Under review as a conference paper at ICLR 2026

GRAPH-BASED OPERATOR LEARNING FROM LIMITED
DATA ON IRREGULAR DOMAINS

Anonymous authors
Paper under double-blind review

ABSTRACT

Operator learning seeks to approximate mappings from input functions to output
solutions, particularly in the context of partial differential equations (PDEs). While
recent advances such as DeepONet and Fourier Neural Operator (FNO) have
demonstrated strong performance, they often rely on regular grid discretizations,
limiting their applicability to complex or irregular domains. In this work, we
propose a Graph-based Operator Learning with Attention (GOLA) framework that
addresses this limitation by constructing graphs from irregularly sampled spatial
points and leveraging attention-enhanced Graph Neural Netwoks (GNNs) to model
spatial dependencies with global information. To improve the expressive capacity,
we introduce a Fourier-based encoder that projects input functions into a frequency
space using learnable complex coefficients, allowing for flexible embeddings
even with sparse or nonuniform samples. We evaluated our approach across a
range of 2D PDEs, including Darcy Flow, Advection, Eikonal, and Nonlinear
Diffusion, under varying sampling densities. Our method consistently outperforms
baselines, particularly in data-scarce regimes, demonstrating strong generalization
and efficiency on irregular domains.

1 INTRODUCTION

Learning mappings between function spaces is a fundamental task in computational physics and
scientific machine learning, especially for approximating solution operators of partial differential
equations (PDEs). Operator learning offers a paradigm shift by learning the solution operator directly
from data, enabling fast, mesh-free predictions across varying input conditions. Despite their success,
existing operator learning models such as DeepONet (Lu et al.,[2019)) and Fourier Neural Operator
(FNO) (L1 et al., [2020a)) exhibit notable limitations that restrict their applicability in more general
settings. A key shortcoming lies in their reliance on regular, uniform grid discretizations. FNO, for
instance, requires inputs to be defined on fixed Cartesian grids to leverage fast Fourier transforms
efficiently. This assumption limits their flexibility and generalization ability when applied to problems
defined on complex geometries, irregular meshes, or unstructured domains, which are common in
real-world physical systems. Furthermore, these models often struggle with sparse or non-uniformly
sampled data, leading to degraded performance and increased computational cost when adapting to
more realistic, heterogeneous scenarios.

To address these limitations, we propose a Graph-based Operator Learning with Attention (GOLA)
framework that leverages Graph Neural Networks (GNNs) to learn PDE solution operators over
irregular spatial domains. By constructing graphs from sampled spatial coordinates and encoding
local geometric and functional dependencies through message passing, the model naturally adapts to
non-Euclidean geometries. To enhance global expressivity, we further incorporate attention-based
mechanisms that can capture long-range dependencies more effectively and a Fourier-based encoder
that projects input functions into a frequency domain using learnable complex-valued bases. Our
model exhibits superior data efficiency and generalization, achieving smaller prediction errors with
fewer training samples and demonstrating robustness under domain shifts.

The main contributions of this work are as follows:

* We introduce GOLA, a unified architecture combining spectral encoding and attention-
enhanced GNNs for operator learning on irregular domains.

Under review as a conference paper at ICLR 2026

* We propose a learnable Fourier encoder that projects input functions into a frequency domain
tailored for spatial graphs.

» Through extensive experiments, we demonstrate that GOLA generalizes across PDE types,
sample densities, and resolution shifts, achieving state-of-the-art performance in challenging
data-scarce regimes.

2 RELATED WORK

There are many latest research about graph and attention methods in scientific machine learning
(Xiao et al.,[2024)), (Kissas et al., [2022), (Boullé and Townsend, [2024), (Xu et al., 2024), (Jin and Gul,
2023)), (Cuomo et al.l [2022)) (Kovachki et al.,[2024), (Nelsen and Stuart,, [2024)), (Batlle et al., 2023)).

Graph neural networks for scientific machine learning. (Battaglia et al., 2018]) applies shared
functions over nodes and edges, captures relational inductive biases and generalizes across different
physical scenarios. (Bar-Sinai et al.|, 2019) learns data-driven discretization schemes for solving
PDEs by training a neural network to predict spatial derivatives directly from local stencils. By
replacing hand-crafted finite difference rules with learned operators, it adapts discretizations to the
underlying data for improved accuracy and generalization. (Sanchez-Gonzalez et al.| |2020) predicts
future physical states by performing message passing over the mesh graph, capturing both local and
global dynamics without relying on explicit numerical solvers. Graph Kernel Networks (GKNs)
(L1 et al.,[2020b) directly approximates continuous mappings between infinite-dimensional function
spaces by utilizing graph kernel convolution layers. PDE-GCN (Wang et al., 2022) represents
partial differential equations on arbitrary graphs by combining spectral graph convolution with
PDE-specific inductive biases. It learns to predict physical dynamics directly on graph-structured
domains, enabling generalization across varying geometries and discretizations. The Message Passing
Neural PDE Solver (Brandstetter et al.,|2022) formulates spatiotemporal PDE dynamics by applying
learned message passing updates on graph representations of the solution domain. Physics-Informed
Transformer (PIT) (Dos Santos et al.,|2023)) embeds physical priors into the Transformer architecture
to model PDE surrogate solutions. It leverages self-attention to capture long-range dependencies and
integrates PDE residuals as soft constraints during training to improve generalization. GraphCast
(Lam et al.,2024) learns the Earth’s atmosphere as a spatiotemporal graph and uses a graph neural
network to iteratively forecast future weather states based on past observations. It performs message
passing over the graph to capture spatial correlations and temporal dynamics, enabling accurate
medium-range forecasts.

Attention-based methods for scientific machine learning. U-Netformer (Liu et al.| 2022) proposes
a hybrid neural architecture that combines the U-Net’s hierarchical encoder-decoder structure with
transformer-based attention modules to capture both local and global dependencies in PDE solution
spaces. Tokenformer (Zhou et al., [2023)) reformulates PDE solving as a token mixing problem by
representing input fields as tokens and applying self-attention across them to model spatial correla-
tions. Adaptive Fourier Neural Operators (AFNO) (Guibas et al.,[2021) are an efficient token-mixing
mechanism for vision transformers that perform resolution-independent global convolution in the
Fourier domain—enhanced by block-diagonal channel mixing, adaptive weight sharing, and fre-
quency sparsification—to deliver quasi-linear complexity and superior performance over traditional
self-attention on high-resolution image tasks. Our proposed GOLA combines the local relational
strengths of attention-enhanced GNNs and the global spectral capabilities of Fourier-based encod-
ing. This hybrid approach has shown notable improvements in generalization and data efficiency,
particularly under challenging data-scarce conditions on irregular domains.

3 METHODOLOGY

3.1 PROBLEM FORMULATION
Consider the general form of a PDE
Nu|(x) = f(x), x€Qx[0,00) (1)

where x denotes a compact representation of the spatial and temporal coordinates, €2 is the spatial
domain, and [0, 0o) is the temporal domain. N is a differential operator, u(x) is the unknown solution,

Under review as a conference paper at ICLR 2026

and f(x) is a given source term. The objective is to learn the solution operator G : F — U, where F
and U are Banach spaces. We assume access to a training dataset D = {(f,,, u,)}2_,, consisting of
multiple input-output function pairs, where each f,(-) and w,,(-) is represented by discrete samples
over a finite set of points.

While existing approaches such as DeepONet and FNO have demonstrated strong performance, they
typically rely on structured, grid-based discretizations of the domain. This assumption limits their
applicability to unstructured meshes, complex geometries, and adaptively sampled domains. To
overcome this limitation, we employ GNNs for operator learning by representing the domain as
a graph. This allows for modeling on arbitrary domains and sampling patterns. Once trained, the
operator learning model can efficiently predict the solution u for a new instance of the input f at

random locations.
Message
Input Fourier Message MultiHead Passing
‘ Samplin, Encoder Passing el f Attention with
Attention

Coordinates

o ° o
o
o %o
0 o 4
© o
o o
f value
o Graph U value
O o | Cemi| R i P oo
. ° S}
Oo %o : o ° o
© o g e %0
° o b © oo
o o ! o o
' o [} o

Figure 1: GOLA: Graph-based Operator Learning with Attention. The model first encodes input function
values sampled on irregular spatial coordinates using a learnable Fourier encoder to obtain spectral node features.
A graph is constructed based on spatial proximity, enabling message passing and multi-head self-attention to
capture local and global dependencies. A final attention-based message passing layer refines the representation
to predict the output solution values. GOLA effectively handles irregular domains and sparse samples, achieving
strong generalization for PDE operator learning.

3.2 GRAPH CONSTRUCTION

To represent PDE solutions over irregular domains, we begin by randomly sampling a subset of
points {; }}¥; from a uniform grid in 2D space. We then construct a graph G' = (V, E) with nodes
V = {z;} and edges F determined by a radius r. Edges are created based on spatial proximity.
Two nodes are connected if the Euclidean distance between them is less than a threshold r such that
(¢,j) € Eif and only if ||z; — x;||2 < r. Each edge (i, j) carries edge attributes e;; that encode
both geometric and feature-based information, such as the relative coordinates and function values at
nodes i and j such that e;; = ||(z;, z;, f(z;), f(x;)), where || is the concatenation operation. This
graph-based representation allows us to model unstructured spatial domains and enables message
passing among nonuniform samples.

