
Benchmarking Optimizers
for Large Language Model Pretraining

Anonymous Author(s)
Affiliation
Address
email

Abstract
The recent development of Large Language Models (LLMs) has been accompanied1

by an effervescence of novel ideas and methods to better optimize the loss of deep2

learning models. Claims from those methods are myriad: from faster convergence3

to removing reliance on certain hyperparameters. However, the diverse experi-4

mental protocols used to validate these claims make direct comparisons between5

methods challenging. This study presents a comprehensive evaluation of recent6

optimization techniques across standardized LLM pre-training scenarios, systemat-7

ically varying model size, batch size, and training duration. Through careful tuning8

of each method, we provide guidance to practitioners on which optimizer is best9

suited for each scenario. For researchers, our work highlights promising directions10

for future optimization research. Finally, by releasing our code and making all11

experiments fully reproducible, we hope our efforts can help the development and12

rigorous benchmarking of future methods.13

1 Introduction14

Over the past five years, Large Language Models (LLMs) [15, 59, 22, 48] have shown growth in15

performance and size, demonstrating proficiency in various downstream tasks [80, 7, 85]. The success16

of LLM pretraining hinges on three key pillars: high-quality data [65, 44], architectural innovations17

[31, 15], and scalable optimization techniques.18

Among these, the choice of optimizer has remained notably consistent in recent years, with Adam(W)19

[38, 50] dominating deep learning for nearly a decade. However, recent advances [33, 47, 84, 62,20

66, 17] challenge this status quo, offering alternatives that surpass AdamW in speed, communication21

efficiency [1] or final downstream performance on various benchmarks [12, 37], particularly for22

autoregressive language modeling [70]. Despite these innovations, current benchmarks and ablation23

studies [96, 34] remain narrow in scope, often examining only isolated aspects of optimizer design.24

This lack of systematic comparison makes it difficult to obtain trustworthy insights for practitioners,25

or identify the next promising research directions.26

In this work, our goal to revisit the problem of benchmarking optimizers for LLM pretraining.27

We do so through standardized experiments which vary important parameters such as batch size,28

model size, and the number of training iterations. This allows us to formulate an up-to-date list of29

best-performing methods for the community of researchers and practitioners. We demonstrate the30

efficiency of each considered method through careful tuning, and present insightful ablations along31

the way. Furthermore, we provide a set of best practices for LLM pretraining that are applicable32

regardless of the optimizer chosen.33

We summarize our contributions as follows:34

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

(Contribution 1) We conduct the first large-scale, controlled benchmark of 11 different optimization35

methods across diverse LLM training scenarios. A fair comparison is ensured by precise accounting36

for compute costs, and extensive hyperparameter tuning. We identify optimal optimizer choices in37

several relevant training regimes, for both dense and MoE architectures.38

(Contribution 2) We perform comprehensive ablations of critical training hyperparameters—39

including warmup duration, initialization schemes, gradient clipping, final learning rates, and learning40

rate scheduler choices—providing actionable insights for optimizing LLM training in practice.41

(Contribution 3) We open-source our full benchmarking toolkit, including training scripts, evaluation42

pipelines, and hyperparameter configurations, to enable reproducible research and facilitate future43

optimizer development.44

Figure 1: A comparison of leading optimiz-
ers, for training a 720M parameter LLM.

For practitioners, our work provides an evidence-45

based answer to the burning question: “Is Adam still46

the most effective optimizer in the age of LLMs, or47

can we achieve better performance at scale with48

novel optimizers?”. For researchers, our work de-49

livers a unified benchmarking framework for LLM50

pretraining, along with extensive ablation studies51

which systematically evaluate both popular and over-52

looked optimizer designs—revealing previously un-53

explored tradeoffs between efficiency, stability, and54

final model performance. Overall, our findings not55

only challenge long-held assumptions about opti-56

mizer selection but also establish a foundation for57

future advances in large-scale model training. By58

bridging the gap between theoretical innovation and59

practical deployment, this work aims to accelerate60

progress in both research and industry applications61

of LLM training.62

2 Background & Related Work63

Optimizers. While computer vision models often show comparable performance between SGD [72]64

and AdamW [94], the landscape differs dramatically in LLM training. Recent work [95] demon-65

strates that adaptive methods like AdamW provide substantially better optimization characteristics66

for transformer-based language models. The question of why AdamW works so well has been a67

long-standing topic of research [2, 60, 93, 43, 41]. Modern methods often inherit AdamW’s core ideas68

in their structure, such as ADOPT [83] and AdEMAMix [62]. ADOPT has been motivated by solving69

long-standing convergence issues in AdamW. By normalizing the second-order moment prior to the70

momentum update, they eliminate the non-convergence issues of AdamW on smooth non-convex71

functions. Meanwhile AdEMAMix extends AdamW with an additional slower momentum buffer, i.e. a72

slower exponential moving average (EMA), which allows the use of much larger momentum values,73

accelerating convergence.74

One interpretation of AdamW’s effectiveness lies in its sign-based update [42]: without the exponential75

moving average (EMA), AdamW resembles signSGD [6]. Recent work [96, 36] has shown that76

Signum (signSGD with momentum), can perform comparably to AdamW. Earlier, the community also77

discussed Lion [9], a method with a similar sign-based structure. Signum and Lion offer memory78

benefits due to the use of only a single instead of Adam’s two buffers for optimizer states.79

Another family of methods stems from AdamW’s approximate second-order structure, where the80

diagonal of the Fisher information matrix or other preconditioning approaches [52, 24] are used as81

the second moment estimate. This idea has given rise to Sophia [46], SOAP [84], and, to some extent,82

Muon [33].83

The parameter-free concept [61] has led to the development of Schedule-Free AdamW84

(SF-AdamW) [17] and Prodigy [54]. These optimizers do not require a decreasing learning rate85

schedule, making them relevant for continual training. Last but not least, MARS [88], builds upon this86

line of research and incorporates a variance reduction mechanism in its update rule.87

2

Benchmarks. To a large extent, the benchmarking setup determines the final conclusions. Some88

benchmarks are designed for short speedruns in terms of training or validation loss [32], while89

others focus on a downstream target metric after training [96, 12, 76]. Methods that perform well90

in short speedruns might not be optimal for longer training horizons as in real LLM training runs91

(see Figure 3). ”But what constitutes a sufficiently long horizon?” ”What should be the compute92

budget for LLM training?” These are questions explored by scaling laws [35]. Early benchmarks93

for optimizers and other ablation studies often rely on Chinchilla scaling laws [26] with a ratio of94

roughly 20 tokens per parameter (TPR) needed for pretraining. However, recent research [69, 74]95

argues that this is far from sufficient for production-ready models.96

Another important issue is the choice of loss function. Recent setups have been using an auxiliary97

z-loss [86, 11] in addition to cross-entropy, which requires further investigation. We believe this98

choice is influenced by the use of the OLMo [58] codebase, which we also address in our work.99

Additionally, we found that previous setups for comparing optimizers do not align with recent best100

practices regarding weight decay, learning rate decay, and overall hyperparameter tuning. All of these101

questions are revisited in our work.102

3 Experimental Setup103

Notations. We use the following notations. Let γ be the learning rate, λ the weight decay coefficient,104

and T the total number of iterations. Momentum-related parameters are represented by the symbol β.105

Models & Data. For most experiments, we use a Llama-like transformer [48] architecture, including106

SwiGLU activations [77], RMSNorm [91], and RoPE embeddings [81]. We experiment with four107

sizes of models: 124M, 210M, 583M, 720M. We train on a 100B tokens1 subset of FineWeb108

[64]. It consists of a cleaned and deduplicated corpus for LLM pretraining, which we tokenize using109

the GPT-2 tokenizer prior to splitting into train and validation sequences. MoE setup described in110

Appendix D.111

Iterations & Batch size. Throughout our experiments, we use a sequence length of 512 tokens. For112

clarity, we often report the batch size in tokens by writing Batch size×sequence length. For the 124M113

model, we use batch sizes of 32× 512 = 16k, 256× 512 = 131k, and 512× 512 = 262k tokens;114

for the 210M model, we use a batch size of 256× 512 = 131k; and for 583M model, we leverage115

the batch sizes of 1024× 512 = 524k and 3936× 512 = 2M tokens. Depending on the model size,116

we vary the number of iterations — also measured in tokens for compatibility with scaling laws and117

to accommodate different batch size settings. We train 124M and 210M models for equal durations118

of {1, 2.1, 4.2, 6.3, 8.4, 16.8}B tokens. This corresponds to T ∈ {64, 128, 256, 384, 512, 1024}k119

iterations for a batch size of 32, and T ∈ {8, 16, 32, 48, 64, 128}k iterations for a batch size of 256.120

For 583M models, we train on {13, 32}B tokens, corresponding to T ∈ {6.5, 16}k iterations, resp.121

T ∈ {25, 61.5}k iterations, for a batch size of 3936, resp. 1024. In the setup with 720M model,122

we have T ∈ {8, 16, 48}k iterations for a batch size of 1M tokens. Thus, for all model scales,123

we include both Chinchilla optimal lengths of training and beyond. More details are available in124

Appendix C.125

Loss. We train using the classical cross-entropy next token prediction loss. Some prior works126

introducing optimizers use a z-loss in addition to cross-entropy [30, 11, 86, 84, 96]. We found that127

this has little impact and, therefore, do not use z-loss. An ablation showing results with and without128

z-loss is in the appendix.129

Hyperparameter Tuning. Training LLMs is a computationally intensive task. As a guidance,130

practitioners often rely on insights gathered at lower scales, scaling laws, and other rules [87, 18].131

It is also commonplace to run experiments for only a shorter duration of training, as a way to test132

certain hyperparameters prior to extending the training horizon to more iterations. Because a full133

grid search over every hyperparameter, for each setting and optimizer, would be too costly, we134

resort to a similar approach. More precisely, for each model size, batch size, and optimizer, we tune135

optimization hyperparameters extensively for a number of training tokens which is near-Chinchilla136

optimal. We then keep those hyperparameters when we increase the number of iterations. While we137

found that the sensitivity to several hyperparameters can change as we increase the training horizon,138

we found this approach simple and yet effective. The hyperparameters being considered depend on the139

1https://huggingface.co/datasets/HuggingFaceFW/fineweb

3

https://huggingface.co/datasets/HuggingFaceFW/fineweb

optimizer. We proceeded from small to large model scale, and used insights gathered at smaller scales140

to guide the hyperparameter search at larger scales. Our hyperparameter sweeps are summarized in141

Appendix D. We present the clarifications regarding the connection between the number of iterations142

and tokens for different batch size settings as well as the Chinchilla optimal length of training for143

our models in Tables 3 and 5. As learning rate schedulers, we compare cosine [49], linear and144

warmup-stable-decay (WSD) [27, 90, 28]. Unless specified, we use a cosine scheduler. Results with145

WSD and linear schedulers are discussed in Section 4. Recent works also emphasize the importance146

of sufficiently decaying the learning rate [4, 75, 28]. As such, we take care to decay to 0.01 × γ147

instead of the often used 0.1 × γ. To give an idea of how much effort was put into tuning each148

method, across all model sizes, batches and iterations, we trained a total of 2400 models, and have149

spent roughly 30000 GPU hours.150

Optimizers. Here is a list of the optimizers we considered in our work. For each algorithm, we151

write in parentheses the optimizer-specific hyperparameters we tuned: AdamW(β1, β2), SOAP(β1, β2)152

and preconditioning frequency, Lion(β1, β2), MARS(η, β1, β2) and Newton-Schulz hyperpa-153

rameters, ADOPT(β1, β2), Signum(β), Prodigy(β1, β2), SF-AdamW(β1, β2), Muon(γM, β, β1, β2),154

Sophia(ρ, β1, β2), AdEMAMix(β1, β2, β3, α). When an optimizer has several momentum variants155

e.g. Nesterov [57] or Polyak [67], we try both. In addition, we tune the learning rate γ extensively156

for all methods. We also try different gradient clipping, warmup steps, and weight-decay values. A157

summary of the hyperparameters tested and selected for each model size is in Appendix D. All the158

optimizers are described in depth in Appendix A.159

4 Results160

We structure our story starting with smaller models and batch sizes, and gradually scaling up to larger161

configurations. In some instances, we complement the core benchmarking results with additional162

ablations and possible best-practices.163

4.1 Benchmarking at Small Scale: Training Models of 124M Parameters164

Using “small” batches. We first report results when using batches of 32× 512 tokens in Figure 3.165

We tune hyperparameters by training for 2.1B tokens (128k iterations) and then keep those hyperpa-166

rameters for all other training durations. The best hyperparameters are reported in Appendix D.1.167

We observe how, for the smallest number of iterations we considered (1B tokens ≡ 64k), SOAP,168

ADOPT and AdEMAMix all outperform AdamW, with SOAP being the best. As we increase the number169

of iterations, AdEMAMix takes the lead while AdamW closes the gap with both ADOPT and SOAP. A170

sign-based methods such as Lion and Signum are expected to perform poorly when the batch size is171

small. Intuitively, this is due to the sign(·) operator being sensitive to gradient noise. As described172

in its original paper, MARS also performs poorly when the batch size is small. We found Prodigy,173

Muon and SF-AdamW to underperform in this setting compared to AdamW. On this scale, Prodigy174

suffers from the lack of bias correction of the learning rate, as well as being sensitive to (β1, β2) (see175

Figure 17.176

Using “large” batches. We now report results when using batches of 256 × 512 tokens — 8×177

larger than for our small batch setting. Results in Figure 2 show how Signum, Mars, Lion, Prodigy178

greatly benefit from the increased batch size. Remarkably, we observe that the Prodigy method179

scales similarly to AdamW. We emphasize the possible community interest in this algorithm as its180

EMA Prodigy adaptively emulates the learning rate behaviour. For a small number of iterations181

(e.g. T ∈ {8k, 16k} corresponding to 1B and 2B tokens), all methods outperform AdamW except for182

SF-AdamW and Sophia. As we increase the number of iterations ADOPT, SOAP, and AdEMAMix take183

the lead. In particular, AdEMAMix has a consistent lead over other methods. While we anticipated—in184

accordance with Vyas et al.[84]—that SOAP would greatly benefit from the larger batch size, its185

behavior remains relatively consistent compared to our previous small batch setting.186

Stability across training horizons. As mentioned in Section 3, we tune hyperparameters training187

on 2.1B tokens and keep those hyperparameters when extending the training horizon. In Figure 3188

we study whether it is possible to find better parameters for AdamW, SOAP, and AdEMAMix. When189

training on 16.8B tokens, we see it is beneficial to increase the β3 from 0.999 to 0.9999. Without this190

improvement, SOAP ends up matching the performances of AdEMAMix when extending the training191

horizon further to 33.6B tokens (≡ 256k iterations). In our experiments, β3 = 0.999 is only better192

4

1 2.1 4.2 6.3 8.4 16.8

Tokens (B)

3.2

3.3

3.4

3.5

3.6

F
in

al
V

a
li
d
at

io
n

L
os

s

64k 128k 256k 384k 512k 1024k

(a) Batch size 32× 512 tokens.

