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Abstract

Recent advances in constrained reinforcement learning (RL) have endowed rein-1

forcement learning with certain safety guarantees. However, deploying existing2

constrained RL algorithms in continuous control tasks with general hard constraints3

remains challenging, particularly in those situations with non-convex hard con-4

straints. Inspired by the generalized reduced gradient (GRG) algorithm, a classical5

constrained optimization technique, we propose a reduced policy optimization6

(RPO) algorithm that combines RL with GRG to address general hard constraints.7

RPO partitions actions into basic actions and nonbasic actions following the GRG8

method and output the basic actions via a policy network. Subsequently, RPO9

calculates the nonbasic actions by solving equations based on equality constraints10

using the obtained basic actions. The policy network is then updated by implicitly11

differentiating nonbasic actions with respect to basic actions. Additionally, we12

introduce an action projection procedure based on the reduced gradient and apply13

a modified Lagrangian relaxation technique to ensure inequality constraints are14

satisfied. To the best of our knowledge, RPO is the first attempt that introduces15

GRG to RL as a way of efficiently handling both equality and inequality hard16

constraints. It is worth noting that there is currently a lack of RL environments with17

complex hard constraints, which motivates us to develop three new benchmarks:18

two robotics manipulation tasks and a smart grid operation control task. With19

these benchmarks, RPO achieves better performance than previous constrained RL20

algorithms in terms of both cumulative reward and constraint violation. We believe21

RPO, along with the new benchmarks, will open up new opportunities for applying22

RL to real-world problems with complex constraints.23

1 Introduction24

The past few years have witnessed the significant success of reinforcement learning (RL) [38] in25

various fields such as mastering GO [36], robotic manipulations [18, 22], autonomous driving [32],26

and smart grid controlling [48, 43, 31], etc. However, it is still challenging to deploy RL algorithms in27

real-world control tasks, such as operating robots on a specific surface, controlling power generation28

to fulfill the demand, etc. The principal reason here is that hard constraints must be taken into29

account in these control problems. Concretely, such constraints come in the form of both equality30

and inequality constraints and can be nonlinear or even nonconvex, which makes it difficult to handle31

them in RL. Moreover, unlike soft constraints, hard constraints take explicit form and require strict32

compliance, which poses additional challenges.33

Existing work on constrained RL can be divided into two categories. The first category involves34

treating constraints as implicit or soft constraints and using safe RL algorithms [4, 11, 12, 45, 23,35

47, 24, 44]. These algorithms approximate the cumulative costs associated with the constraints36

and optimize the policy network to balance the trade-off between the cumulative rewards and costs.37
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While Safe RL algorithms have provided certain guarantees on soft constraints, they cannot handle38

equality constraints since the constraints may not be satisfied due to approximation errors. Moreover,39

handling multiple constraints using Safe RL algorithms can be computationally expensive, and the40

existing benchmarks generally only involve simple soft constraints that do not reflect the complexity41

of real-world applications. In the second category, the approaches treat the output of the policy42

network as a set of sub-optimal actions, correcting them to satisfy the constraints by adding an43

extra constrained optimization procedure. This technique has been explored in several works, such44

as [14, 27, 8, 31, 30, 22]. Compared to Safe RL algorithms, these algorithms can guarantee the45

satisfaction of hard constraints but are mostly designed for specific applications and hard constraints of46

a particular form. For instance, OptLayer [27] employs OptNet [7] into RL to ensure the satisfaction47

of linear constraints in robotic manipulation. As a result, these approaches to RL with hard constraints48

are limited in their ability to generalize and lack a generalized formulation.49

To address the limitations of existing RL algorithms in handling hard constraints, we propose a50

constrained off-policy reinforcement learning algorithm called Reduced Policy Optimization (RPO).51

Our approach is inspired by Generalized Reduced Gradient (GRG), a classical optimization method.52

RPO partitions actions into basic actions and nonbasic actions following the GRG method and uses53

a policy network to output the basic actions. The nonbasic actions are then calculated by solving54

equations based on equality constraints using the obtained basic actions. Lastly, the policy network is55

updated by the reduced gradient with respect to basic actions, ensuring the satisfaction of the equality56

constraints. Moreover, we also incorporate a modified Lagrangian relaxation method with an exact57

penalty term into the loss function of the policy network to improve the initial actions. Our approach58

provides more confidence when deploying off-policy RL algorithms in real-world applications, as it59

ensures that the algorithms behave in a feasible and predictable manner. It is worth noting that there60

is currently a lack of RL environments with complex hard constraints. This motivates us to develop61

three new benchmarks to validate the performance of our proposed method. To summarize, our main62

contributions are as follows:63

1) Reduced Policy Optimization. We present RPO, an innovative approach that introduces the GRG64

algorithm into off-policy RL algorithms. RPO treats the output of the policy network as a good initial65

solution and enforces the satisfaction of equality and inequality constraints via solving corresponding66

equations and applying reduced gradient projections respectively. To the best of our knowledge, this67

is the first attempt to fuse RL algorithms with the GRG method, providing a novel and effective68

solution to address the limitations of existing RL algorithms in handling hard constraints.69

2) RL Benchmarks with Hard Constraints. We develop three benchmarks with hard constraints70

to validate the performance of our method, involving Safe CartPole, Spring Pendulum and Optimal71

Power Flow (OPF) with Battery Energy Storage. Comprehensive experiments on these benchmarks72

demonstrate the superiority of RPO in terms of both cumulative reward and constraint violation. We73

believe that these benchmarks will be valuable resources for the research community to evaluate and74

compare the performance of RL algorithm in environments with complex hard constraints.75

2 Related Works76

In this section, we first review the existing methods in the field of constrained RL and divide them77

into different types according to different constraints. We summarize the differences between our78

method and previous works in Table 1. Besides, we also introduce the literature on the GRG method79

as the motivation and background of our method.80

Constraint Method Multiple Inequality Equality Generality Model Agnostic

Soft, Cumulative CPO [4], RCPO [39], PCPO [45] ✗ ✓ ✗ ✓ ✓
Soft, Cumulative Lyapunov [12, 13] ✗ ✓ ✗ ✓ ✓
Soft, Cumulative FOCOPS [47], CUP [44] ✗ ✓ ✗ ✓ ✓
Soft, Cumulative IPO [23], P3O [33] ✓ ✓ ✗ ✓ ✓

Soft, Cumulative/Instantaneous Lagrangian [11, 9, 37], FAC [26] ✗ ✓ ✗ ✓ ✓
Soft, Instantaneous Safety Layer [14] ✓ ✓ ✗ ✗ (Linear) ✓
Soft, Instantaneous Recovery RL [40] ✗ ✓ ✗ ✓ ✓

Hard, Instantaneous OptLayer [27], ReCO-RL [8] ✓ ✓ ✓ ✗ (Specific Linear) ✓
Hard, Instantaneous ATACOM [22] ✓ ✓ ✓ ✗ (Specific Nonconvex) ✗ (Robotics)
Hard, Instantaneous CC-SAC [31], Hybrid-DDPG [43] ✓ ✓ ✓ ✗ (Specific Nonconvex) ✗ (Power Grid)
Hard, Instantaneous RPO(*) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison among constrained RL algorithms of different categories

2



Soft-Constrainted RL. RL with soft constraints is well-studied and also known as safe reinforcement81

learning (Safe RL). One of the principal branches in Safe RL methods is based on the Lagrangian82

relaxation such as [11, 37, 20], where the primal-dual update is used to enforce the satisfaction83

of constraints. Besides, different penalty terms [23, 33, 39] are designed to maintain the tradeoff84

between the optimality in reward and safety guarantees. Moreover, Notable classical methods of85

safe reinforcement learning include CPO [4] based on the local policy search; Lyapunov-based86

approaches [12]; PCPO [45], FOCOPS [47], and CUP [24] based on two-step optimization. Besides,87

