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L1 = List of hashed sequences for 
each individual in Source #1

L3 = List of hashed sequences for  
each individual in Source #3

L2 = List of hashed sequences for 
each individual in Source #2

Source #1 Source #2

Source #3

Search for duplicated individuals 
among the lists: L1, L2, L3

Figure 1: An illustration on how the pre-training step. This step is intended to identify duplicated
individuals among the sources. Furthermore, this step preserves privacy since each source sends only
their hashed sequences of the individuals.

A Pre-training step to remove duplicated individuals

As mentioned in the main text, we make five assumptions as follows:

(A1) Consistency: W = w =⇒ Y (w) = Y , this follows from the axioms of structural causal model.

(A2) No interference: treatment on one subject does not affect the outcomes of another one. This is
because the outcome only has a single node for treatment as a parent.

(A3) Positivity (also known as Overlap): every subject has some positive probability to be assigned
to every treatment.

(A4) The individuals in each source must have the same set of common covariates.

(A5) There is no individual whose data exists in more than one source.

Assumptions (A1), (A2) and (A3) are standard in any causal inference algorithm.

Assumption (A4) has been implicitly shown in our setup since all the sources would share the same
causal graph. This is a reasonable assumption as we intend to build a unified model on all of the data
sources. For example, decentralized data in Choudhury et al. (2019); Vaid et al. (2020); Flores et al.
(2020) (to name a few) satisfy this assumption for federated learning.

Assumption (A5) is to ensure that no individuals would dominate the other individuals when training
the model. For example, if an individual appears in all of the sources, the trained model would
be biased by data of this individual (there is imbalance caused by the use of more data from this
particular individual than the others). Hence, this condition would ensure that such bias does not
exist.

In practice, Assumption (A5) sometimes does not hold. To address such a problem, we propose a
pre-training step to exclude such duplicated individuals. The pre-training step are summarized as
follows:

(1) Suppose that an individual can be uniquely identified via a set of features. For example, a
pair of (national identity, nationality) can be used to uniquely identify a person.

(2) To identify duplicated individuals, we first encode the above features with a hash function
such as MD5, SHA256.
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(3) We then send the encoded sequences to a central server.

(4) The server would collect all encoded sequences from all sources and find among them if an
encoded sequence is repeated.

(5) All of the repeated sequences are associated with duplicated individuals. Thus, we announce
the sources to exclude these individual from the training process.

We summarize the pre-training step in Figure 1 with three sources of data.

B Identification

The causal effects are unidentifiable if the confounders are unobserved. However, Louizos et al.
(2017) showed that if the joint distribution ps(xs, ys, ws, zs) can be recovered, then the causal effects
are identifiable. In the following, we show how they are identifiable.

Proof. The proof is adapted from Louizos et al. (Theorem 1, 2017). We need to show that the
distribution ps(ys|do(W = ws),xs) is identifiable from observational data. We have

ps(y
s|do(W = ws),xs) =

∫
ps(y

s|do(W = ws),xs, zs)ps(z
s|do(W = ws),xs)dzs

=

∫
ps(y

s|ws,xs, zs)ps(z
s|xs)dzs.

where the last equality is obtained by applying the do-calculus. The last expression,∫
ps(y

s|ws,xs, zs)ps(z
s|xs)dzs, can be identified by the joint distribution ps(x

s, ys, ws, zs). In
our work, ps(xs, ys, ws, zs) is recovered by its factorization with the distributions ps(ws|xs),
ps(y

s|xs, ws), ps(zs|xs, ys, ws), ps(y
s|ws, zs), and p(zs). Adaptively learning these distributions

in a federated setting is the main task of our work. This completes the proof.

C Computing CATE, local ATE, and global ATE

This section gives details on how to compute CATE, local ATE and global ATE after training the
model.

C.1 Computing the CATE and local ATE

After training the model, each source can compute the CATE and the local ATE on for its own source
and use it for itself.

E[ysi |do(ws
i=w),x

s
i] =

∫
E[ysi |ws

i=w, z
s
i ]p(z

s
i |xs

i)dz
s
i ≃

1

N

N∑
l=1

fy(w
s
i=w, z

s
i [l])

where fy(ws
i=w, z

s
i [l]) is the mean function of ps(ysi |ws

i, z
s
i) and {zsi [l]}Nl=1

i.i.d.∼ ps(z
s
i |xs

i).

The problem is to draw {zs
i [l]}Nl=1 from ps(z

s
i |xs

i). We observe that

ps(z
s
i |xs

i) =
∑

ws
i∈{0,1}

∫
ps(z

s
i |xs

i, y
s
i , w

s
i)ps(y

s
i |xs

i, w
s
i)ps(w

s
i|xs

i) dy
s
i .

Hence, to draw samples, we proceed in the following steps:

(1) Draw a sample of ws
i from ps(w

s
i|xs

i).

(2) Substitute the above sample of ws
i to ps(ysi |xs

i, w
s
i).

(3) Draw a sample of ysi from ps(y
s
i |xs

i, w
s
i).

(4) Substitute the above sample of ysi to ps(zs
i |xs

i, y
s
i , w

s
i).

