formulation when included in either the hypernetwork or the primary network, failing to
address the proportionality relationship. For instance, all of the results in Figure 6 use batch nor-
malization layers, as recommended for ResNet-like architectures. In this case, MIP still provides a
substantial improvement in terms of model convergence and training stability.

Feature Normalization - Feature normalization techniques such as layer normalization, instance
normalization or group normalization do remove the proportionality phenomenon we identify (Ba
et al., 2016; Ulyanov et al., 2016). However, by doing so they make the predicted weights indepen-
dent of the input hyperparameter, limiting the modeling capacity of the hypernetwork architecture.
Moreover, in our empirical analysis, networks with layer normalization in the hypernetwork layers
failed to train entirely, with the loss diverging early in training.

Weight Normalization - We also considered techniques that decouple the gradient magnitude and
direction such as weight normalization (Qiao et al., 2019). Performing weight normalization on the
hypernetwork predictions effectively decouples the gradient magnitude and direction. We find that
convergence is substantially lower compared to the default parametrization. Moreover, final model
performance does not match the default parametrization.

21


