# **Benchmarking Optimizers** for Large Language Model Pretraining

#### **Anonymous Author(s)**

Affiliation Address email

# **Abstract**

The recent development of Large Language Models (LLMs) has been accompanied by an effervescence of novel ideas and methods to better optimize the loss of deep learning models. Claims from those methods are myriad: from faster convergence to removing reliance on certain hyperparameters. However, the diverse experimental protocols used to validate these claims make direct comparisons between methods challenging. This study presents a comprehensive evaluation of recent optimization techniques across standardized LLM pre-training scenarios, systematically varying model size, batch size, and training duration. Through careful tuning of each method, we provide guidance to practitioners on which optimizer is best suited for each scenario. For researchers, our work highlights promising directions for future optimization research. Finally, by releasing our code and making all experiments fully reproducible, we hope our efforts can help the development and rigorous benchmarking of future methods.

#### 4 1 Introduction

2

3

6

8

9

10

11

12

13

- Over the past five years, Large Language Models (LLMs) [15, 59, 22, 48] have shown growth in performance and size, demonstrating proficiency in various downstream tasks [80, 7, 85]. The success of LLM pretraining hinges on three key pillars: high-quality data [65, 44], architectural innovations [31, 15], and scalable optimization techniques.
- Among these, the choice of optimizer has remained notably consistent in recent years, with Adam(W) [38, 50] dominating deep learning for nearly a decade. However, recent advances [33, 47, 84, 62, 66, 17] challenge this status quo, offering alternatives that surpass AdamW in speed, communication efficiency [1] or final downstream performance on various benchmarks [12, 37], particularly for autoregressive language modeling [70]. Despite these innovations, current benchmarks and ablation studies [96, 34] remain narrow in scope, often examining only isolated aspects of optimizer design. This lack of systematic comparison makes it difficult to obtain trustworthy insights for practitioners, or identify the next promising research directions.
- In this work, our goal to revisit the problem of benchmarking optimizers for LLM pretraining. We do so through standardized experiments which vary important parameters such as batch size, model size, and the number of training iterations. This allows us to formulate an up-to-date list of best-performing methods for the community of researchers and practitioners. We demonstrate the efficiency of each considered method through careful tuning, and present insightful ablations along the way. Furthermore, we provide a set of best practices for LLM pretraining that are applicable regardless of the optimizer chosen.
- We summarize our contributions as follows:

(Contribution 1) We conduct the first large-scale, controlled benchmark of 11 different optimization
 methods across diverse LLM training scenarios. A fair comparison is ensured by precise accounting
 for compute costs, and extensive hyperparameter tuning. We identify optimal optimizer choices in
 several relevant training regimes, for both dense and MoE architectures.

(Contribution 2) We perform comprehensive ablations of critical training hyperparameters—including warmup duration, initialization schemes, gradient clipping, final learning rates, and learning rate scheduler choices—providing actionable insights for optimizing LLM training in practice.

(Contribution 3) We open-source our full benchmarking toolkit, including training scripts, evaluation pipelines, and hyperparameter configurations, to enable reproducible research and facilitate future optimizer development.

For practitioners, our work provides an evidence-45 based answer to the burning question: "Is Adam still 46 the most effective optimizer in the age of LLMs, or can we achieve better performance at scale with 48 novel optimizers?". For researchers, our work de-49 livers a unified benchmarking framework for LLM 50 pretraining, along with extensive ablation studies 51 which systematically evaluate both popular and over-52 looked optimizer designs—revealing previously un-53 explored tradeoffs between efficiency, stability, and 54 final model performance. Overall, our findings not only challenge long-held assumptions about opti-56 mizer selection but also establish a foundation for 57 future advances in large-scale model training. By 58 bridging the gap between theoretical innovation and 59 practical deployment, this work aims to accelerate 60 progress in both research and industry applications 61 of LLM training.

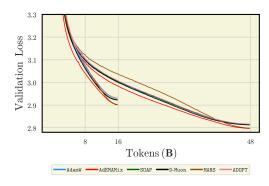


Figure 1: A comparison of leading optimizers, for training a 720M parameter LLM.