(5) Draw a sample of zs
i from ps(z

s
i |xs

i, y
s
i , w

s
i).
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The density function of ps(ysi |xs
i, w

s
i) and ps(w

s
i|xs

i) are available after training the model. As
described in the main text, there are two options to draw from ps(z

s
i |xs

i, y
s
i , w

s
i). The first option is

to draw from q(xs
i) sine it approximates ps(zs

i |xs
i, y

s
i , w

s
i). The second option is to use Metropolis-

Hastings algorithm with independent sampler (Liu 1996). For the second option, we have that

ps(z
s
i |xs

i, y
s
i , w

s
i) ∝ ps(y

s
i |zs

i , w
s
i)ps(w

s
i|zs

i)ps(x
s
i|zs

i)p(z
s
i).

Hence, it can be used to compute the acceptance probability of interest. Note that the second option
would give more exact samples since it further filters the samples based on the exact acceptance
probability.

The above would help estimate the CATE given xs
i. The local ATE is the average of CATE of

individuals in a source s. These quantities can be estimated in a local source’s machine. We show
how to compute the global ATE in the next section.

C.2 Computing the global ATE from local ATE of each Source

To compute a global ATE, the server would collect all the local ATE in each source and then compute
their weighted average. For example, suppose that we have three sources whose local ATE values are
7.0, 8.5, and 6.8. These local ATEs are averaged over 10, 5, and 12 individuals, in that order. Then,
the global ATE is given as follows:

global ATE =
10× 7.0 + 8× 8.5 + 12× 6.8

10 + 8 + 12
= 7.32.

Since each source only shares their local ATE and the number of individuals, it does not leak any
sensitive information about the individuals.

D Comparison metrics

We report two error metrics in our experiments:

• Precision in estimation of heterogeneous effects (PEHE):

ϵPEHE =

n∑
i=1

(τ(xi)− τ̂(xi))
2/n, (1)

• Absolute error:

ϵATE = |τ− τ̂|, (2)

where τ(xi), τ are the ground truth of ITE and ATE, and τ̂(xi), τ̂ are their estimates. We report the
mean and standard error over 10 replicates of the data with different random initializations of the
training algorithm.

E Derivation of the loss functions

In this section, we present the loss functions and the form of functions that modulate the desired
distributions.

E.1 Learning distributions involving latent confounder

The ELBO of the log marginal likelihood has the following expression

logp(x,y,w) = log

∫
p(x,y,w, z)dz

≥
∫
q(z) log

p(x,y,w, z)

q(z)
dz

=
∑
s∈S

ns∑
i=1

(
Eq
[
log ps(y

s
i |ws

i, z
s
i) + log ps(w

s
i|zs

i) + log ps(x
s
i|zs

i)
]
− KL[q(zs

i)∥p(zs
i)]
)
=: L.
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Using the complete dataset D̃s =
⋃M
l=1

{
(ws

i, y
s
i ,x

s
i, z

s
i [l])

}ns

i=1
,∀s ∈ S, we minimize the following

loss function J :

J = L̂+
∑
c∈A

R(fc), A = {y0, y1, q0, qq, x, w},

where L̂ is the empirical loss function obtained from the negative of L. In the following, we find the
form of fc based on the representer theorem.

We further define fx = [fx,1,..., fx,dx ], where fx,d is a function taking zs
i as input and mapping it to

a real value in R. Similarly, fq0 = [fq0,1,..., fq0,dz ] and fq1 = [fq1,1,..., fq1,dz ].

Let Hc (c ∈ A) be a reproducing Kernel Hilbert space (RKHS) and κc(·, ·) be kernel function
associated with Hc. We define Bc as follows:

By0 = span
{
κy0(·, zs

i [l]), where s ∈ S; i = 1,..., ns; l = 1,...,M
}
,

By1 = span
{
κy1(·, zs

i [l]), where s ∈ S; i = 1,..., ns; l = 1,...,M
}
,

Bx = span {κx(·, zs
i [l]), where s ∈ S; i = 1,..., ns; l = 1,...,M} ,

Bw = span {κw(·, zs
i [l]), where s ∈ S; i = 1,..., ns; l = 1,...,M} ,

Bq0 = span {κq0(·, [xs
i, y

s
i ]), where s ∈ S; i = 1,..., ns} ,

Bq1 = span {κq1(·, [xs
i, y

s
i ]), where s ∈ S; i = 1,..., ns} .

We posit the following regularizers:

R(fy0) = reg_factory0 × ∥fy0∥2Hy0
, R(fx) =

dx∑
d=1

reg_factorx,d × ∥fx,d∥2Hx
(d = 1,..., dx).

The regularizers R(fy1) and R(fw) are similar to that of R(fy0), and R(fq0), R(fq1) are similar to
that of R(fx).

We see that Bc is a subspace of Hc. We project fy0, fy1, fw, fx,d (d = 1,..., dx), fq0,d (d = 1,..., dz)
and fq1,d (d = 1,..., dz) onto the subspaces By0, By1, Bw, Bx, Bq0 and Bq1, respectively, and obtain
f ′y0, f ′y1, f ′w, f ′x,d, f ′q0,d and f ′q1,d. Next, we also project them onto the perpendicular spaces of B(·)
to obtain f⊥y0 , f⊥y1 , f⊥w , f⊥x,d, f⊥q0,d and f⊥q1,d.