RL with soft instantaneous constraints was first studied separately in [14]. This approach adds88

a safety layer to the policy with a pre-trained constraint-violation classifier but can only handle89

linear constraints. Other approaches include [40] based on the Recovery and [42, 41] based on90

the Gaussian Process. Very recently, Unrolling Safety Layer [46] was proposed to handle the soft91

instantaneous constraints in RL. However, these approaches in soft-constrained RL tackle constraints92

implicitly and cannot ensure strict compliance with the constraints, especially the equality ones. By93

contrast, our method can handle both hard equality and inequality constraints effectively under the94

RL framework.95

Hard-Constrained RL. Compared to RL with soft constraints, RL with hard constraints is rarely96

studied, and most schemes are designed for some specific application. Pham et al. [27] proposed97

a plug-in architecture called OptLayer based on OptNet [7] to avoid infeasible actions in robotics98

manipulation. In studying resource allocation problems, Bhatia et al. [8] developed further Optlayer99

techniques to deal with hierarchical linear constraints. Liu et al. [22] investigated robotics manipula-100

tion tasks based on RL and uses manifold optimization to handle the hard constraints with the inverse101

dynamic model of robots. Other researchers such as [43, 31] incorporated special optimization102

techniques into RL to handle power operation tasks in smart grids. However, these methods are103

designed solely for specific applications or constraints of special types. For example, OptLayer can104

only handle linear constraints in robotics manipulation. By contrast, RPO is not designed for one105

specific application and can handle general hard constraints in decision-making problems.106

Generalized Reduced Gradient Method. GRG [3] is a classical constrained optimization technique107

and has the powerful capability to handle optimization with nonlinear hard constraints [25]. The108

basic idea of GRG is closely related to the simplex method in linear programming which divides109

variables into basic and nonbasic groups and then utilizes the reduced gradient to perform the update110

on the basic variables and nonbasic variables respectively. In the past decades, the GRG method111

is applied to stock exchange [5], optimal control in very-large-scale robotic systems [29], optimal112

power flow models [15], and many other fields. Additionally, more recently, several works such as113

[35] also fuse the genetic algorithms with the GRG method. Besides, recent research like DC3 [16] in114

deep learning is also based on the idea of the GRG method. DC3 was proposed for learning to solve115

constrained optimization problems and has demonstrated its good capability to obtain near-optimal116

decisions with the satisfaction of nonlinear constraints.117

3 Preliminaries118

Markov Decision Process. A classical Markov decision process (MDP) [38] can be represented as a119

tuple (S,A,R, P, µ), where S is the state space, A is the action space, R : S × A× S → R is the120

reward function, P : S × A× S → [0, 1] is the transition probability function (where P (s′ | s, a)121

is the transition probability from the previous state s to the state s′ when the agent took action a122

in s), and µ : S → [0, 1] is the distribution of the initial state. A stationary policy π : S → P(A)123

is a map from states to probability distributions over actions, and π(a|s) denotes the probability of124

taking action a in state s. The set of all stationary policies π is denoted by Π. The goal of RL is125

to find an optimal π∗ that maximizes the expectation of the discounted cumulative reward, which126

is JR(π) = Eτ∼π [
∑∞

t=0 η
t
aR (st, at, st+1)]. Here τ = (s0, a0, s1, a1 . . .) denotes a trajectory, and127

τ ∼ π is the distribution of trajectories when the policy π is employed. Then, The value function of128

state s is V π
R (s) = Eτ∼π [

∑∞
t=0 η

t
aR (st, at, st+1) | s0 = s], the action-value function of state s and129

action a is Qπ
R(s, a) = Eτ∼π [

∑∞
t=0 η

t
aR (st, at, st+1) | s0 = s, a0 = a].130

Generalized Reduced Gradient Method. GRG considers the following nonlinear optimization131

problem:132

min
x∈Rn

f(x), s.t. h(x) = 0 ∈ Rm, a ≤ x ≤ b (1)
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The optimization problem (1) is a general formulation of nonlinear optimization since any nonlinear133

inequality constraints can always be transformed into equality constraints with inequality box con-134

straints by adding slack variables. GRG first partitions the variable x into the basic variable xB and135

nonbasic variable xN . Then the reduced gradient with respect to xB is derived as follows [25]:136

rT = ∇xBf(xN ,xB)−∇xN f(xN ,xB)
[
∇xNh(xN ,xB)

]−1∇xBh(xN ,xB), (2)

Finally, GRG defines the update step as ∆xB = −r and ∆xN = − [∇xNh]
−1∇xBh∆xB to ensure137

the equality constraints still hold during the iterations. More details of the GRG method can be138

referred to in supplementary materials.139

4 Reduced Policy Optimization140

Although simple explicit constraints in neural networks can be easily handled by some specific141

activation functions (e.g., the Softmax operator for probability Simplex constraints and the ReLU142

operators for positive orthant constraints), it is hard to make the output of the policy network satisfy143

general hard constraints, especially for nonlinear and nonconvex constraints. In this section, we144

propose RPO to handle MDP with hard constraints formulated as follows:145

max
θ

JR(πθ)

subject to fi (πθ(st); st) = 0 ∀i, t,
gj (πθ(st); st) ≤ 0 ∀j, t,

(3)

where fi and gj are the hard constraints that are related to st and at in the current step, and they are146

required to be satisfied in all states for the policy. Notably, while this formulation is actually a special147

case of CMDP [6], it focuses more on the hard instantaneous constraints in constrained RL and is148

different from the cases considered by previous works in safe RL, where the constraints only involve149

implicit inequality ones.150

RPO consists of a policy network combined with an equation solver to predict the initial actions and151

a post-plugged GRG update procedure to generate feasible actions under a differentiable framework152

from end to end. In specific, the decision process of RPO can be decomposed into a construction153

stage and a projection stage to deal with equality and inequality constraints respectively. In addition,154

we also developed practical implementation tricks combined with a modified Lagrangian relaxation155

method in order to further enforce the satisfaction of hard constraints and fuse the GRG method into156

RL algorithms appropriately. The pipeline of RPO is shown in Figure 1.157

Generalized Reduced
Gradient Update

Constraints not satisfied

Policy
Network

Equation
Solver +

Construction Stage
for Equality Constraints

Projection Stage
for Inequality Constraints

State

Basic
action

Nonbasic
action 

Backpropagation with Generalized Reduced Gradient Flow

Action

Figure 1: The training and decision procedure of RPO.

4.1 Construction Stage to Handle Equality Constraints158

Recalling the nature of equality constraints, it can be viewed as the reduction of the freedom degree159

in actions. Hence, we follow the formulation in GRG method and divide actions a ∈ Rn into basic160

actions aB ∈ Rm and nonbasic actions aN ∈ Rm, where n−m is defined as the number of equality161

constraints. Hence, the actual actions that we need to determine are the basic actions. Given that, we162
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utilize the policy network to output this part of actions and then calculate the nonbasic actions, via163

solving a set of equations defined by equality constraints and the predicted basic actions, to guarantee164

the satisfaction of equality constraints. Additionally, we also present a correct gradient flow based on165

GRG method, which makes it possible to train the policy network in an end-to-end way. As shown in166

Proposition 1, we illustrate how to backpropagate from the nonbasic actions aN to the basic actions167

aB .168

Proposition 1. (Gradient Flow in Construction Stage) Assume that we have (n −m) equality169

constraints denoted as F (a; s) = 0 in each state s. Let aB ∈ Rm and a ∈ Rn be the basic actions170

and integrated actions, respectively. Let aN = ϕN (aB) ∈ Rn−m denote the nonbasic actions where171

ϕN is the implicit function that determined by the n−m equality constraints. Then, we have172

∂ϕN (aB)