Under review as a conference paper at ICLR 2026

3.3 FOURIER ENCODER

We define a set of learnable frequencies {w,,, € R? |m =1,...,M}.
For any coordinate x € R?, the m-th basis function is given by the complex exponential

O (l’) — 627Ti<wm,:r> (2)

where (-, -) denotes the standard Euclidean inner product, and is the imaginary unit.
At the discrete level, for a batch of B samples and IV points per sample, the basis matrix is defined as

}))
P c (CBX]\T)(I\/[7 @bﬂ;,’m — 627”<""m’x1:) (3)

where x,gb) denotes the i-th coordinate point in the b-th batch sample.

Given the input f € RE*CnxN sampled at points {x;}, we first project onto the Fourier basis. We
compute the Fourier coefficients by

1 N -
'&b,c,m = N Z fb,c,i ©m (mgb)) (4)
i=1

where (-) denotes complex conjugation.

xC

We introduce a learnable set of complex Fourier coefficients W € C%n*CouxM The spectral filtering

operation is
Cin
Vb,o,m = § Up,c,m Wc,o,m (5)
c=1

We reconstruct the output in the physical domain by applying the inverse transform
M
. b
Ub,0,i = Z Ub,0,m Pm (xg)> (6)
m=1

Since v is complex-valued, we only take its real part for the output as 4 = Re(v) € REXCouxN The
output h serves as the input node features for the downstream GNN model.

3.4 MESSAGE PASSING

Given a node 7 € V" and its set of neighbors N/ (i), the pre-processed messages {1} jear(;) are first
computed using a learnable neural network gg as

mij = go(hi, hyj, ei5) @)
where h; and h; are node features, and e;; denotes edge attributes.

Then we aggregate message from neighbors such that

1
V(@)

= ||(

1 1
g myj, Max mg;, min mg;, |——— g (myj — —— g m;j)?)
i JEN(i) JEN () V()] v IN()| 4~

This concatenated feature vector is processed by a post-aggregation neural network g to produce
the updated node representation by

The updated node representation is passed through additional MLP layers with residual connections
to enhance expressiveness.

Under review as a conference paper at ICLR 2026

3.5 MULTI-HEAD SELF-ATTENTION

We employ H independent attention heads. For each head h, the query, key and value functions are
computed as linear projections

g (x) = Wh'(z), k™ (y) = Wil (y), o™ (y) = W, (y) (10)

where W, Wy, W,, € R *Coug(h) () k(M) (y), 0" (y) € R are learned head-specific features,
and dy, is the dimension per attention head.

Before computing attention, the keys and values are normalized
K (y) = Norm(k™(y)), 5™ (y) = Norm(v!)(y)) (11)

where Norm(+) denotes instance normalization.

We compute
N ~
Gr=>_ k") oM (y)wly;), (Knh')(x:) = ¢" (2:)Ghn (12)
j=1

The outputs are concatenated and projected to the output space by

(KR (a) = [(Kih') (@), o (Krh')(2)) s (@s) = Woud(KR) () (13)
where where G}, € R% %@ 1y is calculated by the number of points, Wy, € RCou* (CouH)
The result is then passed through a linear projection layer to update the node features.

3.6 MESSAGE PASSING WITH ATTENTION

We update node features and add a skip connection by

}AL; = W]iLl + Z aij (WQiLJ‘ + W361j> s iL; = }AL; + WSiLZ (14)
JEN(i)

The attention weights «;; are computed using a scaled dot-product attention mechanism by

(WJLZ»)T (Wsizj + Wgeij)

15
NG 15)

i = softmax;

where d is the dimensionality of the head, and the softmax is applied over the set of neighbors
j € N(4). Then we add a linear projection to produce the predicted solution .

3.7 TRAINING

The model is trained to minimize the relative Lo error between predicted and true solutions by

lu —Go(f)llL2()

||UHL2(Q)

Lo(0) = (16)

4 THEORETICAL ANALYSIS

Following the universal approximation theorem for operators (Lu et al.| 2019), neural operator
architectures can approximate any continuous operator G between Banach spaces when provided
with sufficient capacity.

Under review as a conference paper at ICLR 2026

Proposition. Let G : 7 — U be a continuous nonlinear operator between separable Banach spaces.
Then, under sufficient model capacity, the GOLA architecture Gy can approximate G arbitrarily well
in the L (£2) norm over a compact domain 2, i.e., sup sc 7, [G(f) — Go(f) | L2(q) < €, forany e > 0
and compact subset F5 C F.

Proof. Given a function f € F C L%(Q), we sample it at N spatial locations {x;}2¥.; C € to obtain
a discrete representation fy = (f(x1),..., f(zn)) € RV, Since is compact, by increasing N the
point cloud {x;} becomes dense in §2. Thus, fx can approximate f arbitrarily well in L?(£2) norm
via interpolation over the sampling set.

Define a set of complex Fourier basis functions {¢,, (z) = e27#wm#)}M_

complete in L? (Q), so for any f € F and ¢ > 0, there exists M such that

1- The Fourier basis is

)
L3(Q)

M A
Hf(:v) =Y fmbm(@)

m=1

This guarantees that the learnable Fourier encoder in GOLA can approximate the functional input f
to arbitrary precision.

Construct a graph G = (V, E) with node set V = {z;}Y ,, where edges encode local spatial
relationships. According to universal approximation results for GNNs (Xu et al.,2019), (Morris et al.}
2019), for any continuous function defined on graphs, a GNN with sufficient depth and width can
approximate it arbitrarily well. Thus, the GNN decoder can approximate the mapping from input
features to solution values

(f(@1), - flan)) = (G(f)(21), -, G(F)(2n))

Let T denote the sampling operator, Fy the Fourier encoder, and Dy the GNN decoder. Then the
GOLA operator can be written as

Go=DooFpoln

Each component is continuous and approximates its target arbitrarily well. Since composition of
continuous approximations preserves continuity, and F; is compact, the total approximation error
can be made less than any € > 0 by choosing IV, M, and model capacity large enough such that

sup Hg(f) - gé)(f)”L?(Q) <e
fEFs

5 EXPERIMENTS

We evaluate the proposed model GOLA on four 2D PDE benchmarks including Darcy Flow, Nonlinear
Diffusion, Eikonal, and Advection. For each dataset, we simulate training data with 5, 10, 20, 30, 40,
50, 80, 100 samples and use 100 examples for testing. To construct graphs, we randomly sample 20,
30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 points from a uniform
128 x 128 grid over the domain [0, 1] x [0, 1]. The sampled points define the nodes of the graph.
Our model learns to approximate the solution operator from these irregularly sampled inputs. We
aim to test generalization under both limited data and resolution changes. We compare against the
following baselines including DeepONet (Lu et al., 2019), AFNO (Guibas et al., 2021} and Graph
Kernel Network (GKN) (Li et al.| 2020b).

Comparisons with baselines. Table|[I|reports the averaged test errors over 5 runs with different seeds
across four PDE benchmarks—Darcy Flow, Advection, Eikonal, and Nonlinear Diffusion—in the low-
data regime of 100 training samples with sample density = 1000 randomly selected from a uniform
128 x 128 grid over the domain [0, 1] x [0, 1]. The proposed GOLA method consistently achieves
the lowest error across all datasets. For Darcy Flow, GOLA attains an error of 0.1088 4 0.0027,
representing a 40.8% relative improvement over the best baseline, GKN (0.1840 + 0.0040). In
Advection, GOLA achieves 0.2227 + 0.0185, reducing the error by 26.7% compared to GKN and
by over 77% relative to AFNO and DeepONet. For Eikonal, GOLA obtains 0.0657 + 0.0011,
a 45.7% improvement over GKN, while Nonlinear Diffusion exhibits the largest relative gain
0.0430 % 0.0005, which is 59.2% lower than GKN. Moreover, GOLA maintains standard deviations

Under review as a conference paper at ICLR 2026

on par with or below those of the best-performing baselines, indicating both superior accuracy and

stable convergence.

Table 1: Test errors for different models in irregular sampling points trained on 100 training data samples with
sample density=1000 across various PDE benchmarks. The results are averaged over 5 runs in this paper.