Note that f(·) = f ′(·)+f
⊥
(·). Hence, ∥f(·)∥2H(·)

= ∥f ′(·)∥
2
H(·)

+∥f⊥(·)∥
2
H(·)

≥ ∥f ′(·)∥
2
H(·)

, which implies
that reg_factor(·) × ∥f(·)∥2H(·)

is minimized if f(·) is in its subspace B(·). (I)

In addition, due to the reproducing property, we have

fy0(z
s
i [l]) =

〈
fy0 , κy0(·, zs

i [l])
〉
Hy

=
〈
f ′y0 , κy0(·, z

s
i [l])

〉
Hy

+
〈
f⊥y0 , κy0(·, z

s
i [l])

〉
Hy

= f ′y0(z
s
i [l]).

Similarly, we also have fy1(zd
i [l]) = f ′y1(z

d
i [l]), fw(z

d
i [l]) = f ′w(z

d
i [l]), fx,d(z

l
i) = f ′x,d(z

d
i [l]),

fq0,d(y
d
i ,x

d
i ) = f ′q0,d(y

d
i ,x

d
i ) and fq1,d(y

d
i ,x

d
i ) = f ′q1,d(y

d
i ,x

d
i ). Hence,

L̂(fy0, fy1, fq0, fq1, fx, fw) = L̂(f ′y0, f
′
y1, f

′
q0, f

′
q1, f

′
x, f

′
w). (II)

(I) and (II) imply that fy0, fy1, fq0,d, fq1,d, fx,d, fw are the weighted sum of elements in their
corresponding subspace. Hence,

fc(u
s) =

∑
v∈S

nv×M∑
j=1

κ(us,uv
j)α

v
j .

Using this form with the adaptive kernel and Random Fourier Feature described in the main text
(Section 4.1), we obtain the desired model.

E.2 Learning auxiliary distributions

The derivation of Jw, Jy and the form of functions modulated the auxiliary distributions are similar to
those of J as detailed in Section E.1. The difference is that the empirical loss functions are obtained
from the negative log-likelihood instead of the ELBO.
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F Spectral distribution of some popular kernels

Table 1 (adopted from Milton et al. (2019)) presents some popular kernels and their associated
spectral density s(ω). Those density functions are needed to draw samples of ω for Random Fourier
Features presented in Section 4 of the main text. In our experiments, we used Gaussian kernel.

Table 1: Some popular kernels and their associated spectral density. Note that Kν(·) denotes the
modified Bessel function of the second kind, Γ(·) is the gamma function.

Kernel Kernel function, k(x1 − x2) Spectral density, s(ω)

Gaussian exp

(
−

∥x1 − x2∥2
2

2ℓ2

) (
2π

ℓ2

)−d
2

exp

(
−
ℓ2∥ω∥2

2

2

)

Laplacian exp
(
− ℓ∥x1 − x2∥1

) (
2

π

) d
2

d∏
i=1

ℓ

ℓ2 + ω2
i

Matérn
21−ν

Γ(ν)

(
√
2ν

∥x1 − x2∥2

ℓ

)ν

Kν

(
√
2ν

∥x1 − x2∥2

ℓ

)
2dπ

d
2 Γ(ν + d

2 )(2ν)
ν

Γ(ν)ℓ2ν

(
2ν

ℓ2
+ 4π

2∥ω∥2
2

)−
(
ν+ d

2

)

G Proof of Lemma 1

We repeat Lemma 1 here for convenience:

Lemma 1 (With presence of latent variables). Let θ = {θs}ms=1 and θ̂ be its estimate. Let ysi ∈ R
and xs

i ∈ Rdx . Then,

inf
θ̂

sup
P∈P

EP
[
∥θ̂− θ(P )∥2

]
≥

√
m(dx + 3) log(2

√
m)

64
√
B
∑

s∈S ns
(
1 +

∑
v∈S,v ̸=s λ

s,v
)2 .

Let S\s := S \ {s}. The model is summarized as follows:

p(zs
i) = N(0, σ2

zIdz ),

p(ws
i|zs

i) = Bern
(
φ
((
θsw +

∑
v∈S\s

λs,vθvw

)⊤
ϕ(zs

i)
))
,

p(ysi |ws
i, z

s
i) = N

((
ws
i

(
θsy1 +

∑
v∈S\s

λs,vθvy1

)
+ (1− ws

i)
(
θsy0 +

∑
v∈S\s

λs,vθvy0

))⊤
ϕ(zs

i), σ
2
y

)
,

p(xs
i|zs

i) = N
((
θsx +

∑
v∈S\s

λs,vθvx

)⊤
ϕ(zs

i), σ
2
xIdx

)
,

where z
(·)
i ∈ Rdz , y(·)i ∈ R, w(·)

i ∈ {0, 1}, x(·)
i ∈ Rdx , λ > 0.

Let θ = {θsw, θsy0, θsy1, θsx}s∈S. Let Vw, Vy0, Vy1, Vx be 1/(2
√
m)-packing of the unit ∥ · ∥2-

balls with cardinality at least (2
√
m)2B , (2

√
m)2B , (2

√
m)2B , (2

√
m)2Bdx , respectively. Let

Vs = δ(Vw × Vy0 × Vy1 × Vx) and V = Vs1 × Vs2 ×...× Vsm . We see that

|V| ≥ (2
√
m)2mB(dx+3).