# 2 Background & Related Work

63

**Optimizers.** While computer vision models often show comparable performance between SGD [72] and AdamW [94], the landscape differs dramatically in LLM training. Recent work [95] demon-65 strates that adaptive methods like AdamW provide substantially better optimization characteristics for transformer-based language models. The question of why AdamW works so well has been a long-standing topic of research [2, 60, 93, 43, 41]. Modern methods often inherit AdamW's core ideas in their structure, such as ADOPT [83] and AdEMAMix [62]. ADOPT has been motivated by solving 69 long-standing convergence issues in AdamW. By normalizing the second-order moment prior to the 70 momentum update, they eliminate the non-convergence issues of AdamW on smooth non-convex 71 functions. Meanwhile AdEMAMix extends AdamW with an additional slower momentum buffer, i.e. a 72 slower exponential moving average (EMA), which allows the use of much larger momentum values, 73 accelerating convergence. 74

One interpretation of AdamW's effectiveness lies in its sign-based update [42]: without the exponential moving average (EMA), AdamW resembles signSGD [6]. Recent work [96, 36] has shown that Signum (signSGD with momentum), can perform comparably to AdamW. Earlier, the community also discussed Lion [9], a method with a similar sign-based structure. Signum and Lion offer memory benefits due to the use of only a single instead of Adam's two buffers for optimizer states.

Another family of methods stems from AdamW's approximate second-order structure, where the diagonal of the Fisher information matrix or other preconditioning approaches [52, 24] are used as the second moment estimate. This idea has given rise to Sophia [46], SOAP [84], and, to some extent, Muon [33].

The parameter-free concept [61] has led to the development of Schedule-Free AdamW (SF-AdamW) [17] and Prodigy [54]. These optimizers do not require a decreasing learning rate schedule, making them relevant for continual training. Last but not least, MARS [88], builds upon this line of research and incorporates a variance reduction mechanism in its update rule.

**Benchmarks.** To a large extent, the benchmarking setup determines the final conclusions. Some benchmarks are designed for short speedruns in terms of training or validation loss [32], while 89 others focus on a downstream target metric after training [96, 12, 76]. Methods that perform well 90 in short speedruns might not be optimal for longer training horizons as in real LLM training runs 91 (see Figure 3). "But what constitutes a sufficiently long horizon?" "What should be the compute 92 budget for LLM training?" These are questions explored by scaling laws [35]. Early benchmarks 93 for optimizers and other ablation studies often rely on Chinchilla scaling laws [26] with a ratio of roughly 20 tokens per parameter (TPR) needed for pretraining. However, recent research [69, 74] 95 argues that this is far from sufficient for production-ready models. 96

Another important issue is the choice of loss function. Recent setups have been using an auxiliary z-loss [86, 11] in addition to cross-entropy, which requires further investigation. We believe this choice is influenced by the use of the OLMo [58] codebase, which we also address in our work.

Additionally, we found that previous setups for comparing optimizers do not align with recent best practices regarding weight decay, learning rate decay, and overall hyperparameter tuning. All of these questions are revisited in our work.

# 3 Experimental Setup

103

126

127

128

129

130

131

134

135

136

137

138

139

Notations. We use the following notations. Let  $\gamma$  be the learning rate,  $\lambda$  the weight decay coefficient, and T the total number of iterations. Momentum-related parameters are represented by the symbol  $\beta$ .

Models & Data. For most experiments, we use a Llama-like transformer [48] architecture, including SwiGLU activations [77], RMSNorm [91], and RoPE embeddings [81]. We experiment with four sizes of models: 124M, 210M, 583M, 720M. We train on a 100B tokens subset of FineWeb [64]. It consists of a cleaned and deduplicated corpus for LLM pretraining, which we tokenize using the GPT-2 tokenizer prior to splitting into train and validation sequences. MoE setup described in Appendix D.