Dataset

AFNO

DeepONet

GKN

Ours(GOLA)

Darcy Flow
Advection

Eikonal

Nonlinear Diffusion

0.4310 £ 0.0040
0.9845 £ 0.0007
0.1828 £0.0017
0.1686 £ 0.0016

0.5897 £ 0.0026
0.9979 £ 0.0001
0.1918 £ 0.0004
0.2781 £ 0.0005

0.1840 £ 0.0040
0.3043 £ 0.0041
0.1210 £ 0.0043
0.1052 £ 0.0038

0.1088 + 0.0027
0.2227 + 0.0185
0.0657 + 0.0011
0.0430 + 0.0005

Train Data Size=100 Train Data Size=50 Train Data Size=40

5
LSS L L LSS LSS

LSS S L

‘Sample Density

Train Data Size=30 Train Data Size=20 Train Data Size=10

Y

L LSO S

o o
§ s s S S S S S
L LSO S

L LSO S

)

‘Sample Density

‘Sample Density

‘Sample Density

Figure 2: Error reduction heatmaps across training data sizes and sample densities for PDE Benchmarks.
Nonlinear Diffusion consistently shows the highest error reduction across all training sizes and densities and it
becomes more prominent at high sample densities even under very small training size 10.

Generalization across sample densities. From Table 2] we use 100 training data, and choose three
types of sampling densities 20, 500, 1000 which represent small, medium and high sample densi-
ties. We observe a consistent trend that increasing sample density leads to significant performance
improvements across all PDEs. The results highlight that higher sampling density substantially
improves generalization, particularly for PDEs with more complex solution manifolds such as Darcy
flow and nonlinear diffusion, and that even moderate densities 500 are sufficient to close much of the
performance gap for Eikonal equations.

Table 2: Test errors for small, medium, and high sampling densities with training data size=100.

Sample Density 20 500 1000

Darcy flow 0.4422 +0.0213 0.1298 £ 0.0043 0.1088 + 0.0027
Advection 0.4374 £0.0177 0.2654 +£0.0163 0.2227 £ 0.0185
Eikonal 0.1267 £ 0.0019 0.0675 £ 0.0020 0.0657 £ 0.0011

Nonlinear diffusion

0.1901 +£ 0.0060

0.0542 £ 0.0015

0.0430 £ 0.0005

Resolution generalization. From Table [3]and Figure 3] we use 100 training data and sample 1000
training sample points, then we test the relative Lo error in different test sample densities 100, 500,
1000, 2000, 4000. We observe that higher test sample densities consistently reduce the error for all
PDE families, reflecting improved approximation accuracy with denser test points.

Under review as a conference paper at ICLR 2026

Table 3: Test errors for different test sampling densities with training sample density=1000.

500

1000

2000

4000

Test Sample Density 100

Darcy flow 0.2475 + 0.0041
Advection 0.3641 +0.0117
Eikonal 0.0790 £+ 0.0031

0.1304 £ 0.0020
0.2505 £ 0.0149
0.0672 £ 0.0020

Nonlinear diffusion

0.0893 £+ 0.0020

0.0511 £ 0.0015

0.1088 £ 0.0027
0.2227 £ 0.0185
0.0657 £ 0.0011
0.0430 £ 0.0005

0.0971 £ 0.0033
0.2218 £ 0.0202
0.0654 £ 0.0024
0.0386 + 0.0012

0.0895 £ 0.0035
0.2182 £ 0.0141
0.0654 £ 0.0019
0.0368 + 0.0015

Test Error

Figure 3: Test error trend with test sample density

Train Sample Density=1000, Train Data Size=100

—e— Darcy Flow

#— Advection

—&— Eikonal

=&~ Nonlinear Diffusion

o

500 1000 1500 2000 2500 3000 3500 4000
Test Sample Density

Test Error

0.5

0.4 4

0.3 1

0.2 1

011

Test Sample Points=4000

E——g

—e— Darcy Flow
- Advection
—&— Eikonal
=&~ Nonlinear Diffusion

* *

20 30 40 50 60

70 80 20 100

Training Data Size

Figure 4: Test error trend with train data size

Data Efficiency. From Table] we use 2000 sample points and change different training data size
to test the performance. From Figure[d] we report the results for 4000 sample points with different
training data size. In Figure[5] we report the results for test error trend with respect to training data
size in test sample points € {200, 300, 400, 500, 600, 700, 800, 900}. Across all PDEs, we observe a
clear trend of decreasing test error with increasing training data size, indicating effective data scaling
behavior.

Table 4: Test errors under varying numbers of training data size with sample density=2000.

Training data size

20

40

60

80

100

Darcy flow
Advection
Eikonal

Nonlinear diffusion

0.2027 £ 0.0161
0.5253 +0.0273
0.1029 + 0.0047
0.0815 + 0.0139

0.1372 + 0.0095
0.4026 +0.0182
0.0763 £ 0.0033
0.0538 + 0.0023

0.1071 £ 0.0073
0.3192 + 0.0388
0.0678 £ 0.0028
0.0429 + 0.0036

0.0983 £ 0.0057
0.2709 + 0.0243
0.0648 £ 0.0023
0.0394 + 0.0033

0.0913 £ 0.0029
0.2228 £ 0.0172
0.0647 £ 0.0021
0.0360 £ 0.0013

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Test Sample Points=600

Test Sample Poi

Test Sample Points=

Figure 5: Test error trends across varying sample densities for PDE benchmarks.

Under review as a conference paper at ICLR 2026

Position Points Position Density Ball Connectivity Graph

Figure 6: Visualizations for graph with 1000 sample points on Advection.

Graph Visualizations. We visualize graph construction in Figure[§] We randomly sample 1000 node
positions in the unit square and use ball connectivity with a fixed radius 0.2 to construct graph. These
results are shown on the top row. Then in this graph, we visualize input function values on the graph,
ground-truth solution, and model prediction on the bottom row. Figure [§|demonstrates that (i) the
graph construction preserves locality and global connectivity; (ii) the learned model generalizes well
to unseen node configurations and accurately reconstructs the solution field; (iii) visual comparison
between ground truth and predictions reveals minimal discrepancy, supporting the effectiveness of
our proposed model GOLA.

Time Complexity and Memory Cost. We analyze the computational complexity of the GOLA
architecture in terms of the number of spatial points N, Fourier modes M, feature channels C, and
edges E ~ O(Nk), where k is the average number of neighbors in the sparse spatial graph. The time
complexity for GOLA is O(MNC) + O(NkC?) + O(NkC). The count of parameters for GOLA
is 2,900,249.

6 CONCLUSION

In this work, We introduce Graph-based Operator Learning with Attention (GOLA) framework,
which combines a learnable Fourier encoder with attention-enhanced message passing to solve PDEs
over irregular domains. By representing the spatial domain as a proximity graph and embedding
inputs into a learnable spectral basis, GOLA effectively captures both local and global dependencies,
enabling accurate operator approximation even under sparse sampling and complex geometries.
Through comprehensive experiments across diverse PDE benchmarks including Darcy Flow, Ad-
vection, Eikonal, and Nonlinear Diffusion, GOLA consistently outperforms baselines including
AFNO, DeepONet, GKN particularly in data-scarce regimes. We demonstrate GOLA’s superior
generalization, resolution scalability, and robustness to sparse sampling. These results highlight
the potential of combining spectral encoding and localized message passing with attention to build
continuous, data-efficient operator approximators that adapt naturally to non-Euclidean geometries.
This study demonstrates that graph-based representations provide a powerful and flexible foundation
for advancing operator learning in real-world physical systems with irregular data.

Under review as a conference paper at ICLR 2026

REFERENCES

Bar-Sinai, Y. et al. (2019). Learning data-driven discretizations for partial differential equations.
Proceedings of the National Academy of Sciences, 116(31):15344—15349.

Batlle, P., Darcy, M., Hosseini, B., and Owhadi, H. (2023). Kernel methods are competitive for
operator learning. arXiv preprint arXiv:2304.13202.

Battaglia, P. W. et al. (2018). Relational inductive biases, deep learning, and graph networks. Nature,
557(7707):528-536.

Boullé, N. and Townsend, A. (2024). A mathematical guide to operator learning. Handbook of
Numerical Analysis, 25:83—-125.

Brandstetter, J. et al. (2022). Message passing neural pde solver. In International Conference on
Learning Representations (ICLR).

Cuomo, S., Di Cola, V., Giampaolo, F., Rozza, G., Raissi, M., and Piccialli, F. (2022). Physics-
informed machine learning: A survey on problems, methods, and applications. ACM Computing
Surveys (CSUR), 55(1):1-38.

Dos Santos, F., Akhound-Sadegh, T., and Ravanbakhsh, S. (2023). Physics-informed transformer
networks. In The Symbiosis of Deep Learning and Differential Equations III.

Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., and Catanzaro, B. (2021). Adaptive fourier
neural operators: Efficient token mixers for transformers. arXiv preprint arXiv:2111.13587.

Jin, Z. and Gu, G. X. (2023). Leveraging graph neural networks and neural operator techniques for
high-fidelity mesh-based physics simulations. AIP Advances, 13(4):0461009.

Kissas, G., Seidman, J., Guilhoto, L. F., Preciado, V. M., Pappas, G. J., and Perdikaris, P. (2022).
Learning operators with coupled attention. Journal of Machine Learning Research, 23(152):1-63.

Kovachki, N. B., Lanthaler, S., and Stuart, A. M. (2024). Operator learning: Algorithms and analysis.
arXiv preprint arXiv:2402.15715.

