
Appendix471

A Additional Figures472

(a) Average Prediction Errors (b) Top Eigenmodes Variance (c) Total Train Variance

Figure A.1: We show the accuracy of the lazy-limit ODE in equation (where) comapared to a two-
layer finite width N = 100 ReLU network trained with � = 0.05 on P = 10 random training data
points. (a) The average dynamics over an ensemble of E = 500 networks (solid colors) compared to
the infinite width predictions (dashed black). (b) The predicted finite size variance for each eigenmode
of the error �k(t) = �(t) · �k. These are not ordered simply by magnitude of eigenvalues or the
target projections yk = y · �k, but rather depend on all eigenvalue gaps �k � �` for k 6= ` and also
the k`nm tensor. (c) The total variance for all training points N

P
µ Var�µ(t) = N

P
k Var�k(t)

is also well predicted by the DMFT propagator equations.

(a) Fourth Moment (t, t) (b) Kernel sensitivity D(t, 100)

Figure A.2: The  and D functions for varying � in Figure 2. (a) The uncoupled kernel variance
(t, t) increases monotonically with �. This reveals that the dynamical filtering of  is what is
responsible for the late time decrease in variance during feature learning. (b) The tensor D(t, s)
measures sensitivity of kernel at time t to perturbation in � at time s. The D(t, s) entries also
increase with �. This suggests that the reduction in variance of the training error and the kernel are
not due to reduction in , but rather a dynamical filtering effect due to scale growth in K1 and rapid
reduction in �1.
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(a) Online function variance (b) Online leading correction breaks down for large D

Figure A.3: Online learning follows identical finite size effects to offline training in two layer linear
networks. (a) The variance of �(t) in online learning vs input dimension D. (b) The predicted
leading correction to the generalization error is accurate for N � D but breaks down as D becomes
comparable to N .

Figure A.4: A comparison of the bias and variance corrections in the toy model of Figure 3. At
small D/N (or P/N for offline training) the leading variance and the leading variance and leading
bias both track the experiment. Both the bias and the variance contribute positively towards the
total generalization error since the variance correction alone (orange) exceeds the DMFT limiting
error (dashed) and the variance and bias correction together (green) exceed variance alone (orange).
However, for large D/N (or P/N ) the leading order picture fails to describe the finite width
experiment, indicating significant variance possibly at higher order scales (like D2/N2, D3/N3, ...).
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Figure A.5: The covariance of kernel entries across pairs of time points ⌃H`(t, s) =
N Cov(H`(t, t), H`(s, s)) for depth 4 linear network trained on whitened data. The variance
becomes increasingly localized in time as feature learning � increases.
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(a) Ens. Averaged Train Loss (b) Raleigh Quotient �>K�
|�|2 (c) Rates as Function of N

Figure A.6: The ensemble averaged train loss for the same depth 6 CNN trained on a random
subsample of P = 64 CIFAR-10 points. Training is full batch gradient descent with � = 0.05. (a)
The ensemble train accuracy for this subset of CIFAR-10 is well modeled as an exponential in time
L(t) / exp (�RN t) with a rate RN that depends on width. (b) The projection of the errors � on
the average NTK hKi (which is related to the rate of decay of the training loss, see Appendix F)
reveals that wider networks are more aligned with their instantaneous error signals. (c) The rates RN

are indeed a linear functions of N�1, with RN = R1 + R1

N , consistent with the average NTK hKi
receiving a N�1 correction. Using ensembling to find a scaling law like that above can thus allow
one extrapolate the training rate of infinite width mean field models.

(a) Training MSE (b) Kernel-Task Alignment (c) Test Acc.

(d) Single vs Ensembled Ratio (e) Single vs Ensembled Ratio

Figure A.7: Width N = 64 depth 6 CNNs trained on the full CIFAR-10 with MSE. An ensemble of
size E = 10 randomly initialized networks are trained. (a) Training MSE for varying �. (b) Final
layer kernel-task alignment does strongly depend on �, despite similar train dynamics. (c) Top-1
classification test accuracy is only slightly different across �. A small benefit from ensembling is
visible late in training. (c) Initialization variance (measured by the ratio of single model to ensembled
MSE) for training and test losses. Richer networks have lower variance throughout training. (b)
Networks have distinct kernel dynamics when trained with different � as evidenced by the alignment
(cosine similarity) between the final layer feature kernel �L and the target test labels y.
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B CIFAR-10 Experimental Details473

We trained the following depth 6 CNN architecture in the mean field parameterization using FLAX474

[58] on a single GPU. The bias parameters were zero in each hidden Conv layer, but were used for475

the readout weights. The networks were trained with MSE loss on centered 10 dimensional targets476

yµ 2 R10 for µ 2 [P ]. Each convolution was followed by an average pooling operation. To obtain477

mean field behavior, NTK parameterization with a modified final layer is used [7, 9].478

1 from flax import linen as nn479

2 import jax.numpy as jnp480

3481

4 class CNN(nn.Module):482

5483

6 width: int484

7485

8 def setup(self):486

9 kif = nn.initializers.normal(stddev = 1.0) # O_N(1) entries487

10 self.conv1 = nn.Conv(features = self.width , kernel_init = kif ,488

use_bias = False , kernel_size = (3,3))489

11 self.conv2 = nn.Conv(features = self.width , kernel_init = kif ,490

use_bias = False , kernel_size = (3,3))491

12 self.conv3 = nn.Conv(features = self.width , kernel_init = kif ,492

use_bias = False , kernel_size = (3,3))493

13 self.conv4 = nn.Conv(features = self.width , kernel_init = kif ,494

use_bias = False , kernel_size = (3,3))495

14 self.conv5 = nn.Conv(features = self.width , kernel_init = kif ,496

use_bias = False , kernel_size = (3,3))497

15 self.readout = nn.Dense(features = 10, use_bias = True ,498

kernel_init = kif)499

16 return500

17501

18 def __call__(self , x, train = True):502

19 N = self.width503

20 D = 3504

21 x = self.conv1(x) / jnp.sqrt(D * 9)505

22 x = jnp.sqrt (2.0) * nn.relu(x)506

23 x = nn.avg_pool(x, window_shape =(2,2), strides = (2,2)) # 32 x 32507

-> 16 x 16508

24 x = self.conv2(x) / jnp.sqrt(N*9) # explicit N^{ -1/2}509

25 x = jnp.sqrt (2.0) * nn.relu(x)510

26 x = nn.avg_pool(x, window_shape =(2,2), strides = (2,2)) # 16 x 16511

-> 8 x 8512

27 x = self.conv3(x)/jnp.sqrt(N*9)513

28 x = jnp.sqrt (2.0) * nn.relu(x)514

29 x = nn.avg_pool(x, window_shape =(2,2), strides = (2,2)) # 8 x 8 ->515

4 x 4516

30 x = self.conv4(x) / jnp.sqrt(N*9)517

31 x = jnp.sqrt (2.0) * nn.relu(x)518

32 x = nn.avg_pool(x, window_shape =(2,2), strides = (2,2)) # 4 x 4519

-> 2 x 2520

33 x = self.conv5(x) / jnp.sqrt(N*9)521

34 x = jnp.sqrt (2.0) * nn.relu(x)522

35 x = nn.avg_pool(x, window_shape =(2,2), strides = (2,2)) # 2 x 2523

-> 1 x 1524

36 x = x.reshape ((x.shape[0], -1)) # flatten525

37 x = self.readout(x) / N # for mean field scaling526

38 return x527

All models were trained with standard SGD with a batch size of 256. Each element in the ensemble of528

E networks is trained on identical batches presented in identical order. For the Figure 6 experiments,529

the raw learning rate is scaled as ⌘ = 10N
p
� with � = 0.2 (note that mean field theory requires530

scaling the raw learning rate linearly with N since the raw NTK is O(N�1) [9]). For Figure A.7, the531

learning rate is ⌘ = 5N
p
�. We find that choosing ⌘ / p� gives approximately conserved training532
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times across � (though distinct representation dynamics). The Figure A.6 shows the dynamics of533

fitting P = 64 training points with full batch gradient descent and � = 0.1.534

C Cumulant Expansion of Observables535

We are interested in a principled power series expansion (in 1/N ) of any observable average hO(q)i536

that depends on DMFT order parameters q. At any width N the observable average takes the form537

hO(q)iN =

R
dq exp (NS(q))O(q)R

dq exp (NS(q))
(11)