**Iterations & Batch size.** Throughout our experiments, we use a sequence length of 512 tokens. For 112 clarity, we often report the batch size in tokens by writing *Batch size*  $\times$  *sequence length*. For the 124M 113 model, we use batch sizes of  $32 \times 512 = 16$ **k**,  $256 \times 512 = 131$ **k**, and  $512 \times 512 = 262$ **k** tokens; 114 for the 210M model, we use a batch size of  $256 \times 512 = 131$ k; and for 583M model, we leverage 115 the batch sizes of  $1024 \times 512 = 524$ k and  $3936 \times 512 = 2$ M tokens. Depending on the model size, 116 we vary the number of iterations — also measured in tokens for compatibility with scaling laws and 117 to accommodate different batch size settings. We train 124M and 210M models for equal durations 118 of  $\{1, 2.1, 4.2, 6.3, 8.4, 16.8\}$ **B** tokens. This corresponds to  $T \in \{64, 128, 256, 384, 512, 1024\}$ **k** 119 iterations for a batch size of 32, and  $T \in \{8, 16, 32, 48, 64, 128\}$ k iterations for a batch size of 256. For 583M models, we train on  $\{13,32\}$ B tokens, corresponding to  $T \in \{6.5,16\}$ k iterations, resp.  $T \in \{25, 61.5\}$ k iterations, for a batch size of 3936, resp. 1024. In the setup with 720M model, 122 we have  $T \in \{8, 16, 48\}$ k iterations for a batch size of 1M tokens. Thus, for all model scales, 123 we include both Chinchilla optimal lengths of training and beyond. More details are available in 124 Appendix C. 125

**Loss.** We train using the classical cross-entropy next token prediction loss. Some prior works introducing optimizers use a z-loss in addition to cross-entropy [30, 11, 86, 84, 96]. We found that this has little impact and, therefore, do not use z-loss. An ablation showing results with and without z-loss is in the appendix.

Hyperparameter Tuning. Training LLMs is a computationally intensive task. As a guidance, practitioners often rely on insights gathered at lower scales, scaling laws, and other rules [87, 18]. It is also commonplace to run experiments for only a shorter duration of training, as a way to test certain hyperparameters prior to extending the training horizon to more iterations. Because a full grid search over every hyperparameter, for each setting and optimizer, would be too costly, we resort to a similar approach. More precisely, for each model size, batch size, and optimizer, we tune optimization hyperparameters extensively for a number of training tokens which is near-Chinchilla optimal. We then keep those hyperparameters when we increase the number of iterations. While we found that the sensitivity to several hyperparameters can change as we increase the training horizon, we found this approach simple and yet effective. The hyperparameters being considered depend on the

<sup>&</sup>lt;sup>1</sup>https://huggingface.co/datasets/HuggingFaceFW/fineweb

optimizer. We proceeded from small to large model scale, and used insights gathered at smaller scales to guide the hyperparameter search at larger scales. Our hyperparameter sweeps are summarized in 141 Appendix D. We present the clarifications regarding the connection between the number of iterations 142 and tokens for different batch size settings as well as the Chinchilla optimal length of training for 143 our models in Tables 3 and 5. As learning rate schedulers, we compare cosine [49], linear and 144 warmup-stable-decay (WSD) [27, 90, 28]. Unless specified, we use a cosine scheduler. Results with 145 146 WSD and linear schedulers are discussed in Section 4. Recent works also emphasize the importance of sufficiently decaying the learning rate [4, 75, 28]. As such, we take care to decay to  $0.01 \times \gamma$ 147 instead of the often used  $0.1 \times \gamma$ . To give an idea of how much effort was put into tuning each 148 method, across all model sizes, batches and iterations, we trained a total of 2400 models, and have 149 spent roughly 30000 GPU hours. 150

**Optimizers.** Here is a list of the optimizers we considered in our work. For each algorithm, we write in parentheses the optimizer-specific hyperparameters we tuned:  $AdamW(\beta_1, \beta_2)$ ,  $SOAP(\beta_1, \beta_2)$  and preconditioning frequency,  $Lion(\beta_1, \beta_2)$ ,  $MARS(\eta, \beta_1, \beta_2)$  and Newton-Schulz hyperparameters,  $ADOPT(\beta_1, \beta_2)$ ,  $Signum(\beta)$ ,  $Prodigy(\beta_1, \beta_2)$ ,  $SF-AdamW(\beta_1, \beta_2)$ ,  $Muon(\gamma^M, \beta, \beta_1, \beta_2)$ ,  $Sophia(\rho, \beta_1, \beta_2)$ ,  $AdEMAMix(\beta_1, \beta_2, \beta_3, \alpha)$ . When an optimizer has several momentum variants e.g. Nesterov [57] or Polyak [67], we try both. In addition, we tune the learning rate  $\gamma$  extensively for all methods. We also try different gradient clipping, warmup steps, and weight-decay values. A summary of the hyperparameters tested and selected for each model size is in Appendix D. All the optimizers are described in depth in Appendix A.

