
Under review as a conference paper at ICLR 2024

LERAC: LEARNING RATE CURRICULUM – SUPPLE-
MENTARY

Anonymous authors
Paper under double-blind review

ABSTRACT

In the supplementary, we give a theoretical proof of the underlying assumption
of LeRaC. Furthermore, we present a series of additional experiments to validate
several choices and statements in our paper. We also clarify several important
aspects and discuss the limitations of our work.

1 THEORETICAL PROOF

The motivation behind using LeRaC stems from our conjecture stating that the level of noise inside
features gradually increases with every layer of a neural network. Regardless of the type of layer
(convolutional, transformer or fully connected), the operation performed inside a neural layer boils
down to matrix or vector multiplications. To this end, we set out to demonstrate that the signal
resulting from the multiplication of two signals has a lower signal-to-noise ratio (SNR) than the
multiplied factors. We start with the definition of the variance of a signal, which is given below:

Definition 1. The variance of a signal s is given by:
Var(s) = E[s2]− E[s]2. (1)

From Definition 1, it results that the expected value of s2, which represents the power of signal s, is
equal to:

E[s2] = E[s]2 +Var(s) = µ2
s + σ2

s , (2)

where µs is the mean of s, and σ2
s is the variance of s. We use Eq. (2) to define the SNR of a signal

as follows:

Definition 2. The signal-to-noise ratio (SNR) of a signal s = u+ z, where u is the clean signal and
z is the noise component, is the ratio between the power of u and the power of z, which is given by:

SNR(s) =
E[u2]

E[z2]
=

µ2
u + σ2

u

µ2
z + σ2

z

, (3)

where µu and µz are the means of u and z, and σ2
u and σ2

z are the variances of u and z, respectively.

The noise contained by data samples given as input to neural networks is usually uncorrelated,
e.g. the noise in images is assumed to come from a random normal distribution of zero mean. More-
over, the weights of a neural network are usually initialized by sampling them from a random normal
distribution of zero mean (Glorot & Bengio, 2010). Hence, without loss of generality, we can nat-
urally assume that the noise component has zero mean. This means that we can simplify Eq. (3)
to:

SNR(s) =
µ2
u + σ2

u

σ2
z

. (4)

If the power of the signal u is higher than the power of the noise z, then SNR(s) is higher than 1. If
the signal is dominated by noise, then SNR(s) is between 0 and 1. Note that the SNR does not take
negative values. To avoid discussing edge cases, we assume that the SNR of any signal is always
defined, i.e. the power of the noise is never 0.

Theorem 1. Let s1 = u1 + z1 and s2 = u2 + z2 be two signals, where u1 and u2 are the clean
components, and z1 and z2 are the noise components. The signal-to-noise ratio of the product
between the two signals is lower than the signal-to-noise ratios of the two signals, i.e.:

SNR(s1 · s2) ≤ SNR(si),∀i ∈ {1, 2}. (5)

1



Under review as a conference paper at ICLR 2024

Proof. To demonstrate our proposition, we rely on the formula of variance for the sum of two signals
with zero mean:

Var(s1 + s2) = Var(s1) + Var(s2). (6)
We also rely on the formula of variance for the product of two signals:

Var(s1 · s2) = Var(s1) ·Var(s2) + Var(s1) · E[s2]
2 +Var(s2) · E[s1]

2. (7)

Let s denote the product of the two signals, i.e. s = s1 · s2. Expanding the signals s1 and s2 leads
to the following formulation of s:

s = s1 · s2 = (u1 + z1) · (u2 + z2) = u1 · u2 + u1 · z2 + u2 · z1 + z1 · z2, (8)

where the clean component is u = u1 ·u2, and the noise component is z = u1 · z2+u2 · z1+ z1 · z2.
Hence, s = u+ z.

An example given as input to a neural network and the initial weights of the respective neural net-
work are not correlated under any practical circumstances. Hence, without loss of generality, we can
assume that the signals s1 and s2 are independent of each other, i.e. their covariance is equal to 0.
This assumption allows us to simplify the signal power of u to:

E[u2] = E[u2
1 · u2

2] = E[u2
1] · E[u2

2] =
(
µ2
u1

+ σ2
u1

)
·
(
µ2
u2

+ σ2
u2

)
. (9)

The signal power of z is given by:

E[z2] = E[z]2 +Var(z) = Var(z), (10)

since the noise is of zero mean, i.e. E[z] = 0. By employing Eq. (6), we can compute the power of
z as follows:

E[z2] = Var(z) = Var(u1 · z2 + u2 · z1 + z1 · z2)
= Var(u1 · z2) + Var(u2 · z1) + Var(z1 · z2).

(11)

By applying Eq. (7) in Eq. (11), and considering that z1 and z2 have zero mean, we obtain:
Var(u1 · z2) =

(
µ2
u1

+ σ2
u1

)
· σ2

z2 ,

Var(u2 · z1) =
(
µ2
u2

+ σ2
u2

)
· σ2

z1 ,

Var(z1 · z2) = σ2
z1 · σ

2
z2 .

