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A Related Work

Energy-based prior model Energy-Based Models (EBMs) [1–5] play an important role in gener-
ative modeling. Pang et al. [6] propose to learn an EBM as a prior model in the latent space of deep
latent variable models; it greatly improves the model expressivity over those with non-informative
priors and brings strong performance on downstream tasks, e.g., image segmentation, text model-
ing, molecule generation, and trajectory prediction [7–10]. However, learning both EBMs and latent
space EBMs require MCMC sampling to estimate the learning gradients, which requires a large
amount of iterations to converge when the target distributions are high-dimensional or highly multi-
modal. Typical choices of sampling with non-convergent short-run MCMC [2] in practice can lead
to poor generation quality, malformed energy landscapes [2, 8, 11], biased estimation of the model
parameter and instability in training [3–5, 11]. In this work, we consider learning valid amortiza-
tion of the potentially long-run MCMC for learning energy-based priors; the proposed model shows
reliable sampling quality in practice.

Denoising diffusion probabilistic model Denoising Diffusion Probabilistic Models (DDPMs)
[12–15], originating from Sohl-Dickstein et al. [12], learn the generative process by recovering the
observed data from a sequence of noise-perturbed versions of the data. The learning objective can
be viewed as a variant of the denoising score matching objective [16]. As pointed out in [12, 13],
the sampling procedure of DDPM with ϵ-prediction parametrization resembles Langevin Dynam-
ics (LD) of an EBM; ϵ (predicted noise) plays a similar role to the gradient of the log density [13]. To
be specific, learning a DDPM with ϵ-prediction parameterization is equivalent to fitting the finite-
time marginal of a sampling chain resembling annealed Langevin dynamics [13–15]. Inspired by
this connection, we propose to amortize the long-run MCMC in learning energy-based prior by iter-
atively distilling the short-run sampling chain segments with a diffusion-based sampler. We provide
empirical and theoretical evidence that the resulting sampler is a valid long-run chain sampler.

Amortized MCMC The amortized MCMC technique is formally brought up by Li et al. [17],
which incorporates feedback from MCMC back to the parameters of the amortizer distribution qϕ.
It is concurrently and independently proposed by Xie et al. [18] as the MCMC teaching frame-
work. Methods under this umbrella term [17–22] generally learns the amortizer by minimizing the
divergence (typically the Kullbeck-Leibler Divergence (KLD)) between the improved distribution
and its initialization, i.e., DrKT qϕk´1

||qϕs, where KT represents T -step MCMC transition kernel
and qϕk´1

represents the current amortizer. The diffusion-based amortization proposed in this work
can be viewed as an instantiation of this framework, while our focus is on learning the energy-
based prior. Compared with previous methods, our method i) specifically exploits the connection
between EBMs and DDPMs and is suitable for amortizing the prior and posterior sampling MCMC
in learning energy-based prior, and ii) resides in the lower-dimensional latent space and enables
faster sampling and better convergence.

More methods for learning EBM Several techniques other than short-run MCMC have been pro-
posed to learn the EBM. In the seminal work, Hinton [23] proposes to initialize Markov chains using
real data and run several steps of MCMC to obtain samples from the model distribution. Tieleman
[24] proposes to start Markov chains from past samples in the previous sampling iteration, known as
Persistent Contrastive Divergence (PCD) or persistent chain sampling, to mimic the long-run sam-
pling chain. Nijkamp et al. [4] provide comprehensive discussions about tuning choices for LD such
as the step size s and sampling steps T to obtain stable long-run samples for persistent training.
[3, 5, 25] employ a hybrid of persistent chain sampling and short-run sampling by maintaining a
buffer of previous samples. The methods draw from the buffer or initialize the short-run chain with
noise distribution with some pre-specified probability. Another branch of work, stemmed from [26],
considers discriminative contrastive estimation to avoid MCMC sampling. Gao et al. [27] use a nor-
malizing flow [28] as the base distribution for contrastive estimation. Aneja et al. [29] propose to
estimate the energy-based prior model based on the prior of a pre-trained VAE [30] by noise con-
trastive estimation. More recently, Xiao and Han [31] learn a sequence of EBMs in the latent space
with adaptive multi-stage NCE to further improve the expressive power of the model.
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B Theoretical Discussion

B.1 Monotonically Decreasing KLD

We state in the main text that Drqϕk
||πs ď Drqϕk´1

||πs, where π is the stationary distribution.
To show this, we first provide a proof of Drπt`T ||πs ď Drπt||πs, where πt and πt`T are the
distributions of z at t-th and pt ` T q-th iteration, respectively. This is a known result from [32], and
we include it here for completeness.