1 2.1 4.2 6.3 8.4 16.8

Tokens (B)

3.2

3.3

3.4

3.5

F
in

al
V

al
id

at
io

n
L
os

s

8k 16k 32k 48k 64k 128k

Lion

AdamW

AdEMAMix

SF-AdamW

Prodigy

SOAP

Signum

Muon

Sophia

MARS

ADOPT

(b) Batch size 256× 512 tokens.

Figure 2: Ranking of optimizers for 124M models with small and large batch sizes. In both
(a) and (b), we show the final validation loss for different training durations, corresponding to
different numbers of tokens. Above each token number, we write the number of training iterations
corresponding. In (a), we use a “small” batch size of 32× 512 tokens. In (b), we use a larger batch
size of 256× 512 tokens.

than β3 = 0.9999 when the number of training iterations is less than 32k. This matches observation193

from [62], which recommends reducing β3 when training for fewer iterations. We also test whether194

the learning rate γ changes as we increase the number of tokens/iterations. In Figure 5, we run a195

sweep over γ when training for 16.8B tokens. While for most methods, the best γ obtained in the196

previous sweep remains optimal, this is not the case for SOAP and SF-AdamW, which can benefit from197

a larger γ = 0.002.198

WSD vs. cosine & linear γ-schedulers. Learning rate schedulers received a lot of attention recently199

[79, 28]. We conducted a series of experiments comparing WSD [27, 90] and linear with cosine [49]200

learning rate schedulers. Surprisingly, the performance gap between these two schedulers observed201

in Figure 25 is often significant2 for benchmarking optimizers. Consequently, we decided to adopt202

the cosine scheduler for all further experiments.203

Decaying γ sufficiently. In Figure 8 we show the impact of decaying more or less the learning rate204

γ(t). From γ = 10−3 we train models using cosine decay down to γend ∈ {10−4, 10−5, . . . , 10−9}.205

We found that decaying the learning rate sufficiently matters. In particular, the often use rule206

consisting in decaying to 0.1 × γ is suboptimal. This agrees with the recent works [28, 75, 4].207

Building on this findings, we consistently use cosine decay down to 0.01× γ.208

Takeaway 1. After the experiment in the small-batch setting, we conclude that: (i) AdEMAMix
scales in the best manner with the number of iterations, SOAP underperforms AdamW when the
length of training increases. ADOPT and Prodigy show almost equal performance across all
training durations. Sign-based methods, predictably, underperform when the batch size is small,
but what is interesting, is that Sophia diverges at all, even if trains with sufficiently small learning
rate.

209

Increasing the batch size further. We also run an experiment with batches of 512× 512 = 262k210

tokens, training for 64k iterations. Results in Figure 3 show mostly consistent results. Noticeably211

MARS becomes the second best performing method behind AdEMAMix, followed closely by Prodigy,212

Lion, and SOAP. Interestingly, Signum performs comparably to AdamW.213

Takeaway 2. Taking into consideration large batch size setting, we found that many methods,
once properly tuned, can show a remarkable performance compared to AdamW and also outperform
it.

214

Weight decay ablation. As recent frameworks for LLM pretraining or ablation studies omit weight215

decay as a default non-zero hyperparameter, some setups even mislead by not incorporating weight216

decay in their experiments. In this work, we demonstrate the importance of weight decay and its217

2We emphasize that the difference between the two schedulers is generally less than 5% of the total compute
spent. However, this still represents a significant gap in our benchmarking setup, e.g., SF-AdamW may outperform
AdamW in some settings (see Figure 25).

5

(a) Scaling batch size. (b) Scaling number of tokens.

Figure 3: Our results demonstrate that (a): scaling the batch size significantly improves MARS,
Signum, Lion and Prodigy making them as good as AdamW even for a long training for 16.8B tokens.
Which was not the case in Figure 2 (b), where we still observed a significant gap in performance; and
(b): indeed, with scaling of the number of iterations, the gap between SOAP and AdEMAMix narrow
and, finally, increases. But, on the other hand, with increase of the AdEMAMix β3 parameter, the
performance gap with SOAP reappears.

impact across different optimizers. Surprisingly, increasing weight decay while keeping the learning218

rate constant proves to be an effective technique for training on shorter horizons. This approach is219

so effective that methods like Signum and Lion with high weight decay significantly outperform220

AdamW without weight decay (see Figure 4). Implementation details also warrant attention. Coupled221

weight decay is still used in some settings, including the PyTorch [63] optimizer implementations.222

Notably, the popular implementation of Signum becomes ineffective when weight decay is applied.223

Highlighting this oversight for the community, we contribute by demonstrating our implementation224

of Signum (Algorithm 6) with decoupled weight decay. The influence of weight decay on model225

weights is intriguing. As is known, model weights typically grow during training, but weight decay,226

by modifying the optimized function, significantly reduces the growth of the model’s parameter norm.227

Such ablations of weight decay are also of interest to the community [13, 40].228

Regarding the ablation of weight decay for optimizers, we again select the best setup for each and229

conduct a sweep over weight decay values. Our results are presented in Figure 4 and in Figure 23.230

(a) (b) (c)

Figure 4: Larger weight decay achieves significantly better results when training on fewer
tokens. In (a) we observe that runs of AdamW, Signum, and Lion with the large weight decay of
0.5 consistently outperform the baseline AdamW with weight decay of 0.1 for all training durations
except for the last one. Notably, Signum and Lion with large weight decay perform even better than
AdamW with the same learning rate. In (b), we also consider a setting without weight decay. We
observe that this is suboptimal not only for AdamW, but also for the majority of other optimizers (see
Appendix E.2), while the typical weight decay of 0.1 remains the best for large training durations.
Importantly, in (c), we ablate the impact od weight decay on the model’s ℓ2 norm.

With our weight decay ablation, we are ready to provide one more insight.231

Takeaway 3. The use of weight decay, particularly a large decoupled weight decay term, can
significantly impact the final loss value and optimizer behavior. However, for extended training
horizons, a moderate, non-zero weight decay proves to be a robust option.

232

Learning rate sensitivity. Since we tune optimizers at a smaller scale and then extrapolate, we233

pose the question whether the best learning rate we have found so far transfers to the larger training234

duration. To verify this, we run 124M model on 16.8B tokens in 256 × 512 batch size setting,235

6

sweeping the learning rate across five typical values: {1e−4, 3e−4, 5e−4, 1e−3, 2e−3}. The best236

learning rate for each method at the moment of hyperparameter tuning on near Chinchilla-optimal237

2.1B training duration we report in Appendix D.1. A summary of our results for larger number of238

tokens is provided in Figure 5 and detailed results of the sweep are presented in Appendix E.2.239

0.0001 0.0003 0.0005 0.001 0.002

Learning Rate

3.18

3.20

3.22

3.24

3.26

F
in

a
l

V
a
li
d
a
ti
o
n

L
o
ss Trained on 16.8B tokens (124M)

Sophia

Signum

Lion

(a)

0.0001 0.0003 0.0005 0.001 0.002

Learning Rate

3.20

3.25

3.30

3.35

F
in

a
l

V
a
li
d
a
ti
o
n

L
o
ss Trained on 16.8B tokens (124M)

Muon

SF-AdamW

AdamW

ADOPT

SOAP

MARS

AdEMAMix

(b)

Figure 5: Optimal learning rate stability across optimizers. The optimal learning rate determined
during tuning on 2.1B tokens remains consistent after a learning rate sweep on 16.8B tokens for
most optimizers. In (a), we observe that sign-based methods and similar to them Sophia diverge with
increasing learning rate. Interestingly, in (b), SF-AdamW and SOAP demonstrate the best performance
with a large learning rate of 0.002. In our work, we further show that it is possible to increase the
learning rate even more for such methods.

Warmup ablation. Another important ingredient of the pretraining is learning-rate warmup in240

the initial phase of training. Recent studies have explored the necessity of warmup in modern241

deep learning, with some investigating its elimination [39] and others ablating it to improve model242

performance and stability [92]. We focus on the latter, examining how warmup affects optimizer243

setup and whether it can significantly enhance performance. For each optimizer’s best configuration,244

we vary warmup across three values: {0.27, 1, 4.2}B tokens, which corresponds to {2, 8, 32}k245

iterations. Our choice of the largest warmup value is inspired by [92]. We describe this experiment in246

Appendix E.2. Mainly, we observe that Signum and SF-AdamW perform better with a larger warmup247

of 8k steps when training on 16.8B tokens. We also ablate the claim from [92] that a warmup of 25%248

of the Chinchilla optimal duration is the best. However, our findings contradict this assertion (see249

Figure 19). We show that a moderate values of the warmup, generally, is better, however, different250

optimizers could prefer different number of warmup steps. As such, SF-AdamW, Sophia, Signum251

prefer larger warmup, which is clearly depicted in Figure 6.252

Figure 6: Warmup ablation. We report the final validation loss on the FineWeb dataset for 124M
model trained on the batch size of 256. We sweep over the batch sizes of {1.56%, 6.25%, 25%} of
the length of training, which corresponds to {2000, 8000, 32000}k iterations, respectively.

Cosine vs WSD. At the outset of our study, we indicated a preference for the cosine scheduler253

over WSD. In this section, we provide a more detailed ablation of this choice. Having optimally254

tuned the cosine scheduler for each optimizer, we replicate the setup of [28], which allows us to255

avoid adjusting additional hyperparameters. Our findings, which demonstrate the superiority of the256

cosine scheduler across various optimization methods, are presented in Figure 7, and in the Appendix257

Figures 25 and 26. These results not only validate our initial preference but also provide insights258

into the interaction between learning rate schedules and different optimizers in large-scale language259

model training.260

7

(a) (b) (c)

Figure 7: Comparisons between WSD and cosine scheduler. Notably, WSD and cosine scheduler
behave differently with respect to optimizer. In (a), the Muon optimizer shows a preference for WSD
across most training durations. Sophia exhibits an almost perfect match between both schedulers.
However, for AdamW, along with the majority of other optimizers studied (see Figure 26), we get
a better performance with cosine. We also report a detailed comparison with linear scheduler in
Appendix E.2.

4.2 Benchmarking at medium scale: Training Models of 210M Parameters261

In this section, we verify if our selected hyperparameters from smaller 124M allow accurate transfer262

to a slightly larger model. We point out that the most important hyperparameters to be sweeped are263

learning rate and gradient clipping. Regarding the learning rate, we observe that it only becomes a264

sensitive choice for sign-based methods, while the optimal hyperparameters for AdamW remain the265

same.266

Results with a batch size of 256×512. Results provided in the Appendix in Figure 21 are consistent267

with those obtained training 124M models with large batches.268

(a) (b) (c)

Figure 8: Decaying the learning rate down to 0.01× γmax and beyond, instead of only to 10%
We observe a common pattern for different schedulers that decreasing the learning rate to moderate
10−2 value is a better choice than decreasing it down to zero. Interestingly, the linear learning rate
scheduler for models at a given scale, requires 0.001× γmax.

Figure 9: Wall-clock time comparison. After conducting experiments for 124M and 210M models,
we are ready to present the wall-time comparison for each methods. For this purposes, we use a single
GPU, and run each optimizer for 100 iterations on a small batch size without gradient accumulation
and torch.compile. We report the wall-clock time per 100 iterations. We observe that all methods
take the roughly the same time or very close time to complete 100 iterations, with the exception of
Muon and SOAP. In addition, we point out that SOAP’s runtime exhibits a non-linear dependence on
the model size, due to its preconditioner matrices operations which are fast only for certain matrices
smaller than a predefined size.

4.3 Scaling Up: Benchmarking models of 583M and 720M Parameters269

We pick three methods: AdamW, SOAP, and AdEMAMix, and run experiments with a larger model270

of 583M parameters, and a large batch size of 2M tokens. The goal being to get closer to one of the271

8

settings described in [84]. We train for 6500 and 16000 iterations, corresponding to 13B and 32B272

tokens respectively.273

Comparison between our setting and [84]. We found several key differences between our codebase274

and [84]: (i) we decay the learning rate to 0.01× γ instead of 0.1× γ, with γ being the maximum275

learning rate, (ii) we use typical weight decay values of e.g. 0.1 instead of smaller values such as 0.01276

or 0.0001, (iii) we do not use a z-loss in addition to ours. It has been shown recently that properly277

decaying the learning rate has an important effect on the optimization [4]. We run an ablation to278

compare both settings and conclude that removing the z-loss and increasing the weight decay to 0.1279

improves the results. Results further improve when the learning rate is decayed more. This ablation280

is shown in Figure 8.281

Figure 10: Results for the 583M model. On the left, we show our results when training for 6500
iterations. In this setting, AdamW gives best results, followed by AdEMAMix and then SOAP. This
is surprising as it conflicts with findings from [84]. Those results are partly reconciled with the figure
on the right. And we see that the difference in performance between models trained with and without
the z-loss regularizer is quite minor.

