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Graph Convolutional Semi-Supervised Cross-Modal Hashing
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ABSTRACT
Cross-modal hashing encodes different modalities of multi-modal
data into a low-dimensional Hamming space for fast cross-modal re-
trieval. Most existing cross-modal hashing methods heavily rely on
label semantics to boost retrieval performance; however, semantics
are expensive to collect in real applications. To mitigate the heavy
reliance on semantics, this work proposes a new semi-supervised
deep cross-modal hashing method, namely, Graph Convolutional
Semi-Supervised Cross-Modal Hashing (GCSCH), which is trained
with limited label supervision. The proposed GCSCH first generates
pseudo-multi-labels of the unlabeled samples using the simple yet
effective idea of consistency regularization and pseudo-labeling. GC-
SCH designs a fusion network that merges the two modalities and
employs Graph Convolutional Network (GCN) to capture seman-
tic information among ground-truth-labeled and pseudo-labeled
multi-modal data. Using the idea of knowledge distillation, GCSCH
employs a teacher-student learning scheme that can successfully
transfer knowledge from the fusion module to the image and text
hashing networks. Empirical studies on three multi-modal bench-
mark datasets demonstrate the superiority of the proposed GCSCH
over state-of-the-art cross-modal hashing methods with limited
label supervision.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval.

KEYWORDS
Semi-supervised hashing, Cross-modal retrieval, Graph convolu-
tional network

1 INTRODUCTION
Recent years have witnessed a huge surge of multimedia data [21,
30], e.g., images, texts, audios, and videos on the web. The potential
semantic correlation among multi-modal data can be exploited to
achieve cross-modal retrieval. Cross-modal retrieval [21, 23], which
aims to search for relevant instances from one modality using a
query from another modality has drawn increasing attention. In
general, existing cross-modal retrieval methods [23] first project
multi-modal data into a common subspace, then measure semantic
similarities, and finally perform retrieval in this common subspace.
The common subspace is often real-valued, and thus similarity
measurement and retrieval suffer from high computation costs with
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rapid increase of data [21]. Hashing [30] has attracted considerable
interest for large-scale retrieval due to its obvious superiority in
terms of storage and computation. Hashing [5, 18, 19, 30] learns
hash codes that well preserve similarity structure of original data.

Hashing has been successfully applied to large-scale cross-modal
retrieval by harvesting its benefits. Cross-modal hashing [47] maps
multi-modal data into a common Hamming space, where efficient
retrieval is performed. The shallow cross-modal hashing methods
[2, 5, 6, 10, 16, 29, 42, 47] typically extract the hand-crafted or
deep features using pre-trained network and then learn hash codes
based on the extracted features of multi-modal data. The deep cross-
modal hashing [8, 9, 14, 17, 32, 35, 37, 39, 40] has been developed
to jointly perform feature learning and latent hash code learning
in an end-to-end manner, and has shown superior to shallow cross-
modal hashing. Deep cross-modal hashing [9] directly takes raw
multi-modal data as inputs, e.g., raw image, bag-of-word text, and
transforms them into hash codes using DNNs while incorporating
semantic supervision. Typically, a similarity matrix is constructed
based on whether two samples share common labels to indicate
pairwise semantics. However, label semantics are expensive to
obtain in real-world tasks, limiting the widespread application of
deep supervised cross-modal hashing on cross-modal retrieval.

Semi-supervised cross-modal hashing [25, 33, 44, 45] mitigates
the heavy reliance on labels by considering semantics of labeled
multi-modal data and structure information of unlabeled multi-
modal data. The hash functions are learned through the joint op-
timization of supervised losses on a small amount of labeled data
and unsupervised losses on a vast amount of unlabeled data. How-
ever, semantics among unlabeled multi-modal data have not been
exploited effectively, and the learned hash codes are not highly
discriminative especially when labeled data is limited. Therefore,
there remains a research gap in developing deep semi-supervised
cross-modal hashing that is expected to yield improved retrieval
performance.

To mitigate heavy reliance on labels and harness a vast mount
unlabeled multi-modal data effectively, this paper proposes a new
deep semi-supervised cross-modal hashing method, i.e., Graph Con-
volutional Semi-Supervised Cross-Modal Hashing (GCSCH) for
cross-modal retrieval. The proposed GCSCH first predicts pseudo-
multi-labels of unlabeled multi-modal data using consistency regu-
larization, and further leverages the superior capability of Graph
Convolutional Network (GCN) to effectively exploit semantic struc-
ture of the whole multi-modal data that can effectively supervise
multi-modal hashing network training and hash code learning.
The proposed GCSCH comprises three components including im-
age/text network, consistency regularized pseudo-labeling module,
and GCN fusion module, as shown in Figure 1. The main contribu-
tions of this work are as follows:

• We propose Graph Convolutional Semi-supervised Cross-
modal Hashing (GCSCH) that is trained with limited label
supervision for cross-modal retrieval. The proposed GCSCH