(12)

Replacing Eq. (9) and Eq. (12) inside Definition 2 leads to the following expression of the signal-to-
noise ratio of signal s:

SNR(s) =
E[u2]

E[z2]
=

(
µ2
u1

+ σ2
u1

)
·
(
µ2
u2

+ σ2
u2

)(
µ2
u1
+σ2

u1

)
·σ2

z2+
(
µ2
u2
+σ2

u2

)
·σ2

z1+σ2
z1 ·σ2

z2

=

(
µ2
u1

+ σ2
u1

)
·
(
µ2
u2

+ σ2
u2

)
σ2
z1 ·σ2

z2 ·
(

µ2
u1

+σ2
u1

σ2
z1

+
µ2
u2

+σ2
u2

σ2
z2

+1
) =

µ2
u1

+σ2
u1

σ2
z1

· µ2
u2

+σ2
u2

σ2
z2

µ2
u1

+σ2
u1

σ2
z1

+
µ2
u2

+σ2
u2

σ2
z2

+1

=
SNR(s1) · SNR(s2)

SNR(s1) + SNR(s2) + 1
.

(13)

To simplify our notations in the remainder of this proof, we define a = SNR(s1) and b = SNR(s2).
By introducing these notations in Eq. (13), we obtain the following:

SNR(s) =
a · b

a+ b+ 1
. (14)

Now, it remains to prove that:
a · b

a+ b+ 1
≤ a,

a · b
a+ b+ 1

≤ b. (15)

However, since a and b are commutable in Eq. (14), it is sufficient to prove only one of the inequal-
ities. We choose to provide the complete proof for the first inequality in Eq. (15) (as the proof for
the other is analogous). We consider two separate cases, a = 0 and a > 0.

• Case (i): When a = 0, we obtain the following inequality:
0

b+ 1
≤ 0, (16)

2



Under review as a conference paper at ICLR 2024

Training Regime Distance
First Conv Layer Last Conv Layer

conventional 38.36 709.93

Table 1: Distances between feature maps at epoch k = 0 and feature maps after the final epoch for
ResNet-18 on CIFAR-10, while using the conventional training regime. Distances are independently
computed for the first and last convolutional layers.

which clearly holds for any b ≥ 0.

• Case (ii): When a > 0, we can divide both terms of the inequality by a and arrive to:
b

a+ b+ 1
≤ 1. (17)

Next, we multiply both terms by a+ b+ 1, obtaining that:
b ≤ a+ b+ 1. (18)

We can subtract b from both terms and obtain the following:
0 ≤ a+ 1. (19)

Since a > 0, it results that Eq. (19) is true. Moreover, the inequality is strict when a > 0. This
concludes our proof.

Corollary 1. Let {s1, s2, ...sn} be a set of n signals, where each signal si = ui + zi is formed of a
clean component ui and a noise component zi. The following equation is true:

SNR

(
p∏

i=1

si

)
≤ SNR

p−1∏
j=1

sj

 ,∀p ∈ {2, ..., n}. (20)

Proof. The proof results immediately by induction from Theorem 1. Note that the inequality is strict
when SNR(si) > 0,∀i ∈ {1, 2, ..., p}.

We employ Corollary 1 in the context of neural networks, where the input signal, which is ex-
pected to bear meaningful information and thus have a high SNR, is initially multiplied with ran-
dom weights, which are expected to have low SNR values just after initialization. According to
Corollary 1, the SNR of the resulting signal (features) is gradually decreasing, layer by layer. In
this context, we conjecture that optimizing the weights θi of layer i to learn patterns from the signal
(features) given as input to layer i is suboptimal for layers that are sufficiently far away from the
input. This happens because the respective features (passed to layer i) can contain a large amount
of noise, which can derail the network towards adapting the weights θi to the noise instead of the
clean signal. This phenomenon becomes more and more prevalent as the layer i is placed farther
away from the input. To regulate this phenomenon during the initial stages of the learning process,
we propose to employ LeRaC and gradually decrease the learning rate as layers get deeper, allowing
the network to optimize the earlier weights sooner. We underline that training the earlier layers also
reduces the amount of noise in later layers, since the amount of noise in later layers is bounded by
the amount of noise in earlier layers (according to Corollary 1). As the amount of noise in later lay-
ers is progressively diminished, we can gradually increase the learning rates of later layers, allowing
them to optimize their weights to cleaner signals (meaningful patterns).

2 EMPIRICAL PROOF

Noise quantification of early and later layers. The application of LeRaC is justified by the fact
that the level of noise gradually grows with each layer during a forward pass through a neural net-
work with randomly initialized weights. To empirically confirm this statement, we have computed
the distances for the low-level (first conv) and high-level (last conv) layers between the activation
maps at iteration 0 (based on random weights) and the last iteration (based on weights optimized
until convergence) for ResNet-18 on CIFAR-10, while using the conventional training regime. The
computed distances shown in Table 1 confirm our conjecture, namely that shallow layers contain
less noise than deep layers when applying the conventional training regime.

3



Under review as a conference paper at ICLR 2024

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

(a) ResNet-18 on Tiny ImageNet.