#### 4 Results

151

152

154

155

156

157

158

159

160

161

162 163

164

180

181

182 183

184

185

186

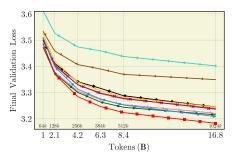
We structure our story starting with smaller models and batch sizes, and gradually scaling up to larger configurations. In some instances, we complement the core benchmarking results with additional ablations and possible best-practices.

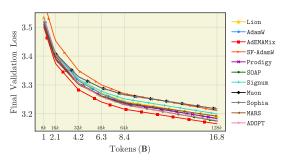
#### 4.1 Benchmarking at Small Scale: Training Models of 124M Parameters

**Using "small" batches.** We first report results when using batches of  $32 \times 512$  tokens in Figure 3. 165 We tune hyperparameters by training for  $2.1\mathbf{B}$  tokens (128k iterations) and then keep those hyperpa-166 rameters for all other training durations. The best hyperparameters are reported in Appendix D.1. 167 We observe how, for the smallest number of iterations we considered (1B tokens  $\equiv$  64k), SOAP, 168 ADOPT and AdEMAMix all outperform AdamW, with SOAP being the best. As we increase the number 169 of iterations, AdEMAMix takes the lead while AdamW closes the gap with both ADOPT and SOAP. A 170 sign-based methods such as Lion and Signum are expected to perform poorly when the batch size is 171 small. Intuitively, this is due to the  $sign(\cdot)$  operator being sensitive to gradient noise. As described 172 in its original paper, MARS also performs poorly when the batch size is small. We found Prodigy, 173 Muon and SF-AdamW to underperform in this setting compared to AdamW. On this scale, Prodigy 174 suffers from the lack of bias correction of the learning rate, as well as being sensitive to  $(\beta_1, \beta_2)$  (see 175 Figure 17. 176

Using "large" batches. We now report results when using batches of  $256 \times 512$  tokens —  $8 \times 1000$  larger than for our small batch setting. Results in Figure 2 show how Signum, Mars, Lion, Prodigy greatly benefit from the increased batch size. Remarkably, we observe that the Prodigy method scales similarly to AdamW. We emphasize the possible community interest in this algorithm as its EMA Prodigy adaptively emulates the learning rate behaviour. For a small number of iterations (e.g.  $T \in \{8k, 16k\}$  corresponding to 1B and 2B tokens), all methods outperform AdamW except for SF-AdamW and Sophia. As we increase the number of iterations ADOPT, SOAP, and AdEMAMix take the lead. In particular, AdEMAMix has a consistent lead over other methods. While we anticipated—in accordance with Vyas et al. [84]—that SOAP would greatly benefit from the larger batch size, its behavior remains relatively consistent compared to our previous small batch setting.

Stability across training horizons. As mentioned in Section 3, we tune hyperparameters training on 2.1B tokens and keep those hyperparameters when extending the training horizon. In Figure 3 we study whether it is possible to find better parameters for AdamW, SOAP, and AdEMAMix. When training on 16.8B tokens, we see it is beneficial to increase the  $\beta_3$  from 0.999 to 0.9999. Without this improvement, SOAP ends up matching the performances of AdEMAMix when extending the training horizon further to 33.6B tokens ( $\equiv 256k$  iterations). In our experiments,  $\beta_3 = 0.999$  is only better





(a) Batch size  $32 \times 512$  tokens.

(b) Batch size  $256 \times 512$  tokens.