∂aB
= −

(
JF
:,m+1:n

)−1
JF
:,1:m (4)

where JF = ∂F (a;s)
∂a ∈ R(m−n)×n, JF

:,1:m is the first m columns of JF and JF
:,m+1:n is the last173

(n−m) columns of JF .174

The proof is provided in supplementary materials. Additionally, we denote the decision process of175

the construction stage, including the policy network µθ and the equation solving procedure ϕN as π̃θ,176

and initial actions ã as the concatenation of aB and aN , i.e., ã =
(
aB , aN

)
.177

4.2 Projection Stage to Handle Inequality Constraints178

After the construction stage, the initial actions denoted as ã may still fall out of a feasible region179

determined by inequality constraints. Hence, the principal difficulty here is to project the action into180

the feasible region without violating the equality constraints that have been done in the construction181

stage. To address this issue, the proposed projection stage is to correct the action in the null space182

defined by equality constraints. Specifically, this projection is an iterative procedure similar to183

GRG method, which regards the summation of violation in inequality constraints as the objective184

G(aB , aN ) ≜
∑

j max {0, gj(a; s)}. Since the update may destroy the satisfaction of equality185

constraints, we also need to consider equality constraints in the optimization problem. Then, we can186

employ GRG updates to the action until all the inequality constraints are satisfied, which means we187

find the optimal solution to this optimization problem illustrated above. Here the GRG update is188

defined as189

∇aBG(aB , aN ) ≜
∂G(aB , aN )

∂aB
+

∂ϕN (aB)

∂aB
∂G(aB , aN )

∂aN

∆aB = ∇aBG(aB , aN ), ∆aN =
∂ϕN (aB)

∂aB
∆aB .

(5)

Then, the GRG updates are conducted as follows,190

aBk+1 = aBk − ηa∆aB , aNk+1 = aNk − ηa∆aN . (6)

where ηa called projection step can be viewed as the learning rate of GRG update to control the step191

of update and ak denotes the actions a at the k-th update where a0 ≜ ã. After the projection stage,192

we obtain the feasible actions that can be deployed in the environment and denote the whole process193

of the construction stage and projection stage as πθ, which represents the complete policy performed.194

Theorem 1. (GRG update in Tangent Space) If ∆aN = ∂ϕN (aB)
∂aB ∆aB , the GRG update for195

inequality constraints is in the tangent space of the manifold determined by linear equality constraints.196

197

The proof is referred to in supplementary materials. Theorem 1 indicates that the projection stage198

will not violate the linear equality constraints. With regard to nonlinear equality constraints, we can199

approximate this nonlinear equality manifold with the tangent space at each GRG update. In that200

case, we need to set the projection step ηa with a sufficiently small value, practically, smaller than201

10−3, to avoid destroying the satisfaction of equality constraints. In this way, we can ensure that the202

GRG update is conducted in the manifold defined by the nonlinear equality constraints. Additionally,203

a similar projection method was proposed in [16] with ℓ2 norm objective, which is likely to fail in204

the nonlinear situation as we analyze in the supplementary materials.205
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4.3 Practical Implementation206

Here we present details about the implementation of our RPO model and some training designs. They207

mainly include two aspects: 1) how to achieve better initial actions from the policy network and 2)208

how to incorporate such a decision process into the training of off-policy RL algorithms.209

Algorithm 1 Training Procedure of RPO
Input: Policy network µθ(s), value network Qω(s, a), penalty factors ν, replay buffer D.

1: for t in 1, 2, · · · , T do
2: Sample the basic actions aBt with the output of µθ(st) and some random process.
3: Calculate the action at according to the construction stage 4.1 and projection stage 4.2.
4: Take the action at in the environment and store the returned transition in D.
5: Sample a mini-batch of transitions in D.
6: Update the parameters of the policy network using 8 and the penalty factors using 9.
7: Construct TD target as yt = rt + γQω(st+1, πθ(st+1)).
8: Update the parameters of the value network using MSE loss.
9: end for

Policy Loss with Modified Lagrangian Relaxation. While the above two-stage decision procedure210

can cope with the satisfaction of equality and inequality constraints, the policy network is also211

required to guarantee certain feasibility of inequality constraints for better initial actions ã. Otherwise,212

we may need hundreds of GRG updates in the projection stage to satisfy all the inequality constraints.213

Here, we use an augment loss with Lagrangian relaxation for the policy network to obtain initial214

actions for the inequality projection stage. Common approaches such as [46] use fixed Lagrangian215

multipliers in their loss function. However, such fixed Lagrangian multipliers are not easy to obtain216

and may require extra information and computation to tune. In this paper, we perform a dual update217

on Lagrangian multipliers to adaptively tune them during the training period. As illustrated in Section218

3, after the equality construction stage the constrained MDP problem is formulated as219

max
π

JR(π̃θ)

subject to gj (π̃θ(st); st) ≤ 0, ∀j, t.
(7)

This means we need to deal with instantaneous inequality constraints in all states. Hence, we cannot220

apply the primal-dual update method directly like PDO [11]. Otherwise, we need to compute the221

dual variables on all states, which is obviously unrealistic. Fortunately, we can maintain only one222

Lagrangian multiplier νj for each inequality constraint in all states with the exact penalty term223

max {0, gj(π̃(st); st)} [25]. Accordingly, the new objective with the exact penalty term is224

min
θ
L̃(θ) ≜ −JR(π̃θ) + Es∼π

∑
j

νj max {0, gj(π̃(st); st)}

 (8)

The following theorem establishes the equivalence between the unconstrained problem (8) and the225

constrained problem (7).226

Theorem 2. (Exact Penalty Theorem) Assume νjs is the Lagrangian multiplier vector corresponding227

to jth constraints in state s. If the penalty factor νj ≥ ∥νjs∥∞, the unconstrained problem (8) is228

equivalent to the constrained problem (7).229

The proof is referred to in the supplementary materials. According to the230

νjk+1 = νjk + ηjνEs∼π [max {0, gj(π̃(st); st)}] (9)

where ηjν is the learning rate of j-th penalty factors, νjk is value of νj in the k-th step and νj0 = 0.231

Since the exact penalty term, Es∼π [max {0, gj(π̃(st); st)}], is always non-negative, the penalty232

factors are monotonically increasing during the training procedure. Hence, we can always obtain233

sufficiently large νj that satisfies the condition in Theorem 2, i.e., νj ≥ ∥νjs∥∞. Besides, we also234

find that the adaptive penalty term does not prevent the exploration for higher rewards of the RL235

agent at the beginning of the training procedure in Section 5.236

Off-policy RL Training. Since we augment the policy loss function with the exact penalty term, the237

actual objective of our algorithm is two-fold. One is to obtain the optimal policy with the satisfaction238
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(a) Safe CartPole (b) Spring Pendulum

=
Power

Generation
Power
Demand

(c) OPF with Battery Energy Storage

Figure 2: Visualization of RL benchmarks with hard constraints. (a) Safe CartPole. The indicator
lamp in the cart will be green if the given actions are feasible, and will be red otherwise. (b) Spring
Pendulum. The length of the spring will be changed if the equality constraint is violated. (c) OPF
with Battery Energy Storage. The circle nodes represent the buses in the electricity grid, and the
square nodes represent the batteries connected to the generator buses. We use light and shade to
reflect the state of batteries and the power generation and demand of buses. In addition, the edge
between the generator bus and the battery will be red if the battery is charging, and green if the battery
is discharging.

of hard constraints. Another is to reduce the number of GRG updates performed during the projection239

stage. This indicates there exists a gap between the behavioral policy and the target policy in RPO,240

which results from the changing times of GRG updates performed in the projection stage.241

Hence, RPO should be trained like off-policy RL methods as Algorithm 1. Specifically, we regard242

the initial actions ã output by the construction stage as the optimization object rather than the actions243

a post-processed by the projection stage. Otherwise, the training process will be unstable and even244

collapse due to the changing times of GRG updates in the projection stage, which can also be viewed245

as a changing network architecture. Besides, we use the yt = rt + γQω(st+1, πθ(st+1)) to construct246

the TD target since πθ is the actual policy we deploy in the environment.247

5 Experiments248

To validate our method and further facilitate research for MDP with hard constraints, we develop three249

benchmarks with visualization according to the dynamics in the real world, ranging from classical250

robotic control to smart grid operation. They involve Safe CartPole, Spring Pendulum, and Optimal251