0 2 4 6 8 10
0

10

20

30

40

50

60

(b) Wide-ResNet-50 on Tiny ImageNet.

0 0.2 0.4 0.6 0.8 1 1.2
55

60

65

70

75

80

(c) BERT on BoolQ.

0 5 10 15 20 25 30
20

30

40

50

60

70

80

(d) SepTr on CREMA-D.
Figure 1: Validation accuracy (on the y-axis) versus training time (on the x-axis) for four distinct
architectures. The number of training epochs is the same for both LeRaC and CBS, the observable
time difference being caused by the overhead of CBS due to the Gaussian kernel layers.

Training Regime Entropy
First Conv Layer Last Conv Layer

conventional 0.9965 0.9905
LeRaC (ours) 0.9970 0.9968

Table 2: Entropy after k = 6 epochs for ResNet-18 on CIFAR-10, while alternating between the
conventional and LeRaC training regimes.

Entropy of low-level versus high-level features. We show a few examples of training dynamics
in Figure 1. All four graphs exhibit a higher gap between standard training and LeRaC in the first
half of the training process, suggesting that LeRaC has an important role towards faster conver-
gence. To assess the comparative quality of low-level versus high-level feature maps obtained either
with conventional or LeRaC training, we compute the entropy of the first and last conv layers of
ResNet-18 on CIFAR-10, after k = 6 iterations. We report the computed entropy levels in Table 2.
Conventional training seems to update deeper layers faster, observing a higher difference between
the entropy levels of low-level and high-level features obtained with conventional training than with
LeRac. This shows that LeRaC balances the training pace of low-level and high-level features. We
conjecture that updating the deeper layers too soon could lead to overfitting to the noise still present
in the early layers. This statement is supported by our empirical results on 10 data sets, showing that
giving a chance to the early layers to converge before introducing large updates to the later layers
leads to superior performance.

Aside from computing the global entropy over all training samples, in Figure 2, we illustrate some
activation maps with the highest and lowest entropy from the first and last conv layers for three
randomly chosen examples from ImageNet. The activation maps are extracted at epoch k = 6
from the ResNet-18 model trained on CIFAR-10 either with the conventional regime or the LeRaC
regime. In general, we observe that the low-level activation maps corresponding to LeRaC exhibit
a higher degree of variability (being more distinct from each other), regardless of the entropy level
(low or high). We believe the higher degree of variability comes from the fact that, having lower
learning rates for the deeper layers, the model based on LeRaC is likely focused on finding a higher

4



Under review as a conference paper at ICLR 2024

La
st

 C
on

v 
La

ye
r

Le
Ra

C

Lowest Entropy Largest Entropy

Le
Ra

C
Ba

se
lin

e
Fi

rs
t C

on
v 

La
ye

r
Ba

se
lin

e

Input Image

La
st

 C
on

v 
La

ye
r

Le
Ra

C
Le

Ra
C

Ba
se

lin
e

Fi
rs

t C
on

v 
La

ye
r

Ba
se

lin
e

La
st

 C
on

v 
La

ye
r

Le
Ra

C
Le

Ra
C

Ba
se

lin
e

Fi
rs

t C
on

v 
La

ye
r

Ba
se

lin
e

Figure 2: Activation maps with low and high entropy from the first and last conv layers of ResNet-18
trained on CIFAR-10 for k = 6 epochs with the conventional (baseline) and LeRaC (ours) regimes.
The input images are taken from ImageNet. Best viewed in color.

Training Regime Distance
First Conv Layer Last Conv Layer

conventional 0.60 0.37
LeRaC (ours) 0.61 0.66

Table 3: Distances between feature maps at epoch k = 6 and feature maps after the final epoch for
ResNet-18 on CIFAR-10, while alternating between the conventional and LeRaC training regimes.
Distances are independently computed for the first and last convolutional layers.

variety of patterns within the first layers to minimize the loss. For the third example (the image
of an airplane), we observe that the activation maps with the highest entropy from the last conv
layer produced by LeRaC have a higher entropy than the activation maps with the highest entropy
produced by the conventional regime. This observation is in line with the results reported in Table 2,
confirming that LeRaC is able to better balance the entropy of low-level and high-level features by
preventing the faster convergence of the deeper layers.

Distances at epoch k versus final epoch. As discussed above, in Table 2, we report the entropy
of the low-level and high-level layers after k = 6 epochs, before and after using LeRaC to train
ResNet-18 on CIFAR-10. However, we consider that using the distance to the final feature maps
provides additional useful insights about how LeRaC works. To this end, we compute the Euclidean
distances of both low-level and high-level features between epoch k and the final epoch, before
and after using LeRaC. We report the distances in Table 3. The computed distances confirm our

5



Under review as a conference paper at ICLR 2024

Data Set Model Training Regime Accuracy

CIFAR-100

conventional 71.70±0.06
ResNet-18 anti-LeRaC 71.24±0.11

LeRaC (ours) 72.72±0.12
conventional 68.14±0.16

Wide-ResNet-50 anti-LeRaC 67.47±0.15
LeRaC (ours) 69.38±0.26
conventional 70.47±0.67

CREMA-D SepTr anti-LeRaC 68.33±0.61
LeRaC (ours) 70.95±0.56

Table 4: Average accuracy rates (in %) over 5 runs for ResNet-18 and Wide-ResNet-50 on CIFAR-
100, as well as SepTr on CREMA-D, based on different training regimes: conventional, anti-LeRaC
and LeRaC. The accuracy of the best training regime in each experiment is highlighted in bold.