5 Extension to MoEs282

Setup & Comparison. Besides training dense Llama-like transformers, we also conver a com-283

parison for MoE architectures [78]. Our variant of MoE is based on the Switch-Transformer im-284

plementation [20]. We use a classical linear gating with softmax and top-k routing (k = 2) and 8285

experts. The activation functions remains the same as for the dense base model from Section 3. Such286

a configuration of the MoE model gives us approximately 520M parameters. We cover additional287

details in Appendix E.6. In this setting we train with a batch size of 256× 512 for T ∈ {42, 336}k288

iterations. Again we cover both a Chinchilla-optimal horizon and the beyond. We summarize the289

results in the following Table 1.290

Opt. 42k 336k
AdEMAMix 22.37 18.47
D-Muon 22.67 18.51
ADOPT 22.70 18.58
AdamW 22.85 18.69

Prodigy 22.82 18.78

Opt. 42k 336k
Lion 23.20 18.87

Signum 23.31 19.09
SF-AdamW 23.34 19.13
Sophia 23.41 19.22
MARS 22.73 19.33

Table 1: Final validation perplexity for MoE training (↓).

6 Discussion291

Our advices on tuning each method. Overall, we validate the already widely used hyperparameters292

of λ = 0.1 and Twarmup ≈ 2k. For Lion—as mentioned in [9]—we find that the best value for β1293

is consistently 0.99. The mechanism for Lion seems similar to AdEMAMix, one can imagine that294

Lion could be better with larger β1, which would require schedulers. We also pose an interesting295

observation toward Prodigy: while it may not be so efficient with a super small batch sizes, with296

scaling of the model size and the batch size it becomes almost as competitive as AdamW. Importantly,297

Muon and D-Muon performed poorly at a small scale with relatively small batch sizes (32, 256),298

however, as we see in Figure 1299

9

References300

[1] Kwangjun Ahn and Byron Xu. Dion: A communication-efficient optimizer for large models,301

2025.302

[2] Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of303

stochastic gradients, 2020.304

[3] C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix. Applied305

Numerical Mathematics, 57(11):1214–1229, 2007. Numerical Algorithms, Parallelism and306

Applications (2).307

[4] Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.308

Straight to zero: Why linearly decaying the learning rate to zero works best for llms, 2025.309

[5] Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology, 2024.310

[6] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd:311

Compressed optimisation for non-convex problems, 2018.312

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,313

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel314

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.315

Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz316

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec317

Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.318

[8] David Edwin Carlson, Edo Collins, Ya-Ping Hsieh, Lawrence Carin, and Volkan Cevher.319

Preconditioned spectral descent for deep learning. In Neural Information Processing Systems,320

2015.321

[9] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham,322

Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery323

of optimization algorithms, 2023.324

[10] Savelii Chezhegov, Yaroslav Klyukin, Andrei Semenov, Aleksandr Beznosikov, Alexander325

Gasnikov, Samuel Horváth, Martin Takáč, and Eduard Gorbunov. Gradient clipping improves326

adagrad when the noise is heavy-tailed, 2024.327

[11] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam328

Roberts, Paul Barham, and Hyung Won. Palm: Scaling language modeling with pathways,329

2022.330

[12] George E. Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,331

Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, Juhan332

Bae, Justin Gilmer, Abel L. Peirson, Bilal Khan, Rohan Anil, Mike Rabbat, Shankar Krishnan,333

Daniel Snider, Ehsan Amid, Kongtao Chen, Chris J. Maddison, Rakshith Vasudev, Michal334

Badura, Ankush Garg, and Peter Mattson. Benchmarking Neural Network Training Algorithms,335

2023.336

[13] Francesco D’Angelo, Maksym Andriushchenko, Aditya Varre, and Nicolas Flammarion. Why337

do we need weight decay in modern deep learning?, 2024.338

[14] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast339

and memory-efficient exact attention with io-awareness, 2022.340

[15] DeepSeek-AI. Deepseek-v3 technical report, 2024.341

[16] Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation, 2023.342

[17] Aaron Defazio, Xingyu Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and343

Ashok Cutkosky. The road less scheduled, 2024.344

10

[18] Nolan Dey, Quentin Anthony, and Joel Hestness. The practitioner’s guide345

to the maximal update parameterization. https://www.cerebras.ai/blog/346

the-practitioners-guide-to-the-maximal-update-parameterization, September347

2024.348

[19] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning349

and stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011.350

[20] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion351

parameter models with simple and efficient sparsity, 2022.352

[21] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason353

Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:354

An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027,355

2020.356

[22] Google Gemini Team. Gemini: A family of highly capable multimodal models, 2024.357

[23] Alex Graves. Generating sequences with recurrent neural networks, 2014.358

[24] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor359

optimization, 2018.360

[25] Nicholas J. Higham. Functions of Matrices. Society for Industrial and Applied Mathematics,361

2008.362

[26] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza363

Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom364

Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia365

Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent366

Sifre. Training compute-optimal large language models, 2022.367

[27] Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei368

Fang, Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zheng Leng Thai, Kaihuo Zhang, Chongyi369

Wang, Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia,370

Guoyang Zeng, Dahai Li, Zhiyuan Liu, and Maosong Sun. Minicpm: Unveiling the potential of371

small language models with scalable training strategies, 2024.372

[28] Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and373

Martin Jaggi. Scaling laws and compute-optimal training beyond fixed training durations, 2024.374

[29] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon375

Wilson. Averaging weights leads to wider optima and better generalization, 2019.376

[30] Sami Jaghouar, Jack Min Ong, Manveer Basra, Fares Obeid, Jannik Straube, Michael Keiblinger,377

Elie Bakouch, Lucas Atkins, Maziyar Panahi, Charles Goddard, Max Ryabinin, and Johannes378

Hagemann. Intellect-1 technical report, 2024.379

[31] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris380

Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,381

Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier,382

Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak,383

Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and384

William El Sayed. Mixtral of experts, 2024.385

[32] Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado,386

You Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt:387

Speedrunning the nanogpt baseline, 2024.388

[33] Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and389

Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024.390

[34] Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J. Kusner. No train no391

gain: Revisiting efficient training algorithms for transformer-based language models, 2023.392

11

https://www.cerebras.ai/blog/the-practitioners-guide-to-the-maximal-update-parameterization
https://www.cerebras.ai/blog/the-practitioners-guide-to-the-maximal-update-parameterization
https://www.cerebras.ai/blog/the-practitioners-guide-to-the-maximal-update-parameterization

[35] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,393

Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language394

models, 2020.395

[36] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feed-396

back fixes signSGD and other gradient compression schemes. In ICML 2019 - International397

Conference on Machine Learning, pages 3252–3261. PMLR, 2019.398

[37] Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.399

[38] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.400

[39] Atli Kosson, Bettina Messmer, and Martin Jaggi. Analyzing & reducing the need for learning401

rate warmup in gpt training, 2024.402

[40] Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational equilibrium: How weight decay403

balances learning across neural networks, 2024.404

[41] Frederik Kunstner. Why do machine learning optimizers that work, work? PhD thesis, University405

of British Columbia, 2024.406

[42] Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not407

the main factor behind the gap between sgd and adam on transformers, but sign descent might408

be, 2023.409

[43] Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-tailed410

class imbalance and why adam outperforms gradient descent on language models, 2024.411

[44] Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik412

Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-lm: In search of the next413

generation of training sets for language models. Advances in Neural Information Processing414

Systems, 37:14200–14282, 2024.415

[45] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke,416

Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed:417

Experiences on accelerating data parallel training, 2020.418

[46] Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic419

second-order optimizer for language model pre-training, 2024.420

[47] Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,421

Weixin Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong422

Yin, Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang,423

Yongsheng Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin424

Yang. Muon is scalable for llm training, 2025.425

[48] AI @ Meta Llama Team. The llama 3 herd of models, 2024.426

[49] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.427

[50] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.428

[51] James Martens. New insights and perspectives on the natural gradient method, 2020.429

[52] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approx-430

imate curvature. In International conference on machine learning, pages 2408–2417. PMLR,431

2015.432

[53] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,433

Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed434

precision training, 2018.435

[54] Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free436

learner, 2024.437

12

https://github.com/karpathy/nanoGPT

[55] A.S. Nemirovskii and Yu.E. Nesterov. Optimal methods of smooth convex minimization. USSR438

Computational Mathematics and Mathematical Physics, 25(2):21–30, 1985.439

[56] Yu. Nesterov and V. Shikhman. Quasi-monotone Subgradient Methods for Nonsmooth Convex440

Minimization. Journal of Optimization Theory and Applications, 165(3):917–940, June 2015.441

[57] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of442

convergence o(1/k2), 1983.443

[58] Team OLMo. 2 olmo 2 furious, 2024.444

[59] OpenAI. Gpt-4 technical report, 2024.445

[60] Francesco Orabona. Neural networks (maybe) evolved to make adam the best optimizer, 2020.446

[61] Francesco Orabona and Dávid Pál. Open problem: Parameter-free and scale-free online447

algorithms. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors, 29th Annual448

Conference on Learning Theory, volume 49 of Proceedings of Machine Learning Research,449

pages 1659–1664, Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR.450

[62] Matteo Pagliardini, Pierre Ablin, and David Grangier. The ademamix optimizer: Better, faster,451

older, 2024.452

[63] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,453

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas454

Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,455

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,456

high-performance deep learning library, 2019.457

[64] Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell,458

Colin Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web459

for the finest text data at scale, 2024.460

[65] Guilherme Penedo, Hynek Kydlíček, Vinko Sabolčec, Bettina Messmer, Negar Foroutan, Martin461

Jaggi, Leandro von Werra, and Thomas Wolf. Fineweb2: A sparkling update with 1000s of462

languages, December 2024.463

[66] Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and464

Volkan Cevher. Training deep learning models with norm-constrained lmos, 2025.465

[67] Boris Polyak. Some methods of speeding up the convergence of iteration methods. Ussr466

Computational Mathematics and Mathematical Physics, 4:1–17, 1964.467

[68] Boris Polyak. New method of stochastic approximation type. Automation and Remote Control,468

1990, 01 1990.469

[69] Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving470

discrepancies in compute-optimal scaling of language models, 2024.471

[70] Alec Radford and Karthik Narasimhan. Improving language understanding by generative472

pre-training. 2018.473

[71] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language474

models are unsupervised multitask learners. OpenAI, 2019.475

[72] Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of476

Mathematical Statistics, 22(3):400 – 407, 1951.477

[73] David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. 1988.478

[74] Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:479

Accounting for inference in language model scaling laws, 2024.480

[75] Fabian Schaipp, Alexander Hägele, Adrien Taylor, Umut Simsekli, and Francis Bach. The481

surprising agreement between convex optimization theory and learning-rate scheduling for large482

model training, 2025.483

13

[76] Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley484

- benchmarking deep learning optimizers, 2021.485

[77] Noam Shazeer. Glu variants improve transformer, 2020.486

[78] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,487

and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts488

layer, 2017.489

[79] Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad,490

Adriana Meza Soria, David D. Cox, and Rameswar Panda. Power scheduler: A batch size and491

token number agnostic learning rate scheduler, 2024.492

[80] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute493

optimally can be more effective than scaling model parameters, 2024.494

[81] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:495

Enhanced transformer with rotary position embedding, 2023.496

[82] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of497

initialization and momentum in deep learning. In Sanjoy Dasgupta and David McAllester,498

editors, Proceedings of the 30th International Conference on Machine Learning, Proceedings499

of Machine Learning Research, pages 1139–1147, Atlanta, Georgia, USA, 17–19 Jun 2013.500

PMLR.501

[83] Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Na-502

gahara, Tomoshi Iiyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. Adopt:503

Modified adam can converge with any β2 with the optimal rate, 2024.504

[84] Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,505

and Sham Kakade. Soap: Improving and stabilizing shampoo using adam, 2024.506

[85] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,507

Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language508

models, 2023.509

[86] Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv,510

Da Pan, Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv511

preprint arXiv:2309.10305, 2023.512

[87] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick513

Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large514

neural networks via zero-shot hyperparameter transfer, 2022.515

[88] Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the516

power of variance reduction for training large models, 2024.517

[89] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive518

methods for nonconvex optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,519

N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,520

volume 31. Curran Associates, Inc., 2018.521

[90] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transform-522

ers, 2022.523

[91] Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019.524

[92] Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean525

Foster, and Sham Kakade. How does critical batch size scale in pre-training?, 2024.526

[93] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi,527

Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances528

in Neural Information Processing Systems, 33:15383–15393, 2020.529

14

[94] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J Reddi,530

Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models?, 2020.531

[95] Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why532

transformers need adam: A hessian perspective, 2024.533

[96] Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Decon-534

structing what makes a good optimizer for language models. ICLR, 2025.535

15

NeurIPS Paper Checklist536

1. Claims537

Question: Do the main claims made in the abstract and introduction accurately reflect the538

paper’s contributions and scope?539

Answer: [Yes]540

Justification: the contribution of this paper is described accurately in the abstract and541

introduction.542

Guidelines:543

• The answer NA means that the abstract and introduction do not include the claims544

made in the paper.545

• The abstract and/or introduction should clearly state the claims made, including the546

contributions made in the paper and important assumptions and limitations. A No or547

NA answer to this question will not be perceived well by the reviewers.548

• The claims made should match theoretical and experimental results, and reflect how549

much the results can be expected to generalize to other settings.550

• It is fine to include aspirational goals as motivation as long as it is clear that these goals551

are not attained by the paper.552

2. Limitations553

Question: Does the paper discuss the limitations of the work performed by the authors?554

Answer: [Yes]555

Justification: we discuss a limitations and mention experiments we have not tried to run556

Guidelines:557

• The answer NA means that the paper has no limitation while the answer No means that558

the paper has limitations, but those are not discussed in the paper.559

• The authors are encouraged to create a separate "Limitations" section in their paper.560

• The paper should point out any strong assumptions and how robust the results are to561

violations of these assumptions (e.g., independence assumptions, noiseless settings,562

model well-specification, asymptotic approximations only holding locally). The authors563

should reflect on how these assumptions might be violated in practice and what the564

implications would be.565

• The authors should reflect on the scope of the claims made, e.g., if the approach was566

only tested on a few datasets or with a few runs. In general, empirical results often567

depend on implicit assumptions, which should be articulated.568

• The authors should reflect on the factors that influence the performance of the approach.569

For example, a facial recognition algorithm may perform poorly when image resolution570

is low or images are taken in low lighting. Or a speech-to-text system might not be571

used reliably to provide closed captions for online lectures because it fails to handle572

technical jargon.573

• The authors should discuss the computational efficiency of the proposed algorithms574

and how they scale with dataset size.575

• If applicable, the authors should discuss possible limitations of their approach to576

address problems of privacy and fairness.577

• While the authors might fear that complete honesty about limitations might be used by578

reviewers as grounds for rejection, a worse outcome might be that reviewers discover579

limitations that aren’t acknowledged in the paper. The authors should use their best580

judgment and recognize that individual actions in favor of transparency play an impor-581

tant role in developing norms that preserve the integrity of the community. Reviewers582

will be specifically instructed to not penalize honesty concerning limitations.583