In the following, we derive the minimax bound:

Proof. We have that

∥θ1 − θ2∥2 =

√∑
s∈S

∑
c∈A

∥(θsc)1 − (θsc)2∥22 ≥

√√√√∑
s∈S

4

(
δ

2
√
m

)2

= δ.
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The marginal distribution

pθ(w, y,x) =

∫
pθ(w, y,x, z)dz =

∫
pθ(y|w, z)pθ(w|z)pθ(x|z)p(z)dz.

Moreover, we have that

DKL(p
n
θ1

∥ pnθ2
) =

∑
s∈S

DKL(p
ns

θ1
∥ pns

θ2
).

We divide the proof into three parts (I), (II), and (III):

(I) The upper bound of DKL(p
ns

θ1
∥ pns

θ2
)

Since the data is independent, we have that

DKL(p
ns

θ1
∥ pns

θ2
) = nsDKL(p

1
θ1

∥ p1θ2
)

≤ns
∫
DKL

(
pθ1(y|w, z)pθ1(w|z)pθ1(x|z)

∥∥∥pθ2(y|w, z′)pθ2(w|z′)pθ2(x|z′)
)
p(z)p(z′)dzdz′

= ns

∫ [
pθ1

(w = 0|z)DKL
[
pθ1

(y|w = 0, z)
∥∥pθ2

(y|w = 0, z′)
]

+ pθ1
(w = 1|z)DKL

[
pθ1

(y|w = 1, z)
∥∥pθ2

(y|w = 1, z′)
]

+DKL
[
pθ1

(w|z)
∥∥pθ2

(w|z′)
]
+DKL

[
pθ1

(x|z)
∥∥pθ2

(x|z′)
]]
p(z)p(z′)dzdz′.

In the following, we find the upper bound of each component.

⋄ Upper bound of the first and second component

pθ1(w = 0|z)DKL
[
pθ1(y|w = 0, z)

∥∥pθ2(y|w = 0, z′)
]

≤ 1

2σ2
y

((
(θsy0)1 +

∑
v∈S\s

λs,v(θvy0)1

)⊤
ϕ(z)−

(
(θsy0)2 +

∑
v∈S\s

λs,v(θvy0)2

)⊤
ϕ(z′)

)2
≤

8B2δ2(1 +
∑

v∈S\s
λs,v)2

σ2
y

.

Similarly, we also have

pθ1(w = 1|z)DKL
[
pθ1(y|w = 1, z)

∥∥pθ2(y|w = 1, z′)
]
≤

8B2δ2(1 +
∑

v∈S\s
λs,v)2

σ2
y

.

⋄ Upper bound of the third component

DKL
[
pθ1

(w|z)
∥∥pθ2

(w|z′)
]

= φ
((

(θsw)1 +
∑
v∈S\s

λs,v(θvw)1

)⊤
ϕ(z)

)
log

φ
((

(θsw)1 +
∑

v∈S\s
λs,v(θvw)1

)⊤
ϕ(z)

)
φ
((

(θsw)2 +
∑

v∈S\s
λs,v(θvw)2

)⊤
ϕ(z′)

)
+ φ

(
−
(
(θsw)1 +

∑
v∈S\s

λs,v(θvw)1

)⊤
ϕ(z)

)
log

φ
(
−
(
(θsw)1 +

∑
v∈S\s

λs,v(θvw)1

)⊤
ϕ(z)

)
φ
(
−
(
(θsw)2 +

∑
v∈S\s

λs,v(θvw)2

)⊤
ϕ(z′)

) .
For the first component,

φ
((

(θsw)1 +
∑
v∈S\s

λs,v(θvw)1

)⊤
ϕ(z)

)
log

φ
((

(θsw)1 +
∑

v∈S\s
λs,v(θvw)1

)⊤
ϕ(z)

)
φ
((

(θsw)2 +
∑

v∈S\s
λs,v(θvw)2

)⊤
ϕ(z′)

)
≤
∣∣∣ log (1 + e

−
(
(θsw)2+

∑
v∈S\s

λs,v(θvw)2

)⊤
ϕ(z)
)
− log

(
1 + e

−
(
(θsw)1+

∑
v∈S\s

λs,v(θvw)1

)⊤
ϕ(z′)

)∣∣∣
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≤
∥∥∥(θsw)1 + ∑

v∈S\s

λs,v(θvw)1

∥∥∥
2
∥ϕ(z)∥2 +

∥∥∥(θsw)2 + ∑
v∈S\s

λs,v(θvw)2

∥∥∥
2
∥ϕ(z′)∥2

≤
(
δ +

∑
v∈S\s

λs,vδ
)
∥ϕ(z)∥2 +

(
δ +

∑
v∈S\s

λs,vδ
)
∥ϕ(z′)∥2

≤ 4Bδ
(
1 +

∑
v∈S\s

λs,v
)
.

Similarly, we also have

φ
(
−
(
(θsw)1 +

∑
v∈S\s

λs,v(θvw)1

)⊤
ϕ(z)

)
log

φ
(
−
(
(θsw)1 +

∑
v∈S\s

λs,v(θvw)1

)⊤
ϕ(z)

)
φ
(
−
(
(θsw)2 +

∑
v∈S\s

λs,v(θvw)2

)⊤
ϕ(z′)

)
≤ 4Bδ

(
1 +

∑
v∈S\s

λs,v
)
.