Figure 2: Ranking of optimizers for 124M models with small and large batch sizes. In both (a) and (b), we show the *final* validation loss for different training durations, corresponding to different numbers of tokens. Above each token number, we write the number of training iterations corresponding. In (a), we use a "small" batch size of  $32 \times 512$  tokens. In (b), we use a larger batch size of  $256 \times 512$  tokens.

than  $\beta_3=0.9999$  when the number of training iterations is less than 32k. This matches observation from [62], which recommends reducing  $\beta_3$  when training for fewer iterations. We also test whether the learning rate  $\gamma$  changes as we increase the number of tokens/iterations. In Figure 5, we run a sweep over  $\gamma$  when training for 16.8B tokens. While for most methods, the best  $\gamma$  obtained in the previous sweep remains optimal, this is not the case for SOAP and SF-AdamW, which can benefit from a larger  $\gamma=0.002$ .

WSD vs. cosine & linear  $\gamma$ -schedulers. Learning rate schedulers received a lot of attention recently [79, 28]. We conducted a series of experiments comparing WSD [27, 90] and linear with cosine [49] learning rate schedulers. Surprisingly, the performance gap between these two schedulers observed in Figure 25 is often significant<sup>2</sup> for benchmarking optimizers. Consequently, we decided to adopt the cosine scheduler for all further experiments.

**Decaying**  $\gamma$  sufficiently. In Figure 8 we show the impact of decaying more or less the learning rate  $\gamma^{(t)}$ . From  $\gamma=10^{-3}$  we train models using cosine decay down to  $\gamma_{\rm end} \in \{10^{-4}, 10^{-5}, \dots, 10^{-9}\}$ . We found that decaying the learning rate sufficiently matters. In particular, the often use rule consisting in decaying to  $0.1 \times \gamma$  is suboptimal. This agrees with the recent works [28, 75, 4]. Building on this findings, we consistently use cosine decay down to  $0.01 \times \gamma$ .

**Takeaway 1.** After the experiment in the small-batch setting, we conclude that: (i) AdEMAMix scales in the best manner with the number of iterations, SOAP underperforms AdamW when the length of training increases. ADOPT and Prodigy show almost equal performance across all training durations. Sign-based methods, predictably, underperform when the batch size is small, but what is interesting, is that Sophia diverges at all, even if trains with sufficiently small learning rate.

Increasing the batch size further. We also run an experiment with batches of  $512 \times 512 = 262$ k tokens, training for 64k iterations. Results in Figure 3 show mostly consistent results. Noticeably MARS becomes the second best performing method behind AdEMAMix, followed closely by Prodigy, Lion, and SOAP. Interestingly, Signum performs comparably to AdamW.

**Takeaway 2.** Taking into consideration large batch size setting, we found that many methods, once properly tuned, can show a remarkable performance compared to AdamW and also outperform it.

**Weight decay ablation.** As recent frameworks for LLM pretraining or ablation studies omit weight decay as a default non-zero hyperparameter, some setups even mislead by not incorporating weight decay in their experiments. In this work, we demonstrate the importance of weight decay and its

 $<sup>^2</sup>$ We emphasize that the difference between the two schedulers is generally less than 5% of the total compute spent. However, this still represents a significant gap in our benchmarking setup, e.g., SF-AdamW may outperform AdamW in some settings (see Figure 25).

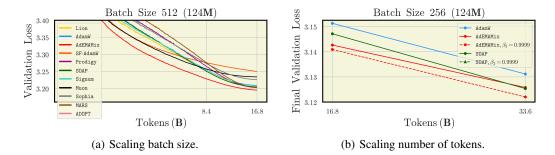


Figure 3: Our results demonstrate that (a): scaling the batch size significantly improves MARS, Signum, Lion and Prodigy making them as good as AdamW even for a long training for  $16.8\mathbf{B}$  tokens. Which was not the case in Figure 2 (b), where we still observed a significant gap in performance; and (b): indeed, with scaling of the number of iterations, the gap between SOAP and AdEMAMix narrow and, finally, increases. But, on the other hand, with increase of the AdEMAMix  $\beta_3$  parameter, the performance gap with SOAP reappears.