As discussed in the main text, the N ! 1 limit gives hO(q)iN ⇠ O(q1) where @S
@q |q1 = 0538

by a steepest descent argument [55]. We assume that S’s Hessian is negative semidefinite so539

that ⌃ ⌘ �
⇥
r

2S(q)|q1

⇤�1
⌫ 0 and Taylor expand S(q) around the saddle point q1 giving540

S(q) = S(q1)+ 1
2 (q�q1)>r2S(q)(q�q1)+V (q�q1). We note that the remainder function541

V contains only cubic and higher powers of q � q1 ⌘ �/
p
N . The variable � will be order O(1).542

This will allow us to verify that additional terms are suppressed in powers of 1/N . Expanding both543

the numerator and denominator’s integrands in powers of V , we find544

hO(q)iN =

R
dq exp

�
�

N
2 (q � q1)>⌃�1(q � q1) +NV (q � q1)

�
O(q)

R
dq exp

�
�

N
2 (q � q1)>⌃�1(q � q1) +NV (q � q1)

�

=

R
d� exp

�
�

1
2�

>⌃�1
�
�
(1 +NV + N2

2 V 2 + ...)O(q1 +N�1/2
�)

R
d� exp

�
�

1
2�

>⌃�1�
�
(1 +NV + N2

2 V 2 + ...)

=
hOi1 +N hV Oi1 + N2

2!

⌦
V 2O

↵
1 + N3

3!

⌦
V 3O

↵
1 + ...

1 +N hV i1 + N2

2! hV
2i1 + N3

3! hV
3i1 + ...

= hOi1
1 +N hV Oi1 / hOi1 + N2

2!

⌦
V 2O

↵
1 / hOi1 + N3

3!

⌦
V 3O

↵
1 / hOi1 + ...

1 +N hV i1 + N2

2! hV
2i1 + N3

3! hV
3i1 + ...

(12)

where hi1 represents an average over the Gaussian fluctuation N

⇣
q1,� 1

N

⇥
r

2
qS(q1)

⇤�1
⌘

. We545

see that the series in the denominator contains terms of the form Nk

k!

⌦
V k
↵
1 while the numerator546

depends on terms of the form Nk

k!

⌦
V kO

↵
1 / hOi1. In either of these power series, the k-th term547

can contribute at most548

Nk
⌦
V kO

↵
1

hOi1
, Nk

⌦
V k
↵
1 ⇠

⇢
O(N�(k+1)/2) k odd
O(N�k/2) k even

(13)

since V contributes only cubic and higher terms. Thus each term in the numerator and denominator’s549

series contains increasing powers of 1/N . Concretely, each of the two series have terms of order550

{N0, N�1, N�1, N�2, N�2, ...}. Thus any quantity of the form hOi
hOi1

admits a ratio of power series551

in powers of 1/N . One could truncate each of the series in the numerator and denominator to a552

desired order in N . Alternatively, the denominator could be expanded giving a single series (the553

cumulant expansion [56]). The first few terms in the cumulant expansion have the form554

hOiN = hOi1 +N [hOV i1 � hOi1 hV i1]

+
N2

2

h⌦
V 2O

↵
1 � 2 hV Oi1 hV i1 + 2 hV i21 hOi1 �

⌦
V 2
↵
1 hOi1

i
+ ... (14)

In this work, we mainly are interested in the leading order correction to hOi which can always be555

obtained with the truncation after the terms linear in V for any observable O.556
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C.1 Square Deviation from DMFT557

We will now analyze the fluctuation statistics of our order parameters around the saddle point558 ⌦
(q � q1)(q � q1)>

↵
N

which has the form559

⌦
(q � q1)(q � q1)>

↵
N

=

⌦
(q � q1)(q � q1)>

↵
1 +N

⌦
V (q � q1)(q � q1)>

↵
1 + ...

1 +N hV i1 + ...

=

 1
N⌃+O(N�2)

1 +O(N�1)

�
⇠

1

N
⌃+O(N�2), (15)

as stated in the main text and verified empirically in Figure 2 (a). The reason that the terms in the560

numerator involving V can be no larger than O(N�2) comes from vanishing of odd moments for561

q�q1 in the unperturbed distribution. Thus the leading expression for
⌦
(q � q1)(q � q1)>

↵
only562

depends on ⌃ and not on V .563

C.2 Mean Deviation from DMFT564

Although the square displacement from DMFT only depended on ⌃ and not on V , we note that the565

average order parameter displacement hq � q1i does receive a O(1/N) correction that depends on566

the perturbed potential V567

hq � q1iN =
hq � q1i1 +N h(q � q1)V i1 + N2

2

⌦
(q � q1)V 2

↵
1 + ...

1 +N hV i1 + N2

2 hV
2i1 + ...

⇠

⌃
D

@V
@q

E

1
+O(N�2)

1 +O(N�1)
⇠ ⌃

⌧
@V

@q

�

1
+O(N�2). (16)

where in the last line we used Stein’s lemma (Gaussian integration by parts) for the Gaussian568

distribution over q. Note that
D

@V
@q

E

1
⇠ O

�
1
N

�
since the derivative of the cubic term in V gives a569

quadratic function of q � q1, whose average must be O(N�1). In this work, we focus primarily on570

the structure of the propagator, but outline a general recipe for getting the leading mean correction in571

Appendix F and G.2.572

C.3 Covariance of Order Parameters573

Lastly, we combine the previous two observations to reason about the scaling of the order parameter574

covariance over initializations. We note that the leading covariance of the order parameters over575

random initializations is also given by the propagator: Cov(q) ⇠ 1
N⌃+O(N�1), since576

Cov(q) =
D
(q � hqiN ) (q � hqiN )>

E

N

=
D
(q � q1) (q � q1)>

E

N
�

D
(q1 � hqiN ) (q1 � hqiN )>

E

N

⇠
1

N
⌃+O(N�2) (17)

due to the arguments above which showed that
⌦
(q � q1)(q � q1)>

↵
⇠

1
N⌃+O(N�2) and that577

q1 � hqiN ⇠ O(N�1). Therefore, in the leading order picture, it is safe to associate ⌃ with the578

covariance of order parameters over random initializations of the network weights.579

D Propagator Structure for the full DMFT Action580

In this section, we examine the propagator structure for the full DMFT action. This action is modified581

from other prior works [9, 46] to include the evolution of the network prediction errors �(t). Those582

prior works noted that � and the NTK K are deterministic functions of deterministic order parameters583

{�`, G`
} in the N !1 limit so those authors did not explicitly include � or K in the action. At584

finite width N , including �,K in the action is crucial as the fluctuation in prediction errors �585

has significant consequences for dynamical fluctuations of kernels through the preactivation and586
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pre-gradient fields. In this section, we will mainly focus on gradient flow, but we describe large step587

size in Appendix L.588

S =
X

`µ⌫

Z
dtds

h
�̂`

µ⌫(t, s)�
`
µ⌫(t, s) + Ĝ`
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+
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where the single site moment generating functionals Z` have the form589

Z` =E{h`
µ(t),z

`
µ(t)} exp
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X
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(19)

with g`µ(t) = �̇(h`
µ(t))z

`
µ(t). The saddle point equations give the infinite width evolution of our order590

parameters.591
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These equations exactly recover the mean field description obtained [9]. Note that hi for field averages592

is an average defined by Z` and is distinct from the types averages hi , hi1 we have been considering593

over the order parameters q. The complementary set of equations for the primal variables, such as594
@S

@�`
µ⌫(t,s)

= 0, give that K̂ = �̂ = �̂ = Ĝ = 0 at the saddle point. We now set out to compute the595

Hessan r2
qS. To simplify the set of expressions, we will only explicitly write out the nonvanishing596
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blocks. We will start with second derivatives involving only pairs of dual variables {�̂, Ĝ, A,B}597
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@Ĝ`
µ⌫(t, s)@Ĝ
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`
↵�(t

0, s0)
=
⌦
�(h`

µ(t))�(h
`
⌫(s))g

`
↵(t

0)g`�(s
0)
↵
� �`

µ⌫(t, s)G
`
↵�(t

0, s0)

⌘ �
`G`

µ⌫↵�(t, s, t
0, s0)