Power Flow with Battery Energy Storage. Then, we incorporate RPO into two classical off-policy RL252

algorithms, DDPG [21] and SAC [19], which we call RPO-DDPG and RPO-SAC respectively.253

RPO is compared with three representative Safe RL algorithms, including CPO [4], CUP [44], and254

Safety Layer [14]. Notably, we transform the hard equality constraints into two inequality constraints255

since existing Safe RL methods cannot handle both general equality and inequality constraints.256

Furthermore, we also contrast the RPO-DDPG and RPO-SAC with DDPG-L and SAC-L, where257

DDPG-L and SAC-L represent DDPG and SAC only modified with the Lagrangian relaxation method258

we mentioned in Section 4.3 and without the two-stage decision process in RPO respectively. Besides,259

DDPG-L and SAC-L deal with the equality constraints as we mentioned in Safe RL algorithms.260

More details related to the concrete RPO-DDPG and RPO-SAC algorithms are illustrated in the261

supplementary materials.262

5.1 RL Benchmarks with Hard Constraints263

Specifically, our benchmarks are designed based on [10], with extra interfaces to return the informa-264

tion of the hard constraints. To the best of our knowledge, it is the first evaluation platform in RL that265

considers both equality constraints and inequality constraints. Figure 2 shows the visualization of266

these three benchmarks, and the simple descriptions for them are presented in the contexts below.267

More details about them are provided in the supplementary materials.268
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Figure 3: Learning Curves of different algorithms on our three benchmarks across 5 runs. The
x-axis is the number of training epochs. The y-axis is the episodic reward (the first line), and max
instantaneous constraint violation (the second line) respectively.

1) Safe CartPole. Different from that standard CartPole environment in Gym [10], we control two269

forces from different directions in the Safe CartPole environment. The goal is to keep the pole upright270

as long as possible while the summation of the two forces should be zero in the vertical direction and271

be bounded by a box constraint in the horizontal direction. That is, the former is the hard equality272

constraint, while the latter is the hard inequality constraint.273

2) Spring Pendulum. Motivated by the Pendulum environment [10], we construct a Spring Pendulum274

environment that replaces the pendulum with a light spring, which connects the fixed point and the275

ball. In order to keep the spring pendulum in the upright position, two torques are required to apply in276

both vertical and horizontal directions. Meanwhile, the spring should be maintained at a fixed length,277

which introduces a hard equality constraint. Unlike that in Safe CartPole, here equality constraint is278

state-dependent since the position of the spring is changed during the dynamical process. Besides,279

the summation of the two torques is also bounded by introducing a quadratic inequality constraint.280

3) Optimal Power Flow with Battery Energy Storage. Optimal Power Flow (OPF) is a classical281

problem in smart grid operation to minimize the total cost of power generation with the satisfaction282

of grid demand. However, battery energy storage systems or electric vehicles have been integrated283

into smart grids to alleviate the fluctuations of renewable energy generation recently. As illustrated284

in [28, 34], we need to jointly optimize the charging or discharging of batteries with OPF for the285

long-term effect of the smart grid operation. According to this real-world application, we design this286

environment, which is possessed of nonlinear power flow balance equality constraints and inequality287

box constraints on the actions for feasibility.288

Task Metrics CPO CUP Safety Layer DDPG-L SAC-L RPO-DDPG(*) RPO-SAC(*)

Safe CartPole

Ep. reward 20.1000(2.9138) 63.9000(15.0629) 53.8000(25.7364) 15.5000(1.7464) 40.5000(15.5772) 200.0000(0.0000) 200.0000(0.0000)
Max In. ineq 0.0000(0.0000) 0.0000(0.0000) 0.0086(0.0153) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000)
Max In. eq 0.0389(0.0155) 0.5344(0.0148) 1.7099(1.8248) 0.0408(0.0055) 0.0487(0.0126) 0.0000(0.0000) 0.0000(0.0000)

Max Ep. ineq 0.0000(0.0000) 0.0000(0.0000) 0.7904(1.6355) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000)
Max Ep. eq 0.1096(0.0217) 0.0000(0.0000) 13.6603(0.0000) 0.1180(0.0131) 0.1038(0.0645) 0.0000(0.0000) 0.0000(0.0000)

Spring Pendulum

Ep. reward 15.4687(12.7866) 0.8599(0.5242) 1.1155(0.6959) 76.4383(27.4531) 149.6762(4.2608) 175.1558(15.1087) 182.4221(2.8414)
Max In. ineq 0.0000(0.0000) 0.0000(0.0000) 6.0975(6.8860) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000)
Max In. eq 0.7274(0.4259) 9.5898(2.6630) 3.9134(2.8721) 0.3805(0.0441) 0.0078(0.0013) 0.0000(0.0000) 0.0000(0.0000)

Max Ep. ineq 0.0000(0.0000) 0.0000(0.0000) 36.9545(9.1365) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000)
Max Ep. eq 1.9064(0.7869) 16.3114(4.9027) 25.2101(10.1734) 1.0905(0.5024) 0.0837(0.0809) 0.0000(0.0000) 0.0000(0.0000)

OPF with
Battery Energy Storage

Ep. reward -10.3469(1.3825) -5.8377(0.9521) -24.1147(8.9916) -22.0649(0.9199) -19.4738(2.0778) 42.9710(17.8438) 42.0764(10.1048)
Max In. ineq 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 0.0002(0.0004) 0.0003(0.0005)
Max In. eq 0.4413(0.0215) 0.4866(0.0136) 11.4698(10.7497) 0.1348(0.0136) 0.1908(0.0203) 0.0001(0.0000) 0.0000(0.0000)

Max Ep. ineq 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 0.0042(0.0094) 0.0046(0.0060)
Max Ep. eq 0.6821(0.0523) 0.6827(0.0612) 69.9568(6.0647) 0.2845(0.0484) 0.3994(0.1243) 0.0003(0.0001) 0.0002(0.0001)

Table 2: Mean evaluation performance of different algorithms in the three benchmarks. We compare
the performance of RPO (RPODDPG, RPOSAC) with the abridged version of our algorithm (DDPG-
L, SAC-L) and other Safe RL algorithms (CPO, CUP, Safety Layer) according to episodic reward
and max instantaneous & episodic constraint violation for equality and inequality constraints. Each
item in the table is averaged across 10 runs with the standard deviations shown in the parentheses.
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5.2 Evaluation Metrics289

We use three metrics to evaluate the algorithms as follows:290

Episodic Reward: cumulative reward in a whole episode.291

Max Instantaneous Constraint Violation: maximum instantaneous violation of all constraints. It292

denotes the feasibility of actions in a state because the feasibility of actions relies on the constraint293

that is the most difficult to be satisfied.294

Max Episodic Constraint Violation: maximum episodic violation of all constraints. Similar to295

Mean Constraint Violation, it denotes the feasibility of actions in a whole episode.296

5.3 Performance of RPO on Reward and Constraints297

We plot the learning curves of CPO, CUP, Safety Layer, DDPG-L, SAC-L, RPODDPG, and RPOSAC298

in Figure 3. Given the fairness of our experiments, we apply the same shared hyper-parameters for299

all the algorithms. This empirical result reflects that existing Safe RL algorithms cannot handle the300

MDP problems with hard constraints, and our approach outperforms other algorithms in terms of301

both episodic reward and the max constraint violation. Moreover, the learning curves confirm that302

RPO can also guarantee certain feasibility during the training period.303

Besides the learning curves, Table 2 shows the performance of different algorithms after convergence.304

To present more details on the constraint violations, here the equality and inequality constraint305

violations are shown separately. Notably, since the tanh and state-dependent tanh activation306

function are added to limit the output of the neural network for the box constraints, therefore no307

inequality constraints need to be satisfied for DDPG-L, SAC-L, and three Safe RL algorithms. That’s308

why these two algorithms achieve zero violation in the inequality constraints in OPF with Battery309

Energy Storage. However, it is hard for them to satisfy both equality and inequality constraints in310