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: The illustration of the proposed Graph Convolutional Semi-Supervised Cross-Modal Hashing (GCSCH) for image-
text cross-modal retrieval. The proposed GCSCH comprises three components including image/text network, consistency
regularized pseudo-labeling module, and GCN fusion module. The image and text networks generate deep hash codes of image
and text modalities respectively. The consistency regularized pseudo-labeling module generates pseudo-multi-labels for all the
unlabeled multi-modal data with the popular idea of consistency regularization and pseudo-labeling. The GCN fusion module
fuses image and text features and exploits semantic structure among ground-truth-labeled and pseudo-labeled multi-modal
data by employing GCN. It further transfers knowledge of fused feature to guide training of image and text hashing networks
via a teacher-student learning scheme.

can generate pseudo-multi-labels for all the unlabeled multi-
modal data with the simple yet effective idea of consistency
regularization and pseudo-labeling, such that the potential
semantics of unlabeled data can be effectively exploited.

• The proposedGCSCH leverages GCN to effectively exploit se-
mantic structure of ground-truth-labeled and pseudo-labeled
multi-modal data, and effectively transfers the knowledge
from fused feature to image and text networks using knowl-
edge distillation.

• Extensive empirical results on three benchmark datasets
demonstrate that the proposed GCSCH outperforms the
state-of-the-arts on image-text retrieval with limited label
supervision.

2 RELATEDWORK
According to the amount of label semantic information used, cross-
modal hashing [46] can be roughly divided into three categories:
supervised cross-modal hashing [1, 26, 27, 31], unsupervised cross-
modal hashing [22, 43], and semi-supervised cross-modal hash-
ing [4, 24, 45].

Supervised cross-modal hashing methods indeed rely on the
availability of labeled multi-modal data, which ensures that the
learned hash codes are highly discriminative. This approach use
the supervisory signals provided by the labels to guide the learn-
ing process, ensuring that the hash codes generated for different
modalities are semantically consistent and can effectively capture
the relevant information for discrimination tasks. Discrete Latent
Factor Hashing (DLFH) [12] utilizes negative log-likelihood of cross-
modal similarity, and optimizes in a discrete scheme that directly
learns hash code without continuous relaxation. DLFH achieves

remarkable accuracy and trains much faster than some relaxation-
based hashing methods. By leveraging the power of deep learning,
deep cross-modal hashing integrates feature learning and hash
code learning into a unified framework. For instance, Deep Cross-
Modal Hashing (DCMH) [11] is among the first end-to-end learning
frameworks with DNNs for cross-modal hashing. DCMH learns
deep hash functions for each modality using DNNs and minimizes
negative log-likelihood of cross-modal similarity. In contrast to su-
pervised cross-modal hashing, unsupervised cross-modal hashing
does not require label information that is often laborious to collect
in real-world applications. Unsupervised deep cross-modal hashing
(UDCMH) [34] combines deep learning and matrix factorization
with binary latent factor models for multi-modal data retrieval.
However, the performance of unsupervised cross-modal hashing is
limited due to the lack of label supervision.

As labeled multimodal data is expensive to obtain in real-world
scenarios, more efforts have been recently made towards semi-
supervised cross-modal hashing, which considers both a small
amount of labeled and a large amount of unlabeled multimodal data.
For instance, Multi-view Graph Cross-modal Hashing (MGCH) [24]
learns hash code in a semi-supervised manner using the outputs of
multi-view graphs processed by a graph-reasoningmodule.Modality-
specific andCross-modal GCN (MCGCN) [33] employs twomodality-
specific channels and one cross-modality channel to learn modality-
specific and shared representations for each modality respectively,
and performs semantic information propagation from labeled data
to unlabeled data via GCN. Semi-supervised Semi-paired Cross-
modal Hashing (SSCH) [45] performs an alignment-free pseudo-
labeling process that can strengthen semantic preservation to train
effectively and efficiently. Semi-supervised Knowledge Distillation
for Cross-modal Hashing (SKDCH) [25] utilizes teacher-student
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optimization to propagate knowledge, and improves triplet rank-
ing loss to better mitigate heterogeneity gap. The existing semi-
supervised cross-modal hashing methods mainly consider seman-
tics of labeled and structure of unlabeled multi-modal data, however
semantics among unlabeled data have not been exploited effectively.
In this work, we propose to exploit semantics among unlabeled
multi-label data and employ such semantics to train multi-modal
hashing networks.

3 APPROACH
This section presents the details of the proposed Graph Convolu-
tional Semi-Supervised Cross-Modal Hashing (GCSCH), including
problem setup, formulation, and out-of-sample extension.