@2S

@�̂`
µ⌫(t, s)@A

`�1
�↵ (s0, t0)

= ��

*
@�(h`

µ(t))

@u`
�(s

0)
�(h`

⌫(s))g
`
↵(t

0)

+

� �

*
�(h`

µ(t))
@�(h`

⌫(t))

@u`
�(s

0)
g`↵(t

0)

+

� �

*
�(h`

µ(t))�(h
`
⌫(s))

@g`↵(t
0)

@u`
�(s

0)

+
� �2�`

µ⌫(t, s)B
`�1
↵� (t0, s0)

⌘ ���
`B`�1

µ⌫↵� (t, s)

@2S

@�̂`
µ⌫(t, s)@B

`
�↵(s

0, t0)
= ��

*
@�(h`

µ(t))

@r`�(s
0)

�(h`
⌫(s))�(h

`
↵(t

0))

+

� �

*
�(h`

µ(t))
@�(h`

⌫(t))

@r`�(s
0)

�(h`
↵(t

0))

+

� �

*
�(h`

µ(t))�(h
`
⌫(s))

@�(h`
↵(t

0))

@r`�(s
0)

+
� �2�`

µ⌫(t, s)A
`
↵�(t

0, s0)

⌘ ���
`A`

µ⌫↵�(t, s)

@2S

@Ĝ`
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@Ĝ`
µ⌫(t, s)@B

`
�↵(s

0, t0)
= ��

*
@g`µ(t)

@r`�(s
0)
g`⌫(s)�(h

`
↵(t

0))

+
� �

*
g`µ(t)

@g`⌫(t)

@r`�(s
0)
�(h`

↵(t
0))

+

= ��

*
g`µ(t)g

`
⌫(s)

@�(h`
↵(t

0))

@r`�(s
0)

+
� �2G`

µ⌫(t, s)A
`
↵�(t

0, s0)

⌘ ��G
`A`

µ⌫↵�(t, s)

@2S

@A`
µ⌫(t, s)@B

`
�↵(s

0, t0)
= ��2�µ↵�⌫��(t� t0)�(s� s0)

@2S

@A`�1
⌫µ (s, t)@B`

�↵(s
0, t0)

= �2
*

@2

@u`
⌫(s)@r

`
�(s

0)

⇥
g`µ(t)�(h

`
↵(t

0))
⇤
+
� �4B`�1

µ⌫ (t, s)A`
↵�(t

0, s0)

⌘ B
`�1A`

µ⌫↵� (t, s, t0, s0) (21)
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Next, we consider the second derivatives involving only primal variables {�`, G`,K,�} which all598

vanish599

@2S

@�`
µ⌫(t, s)@�

`0
↵�(t

0, s0)
= 0

@2S

@G`
µ⌫(t, s)@G

`0
↵�(t

0, s0)
= 0

@2S

@�`
µ⌫(t, s)@G

`0
↵�(t

0, s0)
= 0

@2S

@�`
µ⌫(t, s)@K↵�(s0)

= 0

@2S

@G`
µ⌫(t, s)@K↵�(s0)

= 0

@2S

@�`
µ⌫(t, s)@�↵(s0)

= 0

@2S

@G`
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= 0

@2S

@Kµ⌫(t)@K↵�(s)
= 0

@2S

@Kµ⌫(t)@�↵(s)
= 0

@2S

@�µ(t)@�↵(s)
= 0 (22)

Now we consider all derivatives which involve one of the dual variables {�̂`, Ĝ`, A`, B`
} and the600

primal variable �601

@2S

@�̂`
µ⌫(t, s)@�↵(t0)

= �

⌧
@

@�↵(t0)
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= �

⌧
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�
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= �
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�
⌘ �DA`�
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Now, we consider the second derivatives involving one derivative on a dual variable {�̂`, Ĝ`, A,B}602

and one of the primal variables {�`, G`
}.603

@2S

@�̂`
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`0
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0, s0)
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↵
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@
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µ(t))
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@2S

@A`�1
⌫µ (s, t)@G`+1

↵� (t0, s0)
= �
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⌘ �DA`,G`+1

µ⌫↵� (t, s, t0, s0) (23)

We note that terms such as @
@�`�1

↵� (t0,s0)

⌦
�(h`

µ(t))�(h
`
⌫(s))

↵
can be further decomposed since the604

average over the {u`
µ(t)} ⇠ GP(0,�`�1) and h`’s explicit dynamics both depend on �`�1605

@

@�`�1
↵� (t0, s0)

⌦
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µ(t))�(h
`
⌫(s))

↵
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2

*
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↵(t
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�(h`

µ(t))�(h
`
⌫(s))

+

+

*
@

@�`�1
↵� (t0, s0)

�(h`
µ(t))�(h

`
⌫(s))

+
(24)

where the first term comes from differentiating the Gaussian probability density for u` (e.g. Price’s606

theorem) and the second term is an explicit derivative of the preactivation fields with u` treated as607

constant. Next we consider the nonvanishing terms which involve {�̂, K̂,�,K} which give608

@2S

@�̂µ(t)@�↵(s)
= �µ↵�(t� s) +⇥(t� s)Kµ↵(s)

@2

@�̂µ(t)@K↵�(s)
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@2S
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@2S
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`�1
↵� (t0, s0)�(t� t0)�(t� s0) (25)
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This enumerates all possible non-vanishing terms in the Hessian. We can now construct a block609

matrix of these Hessians by partitioning our order parameters q = [q1, q2]> where610

q1 = Vec{�`
µ⌫(t, s), G

`
µ⌫(t, s),Kµ⌫(t),�µ(t), �̂

`
µ⌫(t, s), Ĝ

`
µ⌫(t, s), K̂µ⌫(t), �̂µ(t)} (26)

q2 = Vec{A`
µ⌫(t, s), B

`
µ⌫(t, s)}. (27)

This choice will become apparent shortly.611

r
2
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
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2
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2
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S
r

2
q2q1

S r
2
q2
S

�
(28)

To calculate the full propagator ⌃ = �
⇥
r

2
qS
⇤�1, we will assume invertibility of the upper block612

⌃0 = �
⇥
r

2
q1
S
⇤�1 and use this in the Schur complement613

⌃ = �
⇥
r

2
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=


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⌃21 ⌃22

�

⌃11 = ⌃0
�⌃0

⇥
r

2
q1q2

S
⇤ �
r

2
q2
S + (r2

q2q1
S)⌃0(r2

q1q2
S)
��1 ⇥

r
2
q2q1

S
⇤
⌃0
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q2q1
S)⌃0(r2
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S)
��1

⌃22 = �
�
r

2
q2
S + (r2

q2q1
S)⌃0(r2

q1q2
S)
��1 (29)

We now need to solve for ⌃0 = �
⇥
r

2
q1
S
⇤�1. To perform this inverse, we again partition q1 into614

two sets of order parameters q1 = [q1
1 , q

2
1 ] where q

1
1 = Vec{�`

µ⌫(t, s), G
`
µ⌫(t, s),Kµ⌫(t),�µ(t)}615

and q
2
1 = Vec{�̂`

µ⌫(t, s), Ĝ
`
µ⌫(t, s), K̂µ⌫(t), �̂µ(t)}616

r
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
0 U

>

U 

�
,  ⌘ r2

q2
1
S , U ⌘ r2

q2
1q

1
1
S (30)

We seek a physically sensible inverse where the variance of q2
1 is vanishing [51, 53]. This leads to617

the following sub-propagator ⌃0618

⌃0 = �[r2
q1
S]�1 =


U

�1
[U�1]> �U

�1

�[U>]�1 0

�
(31)

Thus given ,U , we can solve for ⌃0 and ultimately for the full propagator ⌃. The relevant entries619

in  and U are given by those second derivatives calculated above. We note that each of the field620

derivatives needed for U can be computed implicitly from the field dynamics. For example, for the621

�µ(t) derivatives we have622

@

@�⌫0(t0)
h`
µ(t) = �⇥(t� t0)�`�1

µ⌫0 (t, t0)g`⌫(t
0)

+ �
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0
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X

⌫

⇥
A`�1
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µ⌫ (t, s)�⌫(s)
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@
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0
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X

⌫
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⌫(s))
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(32)

These can then be used in the averages such as
D

@
@�⌫0 (t0)