OPF with Battery Energy Storage.311

6 Limitation and Future Work312

We acknowledge that there still exist some limitations in RPO. One is that RPO is time-consuming313

compared to standard neural networks due to the projection stage, where the GRG updates may314

need to be performed several times. Another is that the equality equation solver required in the315

construction stage may need to be either chosen or specially designed with domain knowledge. Hence,316

accelerating RPO and developing more powerful RL algorithms that can handle hard constraints are317

under consideration in our future works. Besides, while we only validate RPO in RL benchmarks318

with hard constraints, our method can also be easily extended to cases with both hard constraints and319

soft constraints as long as a neural network is utilized to fit the mapping between the state-action pair320

and the cost.321

7 Conclusion322

In this paper, we outlined a novel algorithm called RPO to handle general hard constraints under the323

off-policy reinforcement learning framework. RPO consists of two stages, the construction stage for324

equality constraints and the projection stage for inequality constraints. Specifically, the construction325

stage first predicts the basic actions, then calculates the nonbasic action through an equation-solving326

procedure, and finally concatenates them as the output of the construction stage. The projection327

stage applies GRG updates to the concatenated actions until all the inequality constraints are satisfied.328

Furthermore, we also design a special augmented loss function with the exact penalty term and329

illustrate how to fuse RPO with the off-policy RL training process. Finally, to validate our method330

and facilitate the research in RL with hard constraints, we have also designed three benchmarks331

according to the physical nature of the real-world applications, including Safe CartPole, Spring332

Pendulum, and Optimal Power Flow with Battery Energy Storage. Experimental results in these333

benchmarks demonstrate the superiority of RPO in terms of both episodic reward and constraint334

violation.335
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A Proofs461

A.1 Proof of Proposition 1462

Proposition 1. (Gradient Flow in Construction Stage) Assume that we have (n −m) equality463

constraints denoted as F (a; s) = 0 in each state s. Let aB ∈ Rm and a ∈ Rn be the basic actions464

and integrated actions, respectively. Let aN = ϕN (aB) ∈ Rn−m denote the nonbasic actions where465

ϕN is the implicit function that determined by the n−m equality constraints. Then, we have466

∂ϕN (aB)

∂aB
= −

(
JF
:,m+1:n

)−1
JF
:,1:m (10)

where JF = ∂F (a;s)
∂a ∈ R(m−n)×n, JF

:,1:m is the first m columns of JF and JF
:,m+1:n is the last467

(n−m) columns of JF .468

Proof. Considering an equality-constrained optimization problem, the reduced gradient [25] is469

defined as470

rT = ∇xBf(xN ,xB) + λT∇xBh(xN ,xB), (11)

where λT should satisfy ∇xN f(xN ,xB) + λT∇xNh(xN ,xB) = 0. f ,h denote the objective471

function and the equality constraints, and xB , xN are the basic variables and nonbasic variables472

respectively.473

Finally, we will obtain474

rT = ∇xBf(xN ,xB)−∇xN f(xN ,xB)
[
∇xNh(xN ,xB)

]−1∇xBh(xN ,xB). (12)

Similarly, the gradient flow from the nonbasic actions to basic actions is475

∂ϕN (aB)

∂aB
= −

(
JF
:,m:n

)−1
JF
:,1:m. (13)

476

A.2 Proof of Theorem 1477

Theorem 1. (GRG update in Tangent Space) If ∆aN = ∂ϕN (aB)
∂aB ∆aB , the GRG update for inequal-478

ity constraints is in the tangent space of the manifold determined by linear equality constraints.479

Proof. Firstly, assume the tangent space of the actions in the manifold defined by the equality480

constraints is JFa = d where a =
[
aB , aN

]
=

[
aB , ϕN (aB)

]
, aB ∈ Rm, ϕN (aN ) ∈ Rn−m.481

According to Proposition 1, we have482

∂ϕN (aB)

∂aB
= −

(
JF
:,m+1:n

)−1
JF
:,1:m. (14)

Then, we define the projection objective as G(aB , aN ) ≜
∑

j max {0, gj(a; s)} and obtain483

∇aBG(aB , aN ) ≜
∂G(aB , aN )

∂aB
+

∂ϕN (aB)

∂aB
∂G(aB , aN )

∂aN

∆aB = ∇aBG(aB , aN ), ∆aN =
∂ϕN (aB)

∂aB
∆aB .

(15)
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Finally, we have484

JF∆a =
[
JF
:,1:m, JF

:,m+1:n

] [ ∆aB

∆aN

]
=
[
JF
:,1:m, JF

:,m+1:n

] [ ∆aB

∆ϕN (aB)

]
=JF

:,1:m∆aB + JF
:,m+1:n∆ϕN (aB)

=JF
:,1:m∆aB + JF

:,m+1:n

∂ϕr(a
B)

∂aB
∆aB

=JF
:,1:m∇aBG(aB , aN ) + JF

:,m+1:n

∂ϕr(a
B)

∂aB
∇aBG(aB , aN )

=JF
:,1:m

(
∂G(aB , aN )

∂aB
+

∂G(aB , aN )

∂ϕN (aB)

∂ϕN (aB)

∂aB

)
+ JF

:,m+1:n

∂ϕr(a
B)

∂aB

(
∂G(aB , aN )

∂aB
+

∂G(aB , aN )

∂ϕN (aB)

∂ϕN (aB)

∂aB

)
=JF

:,1:m

∂G(aB , aN )

∂aB
− JF

:,1:m

∂G(aB , aN )

∂ϕN (aB)

(
JF
:,m+1:n

)−1
JF
:,1:m

− JF
:,1:m

∂G(aB , aN )

∂aB
+ JF

:,m+1:n

∂G(aB , aN )

∂ϕN (aB)

(
JF
:,m+1:n

)−1
JF
:,1:m

=0.

(16)

485

A.3 Proof of Theorem 2486

Theorem 2. (Exact Penalty Theorem) Assume νjs is the Lagrangian multiplier vector corresponding487

to jth constraints in state s. If the penalty factor νj ≥ ∥νjs∥∞, the unconstrained problem (8) is488

equivalent to the constrained problem (7).489

Proof. Since νj ≥ ∥νjs∥∞, we have490

L̃(θ) ≥ −JR(π̃θ) + Es∼π

∑
j

∑
s

νjs max {0, gj(π̃(s); s)}

 . (17)

The equality holds when all the inequality constraints are satisfied. Here491

νjs ≜ argmax
νj
s

min
θ
−JR(π̃θ) + Es∼π

∑
j

∑
s

νjs max {0, gj(π̃(s); s)}

 . (18)

Therefore, the unconstrained problem minθ −JR(π̃θ) + Es∼π

[∑
j

∑
s ν

j
s max {0, gj(π̃(s); s)}

]
is492

equivalent to the constrained problem (7). Let θ⋆ be the optimal solution of the unconstrained493

problem. Then, we have494

L̃(θ⋆) = −JR(π̃θ⋆) + Es∼π

∑
j

∑
s

νjs max {0, gj(π̃θ⋆(s); s)}


≤ −JR(π̃θ) + Es∼π

∑
j

∑
s

νjs max {0, gj(π̃(s); s)}


≤ L̃(θ)

(19)

Hence, the unconstrained problem (8) is equivalent to the constrained problem (7).495
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A.4 Limitations of ℓ2 Norm Objectives496

Projection with ℓ2 norm objectives will never come into the feasible region defined by inequality497

constraints with a sufficiently small projection step.498

Assume that the inequality constraint that needs to satisfy is g(a; s) ≤ 0. For a given action ak499

that does not satisfy the inequality constraint after k updates, i.e., g (ak) > 0. If ak comes close500

enough to the feasible region by using the ℓ2 norm objective, we apply a linear approximation on501

g(ak) ≈ cTak − b and then obtain502

g(ak+1) =g(ak −∆a)

=cT
(
ak − ηa∇a∥cTak − b∥22

)
− b

=cT (ak − 2ηac(c
Tak − b))− b

=cT (ak − 2ηag(ak)c)− b

=g(ak)(1− 2ηac
T c).