Thus,

DKL
[
pθ1

(w|z)
∥∥pθ2

(w|z′)
]
≤ 8Bδ

(
1 +

∑
v∈S\s

λs,v
)
.

⋄ Upper bound of the fourth component

DKL
[
pθ1

(x|z)
∥∥pθ2

(x|z′)
]

=
1

2σ2
x

∥∥∥((θsx)1 + ∑
v∈S\s

λs,v(θvx)1

)⊤
ϕ(z)−

(
(θsx)2 +

∑
v∈S\s

λs,v(θvx)2

)⊤
ϕ(z′)

∥∥∥2
2

≤ 1

2σ2
x

(∥∥∥((θsx)1 + ∑
v∈S\s

λs,v(θvx)1

)⊤
ϕ(z)

∥∥∥
2
+
∥∥∥((θsx)2 + ∑

v∈S\s

λs,v(θvx)2

)⊤
ϕ(z′)

∥∥∥
2

)2

≤
8B2δ2

(
1 +

∑
v∈S\s

λs,v
)2

σ2
x

.

(II) Combining the results

From the above upper bound of each of the components, we obtain

DKL(p
ns

θ1
∥ pns

θ2
) ≤ ns

∫ [16B2δ2(1 +
∑

v∈S\s
λs,v)2

σ2
y

+ 8Bδ
(
1 +

∑
v∈S\s

λs,v
)

+
8B2δ2(1 +

∑
v∈S\s

λs,v)2

σ2
x

]
p(z)p(z′)dzdz′

= ns

[(
1

σ2
y

+
1

2σ2
x

)
16B2δ2

(
1 +

∑
v∈S\s

λs,v
)2

+ 8Bδ
(
1 +

∑
v∈S\s

λs,v
)]
.

(III) The minimax lower bound

We have that

DKL(p
n
θ1

∥ pnθ2
) =

∑
s∈S

DKL(p
ns

θ1
∥ pns

θ2
)

≤
∑
s∈S

ns

[(
1

σ2
y

+
1

2σ2
x

)
16B2δ2

(
1 +

∑
v∈S\s

λs,v
)2

+ 8Bδ
(
1 +

∑
v∈S\s

λs,v
)]
.

Consequently,

inf
θ̂n

sup
P∈P

EP
[
∥θ̂n−θ(P )∥2

]
8



≥δ
2

1−
∑

s∈S ns

[(
1
σ2
y
+ 1

2σ2
x

)
16B2δ2

(
1+
∑

v∈S\s
λs,v
)2

+8Bδ
(
1+
∑

v∈S\s
λs,v
)]

+log 2

log |V|



≥δ
2

1−
∑

s∈S ns

[(
1
σ2
y
+ 1

2σ2
x

)
16B2δ2

(
1+
∑

v∈S\s
λs,v
)2

+8Bδ
(
1+
∑

v∈S\s
λs,v
)]

+log 2

2mB(dx + 3) log(2
√
m)

.
We choose δ =

√
mB(dx+3) log(2

√
m)

4B
∑

s∈S ns

(
1+
∑

v∈S\s
λs,v
)2 , then

1−

∑
s∈S ns

[(
1
σ2
y
+ 1

2σ2
x

)
16B2δ2

(
1 +

∑
v∈S\s

λs,v
)2

+ 8Bδ
(
1 +

∑
v∈S\s

λs,v
)]

+ log 2

2mB(dx + 3) log(2
√
m)

≥ 1−
(

1

σ2
y

+
1

2σ2
x

)
log(2

√
m)

2
∑

s∈S ns

(
1 +

∑
v∈S\s

λs,v
)2 − 1√

mB(dx + 3)
− 1

2mB(dx + 3)

≥ 1−
(

1

σ2
y

+
1

2σ2
x

)
log(2

√
m)

2
∑

s∈S ns

(
1 +

∑
v∈S\s

λs,v
)2 − 1

2
− 1

8
.

If
∑

s∈S ns

(
1 +

∑
v∈S\s

λs,v
)2

≥ 2

(
1
σ2
y
+ 1

2σ2
x

)
log(2

√
m), then

inf
θ̂n

sup
P∈P

EP
[
∥θ̂n−θ(P )∥2

]
≥ 1

2
×

√
mB(dx + 3) log(2

√
m)

4B
∑

s∈S ns
(
1 +

∑
v∈S\s

λs,v
)2 ×

(
1− 1

4
− 1

2
− 1

8

)

=

√
m(dx + 3) log(2

√
m)

64
√
B
∑

s∈S ns
(
1 +

∑
v∈S\s

λs,v
)2 .

This completes the proof.

H Proof of Lemma 2

We repeat Lemma 2 here for convenience:

Lemma 2 (Without the presence of latent variables). Let ψ = {ψs}ms=1, β = {βs}ms=1 and ψ̂, β̂ be
their estimates, respectively. Let ysi ∈ R. Then,

(i) inf
ψ̂

sup
P∈P

EP
[
∥ψ̂−ψ(P )∥2

]
≥ m log(2

√
m)

256
∑

s∈S ns
(
1 +

∑
v∈S,v ̸=s γ

s,v
) ,

(ii) inf
β̂

sup
P∈P

EP
[
∥β̂− β(P )∥2

]
≥ σ

16
√
2

√√√√ m log(2
√
m)

B
∑

s∈S ns

(
1 +

∑
v∈S,v ̸=s η

s,v
)2 .