�(h`
µ(t))�(h

`
⌫(s))

E
. Similarly, we can623

compute terms such as @h`
µ(t)

@�`
↵�(t0,s0)

through the following closed equations624
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@z`µ(t)
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Z t

0
ds
X

⌫

⇥
B`

µ⌫(t, s) +�⌫(s)G
`+1
µ⌫ (t, s)

⇤ @�(h`
⌫(s))

@�`�1
↵� (t0, s0)

(33)

These terms can then be used to compute quantities like D�`

.625
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E Solving for the Propagator626

Below we provide a pseudocode algorithm to solve for the propagator elements.627

Algorithm 1: Propagator Solver

Data: Kx,y, Initial Guesses {�`,G`
}
L
`=1, {A`,B`

}
L�1
`=1 , Sample count S , Update Speed �

Result: Propagator Matrix ⌃
1 Solve DMFT equations with Algorithm 2 for order parameters fµ(t),�`

µ↵(t, s), ... ;
2 Draw S samples {u`

µ,n(t)}
S
n=1 ⇠ GP(0,�`�1), {r`µ,n(t)}Sn=1 ⇠ GP(0,G`+1);

3 Integrate dynamics for each sample to get {h`
µ,n(t), z

`
µ,n(t)}

S
n=1;

4 Estimate  functions with Monte-Carlo integration, for instance
5 �

`

µ⌫↵�(t, s, t
0, s0) =

1
S
P

n2[S] �(h
`
µ,n(t))�(h

`
⌫,n(s))�(h

`
↵,n(t

0))�(h`
�,n(s

0))� �`
µ⌫(t, s)�

`
↵�(t

0, s0) ;

6 For each sample, compute field sensitivities to error signals, such as @h`
µ,n(t)

@�⌫(s)
, and kernels

@h`
µ,n(t)

@�`
↵�(t

0,s0)
implicitly using equations (32) (33) ;

7 Use these sensitivities to compute the necessary D tensors such as
D�`�

µ⌫↵ = 1
S
P

n2[S]
@

@�↵(t0)

⇥
�(h`

µ,n(t))�(h
`
⌫,n(s))

⇤
;

8 Invert U matrix and compute ⌃0 in equation (31);
9 Compute the Schur-complement in equation (29) to handle the response functions ;

628

The above propagator solver builds on the solution to the DMFT equations which is provided below.629

Algorithm 2: Alternating Monte-Carlo Solution to Saddle Point Equations

Data: Kx,y, Initial Guesses {�`,G`
}
L
`=1, {A`,B`

}
L�1
`=1 , Sample count S , Update Speed �

Result: Final Kernels {�`,G`
}
L
`=1, {A`,B`

}
L�1
`=1 , Network predictions through training fµ(t)

1 �0 = K
x
⌦ 11>, GL+1 = 11> ;

2 while Kernels Not Converged do
3 From {�`,G`

} compute K
NTK(t, t) and solve d

dtfµ(t) =
P

↵ �↵(t)KNTK
µ↵ (t, t);

4 ` = 1;
5 while ` < L+ 1 do
6 Draw S samples {u`

µ,n(t)}
S
n=1 ⇠ GP(0,�`�1), {r`µ,n(t)}Sn=1 ⇠ GP(0,G`+1);

7 Integrate dynamics for each sample to get {h`
µ,n(t), z

`
µ,n(t)}

S
n=1;

8 Compute new �`,G` estimates:
9 �̃`

µ↵(t, s) =
1
S
P

n2[S] �(h
`
µ,n(t))�(h

`
↵,n(s)), G̃`

µ↵(t, s) =
1
S
P

n2[S] g
`
µ,n(t)g

`
↵,n(s) ;

10 Solve for Jacobians on each sample @�(h`
n)

@r`>
n

, @g`
n

@u`>
n

;
11 Compute new A

`,B`�1 estimates:

12 Ã
` = 1

S
P

n2[S]
@�(h`

n)
@r`>

n
, B̃`�1 = 1

S
P

n2[S]
@g`

n

@u`>
n

;
13 ` `+ 1;
14 end
15 ` = 1;
16 while ` < L+ 1 do
17 Update feature kernels: �`

 (1� �)�` + ��̃`, G`
 (1� �)G` + �G̃` ;

18 if ` < L then
19 Update A

`
 (1� �)A` + �Ã`,B`

 (1� �)B` + �B̃`

20 end
21 ` `+ 1
22 end
23 end
24 return {�`,G`

}
L
`=1, {A

`,B`
}
L�1
`=1 , {fµ(t)}

P
µ=1
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F Leading Correction to the Mean Order Parameters631

In this section we use the propagator structure derived in the last section to reason about the leading632

finite size correction to hqi at width N . Letting the indices i, j, k, n enumerate all entries of the order633

parameters in q (technically this is a sum over samples and an integral over time for gradient flow),634

we find the leading Pade Approximant for the mean has the form (App C)635

hqi � q1i iN =
N h(qi � q1i )V i1 + N2

2

⌦
(qi � q1i )V 2

↵
1 ...

1 +N hV i1 + N2

2 hV
2i1 + ...

⇠
1

3!N

X

jkl

@3S

@qj@qk@ql
h�i�j�k�li1 +O(N�2). (34)

=
1

2N

X

jkl

@3S

@qj@qk@ql
⌃ij⌃kl +O(N�2) (35)

where �j =
p
N(qj � q1j ) and the derivatives are computed at the saddle point. In the last line, we636

utilized Wick’s theorem and the permutation symmetry of the third derivative @3S
@qi@qj@qk

to evaluate637

the four point averages in terms of the propagator ⌃ij , which was provided in the preceding section638

D. In practice computing even the full set of second derivatives for the DMFT action to get ⌃ is639

quite challenging. Despite the challenge of computing the mean order parameter correction, these640

corrections are relevant in practice and crucially distinguish the training timescales of deep networks641

at different widths as we show in Figures 6 and A.6.642

F.1 Correction to Mean Predictions and Full MSE Correction643

Supposing that we solved for the propagator ⌃, using the formalism in the preceeding section, we644

can compute the O(N�1) correction to the average network prediction error due to finite size. We let645

h�(t)i represent the average of errors over an ensemble of width N networks.646

d

dt
h�µ(t)i = �

X

⌫

hKµ⌫(t)�⌫(t)i

= �
X

⌫

hKµ⌫(t)i h�⌫(t)i �
X

⌫

Cov (Kµ⌫(t),�⌫(t))

⇠ �

X

⌫

hKµ⌫(t)i h�⌫(t)i �
1

N

X

⌫

⌃K�
µ⌫⌫(t, t) +O(N�2) (36)

where ⌃K�
µ⌫⌫(t, t) is the leading covariance (propagator element) between the kernel Kµ⌫(t) and647

prediction error �⌫(t). We see that the average kernel hKµ⌫(t)i (which depends on the finite width648

N ) plays an important role in characterizing the timescales of the average prediction dynamics. Once649

this equation is solved for h�µ(t)i, the square loss at width N and time t has the form650

X

µ

⌦
�µ(t)

2
↵
⇠

✓
1�

2

N

◆X

µ

�1
µ (t)2 +

2

N

X

µ

h�µ(t)i1 �1
µ (t) +

1

N

X

µ

⌃�
µµ(t, t) +O(N�2)

(37)

We will now comment on the structure of the cross term in this above solution. First, if hKi ⌫K
1651

and ⌃K� is negligible then the average errors at finite width will decay more rapidly than the infinite652

width model. However, we suspect that in general, hKi �K
1 contains many negative eigenvalues653

since signal propagation at finite width tends to reduce the scale of feature kernels [14]. We suspect654

that this is the cause of the slower dynamics of ensembled predictors for narrower networks in Figure655

6 and Figure A.6. Additionally, the term involving ⌃K� will generically increase the cross term656

since the dynamics of � cause its fluctuations to become anti-correlated with the fluctuations in K.657

In general, it is challenging to make strong definitive statements about the relative scale of these658

competing effects on the cross term. However, we can say more about this solution in the lazy limit,659

where we find that the cross term will generically be positive, leading to larger MSE (Appendix G.2).660
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F.2 Perturbation Theory in Rates rather than Predictions661