3.1 Problem Setup
This work focuses on the image-text cross-modal retrieval. Assume
that we are given a multi-modal dataset with 𝑛 image and text
samples, where𝑛𝑙 samples are labeled and𝑛𝑢 samples are unlabeled,
and we have 𝑛 = 𝑛𝑙 + 𝑛𝑢 . Specifically, the labeled images and texts
are denoted as X𝑙 ∈ R𝑛𝑙×𝑑𝑥 and Y𝑙 ∈ R𝑛𝑙×𝑑𝑦 respectively, and
their labels are denoted as L𝑙 ∈ {0, 1}𝑛𝑙×𝑐 , where 𝑐 is the number
of classes, 𝐿𝑙

𝑖 𝑗
= 1 if the 𝑖-th sample belongs to the 𝑗-th class and

𝐿𝑙
𝑖 𝑗

= 0 otherwise. In addition, the unlabeled images and texts are
represented as X𝑢 ∈ R𝑛𝑢×𝑑𝑥 and Y𝑢 ∈ R𝑛𝑢×𝑑𝑦 respectively. The
whole image and text modalities are represented as X =

[
X𝑙 ,X𝑢

]
∈

R𝑛×𝑑𝑥 and Y =

[
Y𝑙 ,Y𝑢

]
∈ R𝑛×𝑑𝑦 respectively. The goal of the

proposed GCSCH is to learn the deep cross-modal hashing model
and hash code B ∈ {0, 1}𝑛×𝑑 that supports efficient large-scale
image-text cross-modal retrieval, where 𝑑 is hash code length.

3.2 Formulation
The proposed GCSCH is illustrated in Figure 1. As shown in Figure 1,
GCSCH comprises three components including image/text network,
consistency regularized pseudo-labeling module, and GCN fusion
module.

3.2.1 Image/Text Network. For image modality, the proposed GC-
SCH employs Convolutional Neural Network (CNN) as the back-
bone to extract image features. Specifically, the proposed GCSCH
obtains the high-level deep features of labeled and unlabeled im-
ages:

H𝑙
𝑋 = 𝑓𝑋

(
X𝑙 ,Θ𝑋

)
and H𝑢

𝑋 = 𝑓𝑋
(
X𝑢 ,Θ𝑋

)
(1)

where H𝑙
𝑋

∈ R𝑛𝑙×𝑑 and H𝑢
𝑋

∈ R𝑛𝑢×𝑑 denote labeled and unlabeled
image features respectively, 𝑓𝑋 (·) represents the image network,
Θ𝑋 denotes its network parameter. The feature of the whole image
modality is represented by H𝑋 =

[
H𝑙
𝑋
;H𝑢

𝑋

]
∈ R𝑛×𝑑 .

For text modality, GCSCH uses Deep Neural Network as the
backbone to extract text features. Specifically, the proposed GCSCH
obtains the high-level deep features of labeled and unlabeled texts:

H𝑙
𝑌 = 𝑓𝑌

(
Y𝑙 ,Θ𝑌

)
and H𝑢

𝑌 = 𝑓𝑌
(
Y𝑢 ,Θ𝑌

)
(2)

where H𝑙
𝑌
∈ R𝑛𝑙×𝑑 and H𝑢

𝑌
∈ R𝑛𝑢×𝑑 denote labeled and unlabeled

text features respectively, 𝑓𝑌 (·) represents the text network, Θ𝑌 de-
notes its network parameter. The feature of the whole text modality
is represented by H𝑌 =

[
H𝑙
𝑌
;H𝑢

𝑌

]
∈ R𝑛×𝑑 .

3.2.2 Consistency Regularized Pseudo-labeling Module. Leveraging
unlabeled data to improve performance is key for semi-supervised
learning (SSL). Instead of developing complex models, this work em-
ploys a simple yet effective module to accurately generate pseudo-
multi-labels for unlabeled multi-modal data with consistency regu-
larization [41]. In this work, following [36], we combine pseudo-
labeling [13] and consistency regularization on two types of aug-
mentations. We perform two types of feature augmentations: strong
and weak, denoted by Λ(·) and 𝜆(·) respectively. Specifically, we
first concatenate the image and text features, and apply strong and
weak augmentations on fused features using dropout with different
parameters[20].

The loss in pseudo-labeling module includes two terms, i.e., a
supervised loss J𝐶𝑙

applied on labeled data, and an unsupervised
loss J𝐶𝑢

applied on unlabeled data. Specifically, the supervised loss
is defined as the following loss on weakly augmented labeled fused
feature:

J𝐶𝑙
=

1
𝑛𝑙

𝑛𝑙∑︁
𝑖=1

𝐶𝐸

(
𝑓𝐶

(
𝜆( [H𝑙

𝑋 ,H
𝑙
𝑌 ]𝑖 ),Θ𝐶

)
, L𝑙𝑖

)
(3)

where 𝑓𝐶 denotes a neural network for classification, and Θ𝐶 is its
network parameter, L𝑙

𝑖
is the multi-label vector of the 𝑖-th labeled

sample, 𝐶𝐸 denotes the widely-used standard cross-entropy loss.
For the unlabeled samples, we apply the idea of pseudo-labeling

to first compute the multi-label distribution of strong augmented
fused feature of the unlabeled samples L𝑢 = 𝑓𝐶

(
Λ( [H𝑢

𝑋
,H𝑢

𝑌
]),Θ𝐶

)
.