The proof of Lemma 2 is divided into two parts (i) and (ii). We compute them separately:

H.1 Proof of Part (i)

We summarize the model as follows

ws ∼ Bern
(
φ
((
ψs +

∑
v∈S\s

γs,vψv
)⊤
ϕ(xs)

))
.

9



Let ψ = {ψs}s∈S. Let Vs be 1/(2
√
m)-packing of the unit ∥ · ∥2-balls with cardinality at least

(2
√
m)2B . We now choose a set V = δ(Vs1 × Vs2 ×...× Vsm). We see that

|V| ≥ (2
√
m)2mB .

Proof. We have that

∥ψ1 −ψ2∥2 =

√∑
s∈S

∥ψs
1 − ψs

2∥22 ≥ δ/2.

Moreover,

DKL(p
n
ψ1

∥ pnψ2
) =

∑
s∈S

DKL(p
ns

ψ1
∥ pns

ψ2
).

We first find upper bound of DKL(p
ns

ψ1
∥ pns

ψ2
). Since the data is independent, we have that

DKL(p
ns

ψ1
∥ pns

ψ2
) = nsDKL(p

1
ψ1

∥ p1ψ2
)

= ns

[
φ
((
ψs
1 +

∑
v∈S\s

γs,vψv
1

)⊤
ϕ(xs)

)
log

φ
((
ψs
1 +

∑
v∈S\s

γs,vψv
1

)⊤
ϕ(xs)

)
φ
((
ψs
2 +

∑
v∈S\s

γs,vψv
2

)⊤
ϕ(xs)

)
+ φ

(
−
(
ψs
1 +

∑
v∈S\s

γs,vψv
1

)⊤
ϕ(xs)

)
log

φ
(
−
(
ψs
1 +

∑
v∈S\s

γs,vψv
1

)⊤
ϕ(xs)

)
φ
(
−
(
ψs
2 +

∑
v∈S\s

γs,vψv
2

)⊤
ϕ(xs)

)
]
.

The first component:

φ
((
ψs
1+

∑
v∈S\s

γs,vψv
1

)⊤
ϕ(xs)

)
log

φ
((
ψs
1 +

∑
v∈S\s

γs,vψv
1

)⊤
ϕ(xs)

)
φ
((
ψs
2 +

∑
v∈S\s

γs,vψv
2

)⊤
ϕ(xs)

)
≤

∣∣∣∣∣log (1 + e
−
(
ψs

2+
∑

v∈S\s
γs,vψv

2

)⊤
ϕ(xs)

)
− log

(
1 + e

−
(
ψs

1+
∑

v∈S\s
γs,vψv

1

)⊤
ϕ(xs)

)∣∣∣∣∣
(⋆)

≤
∣∣∣(ψs

2 +
∑
v∈S\s

γs,vψv
2

)⊤
ϕ(xs)−

(
ψs
1 +

∑
v∈S\s

γs,vψv
1

)⊤
ϕ(xs)

∣∣∣
≤ 4Bδ

(
1 +

∑
v∈S\s

γs,v
)
,

where (⋆) follows from the fact that the SoftPlus function log(1 + ex) is 1-Lipschitz. In particular,∣∣ log(1 + ex1)− log(1 + ex2)
∣∣ = ∣∣∣∣∫ x2

x1

ex

1 + ex
dx

∣∣∣∣ ≤ ∣∣∣∣∫ x2

x1

1dx

∣∣∣∣ = ∣∣x1 − x2
∣∣.

Similarly, for the second component, we also have

φ
(
−
(
ψs
1 +

∑
v∈S\s

γs,vψv
1

)⊤
ϕ(xs)

)
log

φ
(
−
(
ψs
1 +

∑
v∈S\s

γs,vψv
1

)⊤
ϕ(xs)

)
φ
(
−
(
ψs
2 +

∑
v∈S\s

γs,vψv
2

)⊤
ϕ(xs)

)
≤ 4Bδ

(
1 +

∑
v∈S\s

γs,v
)
.

Thus,

DKL(p
ns

ψ1
∥ pns

ψ2
) ≤ 8Bδ

(
1 +

∑
v∈S\s

γs,v
)
ns.
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Consequently,

DKL(p
n
ψ1

∥ pnψ2
) ≤ 8Bδ

∑
s∈S

ns

(
1 +

∑
v∈S\s

γs,v
)
.

So, we have that

inf
ψ̂n

sup
P∈P

EP
[
∥ψ̂n −ψ(P )∥2

]
≥ δ

4

1−
8Bδ

∑
s∈S ns

(
1 +

∑
v∈S\s

γs,v
)
+ log 2

log |V|


≥ δ

4

1−
8Bδ

∑
s∈S ns

(
1 +

∑
v∈S\s

γs,v
)
+ log 2

2mB log(2
√
m)

 .