(20)

Obviously, to ensure the satisfaction of the inequality constraint, i.e., g(ak+1) ≤ 0, we must limit503

the projection step with ηa ≥ 1/(2cT c). However, ηa is often a sufficiently small number for the504

satisfaction of nonlinear equality constraints. In this case, the inequality constraints will never be505

satisfied with a sufficiently small projection step.506

B GRG algorithm507

The GRG algorithm is shown as Algorithm 2.508

Algorithm 2 Generalized Reduced Gradient Algorithm
Input: Optimization problem minx∈Rn f(x), s.t. h(x) = 0 ∈ Rm, a ≤ x ≤ b.
Output: Optimal solution x.
Assumptions:

1. Divide x into x =
(
xN ,xB

)
, where xN ∈ Rm,xB ∈ Rn−m.

2. If
(
aN ,aB

)
and

(
bN ,bB

)
are the corresponding partitions of a,b, then aN ≤ xN ≤ bN .

3. The m×m matrix ∇xNh
(
xN ,xB

)
is nonsingular at x = (xN ,xB).

1: Define the reduced gradient (with respect to xN ) as

rT = ∇xBf(xN ,xB)+λT∇xBh(xN ,xB), where∇xN f(xN ,xB)+λT∇xNh(xN ,xB) = 0.

2: Obtain rT = ∇xBf(xN ,xB)−∇xN f(xN ,xB)
[
∇xNh(xN ,xB)

]−1∇xBh(xN ,xB).
3: Let

∆xB
i =

{
−ri if ri < 0, xB

i < BB or ri > 0, xB
i > aB

0 otherwise ,

∆xN = − [∇xNh]
−1∇xBh∆xB .

4: Find α1, α2, α3 that respectively satisfy

max{α : aN ≤ xN + α∆xN ≤ bN},
max{α : aB ≤ xB + α∆xB ≤ bB},
min{f(x+ α∆x) : 0 ≤ α ≤ α1, 0 ≤ α ≤ α2}.

5: Update
xB ← xB + α3∆xB

xN ← xN + α3∆xN

6: Perform (1)-(5) until convergence.
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C Algorithm Details509

We present the concrete algorithm about how RPODDPG and RPOSAC work in Algorithm 3 and510

Algorithm 4.511

Algorithm 3 RPO-DDPG
Input: Initial parameters θ, ω of policy network µ and value network Q.

1: Initialize the corresponding target network θ′ ← θ, ω′ ← ω.
2: Initialize replay buffer D.
3: Initialize penalty factor for inequality constraints ν ← 0.
4: for each episode do
5: for each environment epoch do
6: Select partial action aBt = µθ(st) +N (0, ϵt).
7: Employ construction stage by solving the equations defined equality constraints

ãt =
[
aBt ϕN (aBt )

]
.

8: Employ projection stage on the concatenated action ãt to obtain feasible action at
9: for k = 1, · · · ,K do

∆aBt,k = ∇aBG(aB , aN ), ∆aNt,k =
∂ϕN (aB)

∂aB
∆aBt,k,

aBt,k+1 = aBt,k − ηa∆aBt,k, aNt,k+1 = aNt,k − ηa∆aNt,k.

10: end for
11: Execute action at and observe reward rt and next state st+1.
12: Store the transition < st, at, rt, st+1 > in D.
13: Sample a mini-batch of transitions in D.
14: Update actor and reward critic networks

θ ← θ + ηµ∇̂θED

Qω (st, π̃θ(st))−
∑
j

νj max {0, gj(π̃θ(st); st)}

 ,

ω ← ω − ηQ∇̂ωED [Qω(st, at)− (rt + γQω′ (st+1, πθ′(st+1)))]
2
.

15: Perform dual update on ν

νjk+1 = νjk + ηjνEs∼π [max {0, gj(π̃(st); st)}] ∀j.

16: Soft update target networks:

θ′ ← τθ + (1− τ)θ′,

ω′ ← τω + (1− τ)ω′.

17: end for
18: end for

D Benchmark Details512

In this section, we will illustrate the dynamics of our three benchmarks in detail.513

D.1 Safe CartPole514

Different from the CartPole environment in Gym [10], two forces from different directions are515

controlled in the Safe CartPole environment.516

State. The state space |S| ∈ R6 of Safe CartPole includes the position, velocity, and acceleration of517

the cart; and the angle, angular velocity, and angular acceleration of the pole.518
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Algorithm 4 RPO-SAC
Input: Initial parameters θ, ω1, ω2 of policy network µ and value network Q1, Q2, Temperature
parameter α.

1: Initialize the corresponding target network ω′
1 ← ω1, ω′

2 ← ω2.
2: Initialize replay buffer D.
3: Initialize penalty factor for inequality constraints ν ← 0.
4: for each episode do
5: for each environment epoch do
6: Select partial action aBt ∼ µθ(a

B
t |st).

7: Employ construction stage by solving the equations defined equality constraints

ãt =
[
aBt ϕN (aBt )

]
.

8: Employ projection stage on the concatenated action ãt to obtain feasible action at
9: for k = 1, · · · ,K do

∆aBt,k = ∇aBG(aB , aN ), ∆aNt,k =
∂ϕN (aB)

∂aB
∆aBt,k,

aBt,k+1 = aBt,k − ηa∆aBt,k, aNt,k+1 = aNt,k − ηa∆aNt,k.

10: end for
11: Execute action at and observe reward rt and next state st+1.
12: Store the transition < st, at, rt, st+1 > in D.
13: Sample a mini-batch of transitions in D.
14: Update actor and reward critic networks

θ ← θ + ηµ∇̂θED

−α log (µθ(at|st)) +Qω (st, π̃θ(st))−
∑
j

νj max {0, gj(π̃θ(st); st)}

 ,

ωi ← ωi − ηQ∇̂θQED
[
Qωi

(st, at)−
(
rt + γQω′

i
(st+1, πθ(st+1))− α log (µθ(at+1|st+1))

)]2
.

15: Perform dual update on ν

νjk+1 = νjk + ηjνEs∼π [max {0, gj(π̃(st); st)}] ∀j.

16: Soft update target networks:

ω′
i ← τωi + (1− τ)ω′

i.

17: end for
18: end for

Action. The action space |A| ∈ R2 of Safe CartPole is the sign and magnitude of two forces f1, f2519

from different directions. Specifically, one force is inclined 30 degrees below the x axis, and the520

other is inclined 60 degrees above the x axis.521

Reward. The goal of Safe CartPole is similar to the CartPole in Gym [10], which requires the pole522

to keep upright as long as possible. Therefore, we employ the same reward policy that returns 1 if the523

pole keeps upright. Otherwise, this episode will end since the pole falls.524

Equality Constraints. The equality constraint of Safe CartPole is that the summation of two forces525

in y axis should be zero. That is, we desire to avoid extra friction on the cart, i.e.,526

fy := f1 sin θ1 + f2 sin θ2 = 0. (21)

Inequality Constraints. The inequality constraint is that the summation of two forces in the x axis527

should be bounded by a box constraint, which indicates the physical limitation of the magnitude of528

the summation force in the x axis.529

f
x
≤ fx := f1 cos θ1 + f2 cos θ2 ≤ fx. (22)
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Furthermore, according to [17], we derive the dynamics of Safe CartPole when there exists a force in530

the vertical direction as shown in (23). Notably, we can always derive the position or angle, velocity531

or angular velocity in the next step, using the semi-implicit Euler method.532

Nc = fy + (mc +mp) g −mpl
(
θ̈ sin θ + θ̇2 cos θ

)
,

θ̈ =
g sin θ − µpθ̇

mpl

l
{

4
3 −

mp cos θ
mc+mp

[cos θ − µc sgn (Ncẋ)]
}+

cos θ
{

−fx−mplθ̇
2[sin θ+µc sgn(Ncẋ) cos θ]

mc+mp
+ µcg sgn (Ncẋ)