We then convert such multi-label distributions to their hard pseudo-
multi-labels L̂𝑢 , and the 𝑗-th label of the 𝑖-th unlabeled sample �̂�𝑢

𝑖 𝑗
is

set to 1 if it is larger than 𝜏 , and set to 0 if it is smaller than 1−𝜏 . We
only retain pseudo-multi-labels of unlabeled samples whose label
distributions all fall into such two regions defined by 𝜏 for training.
With the popular idea of consistency regularization, we assume a
good model should output similar predictions when fed different
augmentations versions of one sample. Therefore, the unsupervised
loss is defined as follows:

J𝐶𝑢
=

1
𝑛𝑢

𝑛𝑢∑︁
𝑖=1

𝐼

(
L̂𝑢𝑖 , 𝜏

)
𝐶𝐸

(
𝑓𝐶

(
𝜆( [H𝑢

𝑋 ,H
𝑢
𝑌 ]𝑖 ),Θ𝐶

)
, L̂𝑢𝑖

)
(4)

where function 𝐼 (l, 𝜏) = ∏𝑐
𝑖=1 1(𝑙𝑖 ∈ [0, 𝜏] ∪ [1 − 𝜏, 1]) is used to

select unlabeled samples with high-confidence prediction. We min-
imize the final loss that is defined as J𝐶𝑢

+ J𝐶𝑙
to train classifier

in pseudo-labeling module, and further employ such learned clas-
sifier to generate pseudo-multi-labels of all the unlabeled samples
L𝑢 ∈ {0, 1}𝑛𝑢×𝑐 by setting 𝜏 to 0.5. To this end, we have labeled all
the unlabeled samples, and the labels of all the samples are defined
as L = [L𝑙 ; L𝑢 ].

The purpose of the proposed GCSCH is to preserve semantic
similarity structure among image and text modalities. To achieve
this goal, GCSCH proposes the following negative log-likelihood
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loss to preserve semantic similarity among labeled and pseudo-
labeled images and texts:

min
Θ𝑋 ,Θ𝑌

J𝑆 = −
𝑛∑︁

𝑖, 𝑗=1

(
𝑆𝑖 𝑗Ω

𝑋𝑌
𝑖 𝑗 − log

(
1 + 𝑒

Ω𝑋𝑌
𝑖 𝑗

))
(5)

where Ω𝑋𝑌
𝑖 𝑗

= 1
2 (H𝑋 )𝑖 (H𝑌 )⊤𝑗 , and (H𝑋 )𝑖 and (H𝑌 ) 𝑗 are the 𝑖-th

and 𝑗-th image and text features respectively. Specifically, based
on L, we obtain semantic similarity matrix S ∈ {0, 1}𝑛×𝑛 to charac-
terize similarity structure between all samples, and 𝑆𝑖 𝑗 = 1 if the
𝑖-th and 𝑗-th samples share at least one common label, and 𝑆𝑖 𝑗 = 0
otherwise.

In addition, to reduce information loss of quantizing continuous
outputs of image and text networks, GCSCH minimizes the follow-
ing quantization loss to enable continuous network outputs and
hash codes to be close:

min
Θ𝑋 ,Θ𝑌 ,B

J𝑄 = ∥H𝑋 − B∥2𝐹 + ∥H𝑌 − B∥2𝐹 (6)

where B denotes latent hash code shared by image and text modali-
ties.

3.2.3 GCN Fusion Module. GCSCH proposes GCN fusion module
to exploit complementary of multiple modalities and generate more
discriminative hash code. Specifically, the proposed GCSCH con-
catenates the outputs of image and text networks, and further feeds
the concatenation into fusion network to obtain high-quality fused
feature. To further improve the quality of the fused features, the
fusion module includes Graph Convolutional Network (GCN) to
explore semantic information of both ground-truth and pseudo-
labeled samples. With this adjacency matrix, GCN is then used
to fully exploit semantics of labeled samples and structure of un-
labeled samples. To alleviate over-smoothing problem that often
occurs in GCN, the proposed GCSCH uses the following weighting
scheme:

𝑆𝑖 𝑗 =


©«𝑆𝑖 𝑗/

𝑛∑︁
𝑗=1,𝑖≠𝑗

𝑆𝑖 𝑗
ª®¬ × 𝑝, 𝑖 ≠ 𝑗

1 − 𝑝, 𝑖 = 𝑗

(7)

where S̃ is the weighted adjacency matrix, and 𝑝 is the weight as-
signed to the node itself and the other nodes. The proposed GCSCH
first concatenates image and text features, and feeds it into a fusion
network that consists of two-layer GCN:

H𝐹 = 𝑓𝐹

(
S̃, [H𝑋 ,H𝑌 ] ,Θ𝐹

)
(8)

where 𝑓𝐹 (·) and H𝐹 ∈ R𝑛×𝑑 denote fusion network and fused
feature respectively, Θ𝐹 is its network parameter. The layer-wise
propagation rule of GCN is defined as follows:

H(𝑙+1) = 𝜎

(
S̃,H(𝑙 ) ,Θ(𝑙 )

)
(9)

where H(𝑙 ) and H(𝑙+1) denote the input and output of the 𝑙-th layer
in fusion network respectively, Θ(𝑙 ) denotes the parameter of the
𝑖-th layer, and 𝜎 (·) denotes activation function. We define H(1) =
[H𝑋 ,H𝑌 ] and H(3) = H𝐹 . To further improve discrimination, the
proposed GCSCH has the following negative log-likelihood loss on

Algorithm 1 Graph Convolutional Semi-Supervised Cross-Modal
Hashing (GCSCH)

Input: Labeled and unlabeled image X𝑙 and X𝑢 ; labeled and
unlabeled text Y𝑙 and Y𝑢 ; label L; code length 𝑑 ; labeled and un-
labeled size𝑚𝑙 and𝑚𝑢 in a mini-batch; parameters 𝛼, 𝛽,𝛾, 𝜏, 𝑝 .
Output: network parameters Θ𝑋 , Θ𝑌 , Θ𝐹 , Θ𝐶 ; hash code B.

1: Initialize Θ𝑋 , Θ𝑌 , Θ𝐹 , Θ𝐶 ;
2: repeat
3: for max{⌊ 𝑛𝑙𝑚𝑙

⌋, ⌊ 𝑛𝑢𝑚𝑢
⌋} iterations do

4: Construct a mini-batch of𝑚𝑙 labeled and𝑚𝑢 unlabeled
samples;

5: Calculate image feature H𝑋 , text feature H𝑌 , and fused
feature H𝐹 ;

6: Calculate the gradient of J𝐶𝑢
+ J𝐶𝑙

by chain rule, and
update Θ𝐶 by Adam algorithm;

7: Apply pseudo-labels to all unlabeled samples;
8: Calculate the gradient of J by chain rule, and update

Θ𝑋 , Θ𝑌 , Θ𝐹 , and B by Adam algorithm;
9: end for
10: until Convergence

labeled fused feature pairs:

min
Θ𝑋 ,Θ𝑌 ,Θ𝐹

J𝐹 = −
𝑛𝑙∑︁

𝑖, 𝑗=1

(
𝑆𝑖 𝑗Ω

𝐹
𝑖 𝑗 − log

(
1 + 𝑒

Ω𝐹
𝑖 𝑗

))
(10)

where Ω𝐹
𝑖 𝑗

= 1
2 (H𝐹 )𝑖 (H𝐹 )⊤𝑗 , (H𝐹 )𝑖 and (H𝐹 ) 𝑗 denote the 𝑖-th and

𝑗-th fused features respectively. To improve the discrimination of
outputs of image and text networks, under teacher-student learning
framework [38], GCSCH regards fusion network and image/text
network as teacher and student modules respectively, and uses
fused feature generated by GCN to guide training of image and text
networks. To achieve this, GCSCH minimizes the following simply
but effective loss:

min
Θ𝑋 ,Θ𝑌

J𝐷 = ∥H𝑋 − H𝐹 ∥2𝐹 + ∥H𝑌 − H𝐹 ∥2𝐹 (11)

With the above loss, the outputs of the image and text networks
can be close to the fused features.

3.2.4 Total Loss. By combining the above four losses, i.e., J𝑆 , J𝐹 ,
J𝐷 and J𝑄 , we have the final objective function of the proposed
GCSCH:

min
Θ𝑋 ,Θ𝑌 ,Θ𝐹 ,Θ𝐶 ,B

J = J𝑆 + 𝛼J𝐹 + 𝛽J𝐷 + 𝛾J𝑄 (12)

where the three parameters 𝛼 , 𝛽 , and 𝛾 are used to balance the
importance of different losses.

The proposed GCSCH presents an iterative optimization scheme
to find a feasible solution. For each iteration, we first optimize Θ𝐶

to achieve better classification results and generate pseudo-labels,
and then use pseudo-labels to optimize each of Θ𝑋 , Θ𝑌 , Θ𝐹 and
B, while fixing the other variables. The proposed GCSCH can be
trained in an end-to-end manner, and its overall training process is
shown in Algorithm 1.
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Table 1: mAPs of all the cross-modal hashing methods on two cross-modal retrieval tasks with respect to 30% of labeled samples.
The bold and underline indicate the best and the second best respectively.