In experiments on deep CNNs trained on CIFAR-10 in 6 and A.6, we find that the loss curves for662

the ensemble averaged predictors are effectively time rescaled by a function of network width. In663

this section, we argue that a proper way to account for this is to compute a perturbation expansion in664

the exponent which defines the rate of decay of the training errors. To illustrate the point, we first665

consider the case of a single training example before describing larger datasets. In this case, we666

consider the change of variables �(t) = e�r(t)y. We now treat r as an order parameter of the theory667

with dynamics668

d

dt
r(t) = K(t) (38)

Note that this equation is now a linear relation between two order parameters (r(t),K(t)), whereas669

the relation was previously quadratic. In the lazy limit, if K ! K � ✏ then r ! r � ✏t, giving an670

effective rescaling of training time by 1� ✏
K .671

For multiple training examples, we introduce the notion of a transition matrix T (t) 2 RP⇥P which672

has dynamics673

d

dt
T (t) = �K(t)T (t) , T (0) = I. (39)

The solution to the training prediction errors can be obtained at any time t by multiplying the initial674

condition �(0) = y with the transition matrix �(t) = T (t)y, where y are the training targets. In675

this case, the relevant rate matrix, which would be an alternative order parameter is676

R(t) = � logT (t) (40)

where log is the matrix logarithm function. Note that in general T (t) admits a Peano-Baker series677

solution [59–61]. In the special case where K(t) commutes with K̄(t) = 1
t

R t
0 dsK(s), we obtain678

the following simplified formula for the rate matrix R679

R(t) =

Z t

0
ds K(s) (41)

The benefit of this representation is the elimination of coupled order parameter dynamics which are680

quadratic in fluctuations (in � and K) into a linear dynamical relation between order parameters R681

and K. An expansion in R will thus give better predictions at long times t than a direct expansion in682

�. In the lazy � ! 0 limit, the constancy of K(t) = K gives the further simplification R = Kt.683

Working with this representation, we have the following finite width expression for the training loss684

⌦
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↵
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>
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where hRi ⇠ R1+ 1
NR

1+O(N�2) is the leading correction to the mean R. In this representation,685

it is clear that finite width can alter the timescale of the dynamics through a correction to the mean of686

R, as well as contribute an additive correction from fluctuations. This justifies the study perturbation687

analysis of rates RN as a function of 1/N in Figures 6 and A.6.688

G Variance in the Lazy Limit689

We can simplify the propagator equations in the lazy � ! 0 limit. To demonstrate how to use our690

formalism, we go through the complete process of inverting the Hessian, however, for this case, this691

procedure is a bit cumbersome. A simplified derivation for the lazy limit can be found below in692

section G.1 which relies only on linearizing the dynamics around the infinite width solution. In the693
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� ! 0 limit, all of the D tensors vanish and the  tensors are constant in time. Thus, it suffices to694

analyze the kernels restricted to t = 0 and study the evolution of the prediction variance �(t).695
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where {u`
µ} ⇠ N (0,�`�1), {r`µ} ⇠ N (0,G`+1). Taking two derivatives with respect to {�̂`, Ĝ`

}696

give terms of the form697
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Given these we also have the relevant non-vanishing sensitivity tensors698
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As before we let q1 = Vec{�µ(t),�`
µ⌫ , G
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µ⌫ ,Kµ⌫} and q2 = Vec{�̂µ(t), �̂`
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propagator has the form700
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The propagator of interest is ⌃q1 = U
�1
⇥
r

2
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S
⇤
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�1>. We can exploit the block structure of U701

to find an inverse702
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where each sub-block can be computed with the Schur-complement formula. Altogether, we multiply703

through to get the propagator704
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Two of these blocks corresponding to K,� are especially important for characterizing the fluctuations705

of network predictions. The covariance structure for K has the form706
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Next we use the fact that U�1
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Lastly, we note that, by the Schur-complement formula that U�1
�K = � (I+⇥K)�1

D
�K . Thus,709

writing (I+⇥K)⌃� (I+⇥K)> = D
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Differentiation with respect to t and s gives a simple differential equation711
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Let { k} be the eigenvectors of the kernel matrix K. Projecting these dynamics on the eigenspace712

⌃k`(t, s) =  >
k ⌃(t, s) ` recovers the equation in the main text713
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Replacing ⌃K =  recovers the equation (7) in the main text.714

G.1 Perturbed Linear System715

In this section, we provide a simpler derivation of the lazy limit training error variance dynamics. In716

this case, we merely perturb the dynamics around its infinite width value �(t) = �1(t) + ✏�(t)717

and K = K1 + ✏K , and keep terms only linear in these perturbations. The perturbation ✏K is fixed718

in time and the dynamics of ✏�(t) are719

d
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Projecting this equation on the eigenspace of K1 gives720
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This immediately recovers the final result of the last section721
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Qualitatively, the process of computing this linear correction (in ✏K ) to the dynamics of � is identical722

to the argument utilized in prior work on perturbative feature learning corrections [11]. In that context,723

the perturbation is caused by small amounts of feature learning, rather than initialization fluctuations.724
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G.2 Mean Prediction Error Correction in the Lazy Limit725

Using a similar heuristic as in the preceeding section, we now consider the correction to the mean726

predictor h�µ(t)i in the lazy limit. Taylor expanding h�(t)i in powers of 1/N , we find727
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From the previous section we have that728
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Projecting these dynamics onto the eigenspace of the kernel gives729
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where ` = k should be seen as the limit where �k ! �` of the above. Thus we find that the leading730

mean correction to the error solves the following differential equation731
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We see that at late sufficiently large t, that the terms involving ⌃K will dominate. We can gain732

more intuition by considering the special case of a single training data point where the mean error733

correction has the form734
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While the term involving ⌃K is positive for all t, K1 could be positive or negative for a given735

architecture. If K1 is positive, then MSE is initially improved at early times but after t > K1

⌃K the736

MSE is worse than the infinite width. On the other hand, if K1 is negative (as we suspect is typically737

the case), then the MSE will strictly decrease with network width for any time t.738

H Two Layer Equations and Time/Time Diagonal739

In this section, we analyze two layer networks in greater detail. Unlike the deep network case, two740

layer networks can be analyzed on the time-time diagonal: ie the dynamics only depend on �(t, t)741

and G(t, t) rather than on all possible off-diagonal pairs of time points. Further, there are no response742

functions A`, B` which complicate the recipe for calculating the propagator (Appendix D).743
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H.1 A Single Training Point744

For a two layer network trained on a single training point with norm constraint |x|2 = D, we have745

the following DMFT action746

S[{K(t), K̂(t),�(t), �̂(t)}] (63)
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The saddle point equations are747
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From these equations, we can compute the entries in the Hessian of the DMFT action S. Letting748
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where (t, s) =
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�K(t)K(s) is the NTK’s fourth cumulant.750

We now vectorize our order parameters over time q = Vec{q(t)}t2R+ and q̂ = Vec{q̂(t)}t2R+ and751

express the full Hessian752
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The covariance matrix of interest (for q(t)) is thus753
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where [⇥K ](t, s) = ⇥(t � s)K(s) and [⇥�](t, s) = ⇥(t � s)�(s). The above equations allow754

one to use the infinite width DMFT dynamics for K(t),�(t) to compute the finite size fluctuation755

dynamics of the kernel K and the error signal �.756

H.1.1 Computing Field Sensitivities757

In this section, we compute D(t, s) by solving for the sensitivity of order parameters. We start with758

the DMFT field equations759

h(t) = u+ �
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0
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Now, differentiating both sides with respect to �(s0) gives760
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We can compute D Monte carlo by iteratively solving the above equations for each sampled trajectory761

{h(t), z(t)} [62, 46]. Averaging the necessary fields over the Monte-carlo samples will give us the762

final expressions for D(t, s).763
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Similarly, the uncoupled kernel variance (t, s) can be evaluated via Monte-carlo sampling for764

nonlinear networks.765

H.2 Test Point Fluctuation Dynamics766

We now are in a position to calculate the test/train kernel and test prediction fluctuations. To do this767

systematically, we augment S with the test point prediction f? and field h? and introduce the kernel768
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We let q(t) = [�(t), f?(t),K(t),K?(t)]>771
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Our total covariance matrix / propagator is thus772
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This is the equation provided in the main text Equation (8).773
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H.3 Two Layer Linear Network Closed Form774