Lam, R. et al. (2024). Graphcast: Learning skillful medium-range global weather forecasting. Science,
383(6674):346-351.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar,
A. (2020a). Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A.
(2020b). Neural operator: Graph kernel network for partial differential equations. arXiv preprint
arXiv:2003.03485.

Liu, Y., Liitjens, B., Azizzadenesheli, K., and Anandkumar, A. (2022). U-netformer: A u-net style
transformer for solving pdes. arXiv preprint arXiv:2206.11832.

Lu, L., Jin, P, and Karniadakis, G. E. (2019). Deeponet: Learning nonlinear operators for identifying
differential equations based on the universal approximation theorem of operators. arXiv preprint
arXiv:1910.03193.

Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang, Z., and Karniadakis, G. E. (2022). A
comprehensive and fair comparison of two neural operators (with practical extensions) based on
fair data. Computer Methods in Applied Mechanics and Engineering, 393:114778.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M. (2019).
Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 4602-4609.

Nelsen, N. H. and Stuart, A. M. (2024). Operator learning using random features: A tool for scientific
computing. arXiv preprint arXiv:2408.06526.

10

Under review as a conference paper at ICLR 2026

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., and Battaglia, P. (2020). Learning
mesh-based simulation with graph networks. In International Conference on Machine Learning
(ICML).

Sethian, J. A. (1999). Fast marching methods. SIAM review, 41(2):199-235.

Wang, L. et al. (2022). Pde-gcn: Learning pdes on graphs. In International Conference on Machine
Learning (ICML).

Xiao, Z., Hao, Z., Lin, B., Deng, Z., and Su, H. (2024). Improved operator learning by orthogonal
attention. In Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and
Berkenkamp, F., editors, Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pages 54288-54299. PMLR.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph neural networks? In
International Conference on Learning Representations (ICLR).

Xu, M., Han, J., Lou, A., Kossaifi, J., Ramanathan, A., Azizzadenesheli, K., Leskovec, J., Ermon, S.,
and Anandkumar, A. (2024). Equivariant graph neural operator for modeling 3d dynamics. arXiv
preprint arXiv:2401.11037.

Zhou, Q., Sun, L., and Lin, Z. (2023). Tokenformer: A token mixing architecture for solving pdes.
arXiv preprint arXiv:2310.02271.

11

Under review as a conference paper at ICLR 2026

A ADDITIONAL RESULTS

A.1 TEST ERROR TRENDS ACROSS VARYING SAMPLE DENSITIES(30-100) FOR PDE

BENCHMARKS

In Figure[7] it shows the test error for four PDE benchmarks as a function of training data size, under
different test point resolutions ranging from 30 to 100.

Test Sample Points=100

—e— Darcy Flow
0.7 1 —m~ Advection
—i— Eikonal

\ —&— Nonlinear Diffusion

Test Error

20 40 60 80
Training Data Size

Test Sample Points=80

L —e— Darcy Flow
06 ‘\ —m— Advection
a | N\ —a— Eikonal

Test Error

—&~ Nonlinear Diffusion

20 40 60 80
Training Data Size

Test Sample Points=60

L LN —e~ Darcy Flow
—m— Advection
0.6 \ —&— Eikonal
N —&~ Nonlinear Diffusion

Test Error

20 40 60 80
Training Data Size

Test Sample Points=40

—e— Darcy Flow
—m~ Advection
—i— Eikonal

0.7 l‘\

0.6 q)
b

Test Error

—#— Nonlinear Diffusion

20 20 60 80
Training Data Size

Test Error

Test Error

Test Error

Test Error

Test Sample Points=90

[—8— Darcy Flow
.‘\ —#— Advection
N —&— Eikonal
N —&~ Nonlinear Diffusion

20 40 60 80 100
Training Data Size

Test Sample Points=70

:—.\ —e— Darcy Flow
—@— Advection
\ —&— Eikonal
, —#~ Nonlinear Diffusion

—
e =8
o

20 40 60 80 100
Training Data Size

Test Sample Points=50

—e— Darcy Flow

\ —=— Advection

—&— Eikonal
\.\ —&— Nonlinear Diffusion
=

20 40 60 80 100
Training Data Size

Test Sample Points=30

L} —e— Darcy Flow

—#— Advection
—&— Eikonal
—&— Nonlinear Diffusion

20 40 60 80 100
Training Data Size

Figure 7: Test error trends across varying sample densities(30-100) for PDE benchmarks

12

Under review as a conference paper at ICLR 2026

A.2 ERROR REDUCTION ON 30, 50, 100 TRAINING DATA ACROSS VARIOUS SAMPLING
DENSITY

From Table[5] [6] [7} with 100, 50, 30 training data size respectively, for each PDE benchmark, we
choose sample density from 20 to 1000 to compare GKN and GOLA, and calculate the error reduction.
It shows that our method is better than GKN and error reduction is significant.

Table 5: Test errors trained on 100 training data size across various sampling density

(a) Darcy Flow (b) Eikonal
Density GKN Ours Error Reduction ~ Density GKN Ours Error Reduction
20 0.5027 0.4073 18.98% 20 0.1808 0.1236 31.64%
30 0.4746 0.3663 22.82% 30 0.1723 0.1125 34.71%
40 0.4572 0.3328 27.21% 40 0.1671 0.1066 39.80%
50 0.4283 0.3072 28.27% 50 0.1620 0.0981 39.44%
60 0.3995 0.2711 32.14% 60 0.1588 0.0962 39.42%
70 0.3885 0.2710 30.24% 70 0.1546 0.0953 38.36%
80 0.3760 0.2566 31.76% 80 0.1472 0.0911 38.11%
90 0.3646 0.2420 33.63% 90 0.1442 0.0871 39.47%
100 0.3402 0.2349 30.95% 100 0.1442 0.0857 40.57%
200 0.2633 0.1878 28.67% 200 0.1325 0.0745 43.77%
300 0.2355 0.1479 37.20% 300 0.1238 0.0664 46.37%
400 0.2097 0.1415 32.52% 400 0.1203 0.0658 45.30%
500 0.2020 0.1315 34.90% 500 0.1205 0.0640 46.89%
600 0.1911 0.1242 35.01% 600 0.1199 0.0632 47.29%
700 0.1874 0.1235 34.10% 700 0.1159 0.0614 47.02%
800 0.1788 0.1226 31.43% 800 0.1148 0.0607 47.13%
900 0.1777 0.1168 34.27% 900 0.1173 0.0606 48.34%
1000 0.1748 0.1147 34.38% 1000 0.1168 0.0611 47.69%
(¢) Nonlinear Diffusion (d) Advection
Density GKN Ours Error Reduction Density GKN Ours Error Reduction
20 0.2407 0.1958 18.65% 20 0.9035 0.3980 55.95%
30 0.2181 0.1795 17.70% 30 0.5409 0.3883 28.21%
40 0.2133 0.1446 32.21% 40 0.4563 0.3773 17.31%
50 0.2066 0.1369 33.74% 50 0.4208 0.3747 10.96%
60 0.1922 0.1248 35.07% 60 0.3823 0.3662 4.21%
70 0.1876 0.1206 35.71% 70 0.3736 0.3626 2.94%
80 0.1851 0.1067 42.36% 80 0.3468 0.3362 2.88%
90 0.1760 0.0995 43.47% 90 0.3422 0.3315 3.13%
100 0.1689 0.0947 43.93% 100 0.3446 0.3216 6.67%
200 0.1415 0.0755 46.64% 200 0.3150 0.2880 8.57%
300 0.1245 0.0674 45.86% 300 0.3017 0.2537 15.91%
400 0.1118 0.0618 44.72% 400 0.3084 0.2516 18.42%
500 0.1115 0.0594 46.73% 500 0.2997 0.2462 17.85%
600 0.1093 0.0553 49.41% 600 0.2886 0.2453 14.47%
700 0.1101 0.0507 53.95% 700 0.2972 0.2421 18.54%
800 0.1073 0.0469 56.29% 800 0.3038 0.2408 21.89%
900 0.1054 0.0463 56.07% 900 0.2926 0.2310 21.05%
1000 0.1044 0.0439 57.95% 1000 0.2886 0.2290 20.65%

13

Under review as a conference paper at ICLR 2026

Table 6: Test errors trained on 50 training data size across various sampling densities