Task Method Reference MIRFLICKR-25K NUS-WIDE MS COCO
16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

I→T

DGCPN AAAI 21 0.703 0.713 0.717 0.720 0.566 0.589 0.590 0.601 0.575 0.613 0.620 0.630
UCCH TPAMI 23 0.734 0.741 0.739 0.739 0.590 0.610 0.615 0.618 0.562 0.569 0.569 0.590
LEMON MM 20 0.651 0.670 0.668 0.682 0.460 0.491 0.512 0.507 0.492 0.438 0.522 0.527
EDMH TKDE 22 0.651 0.657 0.655 0.646 0.460 0.477 0.474 0.461 0.502 0.497 0.468 0.427
HMAH TMM 22 0.755 0.743 0.713 0.753 0.606 0.636 0.639 0.581 0.558 0.569 0.579 0.594
HCCH TMM 23 0.719 0.730 0.737 0.736 0.625 0.638 0.643 0.649 0.560 0.606 0.621 0.634
MGCH IS 22 0.689 0.705 0.694 0.729 0.525 0.514 0.557 0.595 0.615 0.562 0.549 0.607
SSCH TCSVT 23 0.622 0.670 0.675 0.685 0.479 0.524 0.520 0.539 0.435 0.441 0.478 0.479
TS3H TNNLS 23 0.717 0.741 0.751 0.742 0.613 0.642 0.650 0.671 0.618 0.624 0.648 0.690
GCSCH Ours 0.772 0.776 0.782 0.785 0.658 0.677 0.683 0.673 0.619 0.675 0.693 0.701

T→I

DGCPN AAAI 21 0.692 0.701 0.705 0.710 0.578 0.596 0.598 0.601 0.572 0.609 0.616 0.625
UCCH TPAMI 23 0.722 0.726 0.722 0.725 0.600 0.616 0.623 0.626 0.553 0.560 0.559 0.586
LEMON MM 20 0.666 0.695 0.687 0.708 0.472 0.508 0.538 0.517 0.487 0.475 0.528 0.535
EDMH TKDE 22 0.668 0.677 0.679 0.667 0.475 0.487 0.490 0.477 0.501 0.494 0.464 0.427
HMAH TMM 22 0.721 0.703 0.676 0.705 0.546 0.578 0.597 0.559 0.549 0.558 0.570 0.578
HCCH TMM 23 0.721 0.740 0.748 0.742 0.631 0.632 0.639 0.649 0.556 0.588 0.620 0.647
MGCH IS 22 0.675 0.695 0.684 0.719 0.541 0.515 0.553 0.607 0.601 0.553 0.524 0.586
SSCH TCSVT 23 0.623 0.664 0.690 0.688 0.482 0.526 0.538 0.557 0.440 0.443 0.478 0.474
TS3H TNNLS 23 0.727 0.753 0.764 0.748 0.622 0.653 0.665 0.674 0.614 0.618 0.645 0.687
GCSCH Ours 0.780 0.791 0.791 0.791 0.661 0.673 0.676 0.684 0.620 0.661 0.682 0.688

3.3 Out-of-Sample Extension
Once the proposed GCSCH is trained, the learned image and text
networks can be used to generate hash code of a new query. Specif-
ically, given an image query x𝑞 or text query y𝑞 , its hash code can
be generated as follows:

b𝑞 = sign
(
𝑓𝑋

(
x𝑞,Θ𝑋

) )
or sign

(
𝑓𝑌

(
y𝑞,Θ𝑌

) )
(13)

Once b𝑞 is generated, it can be used for cross-modal retrieval by
retrieving similar instances from database in another modality.

4 EXPERIMENTS
This section evaluates effectiveness of the proposed GCSCH by
performing image-text cross-modal retrieval. The experiment is
conducted on an Ubuntu Enterprise 64-bit Linux server equipped
with an NVIDIA A6000 GPU. The proposed GCSCH is implemented
using PyTorch.

4.1 Experimental Setup
4.1.1 Datasets. The experiment is conducted on three multi-label
image benchmarks, i.e., MIRFLICKR-25K [7], NUS-WIDE [3], and
MS COCO [15]. The details of three benchmark datasets are as
follows:

MIRFLICKR-25K1 [7] consists of 25,000 images collected from
Flickr website. Each image is associated with several textual tags.
Hence, each point is a image-text pair which is manually annotated
with 24 unique labels. The text for each point is represented as a
1,386-dimensional bag-of-words (BoW) vector. The 20,015 points
that have at least 1 label and 1 textual tag are selected for experiment.
The 2,000 samples are randomly selected as a query set and the

1http://lear.inrialpes.fr/people/guillaumin/data.php

rest 18,015 samples are used as database. The 10,000 samples are
randomly selected from database for training.

NUS-WIDE2 [3] contains 260,648 web images, and some images
are associated with textual tags. Each image is annotated with one
or multiple labels from 81 concept labels. We select 195,834 image-
text pairs that belong to the 21 most frequent concepts. The text
for each point is represented as a 1,000-dimensional bag-of-words
vector. The 2,100 samples are randomly selected as a query set and
the rest 193,734 samples are used as database. The 10,500 samples
are randomly selected from database for training.

MSCOCO3 [15] is constituted by two subsets of images: a training
set with 82,783 training images and a validation set with 40,504
images. In our experiments, we merge the training images and
validation images and remove those samples that have no text data.
Finally, 122,218 image-text pairs are left for our experiments. The
text for each point is represented by a 2,000-dimensional bag-of-
words vector. The 5,000 samples are randomly selected as a query
set and the rest samples are used as database. The 10,000 samples
are randomly selected from the database for training.