Drπt||πs “ Eπtpztq

„

log
πtpztq

πpztq

ȷ

“ Eπtpztq,Kpzt`1|ztq

„

log
πtpztqKpzt`1|ztq

πpztqKpzt`1|ztq

ȷ

piq
“ Eπt`1pzt`1q,K1

πt`1
pzt|zt`1q

„

log
K1

πt`1
pzt|zt`1qπt`1pzt`1q

K1
πpzt|zt`1qπpzt`1q

ȷ

“ Drπt`1||πs ` Eπt`1pzt`1qDrK1
πt`1pzt|zt`1q||K1

πpzt|zt`1qs

piiq
ě Drπt`1||πs,

(1)

where we denote the forward-time transition kernel as K and the reverse-time kernel as K1. (i)
holds because we are just re-factorizing the joint density of rzt, zt`1s: πtpztqKpzt`1|ztq “

K1
πt`1

pzt|zt`1qπt`1pzt`1q and πpztqKpzt`1|ztq “ K1
πpzt|zt`1qπpzt`1q. (ii) holds because the

KLD is non-negative. We can see that Drπt`T ||πs ď Drπt||πs is a direct result from Eq. (1), and
that πt Ñ π as t Ñ 8 under proper conditions [33].

In the main text, we describe the update rule of the sampler qϕ as follows:

qϕk
Ð argmin

qϕPQ
Drqϕk´1,T ||qϕs, qϕk´1,T :“ KT qϕk´1

, qϕ0
« π0. (2)

In the ideal case, we can assume that the objective in Eq. (2) is properly optimized and that tqϕu

is expressive enough to parameterize each qϕk´1,T . With qϕ0
« π0 and qϕk

« KT qϕk´1
, we can

conclude that Drqϕk
||πs ď Drqϕk´1

||πs for each k “ 1, ...,K according to Eq. (1). We will dis-
cuss in the following section the scenario where we apply gradient-based methods to minimize
Drqϕk´1,T ||qϕs and approximate Eq. (2) for the update from qϕk´1

to qϕk
.

B.2 Discussion about Diffusion-Based Amortization

We can see that the statement in Appendix B.1 holds when qϕk
is a close approximation of

qT :“ KT qϕk´1
. This motivates our choice of employing DDPM to amortize the LD transition, con-

sidering its capability of close approximation to the given distribution tqT u. Based on the derivation
of DDPM learning objective in [34], we know that

argmin
qϕ

DrqT ||qϕs “ argmin
qϕ

´HpqT q ` HpqT , qϕq “ argmin
qϕ

´EqT rlog qϕs

ď argmin
qϕ

Eϵ,λ

“

}ϵϕpzλq ´ ϵ}22

‰

« argmin
qϕ

1

N

N
ÿ

j“1

“

}ϵϕpzj,λj
q ´ ϵj}22

‰

,
(3)

where zλ is draw from qpzλ|z0q “ N pzλ;βλz0, σ
2
λIdq. z0 „ qT . ϵ „ N p0, Idq and λ is drawn

from a distribution of log noise-to-signal ratio ppλq. In practice, we use Monte-Carlo average to
approximate the objective and employ a gradient-based update rule for qϕ:

ϕ
pi`1q

k´1 Ð ϕ
piq
k´1 ´ η∇ϕ

1

N

N
ÿ

j“1

“

}ϵϕpzj,λj
qϵj}22

‰

, ϕ
p0q

k Ð ϕ
pMq

k´1, i “ 0, 1, ...,M ´ 1. (4)