(a) Darcy Flow (b) Eikonal
Density GKN Ours Error Reduction Density GKN Ours Error Reduction
20 0.5690 0.4484 21.20% 20 0.1908 0.1361 28.67%
30 0.5192 0.4064 21.73% 30 0.1870 0.1213 35.13%
40 0.5085 0.3722 26.80% 40 0.1839 0.1162 36.81%
50 0.4783 0.3536 26.07% 50 0.1764 0.1103 37.47%
60 0.4467 0.2884 35.44% 60 0.1739 0.1052 39.51%
70 0.4328 0.3099 28.40% 70 0.1670 0.1024 38.68%
80 0.4310 0.2934 31.93% 80 0.1640 0.1000 39.02%
90 0.4099 0.2785 32.06% 90 0.1643 0.0943 42.60%
100 0.4068 0.2756 32.25% 100 0.1592 0.0927 41.77%
200 0.3092 0.2182 29.43% 200 0.1386 0.0873 37.01%
300 0.2673 0.1771 33.74% 300 0.1380 0.0824 40.29%
400 0.2421 0.1741 28.09% 400 0.1341 0.0741 44.74%
500 0.2326 0.1609 30.83% 500 0.1292 0.0702 45.67%
600 0.2173 0.1497 31.11% 600 0.1309 0.0705 46.14%
700 0.2114 0.1470 30.46% 700 0.1299 0.0713 45.11%
800 0.1990 0.1381 30.60% 800 0.1288 0.0688 46.58%
900 0.1901 0.1360 28.46% 900 0.1300 0.0704 45.85%
1000 0.1890 0.1328 29.74% 1000 0.1273 0.0710 44.23%
(¢) Nonlinear Diffusion (d) Advection
Density GKN Ours Error Reduction ~ Density ~ GKN Ours Error Reduction
20 0.2817 0.2202 21.83% 20 0.8899 0.4338 51.25%
30 0.2554 0.1858 27.25% 30 0.6991 0.4046 42.13%
40 0.2413 0.1485 38.46% 40 0.5983 0.3987 33.36%
50 0.2339 0.1437 38.56% 50 0.5569 0.4052 27.24%
60 0.2266 0.1303 42.50% 60 0.6016 0.4143 31.13%
70 0.2117 0.1285 39.30% 70 0.4733 0.4067 14.07%
80 0.2081 0.1177 43.44% 80 0.4585 0.3984 13.11%
90 0.1955 0.1110 43.22% 90 0.4559 0.3819 16.23%
100 0.1903 0.1083 43.09% 100 0.4467 0.3925 12.13%
200 0.1597 0.0932 41.64% 200 0.4156 0.3845 7.48%
300 0.1506 0.0818 45.68% 300 0.4132 0.3796 8.13%
400 0.1390 0.0766 44.89% 400 0.4126 0.3658 11.34%
500 0.1301 0.0733 43.66% 500 0.3767 0.3468 7.94%
600 0.1349 0.0618 54.19% 600 0.3981 0.3378 15.15%
700 0.1308 0.0575 56.04% 700 0.3893 0.3364 13.59%
800 0.1284 0.0552 57.01% 800 0.3778 0.3304 12.55%
900 0.1258 0.0542 56.92% 900 0.3619 0.3328 8.04%
1000 0.1218 0.0532 56.32% 1000 0.3717 0.3528 5.08%

14

Under review as a conference paper at ICLR 2026

Table 7: Test errors trained on 30 training data size across various sampling densities

(a) Darcy Flow (b) Eikonal
Density GKN Ours Error Reduction Density GKN Ours Error Reduction
20 0.5574 0.4984 10.58% 20 0.1929 0.1402 27.32%
30 0.5203 0.4509 13.34% 30 0.1920 0.1313 31.61%
40 0.5028 0.4190 16.67% 40 0.1893 0.1200 36.61%
50 0.4881 0.3902 20.06% 50 0.1852 0.1174 36.61%
60 0.4667 0.3733 20.01% 60 0.1801 0.1162 35.48%
70 0.4576 0.3565 22.09% 70 0.1757 0.1138 35.23%
80 0.4568 0.3394 25.710% 80 0.1803 0.1115 38.16%
90 0.4513 0.3225 28.54% 90 0.1817 0.1088 40.12%
100 0.4404 0.3134 28.84% 100 0.1825 0.1047 42.63%
200 0.3651 0.2275 37.69% 200 0.1633 0.0981 39.93%
300 0.3168 0.1906 39.84% 300 0.1701 0.0921 45.86%
400 0.2938 0.1864 36.56% 400 0.1684 0.0908 46.08%
500 0.2810 0.1772 36.94% 500 0.1582 0.0901 43.05%
600 0.2702 0.1646 39.08% 600 0.1553 0.0776 50.03%
700 0.2618 0.1659 36.63% 700 0.1550 0.0764 50.71%
800 0.2524 0.1576 37.56% 800 0.1541 0.0756 50.94%
900 0.2454 0.1572 35.94% 900 0.1550 0.0736 52.52%
1000 0.2375 0.1554 34.57% 1000 0.1530 0.0762 50.20%
(¢) Nonlinear Diffusion (d) Advection
Density GKN Ours Error Reduction ~ Density ~ GKN Ours Error Reduction
20 0.2958 0.2365 20.05% 20 0.9881 0.4798 51.44%
30 0.2761 0.1878 31.98% 30 0.7924 0.4655 41.25%
40 0.2581 0.1647 36.19% 40 0.7468 0.4642 37.81%
50 0.2512 0.1523 39.37% 50 0.6657 0.4580 31.20%
60 0.2423 0.1408 41.89% 60 0.6622 0.4537 31.49%
70 0.2353 0.1369 41.82% 70 0.5756 0.4464 22.45%
80 0.2219 0.1295 41.64% 80 0.5646 0.4460 21.01%
90 0.2135 0.1279 40.09% 90 0.5889 0.4470 24.10%
100 0.2168 0.1234 43.08% 100 0.5708 0.4457 21.92%
200 0.1919 0.1024 46.64% 200 0.5242 0.4123 21.35%
300 0.1709 0.0873 48.92% 300 0.5841 0.4191 28.25%
400 0.1683 0.0815 51.57% 400 0.5157 0.4090 20.69%
500 0.1588 0.0773 51.32% 500 0.5915 0.4089 30.87%
600 0.1582 0.0709 55.18% 600 0.5344 0.4019 24.79%
700 0.1547 0.0685 55.72% 700 0.5387 0.4172 22.55%
800 0.1495 0.0703 52.98% 800 0.5527 0.4148 24.95%
900 0.1519 0.0683 55.04% 900 0.4994 0.4074 18.42%
1000 0.1520 0.0652 57.11% 1000 0.5353 0.3707 30.75%

A.3 TEST ERRORS ACROSS TRAINING DATA SIZE FOR DIFFERENT SAMPLE DENSITY

We choose sample density from 20 to 900, and for training data size from 5 to 100, we test on four
PDE benchmarks as follows.

Table 8: Test sample density=900

Training data size 5 10 20 30 40 50 80 100

Darcy Flow 04996 0.2812 0.2215 0.1587 0.1503 0.1360 0.1230 0.1168
Advection 0.6921 0.6862 0.4866 0.4074 0.3560 0.3460 0.2601 0.2310
Eikonal 0.1540 0.1245 0.1059 0.0760 0.0718 0.0704 0.0694 0.0655
Nonlinear Diffusion 0.1589 0.1420 0.0740 0.0683 0.0595 0.0567 0.0474 0.0463

15

Under review as a conference paper at ICLR 2026

Table 9: Test sample density=800

Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.5102 0.2781 0.2303 0.1576 0.1572 0.1381 0.1243 0.1226
Advection 0.7407 0.7109 04799 0.4148 0.3789 0.3641 0.2791 0.2408
Eikonal 0.1606 0.1210 0.1038 0.0756 0.0731 0.0730 0.0697 0.0625
Nonlinear Diffusion 0.1623 0.1406 0.0728 0.0706 0.0701 0.0652 0.0501 0.0469
Table 10: Test sample density=700
Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.4985 0.2768 0.2332 0.1659 0.1592 0.1506 0.1301 0.1235
Advection 0.6978 0.6590 0.5594 0.4172 0.3747 0.3364 0.2926 0.2421
Eikonal 0.1605 0.1180 0.1038 0.0801 0.0755 0.0713 0.0643 0.0635
Nonlinear Diffusion 0.1642 0.1363 0.0731 0.0696 0.0623 0.0575 0.0548 0.0507
Table 11: Test sample density=600
Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.4817 0.2886 0.2362 0.1646 0.1616 0.1497 0.1401 0.1376
Advection 0.7537 0.7271 0.5754 0.4109 0.3661 0.3378 0.3216 0.2453
Eikonal 0.1483 0.1255 0.1073 0.0776 0.0772 0.0745 0.0691 0.0665
Nonlinear Diffusion 0.2149 0.1440 0.0781 0.0709 0.0644 0.0618 0.0583 0.0553
Table 12: Test sample density=500
Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.4855 0.2842 0.2247 0.1772 0.1643 0.1609 0.1414 0.1315
Advection 0.7947 0.7011 0.5431 0.4089 0.3609 0.3468 0.3299 0.2462
Eikonal 0.1537 0.1155 0.1060 0.0901 0.0811 0.0702 0.0689 0.0671
Nonlinear Diffusion 0.1686 0.1464 0.0801 0.0773 0.0760 0.0733 0.0626 0.0594
Table 13: Test sample density=400
Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.4970 0.3109 0.2471 0.1864 0.1804 0.1741 0.1481 0.1415
Advection 0.7604 0.6733 0.5317 0.4090 0.4005 0.3658 0.3499 0.2516
Eikonal 0.1547 0.1203 0.1058 0.0908 0.0883 0.0829 0.0725 0.0669
Nonlinear Diffusion 0.1695 0.1411 0.0847 0.0815 0.0776 0.0766 0.0637 0.0618
Table 14: Test sample density=300
Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.5075 0.3233 0.2416 0.1906 0.1880 0.1771 0.1592 0.1479
Advection 0.7606 0.6674 0.5323 0.4191 0.4178 0.3882 0.3505 0.2537
Eikonal 0.1533 0.1246 0.1066 0.0921 0.0835 0.0824 0.0709 0.0664
Nonlinear Diffusion 0.1722 0.1498 0.0920 0.0873 0.0849 0.0818 0.0694 0.0674