}
l
{

4
3 −

mp cos θ
mc+mp

[cos θ − µc sgn (Ncẋ)]
} ,

ẍ =
fx +mpl

(
θ̇2 sin θ − θ̈ cos θ

)
− µcNc sgn (Ncẋ)

mc +mp
,

(23)

where Nc is the pressure on the cart, mc,mp are the mass of the cart and pole, l is the length of the533

pole, x, θ are the position of the cart and the angle of the pole respectively, and µc is the dynamic534

friction coefficient of the cart.535

D.2 Spring Pendulum536

Motivated by the Pendulum environment [10], Spring Pendulum environment replaces the pendulum537

with a light spring, which connects the fixed point and the ball in the end of the spring.538

State. The state space |S| ∈ R5 of Spring Pendulum contains the cosine and sine of the angle, angular539

velocity, length of the spring, and the change rate in length.540

Action. The action space |A| ∈ R2 of Spring Pendulum is the sign and magnitude of two forces541

fx, fy in the x, y axes. Notably, since the spring pendulum is rotating, the angle between the x or y542

axis and the spring is changing as well. Thus, this environment is more difficult than Safe CartPole in543

some sense.544

Reward. The goal of Spring Pendulum is to keep the spring pendulum in an upright position. The545

episode will never be done until the maximum time step. Specifically, the reward function is 1
1+100|θ| ,546

where θ is the angle between the spring pendulum and the y axis. That means the agent will achieve547

a reward of nearly 1 when the spring pendulum is close enough to the upright position. Otherwise, a548

reward of almost 0 will be returned to the agent.549

Equality Constraints. The equality constraint of the Spring Pendulum is to limit the change rate550

of length to zero since the spring pendulum is expected to perform like a normal pendulum without551

changing the length of the pendulum.552

l̇t = l̇t−1 + l̈tdt = 0. (24)

Notably, when l̇t−1 = 0, the equality constraint will be l̈ = 0.553

Inequality Constraints. The inequality constraint is the magnitude constraint on the summation of554

these two forces.555

f2
x + f2

y ≤ f
2
. (25)

Furthermore, to connect each component mentioned above, we derive the dynamics of the Spring556

Pendulum. Applying Euler-Lagrange Equation L = T − V to spring pendulum, then we obtain557

V =mgy +
1

2
k (l − l0)

2

=mgl cos θ +
1

2
k (l − l0)

2
,

T =
1

2
mv2 =

1

2
m

(
ẋ2 + ẏ2

)
=
1

2
m

(
l̇2 + l2θ̇2

)
.

(26)
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Applying the Euler-Lagrange equations for θ and l, we have558

d

dt

∂L
∂θ̇

=2ml̇θ̇ +mlθ̈,

∂L
∂θ

=−mg sin θ,

d

dt

∂L
∂l̇

=ml̈ −mlθ̇2 + k(l − l0),

∂L
∂l

=−mg cos θ.

(27)

Finally, we will obtain the dynamics of the spring pendulum559

θ̈ =
fr − 2ml̇θ̇ −mg sin θ

ml
,

l̈ =
fs +mlθ̇2 − k(l − l0)−mg cos θ

m
,

(28)

where fr = −fy sin θ + fx cos θ and fs = fy cos θ + fx sin θ are the force perpendicular to and560

along the spring pendulum.561

D.3 Optimal Power Flow with Battery Energy Storage562

In smart grid operation controlling, Optimal Power Flow (OPF) is defined as563

min
pg,qg,v

pTg Apg + bT pg

subject to p
g
≤ pg ≤ pg,

q
g
≤ qg ≤ qg,

v ≤ |v| ≤ v,

(pg − pd) + (qg − qd) i = diag(v)Y v,

(29)

where pg, qg ∈ Rn are the active and reactive power generation of the buses, and v ∈ Cn are the564

voltage of the buses in the grid. Y ∈ Cn×n denotes the admittance matrix. pd, qd ∈ Rn are active565

and reactive power demand of all buses. Notably, some buses in the electricity grid are not generator566

buses, and pg, qg of these buses will be zero. Therefore, the actual dimension of pg, qg to determine567

is the number of generator buses ng . Based on the OPF problem, OPF with Battery Energy Storage is568

defined as569

min
pg,qg,v,pb

T∑
t=0

pTg (t)Apg(t) + bT pg(t) + cT (t)pb(t)

subject to (pg(t)− pd(t)− pb(t)) + (qg(t)− qd(t)) i = diag(v(t))Y v(t),

p
g
≤ pg(t) ≤ pg,

q
g
≤ qg(t) ≤ qg,

v ≤ |v(t)| ≤ v,

p
b
(t) ≤ pb(t) ≤ pb(t).

(30)

The additional variables pb ∈ Rn is the charging (positive) or discharging (negative) power of the570

battery groups, and c(t) represents the cost or the income in the time step t. Exactly, we only connect571

the batteries with the generator buses. Therefore, the actual number of pb to determine is ng in this572

benchmark as well.573

Specifically, this benchmark is based on a 14-node power system, which is available in PYPOWER574

package. We adopt the same topology of the electricity grid with 5 generator nodes in this benchmark.575

The data on power demand and day-ahead electricity prices are from [1, 2]. We refer to the576

distribution of the real-world data in one day, which is shown in Figure 4, and normalize the577

magnitude of the concrete data to incorporate them into the 14-node power system.578

579
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Figure 4: Distribution of power demand (left) and electricity price (right) in 24 hours.

State. The state space |S| ∈ R57 of OPF with Battery Energy Storage contains active and reactive580

power demand of 14 buses, the state of 5 batteries connected to 5 generator nodes, and the 24-hour581

day-ahead electricity price.582

583

Action. The action space |A| ∈ R43 of OPF with Battery Energy Storage involves the active and584

reactive power generation of 5 generator buses, voltage magnitude and angle of 14 buses, and the585

power generation or demand of 5 batteries.586

587

Reward. The goal of OPF with Battery Energy Storage is to minimize the total cost. Therefore,588

we regard the negative cost in the current time step −pTg (t)Apg(t) − bT pg(t) + cT (t)pb(t) as589

the reward. Actually, there exist efficiency parameters ηch, ηdis in the procedure of charging and590

discharging. Moreover, each part of the cost may have a different magnitude, which needs us591

to consider a tradeoff between different parts. For convenience, we model all of these factors into c(t).592

593

Equality Constraints. The equality constraints of OPF with Battery Energy Storage are the equations594

of power flow, i.e.,595

(pg(t)− pd(t)− pb(t)) + (qg(t)− qd(t)) i = diag(v(t))Y v(t). (31)

Inequality Constraints. The inequality constraint is the box constraint on the decision variables.596

p
g
≤ pg(t) ≤ pg,

q
g
≤ qg(t) ≤ qg,

v ≤ |v(t)| ≤ v,

p
b
(t) ≤ pb(t) ≤ pb(t).

(32)

The dynamics of OPF with Battery Energy Storage are much simpler than the former two benchmarks,597

since the active and reactive power demand pd, qd in each time step, is irrelevant to the last state and598

action. Thus, we only need to care about the change in the electrical power of batteries, i.e., soc(t) =599

soc(t− 1) + [ηchpch(t) + pdis(t)/ηdis], where pch(t) = max{0, pb(t)}, pdis(t) = min{0, pb(t)}.600
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E Additional Experiments601

To further discuss the efficiency of RPO, we do some extra experiments in our hardest benchmark,602

OPF with Battery Energy Storage. The results and related analysis are presented below.603

E.1 Sensitivity Analysis604
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Figure 5: Comparison on RPO under different K.