3. Theory assumptions and proofs584

Question: For each theoretical result, does the paper provide the full set of assumptions and585

a complete (and correct) proof?586

Answer: [NA]587

16

Justification: this is not a theoretical work588

Guidelines:589

• The answer NA means that the paper does not include theoretical results.590

• All the theorems, formulas, and proofs in the paper should be numbered and cross-591

referenced.592

• All assumptions should be clearly stated or referenced in the statement of any theorems.593

• The proofs can either appear in the main paper or the supplemental material, but if594

they appear in the supplemental material, the authors are encouraged to provide a short595

proof sketch to provide intuition.596

• Inversely, any informal proof provided in the core of the paper should be complemented597

by formal proofs provided in appendix or supplemental material.598

• Theorems and Lemmas that the proof relies upon should be properly referenced.599

4. Experimental result reproducibility600

Question: Does the paper fully disclose all the information needed to reproduce the main ex-601

perimental results of the paper to the extent that it affects the main claims and/or conclusions602

of the paper (regardless of whether the code and data are provided or not)?603

Answer: [Yes]604

Justification: we open-source our code605

Guidelines:606

• The answer NA means that the paper does not include experiments.607

• If the paper includes experiments, a No answer to this question will not be perceived608

well by the reviewers: Making the paper reproducible is important, regardless of609

whether the code and data are provided or not.610

• If the contribution is a dataset and/or model, the authors should describe the steps taken611

to make their results reproducible or verifiable.612

• Depending on the contribution, reproducibility can be accomplished in various ways.613

For example, if the contribution is a novel architecture, describing the architecture fully614

might suffice, or if the contribution is a specific model and empirical evaluation, it may615

be necessary to either make it possible for others to replicate the model with the same616

dataset, or provide access to the model. In general. releasing code and data is often617

one good way to accomplish this, but reproducibility can also be provided via detailed618

instructions for how to replicate the results, access to a hosted model (e.g., in the case619

of a large language model), releasing of a model checkpoint, or other means that are620

appropriate to the research performed.621

• While NeurIPS does not require releasing code, the conference does require all submis-622

sions to provide some reasonable avenue for reproducibility, which may depend on the623

nature of the contribution. For example624

(a) If the contribution is primarily a new algorithm, the paper should make it clear how625

to reproduce that algorithm.626

(b) If the contribution is primarily a new model architecture, the paper should describe627

the architecture clearly and fully.628

(c) If the contribution is a new model (e.g., a large language model), then there should629

either be a way to access this model for reproducing the results or a way to reproduce630

the model (e.g., with an open-source dataset or instructions for how to construct631

the dataset).632

(d) We recognize that reproducibility may be tricky in some cases, in which case633

authors are welcome to describe the particular way they provide for reproducibility.634

In the case of closed-source models, it may be that access to the model is limited in635

some way (e.g., to registered users), but it should be possible for other researchers636

to have some path to reproducing or verifying the results.637

5. Open access to data and code638

Question: Does the paper provide open access to the data and code, with sufficient instruc-639

tions to faithfully reproduce the main experimental results, as described in supplemental640

material?641

17

Answer: [Yes]642

Justification: we provide our code and the datasets are mentioned clearly643

Guidelines:644

• The answer NA means that paper does not include experiments requiring code.645

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/646

public/guides/CodeSubmissionPolicy) for more details.647

• While we encourage the release of code and data, we understand that this might not be648

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not649

including code, unless this is central to the contribution (e.g., for a new open-source650

benchmark).651

• The instructions should contain the exact command and environment needed to run to652

reproduce the results. See the NeurIPS code and data submission guidelines (https:653

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.654

• The authors should provide instructions on data access and preparation, including how655

to access the raw data, preprocessed data, intermediate data, and generated data, etc.656

• The authors should provide scripts to reproduce all experimental results for the new657

proposed method and baselines. If only a subset of experiments are reproducible, they658

should state which ones are omitted from the script and why.659

• At submission time, to preserve anonymity, the authors should release anonymized660

versions (if applicable).661

• Providing as much information as possible in supplemental material (appended to the662

paper) is recommended, but including URLs to data and code is permitted.663

6. Experimental setting/details664

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-665

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the666

results?667

Answer: [Yes]668

Justification: we specify all of the important hyperparameters as well as hyperparameter669

tuning.670

Guidelines:671

• The answer NA means that the paper does not include experiments.672

• The experimental setting should be presented in the core of the paper to a level of detail673

that is necessary to appreciate the results and make sense of them.674

• The full details can be provided either with the code, in appendix, or as supplemental675

material.676

7. Experiment statistical significance677

Question: Does the paper report error bars suitably and correctly defined or other appropriate678

information about the statistical significance of the experiments?679

Answer: [No]680

Justification: in our large-scale experiments we could not affort so. and we are running all681

of the experiment with the same seed for generation data splits, etc.682

Guidelines:683

• The answer NA means that the paper does not include experiments.684

• The authors should answer "Yes" if the results are accompanied by error bars, confi-685

dence intervals, or statistical significance tests, at least for the experiments that support686

the main claims of the paper.687

• The factors of variability that the error bars are capturing should be clearly stated (for688

example, train/test split, initialization, random drawing of some parameter, or overall689

run with given experimental conditions).690

• The method for calculating the error bars should be explained (closed form formula,691

call to a library function, bootstrap, etc.)692

• The assumptions made should be given (e.g., Normally distributed errors).693

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error694

of the mean.695

• It is OK to report 1-sigma error bars, but one should state it. The authors should696

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis697

of Normality of errors is not verified.698

• For asymmetric distributions, the authors should be careful not to show in tables or699

figures symmetric error bars that would yield results that are out of range (e.g. negative700

error rates).701

• If error bars are reported in tables or plots, The authors should explain in the text how702

they were calculated and reference the corresponding figures or tables in the text.703

8. Experiments compute resources704

Question: For each experiment, does the paper provide sufficient information on the com-705

puter resources (type of compute workers, memory, time of execution) needed to reproduce706

the experiments?707

Answer: [Yes]708

Justification: we provide this in Appendix709

Guidelines:710

• The answer NA means that the paper does not include experiments.711

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,712

or cloud provider, including relevant memory and storage.713

• The paper should provide the amount of compute required for each of the individual714

experimental runs as well as estimate the total compute.715

• The paper should disclose whether the full research project required more compute716

than the experiments reported in the paper (e.g., preliminary or failed experiments that717

didn’t make it into the paper).718

9. Code of ethics719

Question: Does the research conducted in the paper conform, in every respect, with the720

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?721

Answer: [Yes]722

Justification: this paper is consistent with NeurIPS Code of Ethics.723

Guidelines:724

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.725

• If the authors answer No, they should explain the special circumstances that require a726

deviation from the Code of Ethics.727

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-728

eration due to laws or regulations in their jurisdiction).729

10. Broader impacts730

Question: Does the paper discuss both potential positive societal impacts and negative731

societal impacts of the work performed?732

Answer: [NA]733

Justification: there is no societal impact of the work performed.734

Guidelines:735

• The answer NA means that there is no societal impact of the work performed.736

• If the authors answer NA or No, they should explain why their work has no societal737

impact or why the paper does not address societal impact.738

• Examples of negative societal impacts include potential malicious or unintended uses739

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations740

(e.g., deployment of technologies that could make decisions that unfairly impact specific741

groups), privacy considerations, and security considerations.742

19

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied743

to particular applications, let alone deployments. However, if there is a direct path to744

any negative applications, the authors should point it out. For example, it is legitimate745

to point out that an improvement in the quality of generative models could be used to746

generate deepfakes for disinformation. On the other hand, it is not needed to point out747

that a generic algorithm for optimizing neural networks could enable people to train748

models that generate Deepfakes faster.749

• The authors should consider possible harms that could arise when the technology is750

being used as intended and functioning correctly, harms that could arise when the751

technology is being used as intended but gives incorrect results, and harms following752

from (intentional or unintentional) misuse of the technology.753

• If there are negative societal impacts, the authors could also discuss possible mitigation754

strategies (e.g., gated release of models, providing defenses in addition to attacks,755

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from756

feedback over time, improving the efficiency and accessibility of ML).757

11. Safeguards758

Question: Does the paper describe safeguards that have been put in place for responsible759

release of data or models that have a high risk for misuse (e.g., pretrained language models,760

image generators, or scraped datasets)?761

Answer: [NA]762

Justification: the paper poses no such risks.763

Guidelines:764

• The answer NA means that the paper poses no such risks.765

• Released models that have a high risk for misuse or dual-use should be released with766

necessary safeguards to allow for controlled use of the model, for example by requiring767

that users adhere to usage guidelines or restrictions to access the model or implementing768

safety filters.769

• Datasets that have been scraped from the Internet could pose safety risks. The authors770

should describe how they avoided releasing unsafe images.771

• We recognize that providing effective safeguards is challenging, and many papers do772

not require this, but we encourage authors to take this into account and make a best773

faith effort.774

12. Licenses for existing assets775

Question: Are the creators or original owners of assets (e.g., code, data, models), used in776

the paper, properly credited and are the license and terms of use explicitly mentioned and777

properly respected?778

Answer: [Yes]779

Justification: we cite them and respect, see Sections 1 and 2780

Guidelines:781

• The answer NA means that the paper does not use existing assets.782

• The authors should cite the original paper that produced the code package or dataset.783

• The authors should state which version of the asset is used and, if possible, include a784

URL.785

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.786

• For scraped data from a particular source (e.g., website), the copyright and terms of787

service of that source should be provided.788

• If assets are released, the license, copyright information, and terms of use in the789

package should be provided. For popular datasets, paperswithcode.com/datasets790

has curated licenses for some datasets. Their licensing guide can help determine the791

license of a dataset.792

• For existing datasets that are re-packaged, both the original license and the license of793

the derived asset (if it has changed) should be provided.794

20

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to795

the asset’s creators.796

13. New assets797

Question: Are new assets introduced in the paper well documented and is the documentation798

provided alongside the assets?799

Answer: [NA]800

Justification: the paper does not propose new assets.801

Guidelines:802

• The answer NA means that the paper does not release new assets.803

• Researchers should communicate the details of the dataset/code/model as part of their804

submissions via structured templates. This includes details about training, license,805

limitations, etc.806

• The paper should discuss whether and how consent was obtained from people whose807

asset is used.808

• At submission time, remember to anonymize your assets (if applicable). You can either809

create an anonymized URL or include an anonymized zip file.810

14. Crowdsourcing and research with human subjects811

Question: For crowdsourcing experiments and research with human subjects, does the paper812

include the full text of instructions given to participants and screenshots, if applicable, as813

well as details about compensation (if any)?814

Answer: [NA]815

Justification: our work does not include research with human subjects.816

Guidelines:817

• The answer NA means that the paper does not involve crowdsourcing nor research with818

human subjects.819

• Including this information in the supplemental material is fine, but if the main contribu-820

tion of the paper involves human subjects, then as much detail as possible should be821

included in the main paper.822

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,823

or other labor should be paid at least the minimum wage in the country of the data824

collector.825

15. Institutional review board (IRB) approvals or equivalent for research with human826

subjects827

Question: Does the paper describe potential risks incurred by study participants, whether828

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)829

approvals (or an equivalent approval/review based on the requirements of your country or830

institution) were obtained?831

Answer: [NA]832

Justification: our work does not include research with human subjects.833

Guidelines:834

• The answer NA means that the paper does not involve crowdsourcing nor research with835

human subjects.836

• Depending on the country in which research is conducted, IRB approval (or equivalent)837

may be required for any human subjects research. If you obtained IRB approval, you838

should clearly state this in the paper.839

• We recognize that the procedures for this may vary significantly between institutions840

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the841

guidelines for their institution.842

• For initial submissions, do not include any information that would break anonymity (if843

applicable), such as the institution conducting the review.844

16. Declaration of LLM usage845

21

Question: Does the paper describe the usage of LLMs if it is an important, original, or846

non-standard component of the core methods in this research? Note that if the LLM is used847

only for writing, editing, or formatting purposes and does not impact the core methodology,848

scientific rigorousness, or originality of the research, declaration is not required.849

Answer: [NA]850

Justification: the core development of our work does not involve LLMs.851

Guidelines:852

• The answer NA means that the core method development in this research does not853

involve LLMs as any important, original, or non-standard components.854

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)855

for what should or should not be described.856

22

https://neurips.cc/Conferences/2025/LLM

Contents857

1 Introduction 1858

2 Background & Related Work 2859

3 Experimental Setup 3860

4 Results 4861

4.1 Benchmarking at Small Scale: Training Models of 124M Parameters 4862

4.2 Benchmarking at medium scale: Training Models of 210M Parameters 8863

4.3 Scaling Up: Benchmarking models of 583M and 720M Parameters 8864

5 Extension to MoEs 9865

6 Discussion 9866

A Optimizers we study 23867

A.1 AdamW, ADOPT, AdEMAMix . 24868

A.2 Sign-based methods: Lion and Signum . 25869

A.3 Muon, SOAP, Sophia . 29870

A.4 Schedule-Free AdamW, Prodigy . 32871

A.5 MARS . 33872

B Implementation 35873

C Model & Data 35874

D Hyperparameter tuning 36875

D.1 124M parameters model . 37876

D.2 210M parameters model . 38877

D.3 600M parameters model . 38878

E Additional results 38879

E.1 Benchmarking: 124M . 38880

E.2 Ablations for 124M model . 38881

E.3 Benchmarking: 210M . 40882

E.4 Ablations for 210M model . 40883

E.5 Wall-clock performance of optimizers across models of different scale 40884

E.6 Extension to MoEs. 40885

A Optimizers we study886

In this section, we describe all considered algorithms, presenting them in a unified formalism. We887

start with notation and then discuss the algorithms according to their logical grouping:888