16

Under review as a conference paper at ICLR 2026

Table 15: Test sample densiry=200

Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.5227 0.3431 0.2812 0.2275 0.2222 0.2182 0.1880 0.1878
Advection 0.7586 0.6407 0.5004 0.4123 0.4040 0.3931 0.3697 0.2880
Eikonal 0.1538 0.1276 0.1069 0.0981 0.0934 0.0873 0.0780 0.0745
Nonlinear Diffusion 0.1807 0.1605 0.1060 0.1024 0.0951 0.0932 0.0804 0.0755
Table 16: Test sample density=100
Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.5534 0.4673 0.3986 0.3705 0.2994 0.2918 0.2471 0.2349
Advection 0.7513 0.6738 0.5498 0.4977 0.4547 0.4130 0.4069 0.3216
Eikonal 0.1583 0.1402 0.1115 0.1047 0.1044 0.0988 0.0876 0.0857
Nonlinear Diffusion 0.2062 0.1691 0.1332 0.1234 0.1161 0.1157 0.0995 0.0947
Table 17: Test sample density=90
Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.6094 0.4362 0.3638 0.3225 0.2791 0.2785 0.2471 0.2420
Advection 0.6764 0.6612 0.5334 0.4470 0.4452 0.4238 0.3977 0.3315
Eikonal 0.1612 0.1401 0.1140 0.1088 0.1084 0.1083 0.0893 0.0891
Nonlinear Diffusion 0.2036 0.1693 0.1329 0.1279 0.1179 0.1110 0.1046 0.0995
Table 18: Test sample density=80
Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.6076 0.4561 03709 0.3394 0.2994 0.2970 0.2633 0.2566
Advection 0.6579 0.6365 0.5318 0.4460 0.4450 0.4397 0.4049 0.3368
Eikonal 0.1561 0.1412 0.1170 0.1115 0.1113 0.1078 0.0937 0.0911
Nonlinear Diffusion 0.2086 0.1777 0.1401 0.1295 0.1225 0.1177 0.1116 0.1067
Table 19: Test sample density=70
Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.6176 0.4682 0.3965 0.3565 0.3176 0.3151 0.2773 0.2864
Advection 0.6697 0.6654 0.5524 0.4583 0.4479 0.4400 0.4156 0.3626
Eikonal 0.1606 0.1450 0.1154 0.1138 0.1128 0.1121 0.1005 0.0953
Nonlinear Diffusion 0.2279 0.1776 0.1498 0.1369 0.1294 0.1285 0.1223 0.1206
Table 20: Test sample density=60
Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.5989 04762 0.4251 03733 0.3308 0.2884 0.2842 0.2711
Advection 0.6906 0.6342 0.5541 0.4537 0.4270 0.4238 0.4131 0.3662
Eikonal 0.1637 0.1483 0.1192 0.1162 0.1058 0.1052 0.1015 0.1020
Nonlinear Diffusion 0.2211 0.1963 0.1580 0.1408 0.1318 0.1303 0.1286 0.1248

17

Under review as a conference paper at ICLR 2026

Table 21: Test sample density=50
Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.6595 0.4944 0.4445 0.3902 0.3546 0.3536 0.3158 0.3072
Advection 0.6784 0.6219 0.5618 0.4580 0.4412 0.4334 0.4069 0.3747
Eikonal 0.1576 0.1498 0.1191 0.1174 0.1111 0.1103 0.1038 0.0981
Nonlinear Diffusion 0.2458 0.2048 0.1661 0.1523 0.1439 0.1437 0.1382 0.1369
Table 22: Test sample density=40
Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.6693 0.5169 0.4674 0.4190 0.3840 0.3722 0.3339 0.3328
Advection 0.6966 0.6941 0.5189 0.4642 0.4625 0.4361 0.3901 0.3773
Eikonal 0.1712 0.1521 0.1255 0.1200 0.1172 0.1162 0.1038 0.1060
Nonlinear Diffusion 0.2720 0.2439 0.1755 0.1647 0.1563 0.1485 0.1500 0.1446
Table 23: Test sample density=30
Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.7064 0.5529 0.5131 0.4509 04114 0.4064 0.3697 0.3663
Advection 0.7536 0.6746 0.4973 0.4655 0.4256 0.4046 0.3996 0.3883
Eikonal 0.1822 0.1606 0.1377 0.1313 0.1232 0.1213 0.1140 0.1125
Nonlinear Diffusion 0.3148 0.2735 0.2003 0.1878 0.1867 0.1858 0.1812 0.1795
Table 24: Test sample density=20
Training data size 5 10 20 30 40 50 80 100
Darcy Flow 0.7416 0.5963 0.5363 0.4984 0.4567 0.4484 04176 0.4073
Advection 0.8587 0.7329 0.5114 0.4798 0.4661 0.4338 0.4186 0.3980
Eikonal 0.1875 0.1797 0.1543 0.1402 0.1392 0.1361 0.1292 0.1236
Nonlinear Diffusion 0.3202 0.3074 0.2403 0.2365 0.2297 0.2202 0.2000 0.1958

A.4 ERROR REDUCTIONS FOR TRAINING DATA SIZE=40

Table 25: Sample density=100, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.4122 0.2994 27.37%
Advection 0.4938 0.4547 7.92%
Eikonal 0.1668 0.1102 33.93%
Nonlinear Diffusion 0.1947 0.1161 40.37%
Poisson 0.3754 0.3707 1.25%

18

Under review as a conference paper at ICLR 2026

Table 26: Sample density=200, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.3281 0.2388 27.22%
Advection 0.4840 0.4420 8.68%
Eikonal 0.1429 0.1050 26.52%
Nonlinear Diffusion 0.1714 0.0951 44.52%

Table 27: Sample density=300, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.2746 0.2126 22.58%
Advection 0.4660 0.4178 10.34%
Eikonal 0.1390 0.0982 29.35%
Nonlinear Diffusion 0.1589 0.0849 46.57%

Table 28: Sample density=400, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.2446 0.1968 19.54%
Advection 0.4590 0.4005 12.75%
Eikonal 0.1396 0.0952 31.81%
Nonlinear Diffusion 0.1536 0.0776 49.48%

Table 29: Sample density=500, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.2505 0.1878 25.03%
Advection 0.4746 0.3609 23.96%
Eikonal 0.1355 0.0957 29.37%
Nonlinear Diffusion 0.1389 0.0760 45.28%

Table 30: Sample density=600, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.2416 0.1648 31.79%
Advection 0.4352 0.3661 15.88%
Eikonal 0.1323 0.0772 41.65%
Nonlinear Diffusion 0.1441 0.0739 48.72%

Table 31: Sample density=700, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.2257 0.1592 29.46%
Advection 0.4546 0.3747 17.58%
Eikonal 0.1294 0.0819 36.71%
Nonlinear Diffusion 0.1424 0.0731 48.67%

19

Under review as a conference paper at ICLR 2026

Table 32: Sample density=800, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.2120 0.1572 25.85%
Advection 0.4558 0.3789 16.87%
Eikonal 0.1304 0.0761 41.64%
Nonlinear Diffusion 0.1413 0.0701 50.39%

Table 33: Sample density=900, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.2068 0.1503 27.32%
Advection 0.4292 0.3560 17.05%
Eikonal 0.1306 0.0805 38.36%
Nonlinear Diffusion 0.1441 0.0691 52.05%

Table 34: Sample density=1000, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.2257 0.1592 29.46%
Advection 0.4546 0.3747 17.58%
Eikonal 0.1294 0.0819 36.71%
Nonlinear Diffusion 0.1424 0.0731 48.67%

Table 35: Sample density=20, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.5527 0.4567 17.37%
Advection 0.9735 0.5219 46.39%
Eikonal 0.1868 0.1451 22.32%
Nonlinear Diffusion 0.2892 0.2297 20.57%

Table 36: Sample density=30, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.5180 04114 20.58%
Advection 0.7502 0.4694 37.43%
Eikonal 0.1847 0.1354 26.69%
Nonlinear Diffusion 0.2638 0.1867 29.23%

Table 37: Sample density=40, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.5074 0.3840 24.32%
Advection 0.6341 0.4714 25.66%
Eikonal 0.1833 0.1234 32.68%
Nonlinear Diffusion 0.2464 0.1563 36.57%