For a linear network on a single data point, we can compute D(t, s) and (t, s) analytically. We start775

from the field equations776
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This operator is causal (D(t, s) = 0 for s > t) as expected and vanishes as t! 0. If we take � ! 0,782

we have D(t, s)! 0 which agrees with our reasoning that fields h, z only depend on � in the feature783

learning regime. Since all fields are Gaussian in the linear network case, we can use Wick’s theorem784

to obtain the exact uncoupled kernel variance in the two layer case.785

(t, s) =
⌦
(h(t)2 + z(t)2)(h(s)2 + z(s)2)

↵
�K(t)K(s)

= 2 hh(t)h(s)i2 + 2 hh(t)z(s)i2 + 2 hz(t)h(s)i2 + 2 hz(t)z(s)i2

= hv+(t)v+(s) + v�(t)v�(s)i
2 + hv+(t)v+(s)� v�(t)v�(s)i

2 (79)

The v±(t) functions are those given above. Using the fact that
⌦
v+(0)2

↵
=
⌦
v�(0)2

↵
= 1 allows us786

to easily compute the single site average above.787

I Multiple Samples with Whitened Data788

In this section, we analyze the role that sample number plays in dynamics in a simplified model of a789

two layer linear network trained on whitened data. Concretely, we assume that xµ·x⌫

D = �µ⌫ . The790

field equations for preactivations hµ(t) and pregradients z(t) obey791

d

dt
hµ(t) = ��µ(t)z(t) ,

d

dt
z(t) = �

PX

µ=1

�µ(t)hµ(t) (80)

We will assume the targets have unit norm |y|
2 = 1 and we define the projection of � onto the792

target as �y(t) = y · �(t). The other P � 1 orthogonal components are denoted �?(t) so that793

� = �y(t)y + �?(t) with �?(t) · y = 0. At infinite width, �? = 0 and our field equations794

become795

d

dt
hy(t) = �y(t)z(t) ,

d

dt
z(t) = �y(t)hy(t) , �?(t) = 0 , h? ⇠ N (0, 1) (81)

However, at finite width N , the off-target predictions �? fluctuate over random initialization. To796

model all of the fluctuations simultaneously, we consider the following action797

S = �

Z
dt
X

µ

�̂µ(t)(�µ(t)� yµ) + lnE exp

 Z
dt
X

µ

�̂µ(t)z(t)hµ(t)

!
(82)
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which enforces the constraint that �µ(t) = yµ �
1
� hz(t)hµ(t)i at infinite width. The Hessian over798

order parameters q = Vec{�µ(t), �̂µ(t)} has the form799

r
2
qS =


0 (�I+D)>

�I+D 

�
, Dµ⌫(t, s) =

⌧
@

@�⌫(s)
z(t)hµ(t)

�
(83)

We thus get the following covariance for predictions ⌃� = (�I+D)�1

⇥
(�I+D)�1

⇤>. We now800

compute the necessary components of the D tensor801

@hµ(t)

@�⌫(s)
= ��µ⌫⇥(t� s)z(s) + �

Z t

0
dt0�µ(t

0)
@z(t0)

@�⌫(s)

@z(t)

@�⌫(s)
= �⇥(t� s)h⌫(s) + �

Z t

0
dt0
X

µ

�µ(t
0)
@hµ(t0)

@�⌫(s)

= �⇥(t� s)h⌫(s) + �

Z t

0
dt0�y(t

0)
@hy(t0)

@�⌫(s)
(84)

In the last line, we used the fact that these equations are to be evaluated at the mean field infinite width802

stochastic process where �?(t) = 0. To compute the sensitivity tensor D, we find the following803

equations for our correlators of interest:804

⌧
@hµ(t)

@�⌫(s)
z(t)

�
= �µ⌫�⇥(t� s) hz(s)z(t)i , µ, ⌫ 6= y

⌧
@z(t)

@�⌫(s)
hµ(t)

�
= �⇥(t� s)�µ⌫ , µ, ⌫ 6= y (85)

⌧
@hy(t)

@�y(s)
z(t)

�
= �⇥(t� s) hz(s)z(t)i+ �

Z t

0
dt0�y(t

0)

⌧
@z(t0)

@�y(s)
z(t)

�

⌧
@z(t)

@�y(s)
z(t0)

�
= �⇥(t� s) hhy(s)z(t)i+ �

Z t

0
dt00�y(t

00)

⌧
@hy(t00)

@�y(s)
z(t0)

�

We therefore see that the components of D decouple over indices. In the y direction, we have the805

following equations806

Dy(t, s) =

⌧
@hy(t)

@�y(s)
z(t)

�
+

⌧
@z(t)

@�y(s)
hy(t)

�
(86)

where the correlators must be solved self-consistently. We will provide this solution in one moment,807

but first, we will look at the orthogonal directions. For the P � 1 orthogonal directions, we obtain the808

explicit formula for D in each of these directions809

D?(t, s) =

⌧
@h?(t)

@�?(s)
z(t)

�
+

⌧
@z(t)

@�?(s)
h?(t)

�

= �⇥(t� s) hz(t)z(s)i+ �⇥(t� s) (87)

Now, we return to Dy. To solve these equations we utilize the change of variables employed in the810

single sample case v+(t) = 1p
2
(hy(t) + z(t)), v�(t) =

1p
2
(hy(t)� z(t)) (see Appendix H.3). This811

orthogonal transformation decouples the dynamics812

d

dt
v+(t) = ��y(t)v+(t) ,

d

dt
v�(t) = ���y(t)v�(t) (88)

As a consequence, the field derivatives close813

@v+(t)

@�y(s)
= �⇥(t� s)v+(s) +

Z t

0
dt0�y(t

0)
@v+(t0)

@�y(s)

@v�(t)

@�y(s)
= ��⇥(t� s)v�(s)�

Z t

0
dt0�y(t

0)
@v�(t0)

@�y(s)
(89)
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The correlator of interest is814

hhy(t)z(t)i =
1

2
h[v+(t) + v�(t)][v+(t)� v�(t)]i =

1

2

⌦
v+(t)

2
� v�(t)

2
↵

(90)

So we get that815

Dy(t, s) =
1

2

⌧
@

@�y(s)

�
v+(t)

2
� v�(t)

2
��

=

⌧
v+(t)

@v+(t)

@�y(s)

�
�

⌧
v�(t)

@v�(t)

@�y(s)

�
(91)

Similarly, we can derive the on-target and off-target uncoupled variances y(t, s) and ?(t, s), which816

satisfy817

y(t, s) = hv+(t)v+(s) + v�(t)v�(s)i
2 + hv+(t)v+(s)� v�(t)v�(s)i

2

?(t, s) =
1

2
hv+(t)v+(s) + v�(t)v�(s)i (92)

Using these functions, we arrive at the following variance for each of the P dimensions818

⌃�y = (�I+Dy)
�1
y (�I+Dy)

�1

⌃�? = (�I+D?)
�1
? (�I+D?)

�1 (93)
Using the fact that all �? variables are independent and identically distributed under the leading819

order picture, the expected training loss has the form820

⌦
|�|

2
↵
⇡ �1

y (t)2 +
2

N
�1

y(t)�
1
y (t) +

1

N
⌃�y (t, t) +

(P � 1)

N
⌃�?(t, t) +O(N�2). (94)

where
⌦
�y ��1

y

↵
= 1

N�1
y(t) +O(N�2). We note that the bias correction if O(N�1) while the821

variance is O(P/N). We compare the above leading order theory with and without the bias correction822

in Appendix Figure A.4.823

J Online Learning824

Our technology for computing finite size effects can easily be translated to a setting where the neural825

network is trained in an online fashion, disregarding the effect of SGD noise. At each step, we826

compute the gradient over the full data distribution p(x). Focusing on MSE loss, we study the827

following equation828

d

dt
�(x, t) = �Ex0⇠p(x0)K(x,x0; t)�(x0, t) (95)

where K(x,x0; t) is the dynamic NTK and �(x, t) = y(x) � f(x, t) is the prediction error. In829

general the distribution involves integration over an uncountable set of possible inputs x. To remedy830

this, we utilize a countable orthonormal basis of functions for the data distribution { k(x)}1k=1.831

For example, if p(x) were the isotropic Gaussian density for N (0, I), then  k could be Hermite832

polynomials. We expand � and K in this basis  k, and arrive at the following differential equation833

d

dt
�k(t) = �

X

`

Kk`(t)�`(t) (96)