impact across different optimizers. Surprisingly, increasing weight decay while keeping the learning rate constant proves to be an effective technique for training on shorter horizons. This approach is so effective that methods like Signum and Lion with high weight decay significantly outperform AdamW without weight decay (see Figure 4). Implementation details also warrant attention. Coupled weight decay is still used in some settings, including the PyTorch [63] optimizer implementations. Notably, the popular implementation of Signum becomes ineffective when weight decay is applied. Highlighting this oversight for the community, we contribute by demonstrating our implementation of Signum (Algorithm 6) with decoupled weight decay. The influence of weight decay on model weights is intriguing. As is known, model weights typically grow during training, but weight decay, by modifying the optimized function, significantly reduces the growth of the model's parameter norm. Such ablations of weight decay are also of interest to the community [13, 40].

Regarding the ablation of weight decay for optimizers, we again select the best setup for each and conduct a sweep over weight decay values. Our results are presented in Figure 4 and in Figure 23.

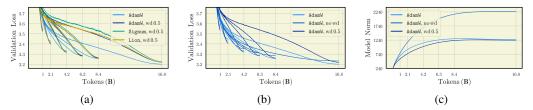


Figure 4: Larger weight decay achieves significantly better results when training on fewer tokens. In (a) we observe that runs of AdamW, Signum, and Lion with the large weight decay of 0.5 consistently outperform the baseline AdamW with weight decay of 0.1 for all training durations except for the last one. Notably, Signum and Lion with large weight decay perform even better than AdamW with the same learning rate. In (b), we also consider a setting without weight decay. We observe that this is suboptimal not only for AdamW, but also for the majority of other optimizers (see Appendix E.2), while the typical weight decay of 0.1 remains the best for large training durations. Importantly, in (c), we ablate the impact od weight decay on the model's  $\ell_2$  norm.

231 With our weight decay ablation, we are ready to provide one more insight.

**Takeaway 3.** The use of weight decay, particularly a large decoupled weight decay term, can significantly impact the final loss value and optimizer behavior. However, for extended training horizons, a moderate, non-zero weight decay proves to be a robust option.

**Learning rate sensitivity.** Since we tune optimizers at a smaller scale and then extrapolate, we pose the question whether the best learning rate we have found so far transfers to the larger training duration. To verify this, we run 124M model on 16.8B tokens in  $256 \times 512$  batch size setting,

sweeping the learning rate across five typical values:  $\{1e^{-4}, 3e^{-4}, 5e^{-4}, 1e^{-3}, 2e^{-3}\}$ . The best learning rate for each method at the moment of hyperparameter tuning on near Chinchilla-optimal 2.1B training duration we report in Appendix D.1. A summary of our results for larger number of tokens is provided in Figure 5 and detailed results of the sweep are presented in Appendix E.2.

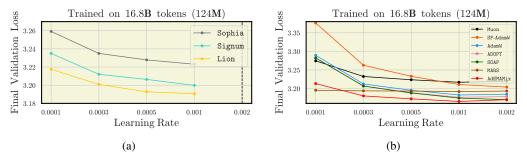


Figure 5: **Optimal learning rate stability across optimizers.** The optimal learning rate determined during tuning on 2.1B tokens remains consistent after a learning rate sweep on 16.8B tokens for most optimizers. In (a), we observe that sign-based methods and similar to them Sophia diverge with increasing learning rate. Interestingly, in (b), SF-AdamW and SOAP demonstrate the best performance with a large learning rate of 0.002. In our work, we further show that it is possible to increase the learning rate even more for such methods.

Warmup ablation. Another important ingredient of the pretraining is learning-rate warmup in the initial phase of training. Recent studies have explored the necessity of warmup in modern deep learning, with some investigating its elimination [39] and others ablating it to improve model performance and stability [92]. We focus on the latter, examining how warmup affects optimizer setup and whether it can significantly enhance performance. For each optimizer's best configuration, we vary warmup across three values:  $\{0.27, 1, 4.2\}$ B tokens, which corresponds to  $\{2, 8, 32\}$ k iterations. Our choice of the largest warmup value is inspired by [92]. We describe this experiment in Appendix E.2. Mainly, we observe that Signum and SF-AdamW perform better with a larger warmup of 8k steps when training on 16.8B tokens. We also ablate the claim from [92] that a warmup of 25% of the Chinchilla optimal duration is the best. However, our findings contradict this assertion (see Figure 19). We show that a moderate values of the warmup, generally, is better, however, different optimizers could prefer different number of warmup steps. As such, SF-AdamW, Sophia, Signum prefer larger warmup, which is clearly depicted in Figure 6.