We choose δ = m log(2
√
m)

16
∑

s∈S ns

(
1+
∑

v∈S\s
γs,v
) , then

1−
8Bδ

∑
s∈S ns

(
1 +

∑
v∈S\s

γs,v
)
+ log 2

2mB log(2
√
m)

≥ 1

4
.

Thus,

inf
ψ̂n

sup
P∈P

EP
[
∥ψ̂n −ψ(P )∥2

]
≥ 1

4
× mB log(2

√
m)

16B
∑

s∈S ns
(
1 +

∑
v∈S\s

γs,v
) × 1

4

=
m log(2

√
m)

256
∑

s∈S ns
(
1 +

∑
v∈S\s

γs,v
) .

This completes the proof of part (i).

H.2 Proof of Part (ii)

Proof. We summarize the model as follows

ys =
(
(1− ws)

(
βs
0 +

∑
v∈S\s

ηs,vβv
0

)
+ ws

(
βs
1 +

∑
v∈S\s

ηs,vβv
1

))⊤
ϕ(xs) + ϵs, ϵs ∼ N(0, σ2).

Let β = {βs
0, β

s
1}s∈S. Let V0s and V1s be 1/(2

√
m)-packing of the unit ∥ · ∥2-balls with cardinality

at least (2
√
m)2B . Let Vs = V0s × V1s. We now choose a set V = δ(Vs1 × Vs2 ×...× Vsm). We see

that

|V| ≥ (2
√
m)4mB .

We have that

∥β1 − β2∥2 =

√∑
s∈S

(
∥(βs

0)1 − (βs
0)2∥22 + ∥(βs

1)1 − (βs
1)2∥22

)
≥ δ/

√
2.

Moreover,

DKL(p
n
β1

∥ pnβ2
) =

∑
s∈S

DKL(p
ns

β1
∥ pns

β2
) =

∑
s∈S

nsDKL(p
1
β1

∥ p1β2
).

In addition,

DKL(p
1
β1

∥ p1β2
)

=
1

2σ2

((
(1− ws)

(
(βs

0)1 +
∑
v∈S\s

ηs,v(βv
0)1
)
+ ws

(
(βs

1)1 +
∑
v∈S\s

ηs,v(βv
1)1
))⊤

ϕ(xs)

−
(
(1− ws)

(
(βs

0)2 +
∑
v∈S\s

ηs,v(βv
0)2
)
+ ws

(
(βs

1)2 +
∑
v∈S\s

ηs,v(βv
1)2
))⊤

ϕ(xs)

)2

11



≤ 1

2σ2

((
(1− ws)

(
2δ +

∑
v∈S\s

ηs,v2δ
)
+ ws

(
2δ +

∑
v∈S\s

ηs,v2δ
))

∥ϕ(xs)∥2

)2

≤ 8B2δ2

σ2

(
1 +

∑
v∈S\s

ηs,v
)2
,

Thus,

DKL(p
n
β1

∥ pnβ2
) ≤ 8B2δ2

σ2

∑
s∈S

ns

(
1 +

∑
v∈S\s

ηs,v
)2
.

Consequently,

inf
β̂n

sup
P∈P

EP
[
∥β̂n − β(P )∥2

]
≥ δ

2
√
2

1−
8B2δ2

σ2

∑
s∈S ns

(
1 +

∑
v∈S\s

ηs,v
)2

+ log 2

log |V|


≥ δ

2
√
2

1−
8B2δ2

σ2

∑
s∈S ns

(
1 +

∑
v∈S\s

ηs,v
)2

+ log 2

4mB log(2
√
m)

 .

We choose δ2 = mB log(2
√
m)

4B2

σ2

∑
s∈S ns

(
1+
∑

v∈S\s
ηs,v

)2 , then

1−
8B2δ2

σ2

∑
s∈S ns

(
1 +

∑
v∈S\s

ηs,v
)2

+ log 2

4mB log(2
√
m)

= 1− 2mB log(2
√
m) + log 2

4mB log(2
√
m)

≥ 1

4
.

Thus,

inf
β̂n

sup
P∈P

EP
[
∥β̂n − β(P )∥2

]
≥ 1

2
√
2

√√√√ 4mB log(2
√
m)

2 8B2

σ2

∑
s∈S ns

(
1 +

∑
v∈S\s

ηs,v
)2 × 1

4

=
σ

16
√
2

√√√√ m log(2
√
m)

B
∑

s∈S ns

(
1 +

∑
v∈S\s

ηs,v
)2 .

This completes the proof of part (ii).

I Further cases of the minimax lower bounds

In Lemma 1 and 2, we have presented the minimax lower bounds when ysi ∈ R and xs
i ∈ Rdx . Here,

we briefly describe the other cases.