4.1.2 Baselines. We compare the proposed GCSCHwith nine state-
of-the-art cross-modal hashing baselines for comparison, including
three semi-supervised cross-modal hashingmethods, i.e., SSCH [45],
MGCH [24], TS3H [4], two unsupervised cross-modal hashing
method, i.e., DGCPN [43], UCCH [22], and four supervised cross-
modal hashing method, i.e., EDMH [1], LEMON [31], HMAH [27],
HCCH [26]. All samples are used for training semi-supervised and
unsupervised methods, while only labeled samples are used for
training supervised methods.

2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
3http://mscoco.org/

http://lear.inrialpes.fr/people/guillaumin/data.php
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
http://mscoco.org/
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Figure 2: Precision-recall curves of all the cross-modal hashing methods on two cross-modal retrieval tasks with respect to 30%
of labeled samples.

4.1.3 Experiment Setting. For the proposed GCSCH, the batch size
is set to 128, where the numbers of labeled and unlabeled samples
are set to 80 and 48 respectively, and the number of iterations is set
to 100. The five trade-off parameters, i.e., 𝛼 , 𝛽 , 𝛾 , 𝜏 , 𝑝 are set to 0.1,
0.05, 10−9, 0.05, and 0.3 respectively. The Adam optimizer is used
for optimizing. For image modality, we employ VGG model pre-
trained on ImageNet as the backbone, where the classification layer
is replaced by hash layer whose output dimension is set to𝑑 . For text
modality, we employ text network with three fully-connected layers
including a 1,024-dimensional hidden layer. The modality fusion
network is a GCN network including two 1,024-dimensional graph
convolutional layers and one 1,024-dimensional fully-connected
layer. For all networks, ReLU is adopted as activation for hidden
layers and tanh activation is used to approximate hash code.Weakly
augment and strongly augment use different proportions of dropout
operations.

4.1.4 Evaluation Metrics. Two cross-modal retrieval tasks are used
for evaluation, i.e., I→T that retrieves relevant texts in database
given any image query, T→I that retrieves relevant images in data-
base given any text query. We consider the widely used metric, i.e.,
mean Average Precision (mAP) to evaluate retrieval performance,
which is calculated using all the samples in databases.

4.2 Performance Evaluation
4.2.1 Evaluation on Small Percentage of Labeled Samples. This sec-
tion compares the proposed method with state-of-the-art hashing
baselines with a small percentage of labeled samples. We set the
percentage of labeled samples in training set to 30%, and report

the mAPs of all the hashing methods with respect to different bits,
i.e., 16, 32, 48, 64 bits in Table 1, where bold and underline indi-
cate the best and second best in each case. The PR curves of all
the methods with respect to 32 bits are shown in Figure 2. From
Table 1 and Figure 2, we can clearly observe that (1) The proposed
GCSCH has the highest mAPs among 24 cases, and outperforms
the best baselines averagely by 5.19%, 3.62%, 3.65% on MIRFLICKR-
25K, NUS-WIDE, MS COCO respectively. In addition, PR curves of
GCSCH are generally above those of the baselines. (2) Among the
semi-supervised baselines, TS3H outperforms the other two semi-
supervised baselines. MGCH achieves similar performance, and
SSCH underperforms in the most cases. (3) The unsupervised base-
lines are generally competitive to the supervised baselines in the
setting of limited label information, among which HCCH performs
best.

4.2.2 Evaluation on Different Percentages of Labeled Samples. This
section compares the proposed method with the semi-supervised
baselines with varying percentages of the labeled samples. We set
code length to 32, and vary the percentages of labeled samples
from the range of [10%, 90%]. The mAPs of all the semi-supervised
methods with respect to different percentages are reported in Fig-
ure 3. As can be observed, the proposed GCSCH outperforms the
semi-supervised baselines in most cases, indicating its superiority
of learning from varying percentages of labels. As the percent-
age of labeled data increases, the mAPs of the proposed GCSCH
improves stably, and consistently higher than the most baselines.
Some baselines, e.g., MGCH show some performance fluctuations
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Figure 3: mAPs of the semi-supervised cross-modal hashingmethods on two cross-modal retrieval tasks with respect to different
percentages of labeled samples.

Table 2: Ablation study of the proposed GCSCH on NUS-
WIDE. The bold indicates best.

Task Method 16 bits 32 bits 48 bits 64 bits

I→T
GCSCH-F 0.6558 0.6591 0.6464 0.6409
GCSCH-C 0.5992 0.6122 0.6206 0.6194
GCSCH 0.6577 0.6774 0.6825 0.6730

T→I
GCSCH-F 0.6484 0.6538 0.6391 0.6484
GCSCH-C 0.6202 0.6363 0.6436 0.6391
GCSCH 0.6607 0.6734 0.6764 0.6836

with the change of the percentage of labeled data. The above empir-
ical results show that the proposed GCSCH can effectively handle
partially labeled multi-modal data.