By orthonormality, the average turned into a sum over all possible orthonormal functions { k}.834

We note that since K is evolving in time, there is not generally a fixed basis of functions that835

diagonalize K, resulting in the couplings across eigenmodes in Equation (96). Since, in online836

learning, there is no distinction between the training and test distribution, our error of interest is837

simply L(t) =
P

k �k(t)2. To obtain the finite size corrections to this quantity, we compute the joint838

propagator for all variables {Kk`(t),�k(t)}. If we wanted to pursue a perturbation theory in rates839

(Appendix F.2), we could again define a transition matrix T and rate matrix R(t) as840

R(t) = � logT (t) ,
d

dt
Tk`(t) = �

X

k0

Kkk0(t)Tk0`(t) , Tk`(0) = �k` (97)

We can then obtain � = exp(�R(t))y, where yk = Ex k(x)y(x). Since R has a finite size mean841

correction and finite size fluctuations, so too does the error �k(t) and the loss L (Appendix F.2).842
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J.1 Two Layer Networks843

In the two layer case, instead of tracking kernels, we could instead deal with the distribution over844

read-in vectors w 2 RD and readout scalars a 2 R as in the original works on mean field networks845

[6, 63]. When training on the population risk equations for x ⇠ N (0, I)846

d

dt
w = aEx�(x)�̇(w · x)x = Ex

@�(x)

@x
�̇(w · x) + E�(x)�̈(w · x)w

d

dt
a = Ex�(x)�(w · x) (98)

The action has the form847

S = �

Z
dtdx�̂(t,x)(�(t,x)� y(x)) + lnEa,w exp

✓Z
dtdx�̂(t,x)a(t)�(w(t) · x)

◆
(99)

The Hessian over q = {�µ(t), �̂µ(t)} is848

r
2S =


0 I+D�

I+D� 

�
. (100)

where D�(t,x; s,x0) =
D

@
@�(s,x0)a(t)�(w(t) · x)

E
We can use the following implicit rule849

@a(t)

@�(s,x)
= �⇥(t� s)p(x)�(w(s) · x) + �Ex0

Z t

0
dt0�(t0,x0)�̇(w · x

0)x0
·
@w(t)

@�(s,x)

@w(t)

@�(s,x)
= �⇥(t� s)p(x)a(s)�̇(w(s) · x)x

+ �Ex0

Z t

0
dt0�(t0,x0)


@a(t0)

@�(s,x)
�̇(w · x

0) + a(t0)�̈(w · x
0)
@w(t0)

@�(s,x)
· x

0
�

(101)

The above equations could be solved and then used to compute D�(t,x; s,x0) which must then be850

inverted to get the observed prediction variance.851

J.2 Linear Activations852

Using the ideas in the preceding sections, we can make more progress in the case of a two layer853

linear network in the online learning setting. The key idea is to track the kernel and prediction error854

projections onto the space of linear functions. In this case we get the following DMFT over the order855

parameter �(t) = 1
NW

>
a 2 RD.856

d

dt
a(t) = �(�? � �(t)) ·w(t)

d

dt
w(t) = �a(t)(�? � �(t))

�(t) =
1

�
ha(t)w(t)i (102)

At infinite width, we see that the dynamics can be reduced to tracking the projection of the weights857

w and � on the �? direction. The D � 1 off-target dimensions vanish �?(t) = 0. At infinite width,858

we arrive at the alignment dynamics studied in prior work [61, 9]859

d

dt
�(t) = M(t)(�? � �(t))

d

dt
M(t) = �2�(t)(�? � �(t))

> + �2�(t)(�? � �(t))
>

+ 2�2(�? � �(t)) · �(t)I (103)
We note that �(t) = �(t)�? and that M has only one special eigenvector �? with eigenvalue m?(t).860

It thus suffices to track evolution in this single direction861

d

dt
�(t) = m?(t)(�? � �(t)) ,

d

dt
m?(t) = 4�2�(t)(�? � �(t)) (104)
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We note that this equation is identical to the differential equation for a single training example in862

Appendix I. Here �? � �(t) plays the role of �y(t) and m?(t) plays the role of the kernel Ky(t).863

A key observation is the conservation law 4�2 d
dt�(t)

2 = d
dtm?(t)2, from which it follows that864

m?(t)2 � 4 = 4�2�(t) [9]865

d

dt
�(t) = 2

p
1 + �2�(t)2(�? � �(t)) (105)

This is identical to the differential equations for a single sample (producing prediction f(t) and kernel866

K(t)) if the following substitutions are made867

f(t)$ �(t) , K(t)$ m?(t) (106)

We now proceed to compute finite size corrections starting from the action868

S = �

Z
dt�̂(t) · �(t) + lnE exp

✓
�

Z
dt�̂(t) ·w(t)a(t)

◆
(107)

The necessary ingredients are869

(t, s) =
⌦
a(t)a(s)w(t)w(s)>

↵
� �2�(t)�(s)

= ha(t)a(s)i
⌦
w(t)w(s)>

↵
+ ha(s)w(t)i

⌦
a(t)w(s)>

↵
2 RD⇥D (108)

Similarly we have to compute the sensitivity tensor870

D(t, s) =

⌧
@

@�(s)>
a(t)w(t)

�
2 RD⇥D (109)

We start from the dynamics871

d

dt
w(t) = �a(t)(�? � �(t)) ,

d

dt
a(t) = �(�? � �(t)) ·w(t) (110)

Next, we have to calculate causal derivatives for fields872

@

@�(s)>
w(t) = ��⇥(t� s)a(s)I+ �

Z t

0
dt0(�? � �(t

0))
@a(t0)

@�(s)>

@

@�(s)
a(t) = ��⇥(t� s)w(s) + �

Z t

0
dt0(�? � �(t

0)) ·
@w(t0)

@�(s)
(111)

Following an identical argument as in I, we see that D has block diagonal structure with D�?(t, s)873

on the �?�
>
? direction and D?(t, s) in any of the D � 1 remaining directions874

D�?(t, s) =

⌧
@

@�(s)
a(t)w�?(t)

�
, D?(t, s) =

⌧
@

@�?(s)
a(t)w?(t)

�
(112)

Similarly, (t, s) has a similar decomposition875

�?(t, s) = ha(t)a(s)i hw�?(t)w�?(s)i+ ha(s)w�?(t)i ha(t)w�?(s)i

?(t, s) = ha(t)a(s)i hw?(t)w?(s)i+ ha(s)w?(t)i ha(t)w?(s)i (113)

The processes have the following equations at infinite width876

d

dt
w�?(t) = �a(t)(�? � �(t)) ,

d

dt
a(t) = �w�?(t)(�? � �(t)) ,

d

dt
w?(t) = 0 (114)

As a consequence we note that hw?(t)a(s)i = 0 so that ?(t, s) = ha(t)a(s)i. Letting v+(t) =877
1p
2
(w�?(t)+a(t)) and v�(t) =

1p
2
(w�?(t)+a(t)), we find the same decoupled stochastic processes878

as in Appendix H.3.879

d

dt
v+(t) = �(�? � �(t))v+(t) ,

d

dt
v�(t) = ��(�? � �(t))v�(t) (115)
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We can use these equations to perform the necessary averages for �? and D�? . Lastly, we use880

@

@�?(s)
w?(t) = ��⇥(t� s)a(s) (116)

to evaluate D?(t, s). The observed covariances are just881

⌃�? = (�I�D�?)
�1
�?(�I�D�?)

�1> , ⌃? = (�I�D?)
�1
?(�I�D?)

�1> (117)

We note that these expressions are identical to those in Appendix I under the substitution �?��(t)!882

�(t) and D ! P . Thus the expected test risk is883

⌦
|�(t)� �?|

2
↵
⇠ (�(t)� �?)