This can be viewed as a M-estimation of ϕ. Recall that qT “ KT qϕk´1
, we can construct ϕk “

´

ϕk´1, ϕ̃
¯

to minimize the KLD, where ϕ̃ models the transition kernel KT . Therefore, initializing

qϕ to be optimized with qϕk´1
, we are effectively maximizing Lpϕ̃q “ 1

N

řN
j“1 log pϕ̃pẑj |zjq,
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where tzju are from qϕk´1
and tẑju are from KT qϕk´1

. Let ϕ̃ be the result of M-estimation and

ϕ̃
˚

be the true target parameter. Then based on the derivation in [11], asymptotically we have

?
N

´

ϕ̃ ´ ϕ̃
˚

¯

Ñ N
ˆ

0, I
´

ϕ̃
˚

¯´1
˙

, (5)

where I
´

ϕ̃
˚

¯

“ Eẑ,z

”

´∇2 log pϕ̃pẑ|zq

ı

is the Fisher information matrix. This interpretation tells

us that i) when the sample size N is large, the estimation ϕ̃ is asymptotically unbiased, and ii) if
we want to obtain the estimation ϕ̃ with a few gradient-based updates, then the eigenvalues of the
Fisher information matrix would be relatively small but non-zero. ii) suggests that KT qϕk´1

should
be significantly different from qϕk´1

, which is confirmed by [19] and our preliminary experiments,
but it should not be too far away because that would require more gradient-based updates. We find
that setting T “ 30 and M “ 6 works well in the experiments.

B.3 Further Discussion about the Learning Algorithm

For completeness, we first derive the learning gradients for updating θ.

∇θ log pθpxq “
1

pθpxq
∇θ

ż

z

pθpx, zqdz “

ż

z

pθpx, zq

pθpxq
∇θ log pθpx, zqdz

“ Epθpz|xq r∇θ log pθpz,xqs

“ pEpθpz|xq r∇α log pαpzqs ,Epθpz|xq r∇β log pβpx|zqsq

“ pEpθpz|xq r∇αfαpzqs ´ Epαpzq r∇αfαpzqs
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

δαpxq

,Epθpz|xq r∇β log pβpx|zqs
looooooooooooooomooooooooooooooon

δβpxq

q.

(6)

We can see that θ is estimated in a MLE-by-EM style. The learning gradient is the same as that of
directly maximizing the observed data likelihood, while we need to approximate the expectations
in Eq. (6). Estimating the expectations is like the E-step, and update θ with Eq. (6) is like the M-
step in the EM algorithm. The proposed diffusion-based amortization brings better estimation of
the expectations in the E-step, and incorporate the feedback from the M-step by running prior and
posterior sampling LD as follows

zt`1 “ zt `
s2

2
∇zt

ˆ

fαpztq ´
1

2
}zt}

2
2

˙

looooooooooomooooooooooon

log pαpztq

`swt,

zt`1 “ zt `
s2

2
∇zt

ˆ

´
}x ´ gβpztq}22

2σ2
` fαpztq ´

1

2
}zt}

2
2

˙

looooooooooooooooooooooooomooooooooooooooooooooooooon

log pθpz|xq“log pθpx,zq`C

`swt,

(7)

to obtain training data. Here t “ 0, 1, ..., T . z0 „ qϕpz|xq for posterior sampling and z0 „ qϕpzq

for prior sampling. wt „ N p0, Idq. Note that we plug-in pθpx, zq for the target distribution of
posterior sampling LD. This is because given the observed data x, by Bayes’ rule we know that
pθpz|xq9pθpx, zq “ pβpx|zqpαpzq. The whole learning iteration can be viewed as a variant of the
variational EM algorithm [35].
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C Network Architecture and Training Details

Architecture The energy score network fα uses a simple fully-connected structure throughout the
experiments. We describe the architecture in details in Table 1. The generator network has a simple
deconvolution structure similar to DCGAN [36] shown in Table 2. The denoising diffusion model is
implemented by a light-weight MLP-based U-Net [37] structure (Table 3). The encoder network to
embed the observed images has a fully convolutional structure [38], as shown in Table 4.