I.1 Further cases of Lemma 1

In this section, we further detail the lower bound for binary outcomes and binary proxy variables. In
this case, we need to re-derive the upper bound of

pθ1(w = j|z)DKL
[
pθ1(y|w = j,z)

∥∥pθ2(y|w = j,z′)
]

and DKL
[
pθ1(x|z)

∥∥pθ2(x|z′)
]
,

where j = 1, 2. Using similar derivations as before for the quantity DKL
[
pθ1

(w|z)
∥∥pθ2

(w|z′)
]
, we

have that

pθ1
(w = j|z)DKL

[
pθ1

(y|w = j,z)
∥∥pθ2

(y|w = j,z′)
]
≤ 8Bδ

(
1 +

∑
v∈S\s

λs,v
)
,

and

DKL
[
pθ1

(x|z)
∥∥pθ2

(x|z′)
]
≤ dx8Bδ

(
1 +

∑
v∈S\s

λs,v
)
.
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Combining the results, we have

DKL(p
n
θ1

∥ pnθ2
) =

∑
s∈S

DKL(p
ns

θ1
∥ pns

θ2
) ≤

∑
s∈S

ns8(dx + 3)Bδ
(
1 +

∑
v∈S\s

λs,v
)
.

Consequently, we have that

inf
θ̂n

sup
P∈P

EP
[
∥θ̂n−θ(P )∥2

]
≥ δ

2

1−∑s∈S ns8(dx + 3)Bδ
(
1 +

∑
v∈S\s

λs,v
)
+log 2

2mB(dx + 3) log(2
√
m)

.
We choose δ = m log(2

√
m)

8
∑

s∈S ns

(
1+
∑

v∈S\s
λs,v

) , then

1−

∑
s∈S ns8(dx + 3)Bδ

(
1 +

∑
v∈S\s

λs,v
)
+log 2

2mB(dx + 3) log(2
√
m)

≥ 3

8
.

Thus,

inf
θ̂n

sup
P∈P

EP
[
∥θ̂n−θ(P )∥2

]
≥ 3mB log(2

√
m)

128
∑

s∈S nsB
(
1 +

∑
v∈S\s

λs,v
) .

Remark 1. Note that the derivation in this Section and in Section H.1 give us enough tools to
compute the minimax lower bounds for any further case, i.e., any combination of the outcomes and
proxy variables (binary or continuous). The key is to initially find the upper bound of DKL(p

n
θ1

∥ pnθ2
)

based on the constructed packing. Then, using Fano’s method to obtain the minimax lower bounds.

I.2 Further cases of Lemma 2

Note that the lower bound of Lemma 2, part (i) has only one case since we only focus on binary
treatment, and it is presented in the main text. For part (ii), consider ysi ∈ {0, 1}, then the model of
the outcomes would follow a Bernoulli distribution. Reusing the scheme in Section H.2, we need to
find the new upper bound of DKL(p

n
β1

∥ pnβ2
). In particular,

DKL(p
n
β1

∥ pnβ2
) =

∑
s∈S

ns

[
φ(v1) log

φ(v1)

φ(v2)
+ φ(−v1) log

φ(−v1
φ(−v2)

]
,

where vj =
(
(1 − ws)

(
(βs

0)j +
∑

v∈S\s
ηs,v(βv

0)j
)
+ ws

(
(βs

1)j +
∑

v∈S\s
ηs,v(βv

1)j
))⊤

ϕ(xs). We
have that

φ(v1) log
φ(v1)

φ(v2)
≤
∥∥∥∥(1− ws)

(
(βs

0)1 − (βs
0)2 +

∑
v∈S\s

ηs,v[(βv
0)1 − (βv

0)2]
)

+ ws
(
(βs

1)1 − (βs
1)2 +

∑
v∈S\s

ηs,v[(βv
1)1 − (βv

1)2]
)∥∥∥∥

2

∥ϕ(xs)∥2

≤ 4Bδ
(
1 +

∑
v∈S\s

γs,v
)
,

Similarly, φ(−v1) log φ(−v1
φ(−v2) ≤ 4Bδ

(
1 +

∑
v∈S\s

γs,v
)

. Hence,

DKL(p
n
β1

∥ pnβ2
) ≤ 8Bδ

∑
s∈S

ns

(
1 +

∑
v∈S\s

ηs,v
)
.

Using similar technique in Section H.2, we obtain

inf
β̂n

sup
P∈P

EP
[
∥β̂n − β(P )∥2

]
≥ m log(2

√
m)

32
√
2
∑

s∈S ns

(
1 +

∑
v∈S\s

ηs,v
) .

We observe that the lower bound is similar to that of Lemma 2, part (i) since they are both lower
bounds of a binary response variable. The constant in this bound is larger (1/(32

√
2)) than that

of Lemma 2, part (i) (1/256). This is expected since there are more parameters in this model, i.e.,
{βs

0, β
s
1}s∈S, as compared to the model in Lemma 2, part (i) ({ψs}s∈S).

13



J Description of IHDP data

This section describe details of the IHDP data, which was skipped in the main text due to limited
space.

The Infant Health and Development Program (IHDP) is a randomized study on the impact of specialist
visits (the treatment) on the cognitive development of children (the outcome). The dataset consists of
747 records with 25 covariates describing properties of the children and their mothers. The treatment
group includes children who received specialist visits and control group includes children who did not
receive. Further details are presented in Appendix. For each child, a treated and a control outcome are
simulated using the numerical schemes provided in the NPCI package (Dorie 2016), thus allowing us
to know the true individual treatment effect. We use 10 replicates of the dataset in this experiment.
For each replicate, we divide into three sources, each consists of 249 data points. For each source, we
use the first 50 data points for training, the next 100 for testing and the rest 99 for validating. We
report the mean and standard error of the evaluation metrics over 10 replicates of the data.
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