Model Optimizer Training Regime Accuracy

Wide-ResNet-50
Adam conventional 66.48±0.50
SGD conventional 68.14±0.16
SGD LeRaC (ours) 69.38±0.26

Table 5: Average accuracy rates (in %) over 5 runs for Wide-ResNet-50 on CIFAR-100 using differ-
ent optimizers and training regimes (conventional versus LeRaC). The accuracy of the best training
regime is highlighted in bold.

previous observations, namely that LeRaC is capable of balancing the training pace of low-level and
high-level layers.

3 ADDITIONAL EXPERIMENTS

Training time comparison. For a particular model and data set, all training regimes are executed for
the same number of epochs, for a fair comparison. However, the CBS strategy adds the smoothing
operation at multiple levels inside the architecture, which increases the training time. To this end,
we compare the training time (in hours) versus the validation error of CBS and LeRaC. For this
experiment, we selected four neural models and illustrate the evolution of the validation accuracy
over time in Figure 1. We underline that LeRaC introduces faster convergence times, being around
7-12% faster than CBS. It is trivial to note that LeRaC requires the same time as the conventional
regime.

Significance testing. To determine if the reported accuracy gains observed for LeRaC with respect
to the baseline are significant, we apply McNemar significance testing (Dietterich, 1998) to the
results reported in the main article on all 10 data sets. In 20 of 26 cases, we found that our results
are significantly better than the corresponding baseline, at a p-value of 0.001. This confirms that our
gains are statistically significant in the majority of cases.

Anti-curriculum. Since our goal is to perform curriculum learning (from easy to hard), we re-
strict the settings for ηj , ∀j ∈ {1, 2, ..., n}, such that deeper layers start with lower learning rates.
However, another strategy is to consider the opposite setting, where we use higher learning rates for
deeper layers. If we train later layers at a faster pace (anti-curriculum), we conjecture that the later
layers get adapted to the noise from the early layers, which could likely lead to local optima or diffi-
cult training (due to the need of readapting to the earlier layers, once these layers start learning useful
features). We tested this approach (anti-LeRaC), which belongs to the category of anti-curriculum
learning strategies (Soviany et al., 2022), in a set of new experiments with ResNet-18 and Wide-
ResNet-50 on CIFAR-100, as well as SepTr on CREMA-D. We report the corresponding results
with LeRaC and anti-LeRaC in Table 4. Although anti-curriculum, e.g. hard negative sample min-
ing, was shown to be useful in other tasks (Soviany et al., 2022), our results indicate that learning rate
anti-curriculum attains inferior performance compared with our approach. Furthermore, anti-LeRaC
is also below the conventional regime, confirming our conjecture regarding this strategy.

SGD+LeRaC versus Adam. In Table 5, we present results showing that SGD and SGD+LeRaC
obtain better accuracy rates than Adam (Kingma & Ba, 2015) for the Wide-ResNet-50 model on

6



Under review as a conference paper at ICLR 2024

Model Training Regime Accuracy

ResNet-18 conventional 72.25±0.04
LeRaC (ours) 73.51±0.22

Wide-ResNet-50 conventional 65.42±0.66
LeRaC (ours) 67.00±0.55

Table 6: Average accuracy rates (in %) over 5 runs for ResNet-18 and Wide-ResNet-50 on CIFAR-
100 using data augmentation and different training regimes (conventional versus LeRaC). The accu-
racy of the best training regime in each experiment is highlighted in bold.

Data Set Training Regime Accuracy

CIFAR-10
conventional 89.20± 0.43
LSCL 88.28± 0.14
LeRaC (ours) 89.56± 0.16

CIFAR-100
conventional 71.70± 0.06
LSCL 72.59± 0.25
LeRaC (ours) 72.72± 0.12

Table 7: Average accuracy rates (in %) over 5 runs for ResNet-18 on CIFAR-10 and CIFAR-100
using different training regimes: conventional, LSCL (Dogan et al., 2020) and LeRaC. The accuracy
of the best training regime on each data set is highlighted in bold.

CIFAR-100. This indicates that a simple optimizer combined with LeRaC can obtain better results
than a state-of-the-art optimizer such as Adam. This justifies our decision to use a different optimizer
for each neural model (see Table 1 in the main article).