Table 1: Network structures of the energy score network. LReLU denotes the Leaky ReLU activation func-
tion. The slope in Leaky ReLU is set to 0.2. For the SVHN and CelebA datasets, we use nz=100. For the CIFAR-
10 and CelebA-HQ datasets, we use nz=128. We use nz=8 for anomaly detection on the MNIST dataset, and
nz=7168 for GAN inversion. We use ndf=512 for GAN inversion and ndf=200 for the rest experiments.

Layers Out Size
Input: z nz P t8, 100, 128, 7168u

Linear, LReLU ndf P t200, 512u

Linear, LReLU ndf P t200, 512u

Linear 1

Table 2: Network structures of the generator networks used for the SVHN, CelebA, CIFAR-10, CelebA-HQ
and MNIST (from top to bottom) datasets. For GAN inversion, we use the StyleGAN [39] structure as our
generator network. ConvT(n) indicates a transposed convolutional operation with n output channels. We use
ngf=64 for the SVHN dataset and ngf=128 for the rest. LReLU indicates the Leaky-ReLU activation function.
The slope in Leaky ReLU is set to be 0.2.

Layers Out Size Stride
Input: z 1x1x100 -

4x4 ConvT(ngf x 8), LReLU 4x4x(ngf x 8) 1
4x4 ConvT(ngf x 4), LReLU 8x8x(ngf x 4) 2
4x4 ConvT(ngf x 2), LReLU 16x16x(ngf x 2) 2

4x4 ConvT(3), Tanh 32x32x3 2
Layers Out Size Stride
Input: z 1x1x100 -

4x4 ConvT(ngf x 8), LReLU 4x4x(ngf x 8) 1
4x4 ConvT(ngf x 4), LReLU 8x8x(ngf x 4) 2
4x4 ConvT(ngf x 2), LReLU 16x16x(ngf x 2) 2
4x4 ConvT(ngf x 1), LReLU 32x32x(ngf x 1) 2

4x4 ConvT(3), Tanh 64x64x3 2
Layers Out Size Stride
Input: z 1x1x128 -

8x8 ConvT(ngf x 8), LReLU 8x8x(ngf x 8) 1
4x4 ConvT(ngf x 4), LReLU 16x16x(ngf x 4) 2
4x4 ConvT(ngf x 2), LReLU 32x32x(ngf x 2) 2

3x3 ConvT(3), Tanh 32x32x3 1
Layers Out Size Stride
Input: z 1x1x128 -

4x4 ConvT(ngf x 16), LReLU 4x4x(ngf x 16) 1
4x4 ConvT(ngf x 8), LReLU 8x8x(ngf x 8) 2
4x4 ConvT(ngf x 4), LReLU 16x16x(ngf x 4) 2
4x4 ConvT(ngf x 4), LReLU 32x32x(ngf x 4) 2
4x4 ConvT(ngf x 2), LReLU 64x64x(ngf x 2) 2
4x4 ConvT(ngf x 1), LReLU 128x128x(ngfx1) 2

4x4 ConvT(3), Tanh 256x256x3 2
Layers Out Size Stride
Input: z 1x1x8 -

7x7 ConvT(ngf x 8), LReLU 7x7x(ngf x 8) 1
4x4 ConvT(ngf x 4), LReLU 14x14x(ngf x 4) 2
4x4 ConvT(ngf x 2), LReLU 28x28x(ngf x 2) 2

3x3 ConvT(1), Tanh 28x28x1 1
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Table 3: Network structure of the denoising diffusion network. a) We use the sinusoidal embedding to
embed the time index as in [11, 13]. b) We use the learned fourier feature module [40] to embed the input z. c)
The merged time embedding and context embedding is used to produce a pair of bias and scale terms to shift
and scale the embedding of input z. nz is the input dimension, as in Table 1. nemb is the dimension of image
embedding as in Table 4.