20

Under review as a conference paper at ICLR 2026

Table 38: Sample density=50, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.4819 0.3546 26.42%
Advection 0.5321 0.4897 7.97%
Eikonal 0.1798 0.1194 33.59%
Nonlinear Diffusion 0.2417 0.1439 40.46%

Table 39: Sample density=60, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.4664 0.3308 29.07%
Advection 0.5688 0.4993 12.22%
Eikonal 0.1777 0.1181 33.54%
Nonlinear Diffusion 0.2349 0.1318 43.89%

Table 40: Sample density=70, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.4518 0.3176 29.70%
Advection 0.5410 0.4766 11.90%
Eikonal 0.1663 0.1147 31.03%
Nonlinear Diffusion 0.2195 0.1294 41.05%

Table 41: Sample density=80, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.4558 0.2994 34.31%
Advection 0.5175 0.4535 12.37%
Eikonal 0.1642 0.1132 31.06%
Nonlinear Diffusion 0.2127 0.1225 42.41%

Table 42: Sample density=90, train data size=40

Dataset GKN Ours Error Reduction
Darcy Flow 0.4378 0.2791 36.25%
Advection 0.5039 0.4452 11.65%
Eikonal 0.1706 0.1122 34.23%
Nonlinear Diffusion 0.1996 0.1179 40.93%

A.5 ERROR REDUCTIONS FOR TRAINING DATA SIZE=20

Table 43: Sample density=100, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.4790 0.3986 16.78%
Advection 0.8125 0.5498 32.33%
Eikonal 0.1848 0.1115 39.66%
Nonlinear Diffusion 0.2284 0.1332 41.68%

21

Under review as a conference paper at ICLR 2026

Table 44: Sample density=200, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.3937 0.2812 28.58%
Advection 0.8552 0.5004 41.49%
Eikonal 0.1780 0.1069 39.94%
Nonlinear Diffusion 0.2056 0.1060 48.44%

Table 45: Sample density=300, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.3414 0.2416 29.23%
Advection 0.7282 0.5323 26.90%
Eikonal 0.1757 0.1066 39.33%
Nonlinear Diffusion 0.1923 0.0920 52.16%

Table 46: Sample density=400, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.3291 0.2471 24.92%
Advection 0.7667 0.5317 30.65%
Eikonal 0.1716 0.1058 38.34%
Nonlinear Diffusion 0.1831 0.0847 53.74%

Table 47: Sample density=500, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.3285 0.2247 31.60%
Advection 1.0101 0.5431 46.23%
Eikonal 0.1703 0.1060 37.76%
Nonlinear Diffusion 0.1783 0.0801 55.08%

Table 48: Sample density=600, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.3030 0.2362 22.05%
Advection 0.7948 0.5754 27.60%
Eikonal 0.1739 0.1073 38.30%
Nonlinear Diffusion 0.1780 0.0781 56.12%

Table 49: Sample density=700, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.3001 0.2332 22.29%
Advection 0.7928 0.5594 29.44%
Eikonal 0.1682 0.1038 38.29%
Nonlinear Diffusion 0.1755 0.0731 58.35%

22

Under review as a conference paper at ICLR 2026

Table 50: Sample density=800, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.2841 0.2303 18.94%
Advection 0.8037 0.4799 40.29%
Eikonal 0.1696 0.1038 38.80%
Nonlinear Diffusion 0.1749 0.0728 58.38%

Table 51: Sample density=900, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.2787 0.2215 20.52%
Advection 0.7267 0.4866 33.04%
Eikonal 0.1705 0.1059 37.89%
Nonlinear Diffusion 0.1755 0.0740 57.83%

Table 52: Sample density=1000, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.2660 0.2297 13.65%
Advection 0.7421 0.5268 29.01%
Eikonal 0.1697 0.1059 37.60%
Nonlinear Diffusion 0.1716 0.0757 55.89%

Table 53: Sample density=20, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.5909 0.5363 9.24%
Advection 1.0704 0.5114 52.22%
Eikonal 0.1985 0.1543 22.27%
Nonlinear Diffusion 0.3053 0.2403 21.29%

Table 54: Sample density=30, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.5712 0.5131 10.17%
Advection 1.0391 0.4973 52.14%
Eikonal 0.1941 0.1377 29.06%
Nonlinear Diffusion 0.2804 0.2003 28.57%

Table 55: Sample density=40, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.5493 0.4674 14.91%
Advection 0.9612 0.5189 46.02%
Eikonal 0.1916 0.1255 34.50%
Nonlinear Diffusion 0.2655 0.1755 33.90%

23

Under review as a conference paper at ICLR 2026

Table 56: Sample density=50, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.5221 0.4445 14.86%
Advection 0.9652 0.5618 41.79%
Eikonal 0.1880 0.1191 36.65%
Nonlinear Diffusion 0.2525 0.1661 34.22%

Table 57: Sample density=60, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.5013 0.4251 15.20%
Advection 0.8556 0.5541 35.24%
Eikonal 0.1864 0.1192 36.05%
Nonlinear Diffusion 0.2459 0.1580 35.75%

Table 58: Sample density=70, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.4975 0.3965 20.30%
Advection 0.8128 0.5524 32.04%
Eikonal 0.1838 0.1154 37.21%
Nonlinear Diffusion 0.2420 0.1498 38.10%

Table 59: Sample density=380, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.4937 0.3709 24.87%
Advection 0.7770 0.5318 31.56%
Eikonal 0.1835 0.1170 36.24%
Nonlinear Diffusion 0.2387 0.1401 41.31%

Table 60: Sample density=90, train data size=20

Dataset GKN Ours Error Reduction
Darcy Flow 0.4920 0.3638 26.06%
Advection 0.8157 0.5334 34.61%
Eikonal 0.1847 0.1140 38.28%
Nonlinear Diffusion 0.2313 0.1329 42.54%

A.6 ERROR REDUCTIONS FOR TRAINING DATA SIZE=10

Table 61: Sample density=100, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.5692 0.4673 17.90%
Advection 1.0858 0.6738 37.94%
Eikonal 0.2061 0.1402 31.98%
Nonlinear Diffusion 0.2531 0.1691 33.19%

24

Under review as a conference paper at ICLR 2026

Table 62: Sample density=200, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.4593 0.3431 25.30%
Advection 1.0516 0.6407 39.07%
Eikonal 0.2018 0.1276 36.77%
Nonlinear Diffusion 0.2500 0.1605 35.80%

Table 63: Sample density=300, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.4014 0.3233 19.46%
Advection 0.9618 0.6674 30.61%
Eikonal 0.1955 0.1246 36.27%
Nonlinear Diffusion 0.2548 0.1498 41.21%

Table 64: Sample density=400, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.3750 0.3109 17.09%
Advection 1.0257 0.6733 34.36%
Eikonal 0.1913 0.1203 37.11%
Nonlinear Diffusion 0.2430 0.1411 41.93%

Table 65: Sample density=500, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.3764 0.2842 24.50%
Advection 0.9785 0.7011 28.35%
Eikonal 0.1905 0.1155 39.37%
Nonlinear Diffusion 0.2383 0.1464 38.56%

Table 66: Sample density=600, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.3645 0.2886 20.82%
Advection 1.0162 0.7271 28.45%
Eikonal 0.1929 0.1255 34.94%
Nonlinear Diffusion 0.2360 0.1440 38.98%

Table 67: Sample density=700, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.3522 0.2768 21.41%
Advection 0.9918 0.6590 33.56%
Eikonal 0.1929 0.1180 38.83%
Nonlinear Diffusion 0.2289 0.1363 40.45%

25

Under review as a conference paper at ICLR 2026

Table 68: Sample density=800, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.3400 0.2781 18.21%
Advection 1.0006 0.7109 28.95%
Eikonal 0.1909 0.1210 36.62%
Nonlinear Diffusion 0.2304 0.1406 38.98%

Table 69: Sample density=900, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.3356 0.2812 16.21%
Advection 1.0374 0.6862 33.85%
Eikonal 0.1913 0.1245 34.92%
Nonlinear Diffusion 0.2319 0.1420 38.77%

Table 70: Sample density=1000, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.3345 0.2787 16.68%
Advection 1.0026 0.6668 33.49%
Eikonal 0.1956 0.1286 34.25%
Nonlinear Diffusion 0.2346 0.1204 48.68%

Table 71: Sample density=20, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.6578 0.5963 9.35%
Advection 1.1149 0.7329 34.26%
Eikonal 0.2144 0.1797 16.18%
Nonlinear Diffusion 0.3280 0.3074 6.28%

Table 72: Sample density=30, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.6580 0.5529 15.97%
Advection 1.1036 0.6746 38.87%
Eikonal 0.2073 0.1606 22.53%
Nonlinear Diffusion 0.3017 0.2735 9.35%

Table 73: Sample density=40, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.6207 0.5169 16.72%
Advection 1.1147 0.6941 37.73%
Eikonal 0.2090 0.1521 27.22%
Nonlinear Diffusion 0.2920 0.2439 16.47%