Data augmentation on vision data sets. Following Sinha et al. (2020), we did not use data aug-
mentation for the vision data sets. We consider training data augmentation as an orthogonal method
for improving results, expecting improvements for both baseline and LeRaC models. Nevertheless,
since we extended the experimental settings considered in Sinha et al. (2020) to other domains, we
took the liberty to use data augmentation in the audio domain (see the results in Table 4 from the
main paper). The same augmentations (noise perturbation, time shifting, speed perturbation, mix-up
and SpecAugment) are used for all audio models, ensuring a fair comparison. Moreover, we next
present additional results with ResNet-18 and Wide-ResNet-50 on CIFAR-100 using the following
augmentations: horizontal flip, rotation, solarization, blur, sharpening and auto-contrast. The results
reported in Table 6 confirm that the performance gaps in the vision domain are in the same range
after introducing data augmentation. In addition, we note that data augmentation seems to be rather
harmful for the Wide-ResNet-50 model, which attains better results without data augmentation.

Comparing with other curriculum learning strategies. Although we consider CBS (Sinha et al.,
2020) as our closest competitor in terms of applicability across architectures and domains, there are
domain-specific curriculum learning methods reporting promising results. To this end, we perform
additional experiments with ResNet-18 on CIFAR-10 and CIFAR-100 with another recent curricu-
lum learning strategy (Dogan et al., 2020) applied in the image domain. Dogan et al. (2020) proposed
Label-Similarity Curriculum Learning (LSCL), a strategy that relies on hierarchically clustering the
classes (labels) based on inter-label similarities determined with the help of document embeddings
representing the Wikipedia pages of the respective classes. The corresponding results shown in Ta-
ble 7 indicate that label-similarity curriculum is useful for CIFAR-100, but not for CIFAR-10. This
suggests that the method needs a sufficiently large number of classes to benefit from the constructed
hierarchy of classes. In contrast, LeRaC does not rely on external components, such as the similarity
measure used by Dogan et al. (2020) in their strategy. Another important limitation of LSCL (Dogan
et al., 2020) is its restricted use, e.g. LSCL is not applicable to regression tasks, where there are no
classes. Therefore, we consider LeRaC as a more versatile alternative.

Limited data regime. In all our experiments carried out so far, the evaluated models were trained
on the complete training sets. However, it is interesting to find out how our strategy behaves in
a limited data regime. To this end, we conduct another experiment to compare LeRaC with the
conventional and CBS regimes in a limited data scenario, considering only 5% of the training data.
We present the results for ResNet-18 on CIFAR-100 in Table 8. The results indicate that LeRaC

7



Under review as a conference paper at ICLR 2024

Training Set Size Training Regime Accuracy

5%
conventional 23.86± 0.32
CBS 24.79± 0.17
LeRaC (ours) 25.04± 0.22

Table 8: Average accuracy rates (in %) over 5 runs for ResNet-18 on CIFAR-100 using limited
training data (only 5% of the full training set) and different training regimes: conventional, CBS
(Sinha et al., 2020) and LeRaC. The accuracy of the best training regime is highlighted in bold.

Model Training Regime CIFAR-10 CIFAR-100 Tiny ImageNet

CvT-13

conventional 71.84± 0.37 41.87± 0.16 33.38± 0.27
CBS 72.64± 0.29 44.48± 0.40 33.56± 0.36
LeRaC 72.90± 0.28 43.46± 0.18 33.95± 0.28
CBS + LeRaC 73.25± 0.19 44.90± 0.41 34.20± 0.61

Table 9: Average accuracy rates (in %) over 5 runs on CIFAR-10, CIFAR-100 and Tiny ImageNet
for CvT-13 based on different training regimes: conventional, CBS (Sinha et al., 2020), LeRaC with
linear update, LeRaC with exponential update (proposed), and a combination of CBS and LeRaC.

keeps its performance edge in the limited data regime. We therefore conclude that LeRaC can also
be useful when limited training data is available.
Combining CBS and LeRaC. Another interesting aspect worth studying is to determine if putting
the CBS and LeRaC regimes together could bring further performance gains. We study the effect
of combining CBS and LeRaC for CvT-13, since both CBS and LeRaC improve this model. In
Table 9, we present the results with CvT-13 on CIFAR-10, CIFAR-100 and Tiny ImageNet. The
reported results show that the combination brings accuracy gains across all three data sets. We
thus conclude that the combination of curriculum learning regimes is worth a try, whenever the two
independent regimes boost performance.

4 DISCUSSION

Relation to curriculum learning. Consider the extreme case when the learning rate is set to zero
for later layers, which is equivalent to freezing those layers. This reduces the learning capacity of
the model. If layers are unfrozen one by one, the capacity of the model grows. LeRaC can be seen as
a soft version of the model-level curriculum method described above. We thus consider that LeRaC
is a model-level curriculum method. However, our method can also be seen as a curriculum learning
strategy that simplifies the optimization in the early training stages by restricting the model updates
(in a soft manner) to certain directions (corresponding to the weights of the earlier layers). Due to
the imposed soft restrictions (lower learning rates for deeper layers), the optimization is easier at
the beginning. As the training progresses, all directions become equally important, and the network
is permitted to optimize the loss function in any direction. As the number of directions grows, the
optimization task becomes more complex (it is harder to find the optimum). Another relationship to
curriculum learning can be discovered by noting that the complexity of the optimization increases
over time, just as in curriculum learning.