Layers Out size Note

Time Embedding
Input: t 1 time index

Sin. emb.a 128
Linear, SiLU 128

Linear 128
Input Embedding

Input: z nz
Fr. emb.b 2x(nz) Fourier feature

Basic Block
Input: z,zctx,zt nzf, nemb, 128 z, ctx. and t emb.

Cat, SiLU nemb + 128 merge ctx. & t emb.
Linear, SiLU nout

Linear nout Input emb.

Scale-shiftc nout scale-shift z emb.
w/ merged emb.

Add z nout skip connection
from z

Denoising Diffusion Network
Input: z,zctx, t nz, nemb, 128 Input

Embedding 2x(nz), 128 Input & t emb.
Basic Block 128 Encoding
Basic Block 256
Basic Block 256
Basic Block 256 Intermediate
Basic Block 256 Cat & Decoding
Basic Block 128
Basic Block nz Output

Hyperparameters and training details As mentioned in the main text, for the posterior and prior
DAMC samplers, we set the number of diffusion steps to 100. The number of iterations in Eq. (4) is
set to M “ 6 for the experiments. The LD runs T “ 30 and T “ 60 iterations for posterior and prior
updates during training with a step size of s “ 0.1. For test time sampling from KT,zi|xi

qϕk
pzi|xiq,

we set T “ 10 for the additional LD. For test time prior sampling of LEBM with LD, we follow
[6, 31] and set T “ 100. To further stabilize the training procedure, we i) perform gradient clipping
by setting the maximal gradient norm as 100, ii) use a separate target diffusion network which is the
EMA of the current diffusion network to initialize the prior and posterior updates and iii) add noise-
initialized prior samples for the prior updates. These set-ups are identical across different datasets.

The parameters of all the networks are initialized with the default pytorch methods [43]. We use
the Adam optimizer [44] with β1 “ 0.5 and β2 “ 0.999 to train the generator network and
the energy score network. We use the AdamW optimizer [45] with β1 “ 0.5, β2 “ 0.999 and
weight_decay=1e-4 to train the diffusion network. The initial learning rates of the generator and
diffusion networks are 2e-4, and 1e-4 for the energy score network. The learning rates are decayed
with a factor of 0.99 every 1K training iterations, with a minimum learning rate of 1e-5. We run the
experiments on a A6000 GPU with the batch size of 128. For GAN inversion, we reduce the batch
size to 64. Training typically converges within 200K iterations on all the datasets.
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Table 4: Network structures of the encoder networks used for the SVHN, CelebA, CIFAR-10, CelebA-HQ
and MNIST (from top to bottom) datasets. For GAN inversion, the encoder network structure is the same as
in [41]. Conv(n)Norm indicates a convolutional operation with n output channels followed by the Instance
Normalization [42]. We use nif=64 and nemb=1024 for all the datasets. LReLU indicates the Leaky-ReLU
activation function. The slope in Leaky ReLU is set to be 0.2.

Layers Out Size Stride
Input: x 32x32x3 -

3x3 Conv(nif x 1)Norm, LReLU 32x32x(nif x 1) 1
4x4 Conv(nif x 2)Norm, LReLU 16x16x(nif x 2) 2
4x4 Conv(nif x 4)Norm, LReLU 8x8x(nif x 4) 2
4x4 Conv(nif x 8)Norm, LReLU 4x4x(nif x 8) 2
4x4 Conv(nemb)Norm, LReLU 1x1x(nemb) 1

Layers Out Size Stride
Input: x 64x64x3 -

3x3 Conv(nif x 1)Norm, LReLU 64x64x(nif x 1) 1
4x4 Conv(nif x 2)Norm, LReLU 32x32x(nif x 2) 2
4x4 Conv(nif x 4)Norm, LReLU 16x16x(nif x 4) 2
4x4 Conv(nif x 8)Norm, LReLU 8x8x(nif x 8) 2
4x4 Conv(nif x 8)Norm, LReLU 4x4x(nif x 8) 2
4x4 Conv(nemb)Norm, LReLU 1x1x(nemb) 1