23

1. Adam-like methods: AdamW (Algorithm 1), ADOPT (Algorithm 2) and AdEMAMix (Algorithm 3).889

2. Sign-based methods: Lion (Algorithm 4), Signum (Algorithms 5 and 6).890

3. Approximate second-order optimizers: Muon (Algorithm 8), SOAP (Algorithm 10) and Sophia891

(Algorithm 11).892

4. Learning rate / scheduler-free learning algorithms: Schedule-Free AdamW (Algorithm 12),893

Prodigy (Algorithm 13).894

5. MARS algorithms: (Algorithms 14 to 16).895

Notation. In our work, we denote all vectors and matrices using bold symbols, while non-bold896

symbols represent scalars. Let L : D → R be an empirical loss function parameterized by x, and897

mapping batch of inputs ξ ⊂ D to R. As g = ∇xL (x, ξ) we denote a stochastic gradient of the898

loss w.r.t. parameters x. For simplicity, we omit x in ∇ and write ∇L (x, ξ). We use the following899

standardized notation for specific symbols in our work: batch size — |ξ|, learning rate — γ, weight900

decay — λ, momentum — β, iteration counter t with the total number of iterations — T .901

And basic notation for symbols in the algorithms: m,v – are first and second moment estimates,902

respectively, with their bias corrected versions m̂, v̂, and beta parameters — β1, β2. We denote the903

dot product of two vectors z, y as ⟨z,y⟩, while z ⊙ y stands for their element-wise product. All904

division and addition operations in the described algorithms are element-wise.905

A.1 AdamW, ADOPT, AdEMAMix906

AdamW. Our baseline — Adam(W), has become a de facto optimizer for deep learning, demonstrating907

impressive performance across diverse domains: from tabular data to diffusion and language models.908

The method originated from the ideas of Adagrad [19] and RMSProp [23], which utilize a second909

moment estimate v in their update rule. However, Adam(W) enhanced this prior scheme by incorpo-910

rating momentum [55, 82], establishing itself as a state-of-the-art method for a wide range of tasks.911

All other algorithms we consider also employ a similar, if not identical, momentum scheme.912

Another key aspect of AdamW is its decoupled weight decay λ [50], unlike Adam. We use the913

decoupled weight decay scheme for all methods to ensure consistency and emphasize its importance914

for optimizer comparison, hyperparameter tuning, and final performance. This is clearly observable,915

e.g., for Signum (Algorithm 5).916

Algorithm 1 AdamW

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2, ε.
2: Initialize: m0 ← 0, v0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)
5: mt ← β1mt−1 + (1− β1)gt
6: vt ← β2vt−1 + (1− β2)gt ⊙ gt
7: m̂t ←mt/(1− βt

1), v̂t ← vt/(1− βt
2)

8: xt+1 ← xt − γt

(
m̂t√
v̂t+ε

+ λxt

)
9: end for

10: Return: xT

ADOPT. Recently, [83] proposed a modification of Adam, by removing the current gradient gt917

from the second moment estimate vt and changing the order of the momentum update mt and the918

normalization by the second moment estimate. As shown in line 8 of Algorithm 2, the parameter919

update depends only on the previous value of the second moment estimate vt−1. The authors analyze920

the convergence of ADOPT with the following update rule:921

mt ← β1mt−1 + (1− β1)
gt

max{√vt−1, ε}
,

xt+1 ← xt − γtmt.

24

However, the practical implementation differs in a few details. To tackle instabilities caused by922

near-zero gradients during the early stages of training, the authors propose using a clipping on923

gt/max{√vt−1, ε}, which we formalize as the clamp operation. Given a vector g and a positive924

scalar c, it is defined as:925

clamp (g, c)
(i)

= min
{
max

{
g(i),−c

}
, c
}
. (1)

Thus, the element-wise clamp operation preserves gt from the division by near-zero values.926

The authors theoretically claim that ADOPT achieves the optimal convergence bound for non-convex927

objectives, regardless of the choice of the β2 parameter. We empirically investigate this claim and928

observe that, contrary to the theoretical results, there is a significant performance gap for different929

choices of β2 in practice.930

Algorithm 2 ADOPT

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2, ε.
2: Initialize: m0 ← 0, v0 ← ∇L(x0, ξ0)⊙∇L(x0, ξ0)
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)
5: ct ← t1/4 ▷ Update clipping value schedule
6: mt ← β1mt−1 + (1− β1)clamp

(
gt

max{√vt−1,ε} , ct

)
7: vt ← β2vt−1 + (1− β2)gt ⊙ gt
8: xt+1 ← xt − γt (mt + λxt) ▷ Update without vt

9: end for
10: Return: xT

AdEMAMix. Another Adam-like optimizer we study is AdEMAMix [62]. This work argues that using931

a single EMA to accumulate past gradients in the first moment estimate m can be sub-optimal, as it932

cannot simultaneously prioritize both immediate past and older gradients. In Algorithm 3, the authors933

incorporate two EMAs: one — Adam-like EMA for m (fast), and another — a slow EMA mslow934

(see line 7) with an additional β3 parameter. In its update rule, the algorithms balances fast and935

slow EMAs with the constant factor α (see line 10 of Algorithm 3). This algorithmic design helps936

AdEMAMix benefit from older gradients and results in smoother loss curves during training.937

However, to mitigate the effect of early instabilities, the authors use two additional schedulers for α938

and β3 – alpha_scheduler and beta_scheduler, formalized in our work as follows:939

alpha_scheduler(t, α, Tα) = min

{
tα

Tα
, α

}
,

beta_scheduler(t, β3, βstart, Tβ3
) = min

exp

 log(βstart) log(β3)(
1− t

Tβ3

)
log(β3) +

t
Tβ3

log(βstart)

 , β3

 .

In all experiments, we set βstart = β1, and the warmup parameters equal to the length of training:940

Tα = Tβ3
= T .941

One thing that should be commented — α and β schedulers are seemingly contradict the idea of942

WSD scheduler. However, setting Tα, Tβ3 to be longer than the first checkpoint of the WSD does943

not significantly impact the final performance. Thus, AdEMAMix can still be combined with recent944

findings regarding the WSD scheduler.945

A.2 Sign-based methods: Lion and Signum946

Another branch of methods includes sign-based Lion and Signum. To some extend, one can947

classify Adam as a sign-based method also, but we mention only Lion and Signum as they explicitly948

incorporate the sign operation in the update rule.949

These methods, particularly Signum, have been unfairly overlooked in the context of LLM pretraining.950

However, our results demonstrate that, with sufficiently large batch sizes and at moderate model951

scales, these optimizers perform on par with Adam, and in some cases, even outperform it.952

25

Algorithm 3 AdEMAMix

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,
β3, βstart, α, beta_scheduler, alpha_scheduler, warmup parameters Tβ3 and Tα, ε.

2: Initialize: m0 ← 0, mslow
0 ← 0, v0 ← 0

3: for t ∈ [T] do
4: β3(t)← beta_scheduler(t, β3, βstart, Tβ3

), α(t)← alpha_scheduler(t, α, Tα) ▷
Update β3 and α schedulers

5: gt ← ∇L(xt, ξt)
6: mt ← β1mt−1 + (1− β1)gt

7: mslow
t ← β3(t)m

slow
t−1 + (1− β3(t))gt ▷ Update slow EMA

8: vt ← β2vt−1 + (1− β2)gt ⊙ gt
9: m̂t ←mt/(1− βt

1), v̂t ← vt/(1− βt
2)

10: xt+1 ← xt − γt

(
m̂t+α(t)mslow

t√
v̂t+ε

+ λxt

)
11: end for
12: Return: xT

Lion. And the first method of this kind is Lion [9]. This optimizer is symbolically discovered in953

the program space of first-order optimization primitives. Lion updates its EMA of m after updating954

the parameters and has additional term (1− β1)g whis adds to the momentum. This interpolation955

β1mt−1 + (1 − β1)gt (see line 6 of Algorithm 4) makes the symbolic-discovered idea behind956

Lion similar to the idea of the AdEMAMix optimizer.957

Algorithm 4 Lion

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2.
2: Initialize: m0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)
5: mt ← β2mt−1 + (1− β2)gt ▷ Update EMA of gt
6: xt+1 ← xt − γt (sign (β1mt−1 + (1− β1)gt) + λxt)
7: end for
8: Return: xT

Signum. Another sign-based method, which is the adoptation of signSGD — Signum [6], or958

signSGD with momentum. This method differs from Lion in the interpolation term between EMA959

of momentum and current gradient, as well as in the Signum’s update rule a current EMA is used.960

Importantly, while Signum is not as widespread for LLM pretraining and stands mostly as a theoretical961

artifact, recent practitioner’s studies also start to use Signum for scalable training [96]. Mostly, due962

to the memory-efficiency of Signum compared to AdamW.963

In this regard, we want to make an important point — many recent PyTorch [63] implementations of964

the Signum optimizer, unlikely, are not suitable for this method, impairing the potential performance965

from using it.966

The main problem of many open-source implementations is a use of decoupled weight decay in967

the PyTorch implementation of SGDM (SGD with momentum) [82]. Indeed, with a decoupled weight968

decay, the update of Algorithm 5 transforms into:969

xt+1 ← xt − γtsign (βmt−1 + (1− β)gt − λ(1− β)gt) ,

which affects the sign of the update, leading to potentially wrong optimization direction if the weight970

decay is sufficiently large.971

Another popular failure while using Signum is incorrectly tractable PyTorch implementation of972

SGDM. It does not include such EMA as line 5 in Algorithm 5, on the other hand, in PyTorch, the973

momentum update depends on the dampening parameter τ :974

mt ← βmt−1 + (1− τ)gt,

26

which is zero by default. Therefore, the typical update rule, reflecting the actual Signum behavior in975

practice corresponds to the following update:976

xt+1 ← xt − γt (sign (βmt−1 + (1− τ)gt) + λxt) ,

where the weight decay is decoupled and, consequently, does not affect the sign.977

gt ← gt + βmt,

improves Signum. Since enabling Nesterov momentum requires zero dampening τ , we revisited the978

descrition of Algorithm 5, and propose more practical, PyTorch-compatible version of Signum in979

Algorithm 6.980

Algorithm 5 Signum (basic)

1: Input: Initial parameters x0, number of
iterations T , learning rate γt, weight decay
λ, momentum β.

2: Initialize: m0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)
5: mt ← βmt−1 + (1− β)gt
6: xt+1 ← xt − γt (sign (mt) + λxt)
7: end for
8: Return: xT

Algorithm 6 Signum (our PyTorch variant)

1: Input: Initial parameters x0, number of
iterations T , learning rate γt, weight decay
λ, momentum β.

2: Initialize: m0 ← 0
3: for t ∈ [T] do
4: gt ← L(xt, ξt)
5: mt ← βmt−1 + gt
6: xt+1 ← xt −

γt (sign (βmt + gt) + λxt)
7: end for
8: Return: xT

Moreover, to prevent other researchers and practitioners from the possible wrong use of Signum and981

for the reproducibility purposes, we provide our Python code.982

Listing 1: Signum code skeleton using PyTorch
from t y p i n g import D i c t983

984

import t o r c h985

986

987

c l a s s Signum (t o r c h . opt im . O p t i m i z e r) :988

def _ _ i n i t _ _ (989

s e l f ,990

params ,991

l r =1e −3 ,992

momentum=0 ,993

dampening =0 ,994

w e i g h t _ d e c a y =0 ,995

n e s t e r o v = F a l s e ,996

s i g n _ u p d a t e =True ,997

) :998

i f l r < 0 . 0 :999

r a i s e V a l u e E r r o r (f " I n v a l i d l e a r n i n g r a t e : { l r } ")1000

i f momentum < 0 . 0 :1001

r a i s e V a l u e E r r o r (f " I n v a l i d momentum v a l u e : {momentum} "1002

)1003

i f w e i g h t _ d e c a y < 0 . 0 :1004

r a i s e V a l u e E r r o r (f " I n v a l i d w e i g h t _ d e c a y v a l u e : {1005

w e i g h t _ d e c a y } ")1006

1007

d e f a u l t s = d i c t (1008

l r = l r ,1009

27

momentum=momentum ,1010

dampening=dampening ,1011

w e i g h t _ d e c a y = weigh t_decay ,1012

n e s t e r o v = n e s t e r o v ,1013

s i g n _ u p d a t e = s i g n _ u p d a t e ,1014

)1015

i f n e s t e r o v and (momentum <= 0 or dampening != 0) :1016

r a i s e V a l u e E r r o r (" N e s t e r o v momentum r e q u i r e s a1017

momentum and z e r o dampening ")1018

super () . _ _ i n i t _ _ (params , d e f a u l t s)1019

1020

def _ _ s e t s t a t e _ _ (s e l f , s t a t e) :1021

super () . _ _ s e t s t a t e _ _ (s t a t e)1022

f o r group in s e l f . pa ram_groups :1023

group . s e t d e f a u l t (" n e s t e r o v " , F a l s e)1024

1025

@torch . no_grad ()1026

def _ i n i t _ s t a t e (s e l f , example , s t a t e =None) :1027

a s s e r t i s i n s t a n c e (example , t o r c h . Tensor)1028

a s s e r t i s i n s t a n c e (s t a t e , D i c t) or s t a t e i s None1029

i f s t a t e i s None :1030

s t a t e = {}1031

s t a t e [" s t e p "] = 01032

s t a t e [" momentum_buffer "] = t o r c h . c l o n e (example) . d e t a c h ()1033

re turn s t a t e1034

1035

@torch . no_grad ()1036

def _compute_upda te (1037

s e l f , grad , s t a t e , l r , momentum , n e s t e r o v , dampening ,1038

s i g n _ u p d a t e , ** kwargs1039

) :1040

i f momentum != 0 : # Signum check1041

buf = s t a t e [" momentum_buffer "]1042

buf . mul_ (momentum) . add_ (grad , a l p h a =1 − dampening)1043

1044

i f n e s t e r o v :1045

g rad = grad . add (buf , a l p h a =momentum)1046

e l s e :1047

g rad = buf1048

1049

i f s i g n _ u p d a t e :1050

g rad = grad . s i g n ()1051

1052

re turn g rad * (− l r)1053

1054

@torch . no_grad ()1055

def s t e p (s e l f , c l o s u r e =None) :1056

" " " Per forms a s i n g l e o p t i m i z a t i o n s t e p .1057

1058

Args :1059

c l o s u r e (C a l l a b l e , o p t i o n a l) : A c l o s u r e t h a t1060

r e e v a l u a t e s t h e model1061

and r e t u r n s t h e l o s s .1062

" " "1063

l o s s = None1064

i f c l o s u r e i s not None :1065

wi th t o r c h . e n a b l e _ g r a d () :1066

l o s s = c l o s u r e ()1067

1068

28

f o r group in s e l f . pa ram_groups :1069

f o r p in group [" params "] :1070

i f p . g r ad i s None :1071

c o n t in u e1072

1073

g rad = p . g rad1074

s t a t e = s e l f . s t a t e [p]1075

1076

i f group [" w e i g h t _ d e c a y "] != 0 :1077

p . mul_ (1 − group [" l r "] * group [" w e i g h t _ d e c a y "1078

])1079

1080

i f l e n (s t a t e) == 0 :1081

s e l f . _ i n i t _ s t a t e (example=p , s t a t e = s t a t e)1082

i f not group ["momentum"] :1083

s t a t e . pop (" momentum_buffer " , None)1084

1085

s t a t e [" s t e p "] += 11086

1087

u p d a t e = s e l f . _compute_upda te (1088

grad ,1089

s t a t e ,1090

group [" l r "] ,1091

group ["momentum"] ,1092

group [" n e s t e r o v "] ,1093

group [" dampening "] ,1094

group [" s i g n _ u p d a t e "] ,1095

)1096

1097

p . add_ (u p d a t e)1098

1099

re turn l o s s1100

A.3 Muon, SOAP, Sophia1101

Next page of the methods covers algorithms that rather aim to use more information about the1102

problem’s curvature (SOAP [84], Sophia [46]) or perform fast updates of matrix parameters involving1103

higher order computations (Muon [33]).1104

Contrary to the chronological order, we discuss them starting from the recent one — Muon and end1105

up with Sophia.1106

Muon. Specifically designed for the speedrun comparisons, this method surpasses AdamW baseline1107

on nanoGPT pretraining benchmark [32]. Claims from the Muon extend to faster learning, lower1108

memory usage and better sample-efficiency with a small wall-clock time overhead. However, there1109

are not much to say about the final performance given a particular budget of tokens to train on.1110