4.3 Further Analysis
4.3.1 Ablation Study. We conduct ablation study of the proposed
method by comparing it with its two variants. GCSCH-F is a variant
of GCSCH that removes GCN Fusion Module. GCSCH-C is a variant
of GCSCH that removes Consistency Regularized Pseudo-labeling
Module. We adopt NUS-WIDE for experiment, set the percentage of
labeled samples to 30%, and report the mAPs of all the methods on
the two cross-modal retrieval tasks in Table 2. As can be observed,
the proposed GCSCH clearly outperforms its two variants among
all the cases. Specifically, GCSCH improves GCSCH-F averagely by
1.09%, 2.89%, 5.71%, 5.22% with respect to 16, 32, 48, 64 bits respec-
tively. It indicates that fusion module obviously improves quality of

hash code by effectively guiding the training of hashing networks.
GCSCH improves GCSCH-C averagely by 8.12%, 8.19%, 7.49%, 7.79%
with respect to 16, 32, 48, 64 bits respectively. It demonstrates that
pseudo-labeling module can generate accurate pseudo-labels that
provide strong semantic supervision and improve discrimination
of hash code. The above empirical results clearly demonstrate the
effectiveness of pseudo-labeling and fusion modules.

4.3.2 Parameter Sensitive Analysis. We empirically analyze the
sensitivity of the five parameters, i.e., 𝛼 , 𝛽 , 𝛾 , 𝜏 , 𝑝 in the proposed
GCSCH. Specifically, 𝛼 , 𝛽 , and 𝛾 determine the relative importance
of each loss, 𝜏 determines the threshold for generating pseudo-
labels, and 𝑝 determines the weights of a node itself and the other
nodes in graph construction. We adopt NUS-WIDE for experiment,
and set the percentage of labeled samples and code length to 30%
and 32 respectively. The mAPs of the proposed GCSCHwith respect
to different parameters are shown in Figure 4. From this figure, we
see that mAPs are generally relatively stable to the change of 𝛼 ,
𝛾 , 𝜏 and 𝑝 . The parameter, i.e., 𝛽 has relatively high impact on the
performance of GCSCH. As 𝛽 increases, the mAPs first improve
and then drop, and highest mAP is obtained when 𝛽 is set to 0.05.
It verifies effectiveness and stable of the proposed fusion network.

4.3.3 Visualization. We visualize the learned hash code to qual-
itatively verify the proposed method, and compare the proposed
method with the hashing baselines. We adopt NUS-WIDE for ex-
periment, and 8,000 samples that are annotated with only one la-
bel are randomly selected and code length is set to 32. The hash
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Figure 4: Parameter sensitivity analysis of the proposed GCSCH on NUS-WIDE.
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Figure 5: The t-SNE visualization of NUS-WIDE using all the hashing methods.
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Figure 6: Top-10 retrieved results of the semi-supervised cross-modal hashing methods on a randomly selected image and text
query pair from NUS-WIDE.

codes learned by the ten hashing methods are visualized into a 2-
dimensional space with t-SNE [28], as illustrated in Figure 5. From
Figure 5, we see that visualization of the proposed GCSCH is better
than the baselines, which is generally consistent with previous
quantitative empirical results.

4.3.4 Case Study. We present a case study of image-text cross-
modal retrieval, and compare the proposed GCSCH and three semi-
supervised baseline methods, i.e., MGCH, SSCH, TS3H. We adopt
NUS-WIDE for experiment, and set code length and the percentage
of labeled samples to 32 and 30% respectively. The top 10 retrieved
results of a random image and text query pair on two cross-modal
retrieval tasks are illustrated in Figure 6. Given an image query, the
corresponding images of the retrieved texts are shown to enable
retrieved results to be intuitive in I→T task. The retrieved sample
is marked green if it shares at least one common label with the
query, and is marked red otherwise. As can be seen from Figure 6,
compared to the semi-supervised cross-modal hashing baselines,
the proposed GCSCH obviously retrieves more similar samples on
the two retrieval tasks. The above results qualitatively verify the
effectiveness of the proposed method for image-text cross-modal
retrieval.

5 CONCLUSION
This work studies semi-supervised cross-modal hashing with lim-
ited semantic supervision for cross-modal retrieval, and proposes
Graph Convolutional Semi-Supervised Cross-Modal Hashing (GC-
SCH) to mitigate heavy reliance on semantics. Compared to ex-
isting semi-supervised cross-modal hashing, this work can gener-
ate pseudo-multi-labels of unlabeled samples using the simple yet
effective idea of consistency regularization and pseudo-labeling.
In addition, this work fuses image and text modalities, employs
GCN to capture semantic information among ground-truth-labeled
and pseudo-labeled multi-modal data, and guides training of multi-
modal hashing networks under teacher-student learning frame-
work. Empirical studies on three benchmarks demonstrate the
superiority of the proposed method over the state-of-the-arts in
image-text retrieval with limited labels.
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