2 +
1

N
⌃�?(t, t) +

(D � 1)

N
⌃�?(t, t) +O(N�2) (118)

This recovers the variance we obtained in the multiple-sample whitened data case I.884

J.3 Connections to Offline Learning in Linear Model885

Remark 1 The finite size variance of generalization error in an online learning setting with linear886

target function y = �⇤
· x has an identical form as the model described above. In this setting, we887

sample infinitely many fresh data points x ⇠ N (0, I) at each step leading to the flow
d
dtwi(t) =888

�ai(t)Ex�(x)x and
d
dtai(t) = �wi(t) ·Ex�(x)x. The order parameter of interest in this setting is889

�(t) = 1
�N

PN
i=1 wi(t)ai(t). The precise correspondence between this setting and the offline setting890

is summarized in Table 1. We note that this argument could be extended to higher degree monomial891

activations as well, at the cost of tracking higher degree tensors (eg for quadratic activations892

M = 1
N

PN
i=1 aiwiw

>
i 2 RD⇥D

is sufficient).893

Setting Order Params. Target Off-target Dims. Loss Variance Infinite Quantity
Offline � = y � f y P � 1 Train O( PN ) D
Online �? � � �? D � 1 Test O(DN ) P

Table 1: Summary of the equivalence between the leading 1/N correction in the offline setting and
the online setting for two layer linear networks. In the offline training setting, the order parameters
are the errors � = y � f 2 RP while in the online case they are �? � � 2 RD.

As in the offline case, in Fig. 3 (c) and (d) we see that the variance contribution to test loss |� � �?|
2894

increases with input dimension D. We note that this perturbative effect to the loss dynamics is895

reminiscent of the deviations from mean field behavior studied in SGD [43, 44], though this present896

work concerns fluctuations driven by initialization variance rather than stochastic sampling of data.897

In Fig. 3 (e) we show that richer networks have lower variance at fixed N . Similarly, leading order898

theory for richer networks more accurately captures their dynamics as D/N increases (Fig. 3 (f)).899

K Deep Linear Networks900

For deep linear networks, the fields h`
µ(t), g

`
µ(t) are Gaussian and have the following self-consistent901

equations902

h`
µ(t) = u`

µ(t) + �

Z t

0
ds
X

⌫

⇥
A`�1

µ⌫ (t, s) +�⌫(s)H
`�1
µ⌫ (t, s)

⇤
g`⌫(s) , u

`
µ(t) ⇠ GP(0,H`�1)

g`µ(t) = r`µ(t) + �

Z t

0
ds
X

⌫

⇥
B`

µ⌫(t, s) +�⌫(s)G
`+1
µ⌫ (t, s)

⇤
h`
⌫(s) , r

`
µ(t) ⇠ GP(0,G`+1).

(119)

where H`
µ⌫(t, s) =

⌦
h`
µ(t)h

`
⌫(s)

↵
and G`

µ⌫(t, s) =
⌦
g`µ(t)g

`
⌫(s)

↵
and A`

µ⌫(t, s) =

⌧
@h`

µ(t)

@r⌫(s)

�
and903

B`
µ⌫(t, s) =

⌧
@h`

µ(t)

@r⌫(s)

�
[9]. Therefore, we express the action as a differentiable function of the904
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order parameters by integrating over the Gaussian field distribution. For concreteness, we vectorize905

our fields over time and samples h` = Vec{h`
µ(t)}{µ2[P ],t2R+}, g` = Vec{g`µ(t)}{µ2[P ],t2R+} we906

consider the contribution of a single hidden layer.907

Z` =

Z
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2
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◆
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2
ĝ
`⌃`

rĝ
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h
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2
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Ĝ
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◆

where C`
µ⌫(t, s) = �⇥(t � s)

⇥
A`�1

µ⌫ (t, s) +H`�1
µ⌫ (t, s)�⌫(s)

⇤
and D`

µ⌫(t, s) = �⇥(t �908

s)
⇥
B`

µ⌫(t, s) +G`+1
µ⌫ (t, s)�⌫(s)

⇤
. Performing the joint Gaussian integrals over (h`, g`, ĥ`, ĝ`)909

we find910
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775 (120)

We can then automatically differentiate the DMFT action to get the propagator. For example, for a911

three layer linear network, the full DMFT action has the form912

S =
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2
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h
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1 + Ĥ
2
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2
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where C
1 = �⇥� and C

2 = �⇥� �H
1 + �A and D

1 = �⇥� �G
2 + �B and D

2 = �⇥�.913

This above example can be extended to deeper networks. The total size of the block matrices which914

we compute determinants over is 4PT ⇥ 4PT for a dataset of size P trained for T steps.915

L Discrete Time Dynamics and Edge of Stability Effects916

Large step size effects can induce qualitatively different dynamics in neural network training. For917

instance, if the step size exceeds that required for linear stability with the initial kernel, the kernel can918

decrease in order to stabilize the dynamics [57]. Alternatively, during training the kernel may exhibit919

a “progressive sharpening" phase where its top eigenvalue grows before reaching a stability bound920

set by the learning rate [19]. It is therefore well motivated to study how dynamics in this regime alter921

finite size effects in neural networks. We will first solve a special model which was considered in922

prior work [57]: a two layer linear network trained on a single training point. We will then provide923

the full DMFT equations for the discrete time case and provide an outline for how one could obtain924

finite size effects in that picture.925

L.1 Two Layer Linear Equations926

In a two layer linear network, the DMFT equations are927

h(t+ 1) = h(t) + ⌘��(t)z(t) , z(t+ 1) = z(t) + ⌘��(t)h(t)

f(t) =
1

�
hz(t)h(t)i (122)
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The NTK has the form K(t) =
⌦
h(t)2 + z(t)2

↵
. We can easily show that the kernel and error have928

coupled dynamics929

f(t+ 1) = f(t) + ⌘
⌦
h(t)2 + z(t)2

↵
�(t) + ⌘2��(t)2 hh(t)z(t)i

= f(t) + ⌘K(t)�(t) + ⌘2�2�(t)2f(t) (123)

K(t+ 1) = K(t) + 4⌘��(t) hh(t)z(t)i+ ⌘2�2�(t)2
⌦
h(t)2 + z(t)2

↵

= K(t) + 4⌘�2�(t)f(t) + ⌘2�2�(t)2K(t) (124)

These equations define the infinite width evolution of �(t) and K(t). Already at this level of analysis,930

we can reason about the evolution of K(t). In the small ⌘ limit, we could disregard terms of order931

O(⌘2) and arrive at the following gradient flow approximation for K(t) ⇠ 2
p
1 + �2f(t)2 [9]. This932

evolution will not reach the edge of stability provided that ⌘ < 1p
1+�2y2

. For large � and y = 1, this933

leads to the constraint ⌘� < 1. However, if ⌘ exceeds this bound, the gradient flow approximation is934

no longer reasonable and the system reaches an edge of stability effect as shown in Figure 5.935

To calculate the finite size effects, we need to compute  and D(t, s) = @
@�(s)

⌦
h(t)2 + z(t)2

↵
. To936

evaluate these quantities we utilize the same change of variables employed in Appendix H.3. In937

discrete time, these decoupled equations are938

v+(t+ 1) = v+(t) + ⌘��(t)v+(t) , v�(t+ 1) = v�(t)� ⌘��(t)v�(t). (125)

Given �(t), these can be expressed as linear systems of equations. Now, we can easily compute the939

uncoupled kernel variance940

(t, s) = 2 hh(t)h(s)i2 + 2 hz(t)z(s)i2 + 2 hh(t)z(s)i2 + 2 hz(t)h(s)i2

= hv+(t)v+(s) + v�(t)v�(s)i
2 + hv+(t)v+(s)� v�(t)v�(s)i

2 . (126)

Similarly, we can calculate D(t, s) by using the fact
⌦
h(t)2 + z(t)2

↵
=
⌦
v+(t)2 + v�(t)2

↵
941

D(t, s) = 2

⌧
v+(t)
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@�(s)

�
+ 2

⌧
v�(t)

@v�(t)

@�(s)

�

@v+(t)

@�(s)
= �⇥(t� s)v+(s) +

X

t0<t

�(t0)
@v+(t0)

@�(s)

@v�(t)

@�(s)
= ��⇥(t� s)v�(s)�

X

t0<t

�(t0)
@v�(t0)

@�(s)
(127)

These can be directly solved as a linear system of equations.942

M Computing Details943

Experiments for Figures 2, 5 and A.1 were conducted on a Google Colab GPU with JAX. Experiments944

for Figures 4, A.5, 6 were performed on a NVIDIA SMX4-A100-80GB GPU. The total compute945

required for all Figures in the paper took around 4 hours.946
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