The reason why the Muon is a good option for speedrun pretraining lies in its structure — Muon treats1111

different layers in different way. One dimensional (1D) parameters, large embedding layers, scalar1112

parameters (such as Layer Norm parameters) and the output layer of LLM (lm_head) are optimized1113

by AdamW. And all parameters with two or more dimensions, e.g., Multi-Head Attention layers are1114

optimized by Algorithm 7, which we call MuonNon1D.1115

Inspired by Shampoo’s preconditioners [24], the authors of MuonNon1D incorporated an orthogonal-1116

ization step to compute the SVD transformation of gradient matrix. Before the orthogonalization step,1117

MuonNon1D represents SGD with Nesterov momentum. To ensure fast orthogonalization procedure,1118

the authors, insiped by [5], use Newton-Schulz procedure [25]. As the number of Newton-Schulz1119

iterations increases, the closer resulting matrix becomes to UV ⊤ from SVD transformation. The1120

authors also mention that Muon can be thought of as a second way of smoothing spectral steepest1121

descent [8], with a different set of memory and runtime trade-offs compared to Shampoo.1122

29

Algorithm 7 MuonNon1D (for non-1D parameters)

1: Input: Initial non-1D parameters x0, number of iterations T , learning rate γt, momentum β,
number of Newton-Schulz iterations TNS, a, b, c coefficients.

2: Initialize: m0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)
5: mt ← βmt−1 + gt
6: gt ← βmt + gt ▷ Practical implementation of Nesterov momentum
7: Set: w0 ← gt/∥gt∥F
8: for n ∈ [TNS] do
9: wn+1 ← awn + bwnw

⊤
n + c

(
wnw

⊤
n

)2
wn ▷ Newton-Schulz iteration

10: end for
11: xt+1 ← xt − γtwTNS

12: end for
13: Return: xT

Algorithm 8 Muon (general scheme)

1: Input: Initial parameters x0, number of iterations T . Muon’s parameters: learning rate γMt ,
momentum β, number of Newton-Schulz iterations TNS, a, b, c coefficients. AdamW’s parameters:
learning rate γAt , weight decay λ, β1, β2, ε.

2: for t ∈ [T] do xt ∈ {embeds, scalar_params, lm_head}
3: xA

t ← xt

4: xA
t+1 ← AdamW (xA

t , γ
A
t , λ, β1, β2, ε, T = 1) ▷ One iteration of AdamW

5: xM
t ← xt

6: xM
t+1 ← MuonNon1D (xM

t , γ
M
t , TNS, β, a, b, c, T = 1) ▷ One iteration of MuonNon1D

7: end for
8: Return: xA

T ,x
M
T

Importantly, we noticed that the original algorithmic description of Muon optimizer, provided in the1123

official repository3, differs from the actual one, presented in Algorithm 7. In the original code, as1124

well as in our benchmarking, weight decay do not applies to the matrix parameters in the optimizer1125

state of MuonNon1D, which means that the only weight decay used during training is AdamW’s weight1126

decay. From this perspective, we observe that the gap between the final loss values for runs with 0.11127

and 0 weight decay values almost disappears, while the run with 0.5 weight decay becomes the worst,1128

which is not the case for other optimizers. We describe this in our weight decay ablations.1129

SOAP. [84] proposed new, improved modification of Shampoo [24]. SOAP reduces the computational1130

overhead optimizing only two dimensional layers (2D) via Algorithm 9, while running AdamW for 1D1131

layers. At initialization, preconditioners are computed via eigenvector decomposition of the initial1132

gradient matrices eigenbasis
(
∇L(x0, ξ0)∇L(x0, ξ0)

⊤): ∇L(x0, ξ0)∇L(x0, ξ0)
⊤ = qΛq−1,1133

where Λ stands for the diagonal matrix whose diagonal elements are the corresponding eigenvalues.1134

For the rest of the iterations, SOAPNon1D performs the QR decomposition (see lines 15, 16 of1135

Algorithm 9) for all 2D layers, which is the main computational part of the method.1136

A key idea behind the SOAP optimizer is:1137

1. Given the slowly changing coordinate basis provided by eigenvectors l and r, SOAP updates its1138

second moment estimates in this basis, i.e., it runs AdamW in another, rotated space.1139

2. To update the eigenvectors of l and r, SOAP runs QR decomposition with preconditioning frequency1140

ϕ.1141

In Algorithm 9, if one would set both ql and qr to identity, then we would recover AdamW.1142

The overall SOAP algorithm can be formalized as follows:1143

3https://github.com/KellerJordan/modded-nanogpt

30

https://github.com/KellerJordan/modded-nanogpt

Algorithm 9 SOAPNon1D (for non-1D parameters)

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,
preconditioning frequency ϕ, ε.

2: Initialize: m0 ← 0, v0 ← 0
3: Initialize preconditioners: ql, qr ← eigenbasis

(
∇L(x0, ξ0)∇L(x0, ξ0)

⊤)
4: for t ∈ [T] do
5: gt ← ∇L(xt, ξt)
6: g′

t ← q⊤
l gtqr ▷ Rotate gt

7: m← β1mt−1 + (1− β1)gt

8: m′
t ← q⊤

l mtqr ▷ Compute Adam’s statistics in rotational space
9: vt ← β2vt−1 + (1− β2)g

′
t ⊙ g′

t

10: γt ← γt

√
1−βt

2

1−βt
1

▷ Optional: use bias correction

11: xt+1 ← xt − γt

(
ql

m′
t√

vt+εq
⊤
r + λxt

)
▷ Perform update in original space

12: lt ← β2lt−1 + (1− β2)gtg
⊤
t ▷ Update preconditioners

13: rt ← β2rt−1 + (1− β2)g
⊤
t gt t ≡ 1 (mod ϕ)

14: ql ← QR (ltql)
15: qr ← QR (rtqr)
16: end for
17: Return: xT

Algorithm 10 SOAP (general scheme)

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,
preconditioning frequency ϕ, ε.

2: for t ∈ [T] do xt ∈ {embeds, scalar_params, lm_head}
3: xA

t ← xt

4: xA
t+1 ← AdamW (xA

t , γt, λ, β1, β2, ε, T = 1) ▷ One iteration of AdamW
5: xS

t ← xt

6: xS
t+1 ← SOAPNon1D (xS

t , γt, λ, β1, β2, ε, T = 1) ▷ One iteration of SOAPNon1D
7: end for
8: Return: xA

T ,x
S
T

Sophia. Despite being named as second-order optimizer, Sophia [46] performs an update, quite1144

similar to Adam’s. It also leverages the diagonal preconditioner h, but not the curvature information1145

of the optimization problem, which depends on the non-diagonal terms of the Hessian. One should1146

notice that Sophia were introduced with two types of preconditioners — Hutchinson [3] and Gauss-1147

Newton-Bartlett [51]. Since the latter one shows more promising performance, we consider only this1148

type of preconditioner for Sophia.1149

Every ϕ iterations, Sophia updates its second moment estimate by computing the gradient ĝ of the1150

empirical loss L given softmax of the logits instead of the true logits. Multiplying by the batch size,1151

we obtain ĥ, after that, Sophia updates the EMA of ĥ.1152

Importantly, we found out, that algorithmic description of Sophia in the original paper differs in1153

minor details from the code implementation4. Indeed, the update rule in their work formulates as1154

follows:1155

xt+1 ← xt − γtclamp

(
mt

max{ρht, ε}
, 1

)
,

where clamp is defined as in Equation (1). On the other hand, the code from the official repository1156

suggests:1157

Listing 2: Sophia update skeleton using PyTorch
u pd a t e s t e p1158

4https://github.com/Liuhong99/Sophia

31

https://github.com/Liuhong99/Sophia

s t e p _ t += 11159

1160

Per form s t e p w e i g h t decay1161

param . mul_ (1 − l r * w e i g h t _ d e c a y)1162

1163

Decay t h e f i r s t and second moment r u n n i n g average c o e f f i c i e n t1164

exp_avg . mul_ (b e t a 1) . add_ (grad , a l p h a =1 − b e t a 1)1165

1166

e l s e :1167

s t e p _ s i z e _ n e g = − l r1168

1169

r a t i o = (exp_avg . abs () / (rho * bs * h e s s + 1e −15)) . clamp (None1170

, 1)1171

param . addcmul_ (exp_avg . s i g n () , r a t i o , v a l u e = s t e p _ s i z e _ n e g)1172

Therefore, the actual update of Sophia is wrongly tractated in the original paper and should be1173

corrected and equal to the line 16 of Algorithm 11.1174

Takeaway 4. The actual update rule of Sophia differs from its description in the original paper.
1175

Algorithm 11 Sophia

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,
estimator frequency ϕ, scaling factor ρ, ε.

2: Initialize: m0 ← 0, h0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)
5: mt ← β1mt−1 + (1− β1)gt t ≡ 1 (mod ϕ)
6: pt ← ξt ▷ Obtain logits from batch
7: pt ← softmax (pt) ▷ Sample from logits
8: L̂(xt, ξt)← pt ▷ Loss, where pt are labels
9: ĝt ← ∇L̂(xt, ξt)

10: ĥt ← |ξt|ĝt ⊙ ĝt

11: ht ← β2ht−ϕ + (1− β2)ĥt

12: ht ← ht−1

13: xt+1 ← xt − γt

(
sign(mt)min

{
|mt|
ρht+ε , 1

}
+ λxt

)
14: end for
15: Return: xT

A.4 Schedule-Free AdamW, Prodigy1176

In this section, we outline two more players — Schedule-Free AdamW [17] and Prodigy [54].1177

Both of them have a promising advantages and require less hyperparameter tuning which paves the1178

road to parameter-free optimizers.1179

Schedule-Free AdamW. [17] introduced a concept of schedule-free optimizers. Underlying idea1180

behind his Schedule-Free SGD and Schedule-Free AdamW is to remove the scheduler with1181

iterate averaging. Particularly, schedule-free method uses an interpolation between Polyak-Ruppert1182

averaging [68, 73] and Primal averaging [56] for momentum update instead of usual EMA (line 41183

of Algorithm 12). To avoid undesirable behavior during scalable training the authors also propose1184

internal warmup (see line 7 of Algorithm 12) which uses the general number of warmup iterations1185

parameter in the code, this gradually increases the learning rate and, at the same time, ensures Adam’s1186

bias correction.1187

An interesting result we observe, SF-AdamW shows the best performance with larger number of1188

warmup iterations compared to other methods.1189

32

Another key point — training with SF-AdamW is sensitive to the choice of beta parameters. Unlike1190

in AdamW, these parameters serve different purposes in SF-AdamW: as β1 acts as an interpolation1191

parameter between two sequences, and β2 controls the EMA of the second moment estimate, which1192

relates to y sequence rather than the model parameters x (line 6 of Algorithm 12). For Adam it is1193

common to analyze in theory the case, when β2 = 1− 1/T [89, 10], i.e., the choice of the ”optimal”1194

beta parameters depends on the length of training. Which is also the case for SF-AdamW, making1195

it not fully schedule-free. [28] observed this sensitivity to beta parameters, and we go beyond this1196

ablation also.1197

Importantly, the authors mention that disabling the gradient norm clipping is crucial for schedule-free1198

runs, however, we do not observe this in practice, demonstrating the contrary results.1199

Algorithm 12 SF-AdamW

1: Input: Initial parameters x0, number of iterations T , learning rate γ, weight decay λ, β1, β2,
warmup iterations Twarmup, ε.