Layers Out Size Stride
Input: x 32x32x3 -

3x3 Conv(nif x 1)Norm, LReLU 32x32x(nif x 1) 1
4x4 Conv(nif x 2)Norm, LReLU 16x16x(nif x 2) 2
4x4 Conv(nif x 4)Norm, LReLU 8x8x(nif x 4) 2
4x4 Conv(nif x 8)Norm, LReLU 4x4x(nif x 8) 2
4x4 Conv(nemb)Norm, LReLU 1x1x(nemb) 1

Layers Out Size Stride
Input: x 256x256x3 -

3x3 Conv(nif x 1)Norm, LReLU 256x256x(nif x 1) 1
4x4 Conv(nif x 2)Norm, LReLU 128x128x(nif x 2) 2
4x4 Conv(nif x 4)Norm, LReLU 64x64x(nif x 4) 2
4x4 Conv(nif x 4)Norm, LReLU 32x32x(nif x 4) 2
4x4 Conv(nif x 8)Norm, LReLU 16x16x(nif x 8) 2
4x4 Conv(nif x 8)Norm, LReLU 8x8x(nif x 8) 2
4x4 Conv(nif x 8)Norm, LReLU 4x4x(nif x 8) 2
4x4 Conv(nemb)Norm, LReLU 1x1x(nemb) 1

Layers Out Size Stride
Input: x 28x28x3 -

3x3 Conv(nif x 1)Norm, LReLU 28x28x(nif x 1) 1
4x4 Conv(nif x 2)Norm, LReLU 14x14x(nif x 2) 2
4x4 Conv(nif x 4)Norm, LReLU 7x7x(nif x 4) 2
4x4 Conv(nif x 8)Norm, LReLU 3x3x(nif x 8) 2
3x3 Conv(nemb)Norm, LReLU 1x1x(nemb) 1
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D Pytorch-style Pseudocode

We provide pytorch-style pseudocode to help understand the proposed method. We denote the gen-
erator network as G, the energy score network as E and the diffusion network as Q. The first page
sketches the prior and posterior sampling process. The second page outlines the learning procedure.

Listing 1: Prior and posterior LD sampling.

def s a m p l e _ l a n g e v i n _ p r i o r _ z ( z , ne tE ) :
s = s t e p _ s i z e

f o r i in range ( n _ s t e p s ) :
en = ne tE ( z ) . sum ( )
z_norm = 1 . 0 / 2 . 0 * t o r c h . sum ( z **2)
z _g ra d = t o r c h . a u t o g r a d . g r ad ( en + z_norm , z ) [ 0 ]
w = t o r c h . r a n d n _ l i k e ( z )

# P r i o r LD Update
z . d a t a = z . d a t a − 0 . 5 * ( s ** 2) * z _g ra d + s * w

re turn z . d e t a c h ( )

def s a m p l e _ l a n g e v i n _ p o s t e r i o r _ z ( z , x , netG , ne tE ) :
s = s t e p _ s i z e
s igma_ inv = 1 . 0 / ( 2 . 0 * sigma ** 2)

f o r i in range ( n _ s t e p s ) :
x _ h a t = netG ( z )
g _ l o g _ l k h d = s igma_ inv * t o r c h . sum ( ( x _ h a t − x ) ** 2)

z_n = 1 . 0 / 2 . 0 * t o r c h . sum ( z **2)
en = netE ( z ) . sum ( )

t o t a l _ e n = g _ l o g _ l k h d + en + z_n
z _g ra d = t o r c h . a u t o g r a d . g r ad ( t o t a l _ e n , z ) [ 0 ]
w = t o r c h . r a n d n _ l i k e ( z )

# P o s t e r i o r LD Update
z . d a t a = z . d a t a − 0 . 5 * ( s ** 2) * z _g ra d + s * w

re turn z . d e t a c h ( )

8



Listing 2: Learning LEBM with DAMC.