26

Under review as a conference paper at ICLR 2026

Table 74: Sample density=50, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.5909 0.4944 16.33%
Advection 1.0714 0.6219 41.95%
Eikonal 0.2063 0.1498 27.39%
Nonlinear Diffusion 0.2788 0.2048 26.54%

Table 75: Sample density=60, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.5624 0.4762 15.33%
Advection 1.1333 0.6342 44.04%
Eikonal 0.2051 0.1483 27.69%
Nonlinear Diffusion 0.2751 0.1963 28.64%

Table 76: Sample density=70, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.5629 0.4682 16.82%
Advection 1.1024 0.6654 39.64%
Eikonal 0.2039 0.1450 28.89%
Nonlinear Diffusion 0.2609 0.1776 31.93%

Table 77: Sample density=80, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.5795 0.4561 21.29%
Advection 1.0573 0.6365 39.80%
Eikonal 0.2041 0.1412 30.82%
Nonlinear Diffusion 0.2600 0.1777 31.65%

Table 78: Sample density=90, train data size=10

Dataset GKN Ours Error Reduction
Darcy Flow 0.5824 0.4362 25.10%
Advection 1.1247 0.6612 41.21%
Eikonal 0.2047 0.1401 31.56%
Nonlinear Diffusion 0.2597 0.1693 34.81%

A.7 GRAPH VISULIZATIONS

Some examples about graph visualizations for Advection and Darcy.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

10

04

02

0.0

10

04

02

0.0

Position Points

Position Density

Ball Connectivity Graph

10
. o 10
-
| o]
m [
08 - -
o 08
u
061m 06
- L)
-]
0.4 L L] 0.4
[]]
] [3
02 L] :
]
=
- u
d 00
00
00 02 04 06 08 10 00 02 04 06 08
Input Data on Graph Ground Truth on Graph
10
08
06
04
02
00

0.0 02 04 0.6 08 10

Figure 8: Graph Visulizations for Advection.

Position Points

Position Density
L

Ball Connectivity Graph

™ 10
] = =
]] -
08 -
o 08
=
06 »] 06
]
]
[u
04 04
L] [
[
02
02 L
o
[[
[
00
00 A
00 02 04 06 08 10 00 02 04 06 08 00 02 04 06 08 10
Input Data on Graph Ground Truth on Graph Prediction on Graph
25
20
15
10
05
00
-05
-1.0
-15

0.0 02 0.4 06 0.8 10

Figure 9: Graph Visulizations for Advection.

28

Under review as a conference paper at ICLR 2026

1512

Position Points Position Density Ball Connectivity Graph

13 e —— N . ol |
s 2w o

1516 o
1517

1518 o
1519

1520 hns L0 EE L, 0
oy et . 470 p 5

1523,

1524 oo Py s oo vs o %o o2 o4 o6 o8 Y o2 s s s 0
1525
1526
1527 08
1528
1529 o6
1530
1531
1532
1533
1534 00
1 535 0.0 02 04 06 08 10 0.0 02 0.4 06 08 10 0.0 0.2 0.4 0.6 08 10
1536
1537
1538
1539
1540

1541 Position Points Position Density Ball Connectivity Graph

Input Data on Graph

Figure 10: Graph Visulizations for Advection.

1542 e
1543
1544
1545
1546
1547 04
1548
1549 o2
1550

1551 — — — -
1552 ' S
1553
1554
1555
1556
1557
1558 04
1559

1560 o2
1561

1562

1563

1564 Figure 11: Graph Visulizations for Advection.
1565

0.0 02 04 0.6 038 10

35

30

29

Under review as a conference paper at ICLR 2026

Position Points 1000 Position Density Ball Connectivity Graph
w

e w
10 F Ee ot g ' |l 10
.. - [™ o - n
L] L] L
L] | B
08
0.8 " " |] .- |] L 1 0.8
u
b] ol o
.. L] .. o - .. L] L |
" - LI - - L
06 06mm 5w L]) mpw 0.6
] L] L L] L |
.. n
. - L] - EE
. L] n L] .I
04 0.4 L L n L] -m 04
L
u . L] r
- = - = . u
0.2 | - L L] o 0.2
0.2 =) - .
L] L
L r | L] L |
L]
0.0 |] L] 0.0
00 u =3 | o = m

0.0 02 0.4 0.6 08 10 0.0 02 0.4 06 08 10 0.0 02 04 0.6 0.8 10

Input Data on Graph Ground Truth on Graph

0.0010

0.0008

0.0006

06

0.0004

0.0002

0.0000

~0.0002

~0.0004

0.0 02 0.4 0.6 08 1.0 0.0 02 04 0.6 0.8 10 0.0 02 0.4 06 08 10

Figure 12: Graph Visulizations for Darcy.

B DATASETS DESCRIPTIONS

B.1 DARrcY FLow

We considered a steady-state 2D Darcy Flow equation 2020a),
=V - (a(2)Vu(z)) = f(z) =€ (0,1)%

u(z) =0 z € 9(0,1)2, (17)
where u(x) is the velocity of the flow, a(x) characterizes the conductivity of the media, and f(x) is
the source function that can represent flow sources or sinks within the domain. In the experiment, our
goal is to predict the solution u given the external source f. To this end, we fixed the conductivity
a, which is generated by first sampling a Gauss random field « in the domain and then applying a
thresholding rule: a(x) = 4 if a(x) < 0, otherwise a(x) = 12. We then used another Gauss random

field to generate samples of f. We followed 2020a)) to solve the PDE using a second-order
finite difference solver and collected the source and solution at a 128 x 128 grid.

B.2 NONLINEAR DIFFUSION PDE

‘We next considered a nonlinear diffusion PDE,

Opu(w,t) = 10720, pu(w, t) + 10~ 2u? (2, t) + f(z,t),

u(—1,t) = u(l,t) =0, u(z,0)=0, (18)
where (z,t) € [—1,1] x [0, 1]. Our objective is to predict the solution function u given the source
function f. We used the solver provided in (Lu et al.| 2022), and discretized both the input and output

functions at a 128 x 128 grid. The source f was sampled from a Gaussian process with an isotropic
square exponential (SE) kernel for which the length scale was set to 0.2.

B.3 EIKONAL EQUATION

Third, we employed the Eikonal equation, widely used in geometric optics and wave modeling. It
describes given a wave source, the propagation of wavefront across the given media where the wave

30

Under review as a conference paper at ICLR 2026

speed can vary at different locations. The equation is as follows,

Vu(x)| = ﬁ x € [0,256] x [0, 256], (19)

where u(x) is the travel time of the wavefront from the source to location x,
norm, and f(x) > 0 is the speed of the wave at x.

-| denotes the Euclidean

In the experiment, we set the wave source at (0, 10). The goal is to predict the travel time u given the
heterogeneous wave speed f. We sampled an instance of f using the expression:

f(x) = max(g(x),0) + 1.0,

where g(-) is sampled from a Gaussian process using the isotropic SE kernel with length-scale 0.1. We
employed the eikonal fm library (https://github.com/kevinganster/eikonalfm/
tree/master) that implements the Fast Marching method |Sethian| (1999)) to compute the solution
U.

B.4 POISSON EQUATION

Fourth, we considered a 2D Poisson Equation,
—~Au=f inQ=][0,1? ulsgp =0. (20)

where A is the Laplace operator. The solution is designed to take the form, u(xi,z2) =
. Z]K:1 ai; (i + j2)" sin(imxq) cos(jmr2), and f(x1,x2) is correspondingly computed
via the equation. To generate the dataset, we set K = 5 and r = 0.5, and independently sampled
each element a;; from a uniform distribution on [0, 1].

B.5 ADVECTION EQUATION

Fifth, we considered a wave advection equation,

ou Ju
St =f webll, tefol @D

The solution is represented by a kernel regressor, u(x) = Zj\il w;k(x,2z;), and the source f is

computed via the equation. To collect instances of (f,), we used the square exponential (SE) kernel
with length-scale 0.25. We randomly sampled the locations z; from the domain and the weights w;
from a standard normal distribution.

C LLM USAGE

LLMs were used for grammar refinement and LaTeX formatting.

31

https://github.com/kevinganster/eikonalfm/tree/master
https://github.com/kevinganster/eikonalfm/tree/master

	Introduction
	Related Work
	Methodology
	Problem Formulation
	Graph Construction
	Fourier Encoder
	Message Passing
	Multi-Head Self-Attention
	Message Passing with Attention
	Training

	Theoretical Analysis
	Experiments
	Conclusion
	Additional Results
	Test error trends across varying sample densities(30-100) for PDE benchmarks
	Error reduction on 30, 50, 100 training data across various sampling density
	Test errors across training data size for different sample density
	Error reductions for training data size=40
	Error reductions for training data size=20
	Error reductions for training data size=10
	Graph Visulizations

	Datasets Descriptions
	Darcy Flow
	Nonlinear Diffusion PDE
	Eikonal Equation
	Poisson Equation
	Advection Equation

	LLM Usage