2: Initialize: z0 ← x0, v0 ← 0
3: for t ∈ [T] do
4: yt ← (1− β1)zt + β1xt

5: gt ← ∇L(yt, ξt)
6: vt ← β2vt−1 + (1− β2)gt ⊙ gt

7: γt ← γ
√
1− βt

2 min{1, t/Twarmup}
8: zt+1 ← zt − γt

(
gt/(
√
vt + ε) + λyt

)
9: ct+1 ← γ2

t∑t
i=0

γ2
i

10: xt+1 ← (1− ct+1)xt + ct+1zt+1

11: end for
12: Return: xT

Prodigy. Improving the D-Adaptation concept [16], [54] derived an Adam-like method, which1200

use an EMA for the learning rate (see lines 8, 9 of Algorithm 13), approximating the Adam’s1201

update of the second moment estimate EMA. The derived update reflects an EMA of dtgt sequence1202

rather than gt. Idea of such a method is to come up with a scheme that is able to remove the1203

hand-tuned learning rate via sequence which adapts during training on the fly. In Algorithm 13, dt is1204

such a sequence that affects botth first and second moment estimates, and evolves according to line1205

10.1206

Crucially, Prodigy does not need the learning rate tuning (typically, we initialize γ = 1), however, it1207

still can be compatible with learning rate schedules, which we verify experimentally at scale. We also1208

show that dt sequence indeed acts similarly to cosine learning rate scheduler, with usually smaller1209

learning rate at initialization and a bit larger values of it at maximum Moreover, this method scales1210

reliably similar to AdamW, making it a promising choice for future development of parameter-free1211

methods.1212

A.5 MARS1213

Very recently, [88] introduce MARS — a series optimizers, which incorporate modern adaptive methods1214

[50, 9] and approximate second-order methods [24] with variance reduction update update style.1215

This optimization framework gave a birth to: MARS-AdamW — our main baseline which we call simply1216

MARS, MARS-Lion and MARS-Shampoo. We mainly include MARS-AdamW in our ablation studies, but1217

report results for other two optimizers.1218

The authors modified a variance reduction update introducing a sclaing parameter η, which we call1219

variance reduction scaling in the outlined algorithms and experiments. This parameter controls the1220

scale of gradient correction – see line 5 of Algorithms 14 to 16.1221

33

Algorithm 13 Prodigy

1: Input: Initial parameters x0, number of iterations T , learning rate γ, weight decay λ, β1, β2, ε.
2: Initialize: d0 ← 10−6, γ ← 1, m0 ← 0, v0 ← 0, r0 ← 0, s0 ← 0 ▷ Optional: use scheduler

on γ
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)
5: mt ← β1mt−1 + (1− β1)dtgt
6: vt ← β2vt−1 + (1− β2)d

2
tgt ⊙ gt

7: γt ← γ
√
1− βt

2/(1− βt
1) ▷ Optional: use bias correction

8: rt ←
√
β2rt−1 + (1−

√
β2)γtd

2
t ⟨gt,x0 − xt⟩

9: st ←
√
β2st−1 + (1−

√
β2)γtd

2
tgt

10: dt+1 ← max{dt, rt
∥st∥1

}
11: xt+1 ← xt − γtdt

(
mt/

(√
vt + dtε

)
+ λxt

)
12: end for
13: Return: xT

An important detail, we follow only the approximate scheme of MARS-like optimizers, i.e., we evaluate1222

the gradient gt in different stochasticity, meaning1223

gt = ∇L (xt, ξt) ,

gt−1 = ∇L
(
xt−1, ξt−1

)
.

Importantly, in the same spirit as for SOAP and Muon, the authors use MARS-like algorithms for layers1224

with two and more dimensions, for 1D layers, embeds, scalar parameters and final the head layer of1225

neural network, this method utilize AdamW. Such a choice allows use MARS in the more fast and still1226

efficient way. Following the practices from their work, we also use MARS only for 2D layers.1227

MARS (MARS-AdamW). For AdamW-like algorithm, the difference occurs at the computation of mt1228

and vt, where instead of the gradient, the variance reduction update ct is used.1229

Algorithm 14 MARS (MARS-AdamW)

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,
variance reduction scaling η, ε.

2: Initialize: m0 ← 0, v0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)

5: ct ← gt + η β1

1−β1

(
gt − gt−1

)
∥ct∥2 > 1

6: ct ← ct/∥ct∥2
7: mt ← β1mt−1 + (1− β1)ct
8: vt ← β2vt−1 + (1− β2)ct ⊙ ct
9: m̂t ←mt/(1− βt

1), v̂t ← vt/(1− βt
2)

10: xt+1 = xt − γt

(
m̂t√
v̂t+ε

+ λxt

)
11: end for
12: Return: xT

MARS-Lion. Similarly for Lion-like algorithm, the authors use scaled gradient correction with the1230

current gradient — ct.1231

MARS-Shampoo. The same holds for MARS-Shampoo. One key comment here, is that to compute1232

SVD of the first moment estimate, the authors also use Newton-Schulz iteration [5, 25]. In our1233

experiments we use 10 iterations of this orthogonalization scheme for MARS-Shampoo.1234

34

Algorithm 15 MARS-Lion

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1,
variance reduction scaling η, ε.

2: Initialize: m0 ← 0, v0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)

5: ct ← gt + η β1

1−β1

(
gt − gt−1

)
∥ct∥2 > 1

6: ct ← ct/∥ct∥2
7: mt ← β1mt−1 + (1− β1)ct
8: xt+1 = xt − γt (sign (mt) + λxt)
9: end for

10: Return: xT

Algorithm 16 MARS-Shampoo

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1,
variance reduction scaling η, ε.

2: Initialize: m0 ← 0, v0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)

5: ct ← gt + η β1

1−β1

(
gt − gt−1

)
6: mt ← β1mt−1 + (1− β1)ct
7: U t,Σt,V t ← SVD(mt)

8: xt+1 = xt − γt

(
U tV

⊤
t + λxt

)
9: end for

10: Return: xT

B Implementation1235

Our code is based on an extension of nanoGPT5 and uses PyTorch [63] as well as FlashAttention1236

[14]. We incorporate mixed-precision training [53], i.e., we train in bfloat16 precision, except for1237

normalization modules and softmax which we train in float32. The optimizer states are also stored1238

in float32. The majority of the experiments were performed using a cluster of A100-SXM4-80GB1239

GPUs as well as H100-HBM3-80GB. We trained both in a single GPU regime and in DDP [45] (from1240

2 to 8 GPUs per one run). We estimate that the full cost of all experiments for our project to roughly1241

30000 GPU hours.1242

C Model & Data1243

Architecture details. In our project, we use Llama-like family of models [48]. We implement1244

the the popular in the community decoder-only transformer with SwiGLU activation functions [77],1245

RoPE embeddings [81], RMSNorm [91]. The vocabulary is based on the GPT2 [71] tokenizer 6 and1246

contains 50304 tokens.1247

The number of parameters in our models is fully configurable, and we present the exact configurations1248

used in our experiment in Table 2.1249

Dataset. Our main findings are obtained on the subset of FineWeb [64] with 100B tokens 7, cleaned1250

and deduplicated corpus for LLM pretraining, which we split into train and validation sequences.1251

During training, we evaluate the models with a fixed set of 32 batches of our chosen sequence length1252

(512 for almost all experiments, the same context length as training) to establish the validation loss1253

curves. At the end of training, we compute the full validation loss and perplexity (this loss is reported1254

5https://github.com/karpathy/nanoGPT
6https://github.com/openai/tiktoken
7https://huggingface.co/datasets/HuggingFaceFW/fineweb

35

https://github.com/karpathy/nanoGPT
https://github.com/openai/tiktoken
https://huggingface.co/datasets/HuggingFaceFW/fineweb

Table 2: Hyperparameters for our Llama-like models.

Parameters 124M 210M 600M
Hidden size 768 768

Attention heads 12 12
Layers 12 24
Init std 0.02 0.02 0.02

Use bias no no no
RMSNorm epsilon 0.00001 0.00001 0.00001
Positional encoding RoPE RoPE RoPE

as Final Validation Loss in the figures). We also performed our initial results on the subset of1255

OpenWebText2 dataset [21].1256

D Hyperparameter tuning1257

How do we tune hyperparameters? We perform systematic hyperparameter tuning for all algo-1258

rithms, starting with smaller models (124M, 210M) and extrapolating to larger ones. Our tuning1259

process focused on two primary settings: Small batch setting (32 batch size) and Large batch1260

setting (256 batch size). For both settings, we use a sequence length of 512 tokens, resulting in1261

16k and 130k tokens per batch, respectively. If the batch cannot fit into memory, we use gradient1262

accumulation steps, while maintaining the effective batch size.1263

We also include ablations on even larger batch size for 124M models, where we train on 5121264

batch size (260k tokens correspondingly). And larger, 583M models, we train on 3936 batch size,1265

preserving the basic sequence length of 512, i.e., 4M tokens.1266

We first run multiple experiments, greed searching hyperparameters, on near Chinchilla optimal1267

length of training using cosine learning rate scheduler (except for SF-AdamW):1268

• for 124M models we tune at 2.1B tokens for both small (32) and large (256) batch size setting,1269

• for 210M models we tune at 4.2B tokens for our large batch size setting,1270

• for 583M models we also consider a setting with and without z-loss.1271

We present the configurations for different training horizons in Tables 3 and 5.1272

Table 3: Lengths of training for Small batch settings (32× 512).

Parameters Tokens (Iterations) Ch. Tokens
124M 1B (64k) 2.1B (128k) 4.2B (256k) 6.3B (384k) 8.4B (512k) 16.8B (1024k) 2.5B
210M 1B (64k) 2.1B (128k) 4.2B (256k) 6.3B (384k) 8.4B (512k) 16.8B (1024k) 4.2B

Table 4: Lengths of training for Large batch settings (256× 512).

Parameters Tokens (Iterations) Chinchilla Tokens
124M 1B (8k) 2.1B (16k) 4.2B (32k) 6.3B (48k) 8.4B (64k) 16.8B (128k) 2.5B
210M 1B (8k) 2.1B (16k) 4.2B (32k) 6.3B (48k) 8.4B (64k) 16.8B (128k) 4.2B

Important to note, for larger models, we mostly kept the best hyperparameters found for the 124M1273

model and re-tuned the learning rate and gradient clipping. We summarize this process in Appen-1274

dices D.1 to D.3.1275

Additionally, when we report an of one particular hyperparameters, we mean that corresponding1276

algorithm has already been tuned and, thus, we show only how one particular hyperparameter affects1277

the overall performance.1278

Hyperparameters used in our WSD scheduler experiments. Once we found the best setting for1279

each method using cosine learning rate scheduler, we are ready to obtain the optimal performance of1280

our method with WSD scheduler [27]. Here we follow the rule of thumb from [28]:1281

36

Table 5: Lengths of training for X-Large batch settings (1984× 512).

Parameters Tokens (Iterations) Chinchilla Tokens
720M 8B (8k) 16B (16k) 48B (48k) 14.4B

• use half the optimal learning rate for the cosine scheduler,1282

• use 20% of iterations for cooldown phase,1283

• use (1−
√
x) decay shape for the cooldown phase,1284

the only difference is that we do not employ stochastic weight averaging [29].1285

Therefore, we maintain most hyperparameters across optimizers, only re-tuning the learning rate. For1286

methods like Muon and MARS, we reduce both AdamW’s learning rate and the learning rate for non-1D1287

parameters. This approach ensures a fair comparison while accounting for the unique properties of1288

each optimizer.1289

Indeed, this rule of thumb works better in our setting also, e.g., see the comparison between linear1290

decay shape and (1−
√
x) in1291

We report a series of comparisons between cosine learning rate scheduler and WSD in1292

Hyperparameters used in z-loss experiments.1293

D.1 124M parameters model1294

Table 6: AdamW hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.0001,0.0005, 0.0008, 0.001, 0.002 0.0001, 0.0003, 0.0005,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 5000, 8000 500, 1000,2000, 3000, 8000, 32000
Weight decay 0.1 no, 0.1,0.5, 0.7

Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping no, 0.5, 1, 1.5 no, 0.5, 1

AdamW β1 0.5,0.8, 0.9 0.8, 0.9
AdamW β2 0.95,0.999 0.95, 0.99,0.999, 0.9999

Table 7: ADOPT hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.001 0.0001, 0.0003, 0.0005,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 8000, 32000
Weight decay 0.1 no 0.1, 0.5

Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping 0.5 no, 0.5, 1

ADOPT β1 0.9 0.8,0.9
ADOPT β2 0.999, 0.9999 0.5,0.999, 0.9999

37

Table 8: AdEMAMix hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.0001,0.0005, 0.0008, 0.001, 0.002 0.0001, 0.0003, 0.0005,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 8000, 32000
Weight decay 0.1 no, 0.1,0.5, 0.7

Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping no, 0.5, 1, 1.5 no, 0.5, 1
AdEMAMix β1 0.5,0.8, 0.9 0.8,0.9
AdEMAMix β2 0.999 0.999, 0.9999
AdEMAMix β3 0.999,0.9999, 0.99995 0.999, 0.9999
AdEMAMix α 5,8, 12 8

Table 9: Lion hyperparameter tuning for our 124M parameter large language models. Bold hyperpa-
rameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.00005,0.0001, 0.0005, 0.001 0.0001, 0.0005,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000 2000, 8000, 32000
Weight decay no, 0.1, 0.2,0.5 no, 0.1,0.5, 0.7

Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping 0.5 no, 0.5, 1

Lion β1 0.7,0.9, 0.99 0.5,0.9
Lion β2 0.9,0.99, 0.999 0.99, 0.999

D.2 210M parameters model1295

D.3 600M parameters model1296

E Additional results1297

E.1 Benchmarking: 124M1298

In this section, we provide complete results for the benchmarking part presented in Section 4.1.1299

We cover both the large batch setting and the small batch setting, reporting the full curves with1300

validation loss dynamics across different training durations.1301

Given the quite a lot number of methods under consideration, we divide them into two groups: those1302

that outperform AdamW and those that underperform relative to AdamW. We use AdamW loss curves1303

as the reference point in both figures. We summarize our findings for the small batch size of 32 in1304

Figure 12. And for the large batch size of 256 in Figures 13 and 14.1305

E.2 Ablations for 124M model1306

Fail of Sophia.1307

Clipping & SF-AdamW.1308

Betas sensitivity.1309

Warmup ablation. In this section we detaily describe the main part in Section 4.1.1310

We study the impact of batch size on the final validation loss obtained. For all methods, we sweep over1311

warmup lengths of {1.56%, 6.25%, 25%} of the total training duration to examine each method’s1312

38

Table 10: Signum hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.0003, 0.0005,0.001 0.0001, 0.00030.0005, 0.0003,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 2000,3000 2000, 8000, 32000
Weight decay no, 0,0.1, 0.5 no, 0,0.1, 0.5, 0.7

Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping no, 0.5, 1 no, 0.5, 1

Momentum no, 0.9,0.95 no, 0.9,0.95, 0.99
Nesterov momentum no, yes no, yes

Table 11: Muon hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate AdamW 0.0001, 0.0003, 0.0005,0.001, 0.002 0.0001, 0.0003, 0.0005,0.001, 0.002
Learning rate Muon 0.001,0.01, 0.02 0.001,0.01, 0.02

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 8000, 32000
Weight decay no, 0.1, 0.5 no, 0.1, 0.5

Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping no, 0.5 no, 0.5, 1.0
Momentum Muon 0.9, 0.95,0.99 0.95, 0.99

Optimizer for 1D layers AdamW AdamW
Optimizer for 1D layers, β1 0.8, 0.9 0.8, 0.9
Optimizer for 1D layers, β2 0.99,0.999, 0.9999 0.99, 0.999, 0.9999

Newton-Schulz a 3.4445 3.4445
Newton-Schultz b −4.7750 −4.7750
Newton-Schultz c 2.0315 2.0315

Nesterov momentum no, yes no, yes

sensitivity to warmup. For AdamW, we extend this sweep to {1.56%, 5%, 6.25%, 10%, 25%}. We1313

specifically consider the 1.56% and 6.25% percentages because the former represents a typical1314

number of warmup steps (2000) for models of our scale, while the latter (6.25% of 128000 steps)1315

aligns with the warmup strategy used in Llama [48].1316

Contrary to the insights from [92], we observe that 25% of the Cinchilla optimal duration is far from1317

being the best batch size for pretraining. We emphasize that their results were obtained for 85M1318

models and then extrapolated to larger scales. However, in our setting, we found the basic 2000 steps1319

a more suitable option for warmup. 25% of Chinchilla optimal length of training, for our 124M1320

model is 620M tokens.1321

We provide the warmup sweep for AdamW in Figure 191322

In addition to validating the results from [92], we report the sensitivity of different optimizers to the1323

number of warmup steps by conducting a sweep over the aforementioned percentages. A summary of1324

this experiment — Figure 6.1325

Muon Newton-Schulz iterations.1326

Weight decay ablation.1327

Learning rate sensitivity. In this part of the work, we meticulously replicate the learning rate1328

sweep process and present comprehensive results. Consistent with our experimental setup, we aim1329

to determine the true impact of the learning rate and its transferability to longer training horizons.1330

39

Table 12: SOAP hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.005,0.001 0.0001, 0.0003, 0.0005,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 4000, 8000, 12000, 16000, 32000
Weight decay 0.1 no, 0.1, 0.5

Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping 0.5 no, 0.5, 1

Preconditioner dimension 10000 10000
Preconditioning frequency 1, 5,10 1, 5,10

SOAP β1 0.8,0.9 0.8,0.9, 0.95
SOAP β2 0.95, 0.99,0.999, 0.9999 0.95, 0.99,0.999, 0.9999

Table 13: Sophia hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.0001,0.0003, 0.0005, 0.001, 0.002 0.0001, 0.0003, 0.0005,0.001, 0.002, 0.01

Batch size 32 256
Sequence length 512 512

Number of warmup steps 2000, 3000 2000, 8000, 32000
Weight decay 0.1 no, 0.1, 0.5

Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping 0.5 no, 0.5, 1

Estimator Gauss-Newton-Bartlett Gauss-Newton-Bartlett
Estimator frequency 10 10

Sophia β1 0.9 0.8,0.9
Sophia β2 0.95,0.999, 0.9999, 0.99999 0.95,0.999, 0.9999, 0.99999
Sophia ρ 0, 0.03,0.04 0, 0.03,0.04

For each optimizer (except Prodigy), we vary only the learning rate while maintaining the best1331

hyperparameter settings obtained during our initial tuning (see Appendices D and D.1) on 2.1B1332

tokens for the 124M parameter model. We present the results of the learning rate sweep in Figure 24.1333

Cosine vs WSD. We present our results for two batch size settings: 32 and 256. At first, our initial1334

results in small batch setting on the OpenWebText2 (OWT2) dataset, we present in Figure 25.1335

We report the final validation loss on the FineWeb dataset for 124M model trained on the batch size1336

of 256. We use our tuned with cosine scheduler methods. For WSD, we follow the rule of thumb1337

from [28]: 20% of steps for the cooldown, 1 −
√
x decay shape, and the learning rate is half the1338

optimal for cosine, i.e., 0.0005 if we have the best learning rate 0.001 for the method. Additionally,1339

we point out that we do not include stochastic weight averaging in the comparison, which might1340

potentially enhance the performance of optimizers with WSD.1341

Gradient norm patterns.1342

E.3 Benchmarking: 210M1343

E.4 Ablations for 210M model1344

E.5 Wall-clock performance of optimizers across models of different scale1345

E.6 Extension to MoEs.1346

40

Table 14: Schedule-Free AdamW hyperparameter tuning for our 124M parameter large language
models. Bold hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.0001, 0.0003, 0.0005,0.001, 0.005 0.0001, 0.0003, 0.0005,0.001, 0.002, 0.005

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 4000,8000, 12000, 16000, 32000
Weight decay no, 0.05,0.1, 0.5 no, 0.05,0.1, 0.5

Learning rate decay scheduler no no
Gradient clipping no, 0.5 no, 0.5, 1

Schedule-Free AdamW β1 0.9, 0.95, 0.98 0.9, 0.95, 0.98
Schedule-Free AdamW β2 0.95, 0.99, 0.999,0.9999, 0.99999 0.95, 0.99, 0.999,0.9999, 0.99999

Table 15: Prodigy hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.5,1 0.5,1, 2, 10, 100

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 4000, 8000, 12000, 16000, 32000
Weight decay no, 0.1, 0.5 no, 0.1, 0.5

Learning rate decay scheduler no, WSD, cosine no, WSD, cosine
Gradient clipping no, 0.5, 1 no, 0.5, 1
Prodigy β1 0.9 0.8,0.9
Prodigy β2 0.99,0.999, 0.9999 0.999, 0.9999

Prodigy bias correction no, yes no, yes

Table 16: MARS (MARS-AdamW) hyperparameter tuning for our 124M parameter large language
models. Bold hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate AdamW 0.0001, 0.0005,0.001, 0.003 0.0001, 0.0005,0.001, 0.003
Learning rate MARS 0.001,0.003 0.001,0.003

Batch size 32 256
Sequence length 512 512

Number of warmup steps 2000,3000 2000, 8000, 32000
Weight decay MARS no, 0.1 no, 0.1, 0.5

Weight decay for 1D layers 0.1 0.1
Learning rate decay scheduler WSD, cosine WSD, cosine

Gradient clipping 0.5 0.5
Optimizer for 1D layers AdamW AdamW

Optimizer for 1D layers β1 0.8, 0.9 0.8, 0.9, 0.95
Optimizer for 1D layers β2 0.95, 0.99,0.999 0.95, 0.99,0.999

MARS β1 0.9,0.95 0.9,0.95
MARS β2 0.95,0.99 0.95,0.99

VR scaling factor η 0.024,0.025 0.024,0.025

41

Table 17: MARS-Lion hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate Lion 0.0001, 0.0005, 0.001, 0.003 0.0001, 0.0005, 0.001, 0.003
Learning rate MARS 0.0001, 0.001, 0.003 0.0001, 0.001, 0.003

Batch size 32 256
Sequence length 512 512

Number of warmup steps 2000,3000 2000, 8000, 32000
Weight decay MARS no, 0.1 no, 0.1, 0.5

Weight decay for 1D layers 0.1 0.1
Learning rate decay scheduler WSD, cosine WSD, cosine

Gradient clipping 0.5 0.5
Optimizer for 1D layers Lion Lion

Optimizer for 1D layers β1 0.8,0.9 0.8,0.9, 0.95
Optimizer for 1D layers β2 0.95, 0.99,0.999 0.95, 0.99,0.999

MARS β1 0.9,0.95 0.9,0.95
MARS β2 0.95,0.99 0.95,0.99

VR scaling factor η 0.024,0.025 0.024,0.025

Table 18: MARS-Shampoo hyperparameter tuning for our 124M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate Shampoo 0.0001, 0.0005,0.001, 0.003 0.0001, 0.0005,0.001, 0.003

Learning rate MARS 0.001,0.003 0.001,0.003
Batch size 32 256

Sequence length 512 512
Number of warmup steps 2000,3000 2000, 8000, 32000

Weight decay MARS no, 0.1 no, 0.1, 0.5
Weight decay for 1D layers 0.1 0.1

Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping 0.5 0.5

Optimizer for 1D layers Shampoo Shampoo
Optimizer for 1D layers β1 0.8,0.9 0.8,0.9, 0.95
Optimizer for 1D layers β2 0.95, 0.99,0.999 0.95, 0.99,0.999

MARS β1 0.9,0.95 0.9,0.95
MARS β2 0.95,0.99 0.95,0.99

VR scaling factor η 0.024,0.025 0.024,0.025

Table 19: Hyperparameters for our Llama-like models for the wall-clock experiments.

Parameters 30M 52M 80M 124M 150M 210M 360M 720M 1B
Hidden size 384 512 768 768 768 768 1024 2048 1792

Attention heads 6 8 6 12 12 12 16 16 14
Layers 8 8 6 12 16 24 24 12 24
Init std 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Use bias no no no no no no no no no
RMSNorm epsilon 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
Positional encoding RoPE RoPE RoPE RoPE RoPE RoPE RoPE RoPE RoPE

42

Figure 11: Ranking of optimizers in the small-batch setting. In the small-batch setting AdamW
outperforms most of the optimizaers we study.

Figure 12: Ranking of optimizers in the small-batch setting. Here only AdEMAMix, SOAP and
ADOPT show a remarkable performance compared to AdamW.

43

Figure 13: Ranking of optimizers in the large-batch setting.

Figure 14: Ranking of optimizers in the large-batch setting.

44

(a) (b) (c)

Figure 15: Sophia diverges in the small-batch setting even with sufficiently small learning rate.

(a) (b)

Figure 16: Clipping is significant for Schedule-Free.

(a) (b)

Figure 17: Prodigy is sensitive to beta parameters in the small-batch setting.

(a) (b)

Figure 18: Impact of beta parameters on Schedule-Free.

45

Figure 19: Warmup sweep for AdamW. We observe that the smaller yet reasonable warmup value is
the best, however, this is not true for other methods like Signum and SF-AdamW (see ??).

Figure 20: Warmup ablation. We report the final validation loss on the FineWeb dataset for 124M
model trained on the batch size of 256. We sweep over the batch sizes of {1.56%, 6.25%, 25%} of
the length of training, which corresponds to {2000, 8000, 32000}k iterations, respectively.

46

Figure 21: Ranking of optimizers in the large-batch setting.

Figure 22: Muon’s dependence on the number of Newton-Schulz iterations.

47

Figure 23: Larger weight decay achieves significantly better results when training on fewer
tokens. We report the final validation loss on the FineWeb dataset for 124M model trained on
the batch size of 256. We observe that the mmajority of runs with the large weight decay of 0.5
consistently outperform the same optimizer with weight decay of 0.1 for all training durations except
for the last one. Notably, Signum and Lion with large weight decay perform even better than AdamW
with the same learning rate. We also consider a setting without weight decay. We observe that this is
suboptimal for most of other optimizers, while the typical weight decay of 0.1 remains the best for
large training durations. An interesting thing we observe for optimizers that train one dimensional
and two dimensional parameters in a different way — Muon, MARS. Indeed, the corresponding runs
with the weight decay of 0.5 are always worse than then 0.1 baseline and, in some cases, even worse
than runs without weight decay. For Muon, we connect this effect to its algorithmic design, where
weight decay is not used to optimize matrix parameters (see Algorithm 7). For MARS, we only vary the
weight decay that corresponds to matrix parameters, while keeping 0.1 for all scalar, one dimensional
and final layer parameters. In this case, we conclude that the gap between large and small weight
decay values narrows significantly faster.

48

Figure 24: Learning rate sensitivity. We report the final validation loss on the FineWeb dataset
for 124M model trained on the batch size of 256. In the current setting, only SOAP and SF-AdamW
reach the better performance with the large leraning rate of 0.02. On the other hand, Sophia and all
sign-based methods (Signum and Lion) diverge with this value of the learning rate.

(a) (b)

Figure 25: WSD scheduler underperforms both AdamW with cosine scheduler and SF-AdamW.
Once the learning rate and beta parameters of SF-AdamW and AdamW are properly tuned, we observe
a surprisingly large gap in performance between WSD scheduler and its competitors. Figure (b)
suggests that this gap may potentially diminish with extended training. To investigate this further,
we conduct a scalable comparison between tuned WSD and cosine baselines across longer training
horizons.

49

Figure 26: WSD scheduler underperforms cosine. We report the final validation loss on the
FineWeb dataset for 124M model trained on the batch size of 256. We observe that WSD still can
match the performance of cosine on Sophia, Signum, Lion, i.e., on the sign-based methods, and
even outperform for Muon. Although the gap in performance is not particularly significant, but for
benchmarking purposes, we decide to stick to the cosine scheduler because those gap still plays a
substantial role in our setup.

50

Figure 27: Gradient Norm patterns for cosine scheduler.

Figure 28: Gradient Norm patterns for WSD scheduler.

51

Figure 29: Ranking of optimizers in the large-batch setting.

Figure 30: Ranking of optimizers in the large-batch setting.

52

	Introduction
	Background & Related Work
	Experimental Setup
	Results
	Benchmarking at Small Scale: Training Models of 124M Parameters
	Benchmarking at medium scale: Training Models of 210M Parameters
	Scaling Up: Benchmarking models of 583M and 720M Parameters

	Extension to MoEs
	Discussion
	Optimizers we study
	AdamW, ADOPT, AdEMAMix
	Sign-based methods: Lion and Signum
	Muon, SOAP, Sophia
	Schedule-Free AdamW, Prodigy
	MARS

	Implementation
	Model & Data
	Hyperparameter tuning
	124M parameters model
	210M parameters model
	600M parameters model

	Additional results
	Benchmarking: 124M
	Ablations for 124M model
	Benchmarking: 210M
	Ablations for 210M model
	Wall-clock performance of optimizers across models of different scale
	Extension to MoEs.