f o r x in d a t a s e t :
# mask f o r u n c o n d i t i o n a l l e a r n i n g o f DAMC
z_mask_prob = t o r c h . r and ( ( l e n ( x ) , ) , d e v i c e =x . d e v i c e )
z_mask = t o r c h . ones ( l e n ( x ) , d e v i c e =x . d e v i c e )
z_mask [ z_mask_prob < 0 . 2 ] = 0 . 0
z_mask = z_mask . unsqueeze ( −1)

# draw DAMC samples
z0 = Q( x )
zk_pos , zk_neg = z0 . d e t a c h ( ) . c l o n e ( ) , z0 . d e t a c h ( ) . c l o n e ( )

# p r i o r and p o s t e r i o r u p d a t e s
zk_pos = s a m p l e _ l a n g e v i n _ p o s t e r i o r _ z (

z=zk_pos , x=x , netG=G, ne tE =E )
zk_neg = s a m p l e _ l a n g e v i n _ p r i o r _ z (

z= t o r c h . c a t (
[ zk_neg , t o r c h . r a n d n _ l i k e ( zk_neg ) ] , dim = 0) ,
ne tE =E )

# u pd a t e Q
f o r __ in range ( 6 ) :

Q _ o p t i m i z e r . z e r o _ g r a d ( )
Q_loss = Q. c a l c u l a t e _ l o s s (
x=x , z=zk_pos , mask=z_mask ) . mean ( )
Q_loss . backward ( )
Q _ o p t i m i z e r . s t e p ( )

# u pd a t e G
G _ o p t i m i z e r . z e r o _ g r a d ( )
x _ h a t = G( zk_pos )
g _ l o s s = t o r c h . sum ( ( x _ h a t − x ) ** 2 , dim = [ 1 , 2 , 3 ] ) . mean ( )
g _ l o s s . backward ( )
G _ o p t i m i z e r . s t e p ( )

# u pd a t e E
E _ o p t i m i z e r . z e r o _ g r a d ( )
e_pos , e_neg = E ( zk_pos ) , E ( zk_neg )
E _ l o s s = e_pos . mean ( ) − e_neg . mean ( )
E _ l o s s . backward ( )
E _ o p t i m i z e r . s t e p ( )
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E Dataset and Experiment Settings

Datasets We include the following datasets to study our method: SVHN (32 × 32 × 3), CIFAR-10
(32 × 32 × 3), CelebA (64 × 64 × 3), CeleAMask-HQ (256 x 256 x 3) and MNIST (28 x 28 x 1).
Following Pang et al. [6], we use the full training set of SVHN (73,257) and CIFAR-10 (50,000), and
take 40,000 samples of CelebA as the training data. We take 29,500 samples from the CelebAMask-
HQ dataset as the training data, and test the model on 500 held-out samples. For anomaly detection
on MNIST dataset, we follow the experimental settings in [6, 31, 46, 47] and use 80% of the in-
domain data to train the model. The images are scaled to r´1, 1s for training.

GAN inversion settings We attempt to use the DAMC sampler for GAN version on the FFHQ
(256 x 256 x 3) and LSUN-Tower (256 x 256 x 3) datasets. We take 69,500 samples from the
CelebAMask-HQ dataset as the training data, and use the held-out 500 samples for testing. We
follow the default data splits of the LSUN dataset.

For the LEBM-based inversion method, we train a LEBM in the 14 x 512 = 7168 dim. latent space.
During training, we add l2-regularization on the energy score of LEBM to stabilize training, as
suggested in [3]. For the DAMC sampler and the encoder-based inversion method [48], we generate
initial posterior samples of the training data using [41] and train the DAMC sampler and the encoder-
based method for 5K iterations using these samples as a warm-up step. The encoder-based method
is trained by minimizing the l2 distance between the encoder output and the target samples. After
that, these two methods are trained with the default learning algorithms.
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F Additional Qualitative Results

F.1 Generation

We provide additional generated samples from our models trained on SVHN (Fig. 1), CelebA
(Fig. 2), CIFAR-10 (Fig. 3) and CelebA-HQ (Fig. 4).

(a) Ours-DAMC (b) Ours-LEBM

Figure 1: Samples generated from the DAMC sampler and LEBM trained on the SVHN dataset.