Relation to learning rate schedulers. There are some contributions (Singh et al., 2015; You et al.,
2017) showing that using adaptive learning rates can lead to improved results. We explain how our
method is different below. In (Singh et al., 2015), the main goal is increasing the learning rate of
certain layers as necessary, to escape saddle points. Different from Singh et al. (2015), our strategy
reduces the learning rates of deeper layers, introducing soft optimization restrictions in the initial
training epochs. You et al. (2017) proposed to train models with very large batches using a learning
rate for each layer, by scaling the learning rate with respect to the norms of the gradients. The
goal of You et al. (2017) is to specifically learn models with large batch sizes, e.g. formed of 8K
samples. Unlike You et al. (2017), we propose a more generic approach that can be applied to
multiple architectures (convolutional, recurrent, transformer) under unrestricted training settings.

Gotmare et al. (2019) point out that learning rate with warmup and restarts is an effective strategy to
improve stability of training neural models using large batches. Different from LeRaC, this approach
does not employ a different learning rate for each layer. Moreover, the strategy restarts the learning
rate at different moments during the entire training process, while LeRaC is applied only during the

8



Under review as a conference paper at ICLR 2024

first few training epochs. Aside from these technical differences, our experiments already include a
direct comparison of the two strategies for the CvT architecture, i.e. the baseline CvT uses warmup
and restarts. The results show that introducing LeRaC brings consistent improvements. We thus
conclude that our strategy is a viable and distinct alternative to learning rate with warmup and
restarts.

Relation to optimizers. We consider Adam (Kingma & Ba, 2015) and related optimizers as orthog-
onal approaches that perform the optimization rather than setting the learning rate. Our approach,
LeRaC, only aims to guide the optimization during the initial training iterations by reducing the
relevance of optimizing deeper network layers. Most of the baseline architectures used in our ex-
periments are already based on Adam or some of its variations, e.g. AdaMax, AdamW (Loshchilov
& Hutter, 2019). LeRaC is applied in conjunction with these optimizers, showing improved perfor-
mance over various architectures and application domains. This supports our claim that LeRaC is
an orthogonal contribution to the family of Adam optimizers.

Interaction with other curriculum learning strategies. Our simple and generic curriculum learn-
ing scheme can be integrated into any model for any task, not relying on domain or task dependent
information, e.g. the data samples. We already showed that combining LeRaC and CBS can boost
performance (see the results presented in Table 9). In a similar fashion, LeRaC can be combined
with data-level curriculum strategies for improved performance. We leave this exploration for future
work.

Interaction with optimization algorithms. Throughout our experiments, we always keep using
the same optimizer for a certain neural model, for all training regimes (conventional, CBS, LeRaC).
The best optimizer for each neural model is established for the conventional training regime. We
underline that our initial learning rates and scheduler are used independently of the optimizers.
Although our learning rate scheduler updates the learning rates at the beginning of every iteration, we
did not observe any stability or interaction issues with any of the optimizers (SGD, Adam, AdaMax,
AdamW).

Interaction with other learning rate schedulers. Whenever a learning rate scheduler is used for
training a model in our experiments, we simply replace the scheduler with LeRaC until epoch k.
For example, all the baseline CvT results are based on Linear Warmup with Cosine Annealing,
this being the recommended scheduler for CvT (Wu et al., 2021). When we introduce LeRaC, we
simply deactivate Linear Warmup with Cosine Annealing between epochs 0 and k. In general, we
recommend deactivating other schedulers while using LeRaC for simplicity in avoiding stability
issues.

Setting the initial learning rates. We should emphasize that the different learning rates η(0)j , ∀j ∈
{1, 2, ..., n}, are not optimized nor tuned during training. Instead, we set the initial learning rates
η
(0)
j through validation, such that η(0)n is around five or six orders of magnitude lower than η(0), and

η
(0)
1 = η(0). After initialization, we apply our exponential scheduler, until all learning rates become

equal at iteration k. In addition, we would like to underline that the difference δ between the initial
learning rates of consecutive layers is automatically set based on the range given by η

(0)
1 and η

(0)
n .

For example, let us consider a network with 5 layers. If we choose η
(0)
1 = 10−1 and η

(0)
5 = 10−2,

then the intermediate initial learning rates are automatically set to η
(0)
2 = 10−1.25, η(0)3 = 10−1.5,

η
(0)
4 = 10−1.75, i.e. δ is used in the exponent and is equal to −0.25 in this case. To obtain the

intermediate learning rates according to this example, we actually apply an exponential scheduler
(similar to the one defined in Eq. (9) from the main paper). This reduces the number of tunable
hyperparameters from n (the number layers) to two, namely η

(0)
1 and η

(0)
n . We go even further,

setting η
(0)
1 = η(0) without tuning, in all our experiments. Hence, tuning is only performed for the

initial learning rate of the last layer, namely η
(0)
n . However, tuning all η(0)j , ∀j ∈ {1, 2, ..., n}, might

lead to better results. We leave this exploration for future work.

Setting c without tuning. Learning rates are usually expressed as a power of c = 10, e.g. 10−4. If
we start with a learning rate of 10−8 for some layer j and we want to increase it to 10−4 during the
first k = 5 epochs, the intermediate learning rates are 10−7, 10−6 and 10−5. We thus believe it is
more intuitive to understand what happens when setting c = 10 in Eq. (9), as opposed to using some
tuned value for c. To this end, we refrain from tuning c and fix it to c = 10.