The projection stage performs the605

GRG updates until all inequality606

constraints are satisfied. It is valu-607

able to investigate the impact of the608

number of maximum GRG updates609

K on model performance. Here,610

we conduct experiments under dif-611

ferent K values in OPF with the612

Battery Energy Storage task. As613

shown in Figure 5, we compare614

the performance of RPOSAC under615

K = 0, 10, 50, 200 in the projection616

stage. The result indicates that the617

choice of K does not have an obvious impact on the episodic reward when K is not too large. The618

slight improvement in constraint violation between K = 10 and K = 50 illustrates that K = 10 is619

actually the most appropriate since it needs much less computation compared with K = 50 during620

the projection stage. Besides, the case of K = 200 shows that too large modifications on actions621

during the training process will lead to poor performance in some situations. The principal reason we622

believe is that the value network cannot back-propagate an accurate gradient to the policy network623

when K is too large. Concretely, a large K leads to the samples being too far from the policy π̃θ,624

which further results in the inaccurate estimation of the policy π̃θ in the value network. Notably,625

a practical trick is to set a small K during the training period and a large K during the evaluation626

period.627

E.2 Adaptive v.s. Fixed Penalty Factor628
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Figure 6: Comparison between RPO with fixed penalty factor
and adaptive penalty factor

Besides, We conduct experiments629

to confirm the performance of the630

adaptive penalty factor with dual up-631

date compared to that of the fixed632

penalty factor as introduced in Sec-633

tion 4. For fairness, we check the634

converged values of the adaptive635

penalty factor with learning rate636

η = 0.02 in RPOSAC, and we find637

that the converged penalty factors638

are ranging around 100. Therefore,639

we chose νj = 100 for all penalty640

terms in the setting of RPOSAC641

with the fixed penalty factor. Results in Figure 6 show the advantage of the adaptive penalty642

factors in terms of episodic reward.643

E.3 Necessity of Backpropagation with Generalized Reduced Gradient644

As we illustrate in the construction stage, the integrated actions are actually determined once the basic645

actions are given. Therefore, it is possible for the value network to approximate the mapping from646

the basic actions to the nonbasic actions. This seems that there is no need for the backpropagation647

with generalized reduced gradient which requires extra gradient flow from nonbasic actions if only648

the hard equality constraints need to be addressed or the hard inequality constraints are only related649

to the basic actions.650
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Figure 7: Comparison between RPO with partial gradient and
complete gradient.

To explore the necessity of the back-651

propagation with generalized re-652

duced gradient, we also contrast the653

performance in RPOSAC trained654

with/without the complete gradient.655

Concretely, for RPOSAC trained656

without the complete gradient, we657

only input the basic actions into658

the value networks and expect it659

can approximate the complete gradi-660

ent, which is known as generalized661

reduced gradient. The results are662

shown in Figure 7. It reflects that663

the value network cannot backpropagate an accurate gradient directly, and indicates the necessity to664

explicitly construct the gradient flow from nonbasic actions to basic actions.665

F Hyper-parameters666

We implemented our experiments on a GPU of NVIDIA GeForce RTX 3090 with 24GB. Each exper-667

iment on Safe CartPole and Spring Pendulum takes about 0.5 hours. Each experiment on OPF with668

Battery Energy Storage takes about 4 hours. Moreover, we adopt similar neural network architectures669

for policy and value networks except for the input and output dimensions in all experiments. The670

policy and value networks both have two hidden layers with 256 hidden units and only differ in input671

and output layers. Besides, we also show the detailed hyper-parameters used in our experiments.672

Table 3, Table 4 and Table 5 respectively present the parameters used in Safe CartPole, Spring673

Pendulum, and OPF with Battery Energy Storage. Additionally, the implementation of three safe RL674

algorithms in our experiments are based on omnisafe 1 and safe-explorer 2, and recommended values675

are adopted for hyper-parameters not mentioned in the following tables.676

Parameter CPO CUP Safety Layer DDPG-L SAC-L RPODDPG RPOSAC

Batch Size B 256 256 256 256 256 256 256
Discount Factor γ 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Target Smoothing Coefficient τ N/A N/A 0.005 0.005 0.005 0.005 0.005
Frequency of Policy Update N/A N/A N/A 0.25 0.25 0.25 0.25

Total Epochs T 2E4 2E4 2E4 2E4 2E4 2E4 2E4
Capacity of Replay Buffer D N/A N/A 2E4 2E4 2E4 2E4 2E4

Random Noise in Exploration ϵ N/A N/A 1E-2 1.0 N/A 1.0 N/A
LR for Policy Network µ 1E-4 1E-4 1E-4 1E-4 1E-4 1E-4 1E-4
LR for Value Network Q 3E-4 3E-4 3E-4 3E-4 3E-4 3E-4 3E-4
LR for Penalty Factor ν N/A N/A N/A 0.2 0.2 0.2 0.2

Temperature α N/A N/A N/A N/A 0.1 N/A 0.1
Projection Step ηa N/A N/A N/A N/A N/A 2E-2 2E-2

Max GRG Updates K N/A N/A N/A N/A N/A 10 10
Projection Step in Evaluation ηea N/A N/A N/A N/A N/A 2E-2 2E-2

Max GRG Updates in Evaluation Ke N/A N/A N/A N/A N/A 50 50

Table 3: Hyper-parameters for experiments in Safe CartPole.

1https://github.com/PKU-Alignment/omnisafe
2https://github.com/AgrawalAmey/safe-explorer
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Parameter CPO CUP Safety Layer DDPG-L SAC-L RPODDPG RPOSAC

Batch Size B 256 256 256 256 256 256 256
Discount Factor γ 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Target Smoothing Coefficient τ N/A N/A 0.005 0.005 0.005 0.005 0.005
Frequency of Policy Update N/A N/A N/A 0.25 0.25 0.25 0.25

Total Epochs T 2E4 2E4 2E4 2E4 2E4 2E4 2E4
Capacity of Replay Buffer D N/A N/A 2E4 2E4 2E4 2E4 2E4

Random Noise in Exploration ϵ N/A N/A 1E-2 0.5 N/A 0.5 N/A
LR for Policy Network µ 1E-4 1E-4 1E-4 1E-4 1E-4 1E-4 1E-4
LR for Value Network Q 3E-4 3E-4 3E-4 3E-4 3E-4 3E-4 3E-4
LR for Penalty Factor ν N/A N/A N/A 0.01 0.01 0.01 0.01

Temperature α N/A N/A N/A N/A 0.01 N/A 0.01
Projection Step ηa N/A N/A N/A N/A N/A 2E-3 2E-3

Max GRG Updates K N/A N/A N/A N/A N/A 10 10
Projection Step in Evaluation ηea N/A N/A N/A N/A N/A 2E-3 2E-3

Max GRG Updates in Evaluation Ke N/A N/A N/A N/A N/A 50 50

Table 4: Hyper-parameters for experiments in Spring Pendulum.

Parameter CPO CUP Safety Layer DDPG-L SAC-L RPODDPG RPOSAC

Batch Size B 256 256 256 256 256 256 256
Discount Factor γ 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Target Smoothing Coefficient τ N/A N/A 0.005 0.005 0.005 0.005 0.005
Frequency of Policy Update N/A N/A N/A 0.25 0.25 0.25 0.25

Total Epochs T 4E4 4E4 4E4 4E4 4E4 4E4 4E4
Capacity of Replay Buffer D N/A N/A 2E4 2E4 2E4 2E4 2E4

Random Noise in Exploration ϵ N/A N/A 1E-2 1E-4 N/A 1E-4 N/A
LR for Policy Network µ 1E-4 1E-4 1E-4 1E-4 1E-4 1E-4 1E-4
LR for Value Network Q 3E-4 3E-4 3E-4 3E-4 3E-4 3E-4 3E-4
LR for Penalty Factor ν N/A N/A N/A 0.02 0.02 0.02 0.02

Temperature α N/A N/A N/A N/A 0.001 N/A 0.001
Projection Step ηa N/A N/A N/A N/A N/A 1E-4 1E-4

Max GRG Updates K N/A N/A N/A N/A N/A 10 10
Projection Step in Evaluation ηea N/A N/A N/A N/A N/A 1E-4 1E-4

Max GRG Updates in Evaluation Ke N/A N/A N/A N/A N/A 50 50

Table 5: Hyper-parameters for experiments in OPF with Battery Energy Storage.
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