(a) Ours-DAMC (b) Ours-LEBM

Figure 2: Samples generated from the DAMC sampler and LEBM trained on the CelebA dataset.

F.2 Reconstruction

We provide qualitative examples about the reconstruction results from our models trained on SVHN
(Fig. 5), CelebA (Fig. 6), CIFAR-10 (Fig. 7) and CelebA-HQ (Fig. 8). Observed images are sampled
from the testing set unseen during training.
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(a) Ours-DAMC (b) Ours-LEBM

Figure 3: Samples generated from the DAMC sampler and LEBM trained on the CIFAR-10 dataset.

(a) Ours-DAMC (b) Ours-LEBM

Figure 4: Samples generated from the DAMC sampler and LEBM trained on the CelebA-HQ dataset.

F.3 Visualization of Transitions

We provide additional visualization results of LD transitions initialized from N p0, Idq on SVHN
(Fig. 9) and CIFAR-10 datasets (Fig. 10). For the 200-step set-up, we can see that the generation
quality quickly improves by exploring the local modes with LD. For the 2500-step long-run set-up,
we can see that the LD produces consistently valid results without the oversaturating issue of the
long-run chain samples.
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(a) Observation (b) Reconstruction

Figure 5: Reconstructed samples from the posterior DAMC sampler trained on the SVHN dataset.

(a) Observation (b) Reconstruction

Figure 6: Reconstructed samples from the posterior DAMC sampler trained on the CelebA dataset.
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(a) Observation (b) Reconstruction

Figure 7: Reconstructed samples from the posterior DAMC sampler trained on the CIFAR-10 dataset.

(a) Observation (b) Reconstruction

Figure 8: Reconstructed samples from the posterior DAMC sampler trained on the CelebA-HQ dataset.

(a) 200 steps (b) 2500 steps

Figure 9: Transition of Markov chains initialized from N p0, Idq towards pαpzq on SVHN. We present
results by running LD for 200 and 2500 steps. In each sub-figure, the top panel displays the trajectory in
the data space uniformly sampled along the chain. The bottom panel shows the energy score fαpzq over the
iterations.
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(a) 200 steps (b) 2500 steps

Figure 10: Transition of Markov chains initialized from N p0, Idq towards pαpzq on CIFAR-10. We present
results by running LD for 200 and 2500 steps. In each sub-figure, the top panel displays the trajectory in the data
space uniformly sampled along the chain. The bottom panel shows the energy score fαpzq over the iterations.
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G Further Discussion

G.1 Limitations

We mentioned in the main text that one potential disadvantage of our method is its parameter ineffi-
ciency for introducing an extra DDPM. Although fortunately, our models are in the latent space so
the network is lightweight. To be specific, on SVHN, CelebA, CIFAR-10 and CelebA-HQ datasets
the number of parameters in the diffusion network is around 10% of those in the generator.

Another issue is the time efficiency. We mentioned in the main text that the time efficiency for
sampling is competitive. With the batch size of 64, on these datasets the DAMC prior sampling
takes 0.3s, while 100 steps of short-run LD with LEBM takes 0.2s. The DAMC posterior sampling
takes 1.0s, while LEBM takes 8.0s. However, during training we need to run 30 steps of posterior
LD sampling and 60 steps of prior LD sampling in each training iteration. We observe that the
proposed learning method takes 15.2 minutes per training epoch, while the short-run LD-based
learning method takes 14.8 minutes per epoch. These methods are slower than the VAE-base method,
which takes 5.5 minutes for an training epoch. We can see that the time efficiency for training is
generally bottlenecked by the LD sampling process, and could be improved in future works.

G.2 Broader Impacts

Generative models could be misused for disinformation or faking profiles. Our work focuses on the
learning algorithm of energy-based prior model. Though we consider our work to be foundational
and not tied to particular applications or deployments, it is possible that more powerful energy-
based generative models augmented with this method may be used maliciously. Work on the reliable
detection of synthetic content could be important to address such harms from generative models.
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