9



Under review as a conference paper at ICLR 2024

Number of hyperparameters. LeRaC adds only two additional tunable hyperparameters with re-
spect to the conventional training regime. These are the lowest learning rate η

(0)
n and the number

of iterations k to employ LeRaC. We reduce the number of hyperparameters that require tuning by
using a fixed rule to adjust the intermediate learning rates, e.g. by employing an exponential sched-
uler, or by fixing some hyperparameters, e.g. c = 10. We emphasize that CBS (Sinha et al., 2020)
has three additional hyperparameters, thus having one extra hyperparameter compared with LeRaC.
Furthermore, we note that data-level curriculum methods also introduce additional hyperparameters.
Even a simple method that splits the examples into easy-to-hard batches that are gradually added to
the training set requires at least two hyperparameters: the number of batches, and the number of
iterations before introducing a new training batch. We thus believe that, in terms of the number of
additional hyperparameters, LeRaC is comparable to CBS and other curriculum learning strategies.
We emphasize that the same happens if we look at new optimizers, e.g. Adam (Kingma & Ba, 2015)
adds three additional hyperparameters compared with SGD.

Limitations of our work. One limitation is the need to disable other learning rate schedulers while
using LeRaC. We already tested this scenario with CvT (the baseline CvT uses Linear Warmup
with Cosine Annealing, which is removed when using LeRaC), observing consistent performance
gains (see Table 2 from the main paper). However, disabling alternative learning rate schedulers
might bring performance drops in other cases. Hence, this has to be decided on a case by case basis.
Another limitation is the possibility of encountering longer training times or poor convergence when
the hyperparameters are not properly configured. We recommend hyperparameter tuning on the
validation set to avoid this outcome.

5 MORE DETAILS ABOUT EXPERIMENTS

5.1 DATA SET DESCRIPTIONS

CIFAR-10. CIFAR-10 (Krizhevsky, 2009) is a popular data set for object recognition in images. It
consists of 60,000 color images with a resolution of 32 × 32 pixels. An image depicts one of 10
object classes, each class having 6,000 examples. We use the official data split with a training set of
50,000 images and a test set of 10,000 images.

CIFAR-100. The CIFAR-100 (Krizhevsky, 2009) data set is similar to CIFAR-10, except that it has
100 classes with 600 images per class. There are 50,000 training images and 10,000 test images.

Tiny ImageNet. Tiny ImageNet is a subset of ImageNet-1K (Russakovsky et al., 2015) which
provides 100,000 training images, 25,000 validation images and 25,000 test images representing
objects from 200 different classes. The size of each image is 64× 64 pixels.

ImageNet-200. ImageNet-200 is a part of ImageNet-1K (Russakovsky et al., 2015) with images
from a subset of 200 classes, where the original resolution of the images is preserved.

PASCAL VOC 2007+2012. One of the most popular benchmarks for object detection is PASCAL
VOC (Everingham et al., 2010). The datasets consists of 21,503 images which are annotated with
bounding boxes for 20 object categories. The official split has 16,551 training images and 4,952 test
images.

BoolQ. BoolQ (Clark et al., 2019) is a question answering data set for yes/no questions containing
15,942 examples. The questions are naturally occurring, being generated in unprompted and uncon-
strained settings. Each example is a triplet of the form: {question, passage, answer}. We use the
data split provided in the SuperGLUE benchmark (Wang et al., 2019a), containing 9,427 examples
for training, 3,270 for validation and 3,245 for testing.

QNLI. The QNLI (Question-answering NLI) data set (Wang et al., 2019b) is a natural language
inference benchmark automatically derived from SQuAD (Rajpurkar et al., 2016). The data set con-
tains {question, sentence} pairs and the task is to determine whether the context sentence contains
the answer to the question. The data set is constructed on top of Wikipedia documents, each doc-
ument being accompanied, on average, by 4 questions. We consider the data split provided in the
GLUE benchmark (Wang et al., 2019b), which comprises 104,743 examples for training, 5,463 for
validation and 5,463 for testing.

10



Under review as a conference paper at ICLR 2024

RTE. Recognizing Textual Entailment (RTE) (Wang et al., 2019b) is a natural language inference
data set containing pairs of sentences with the target label indicating if the meaning of one sentence
can be inferred from the other. The training subset includes 2,490 samples, the validation set 277,
and the test set 3,000 examples.

CREMA-D. The CREMA-D multi-modal database (Cao et al., 2014) is formed of 7,442 videos of
91 actors (48 male and 43 female) of different ethnic groups. The actors perform various emotions
while uttering 12 particular sentences that evoke one of the 6 emotion categories: anger, disgust,
fear, happy, neutral, and sad. Following Ristea & Ionescu (2021), we conduct experiments only on
the audio modality, dividing the set of audio samples into 70% for training, 15% for validation and
15% for testing.

ESC-50. The ESC-50 (Piczak, 2015) data set is a collection of 2,000 samples of 5 seconds each,
comprising 50 classes of various common sound events. Samples are recorded at a 44.1 kHz sam-
pling frequency, with a single channel. In our evaluation, we employ the 5-fold cross-validation
procedure, as described in related works (Piczak, 2015; Ristea et al., 2022).

5.2 DOMAIN-SPECIFIC PREPROCESSING

Image preprocessing. For the image classification experiments, we apply the same data prepro-
cessing approach as Sinha et al. (2020). Hence, we normalize the images and maintain their original
resolution, 32 × 32 pixels for CIFAR-10 and CIFAR-100, and 64 × 64 pixels for Tiny ImageNet.
Similar to Sinha et al. (2020), we do not employ data augmentation.

Text preprocessing. For the text classification experiments with BERT, we lowercase all words and
add the classification token ([CLS]) at the start of the input sequence. We add the separator token
([SEP]) to delimit sentences. For the LSTM network, we lowercase all words and replace them with
indexes from vocabularies constructed from the training set. The input sequence length is limited to
512 tokens for BERT and 200 tokens for LSTM.

Speech preprocessing. The speech preprocessing steps are carried out following Ristea et al.
(2022). We thus transform each audio sample into a time-frequency matrix by computing the dis-
crete Short Time Fourier Transform (STFT) with Nx FFT points, using a Hamming window of
length L and a hop size R. For CREMA-D, we first standardize all audio clips to a fixed dimen-
sion of 4 seconds by padding or clipping the samples. Then, we apply the STFT with Nx = 1024,
R = 64 and a window size of L = 512. For ESC-50, we keep the same values for Nx and L,
but we increase the hop size to R = 128. Next, for each STFT, we compute the square root of
the magnitude and map the values to 128 Mel bins. The result is converted to a logarithmic scale
and normalized to the interval [0, 1]. Furthermore, in all our speech classification experiments, we
use the following data augmentation methods: noise perturbation, time shifting, speed perturbation,
mix-up and SpecAugment (Park et al., 2019).

REFERENCES

Houwei Cao, David G. Cooper, Michael K. Keutmann, Ruben C. Gur, Ani Nenkova, and Ragini Verma.
CREMA-D: Crowd-sourced emotional multimodal actors dataset. IEEE Transactions on Affective Com-
puting, 5(4):377–390, 2014.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova.
BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions. In Proceedings of NAACL, pp.
2924–2936, 2019.

Thomas G. Dietterich. Approximate Statistical Tests for Comparing Supervised Classification Learning Algo-
rithms. Neural Computation, 10(7):1895–1923, 1998.

Ürün Dogan, Aniket Anand Deshmukh, Marcin Bronislaw Machura, and Christian Igel. Label-similarity cur-
riculum learning. In ECCV, pp. 174–190, 2020.

Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and Andrew Zisserman. The pascal visual
object classes (voc) challenge. Intenational Journal of Computer Vision, 88(2):303–338, 2010.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of AISTATS, pp. 249–256, 2010.

11



Under review as a conference paper at ICLR 2024

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer look at deep learning
heuristics: Learning rate restarts, warmup and distillation. In Proceedings of ICLR, 2019.

Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic gradient descent. In Proceedings of
ICLR, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of
Toronto, 2009.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In Proceedings of ICLR, 2019.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le.
SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition. Proceedings of
INTERSPEECH, pp. 2613–2617, 2019.

Karol J. Piczak. ESC: Dataset for Environmental Sound Classification. In Proceedings of ACMMM, pp. 1015–
1018, 2015.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ Questions for Machine
Comprehension of Text. In Proceedings of EMNLP, pp. 2383–2392, 2016.

Nicolae-Catalin Ristea and Radu Tudor Ionescu. Self-paced ensemble learning for speech and audio classifica-
tion. In Proceedings of INTERSPEECH, pp. 2836–2840, 2021.

Nicolae-Catalin Ristea, Radu Tudor Ionescu, and Fahad Shahbaz Khan. SepTr: Separable Transformer for
Audio Spectrogram Processing. In Proceedings of INTERSPEECH, pp. 4103–4107, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision, 115(3):211–252, 2015.

Bharat Singh, Soham De, Yangmuzi Zhang, Thomas Goldstein, and Gavin Taylor. Layer-specific adaptive
learning rates for deep networks. In Proceedings of ICMLA, pp. 364–368, 2015.

Samarth Sinha, Animesh Garg, and Hugo Larochelle. Curriculum by smoothing. In Proceedings of NeurIPS,
pp. 21653–21664, 2020.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey. International
Journal of Computer Vision, 130(6):1526–1565, 2022.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding
Systems. In Proceedings of NeurIPS, volume 32, pp. 3266–3280, 2019a.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. GLUE: A
Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. In Proceedings of
ICLR, 2019b.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. CvT: Introducing
Convolutions to Vision Transformers. In Proceedings of ICCV, pp. 22–31, 2021.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

12


	Theoretical Proof
	Empirical Proof
	Additional Experiments
	Discussion
	More Details About Experiments
	Data Set Descriptions
	Domain-Specific Preprocessing