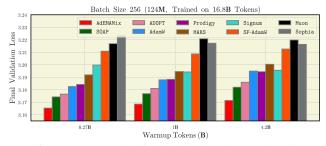


Figure 6: Warmup ablation. We report the final validation loss on the FineWeb dataset for 124M model trained on the batch size of 256. We sweep over the batch sizes of  $\{1.56\%, 6.25\%, 25\%\}$  of the length of training, which corresponds to  $\{2000, 8000, 32000\}$ k iterations, respectively.

Cosine vs WSD. At the outset of our study, we indicated a preference for the cosine scheduler over WSD. In this section, we provide a more detailed ablation of this choice. Having optimally tuned the cosine scheduler for each optimizer, we replicate the setup of [28], which allows us to avoid adjusting additional hyperparameters. Our findings, which demonstrate the superiority of the cosine scheduler across various optimization methods, are presented in Figure 7, and in the Appendix Figures 25 and 26. These results not only validate our initial preference but also provide insights into the interaction between learning rate schedules and different optimizers in large-scale language model training.

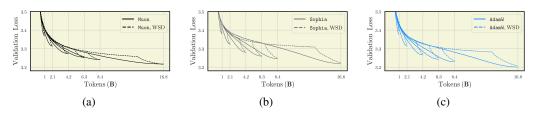


Figure 7: **Comparisons between WSD and cosine scheduler.** Notably, WSD and cosine scheduler behave differently with respect to optimizer. In (a), the Muon optimizer shows a preference for WSD across most training durations. Sophia exhibits an almost perfect match between both schedulers. However, for AdamW, along with the majority of other optimizers studied (see Figure 26), we get a better performance with cosine. We also report a detailed comparison with linear scheduler in Appendix E.2.

# 4.2 Benchmarking at medium scale: Training Models of 210M Parameters

261

263

264

265 266

267

268

269

270

In this section, we verify if our selected hyperparameters from smaller  $124\mathbf{M}$  allow accurate transfer to a slightly larger model. We point out that the most important hyperparameters to be sweeped are learning rate and gradient clipping. Regarding the learning rate, we observe that it only becomes a sensitive choice for sign-based methods, while the optimal hyperparameters for AdamW remain the same.

**Results with a batch size of**  $256 \times 512$ . Results provided in the Appendix in Figure 21 are consistent with those obtained training 124M models with large batches.

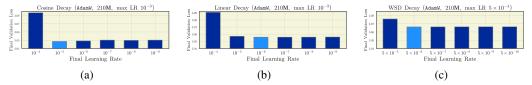


Figure 8: Decaying the learning rate down to  $0.01 \times \gamma_{\rm max}$  and beyond, instead of only to 10% We observe a common pattern for different schedulers that decreasing the learning rate to moderate  $10^{-2}$  value is a better choice than decreasing it down to zero. Interestingly, the linear learning rate scheduler for models at a given scale, requires  $0.001 \times \gamma_{\rm max}$ .



Figure 9: Wall-clock time comparison. After conducting experiments for 124M and 210M models, we are ready to present the wall-time comparison for each methods. For this purposes, we use a single GPU, and run each optimizer for 100 iterations on a small batch size without gradient accumulation and torch.compile. We report the wall-clock time per 100 iterations. We observe that all methods take the roughly the same time or very close time to complete 100 iterations, with the exception of Muon and SOAP. In addition, we point out that SOAP's runtime exhibits a non-linear dependence on the model size, due to its preconditioner matrices operations which are fast only for certain matrices smaller than a predefined size.

# 4.3 Scaling Up: Benchmarking models of 583M and 720M Parameters

We pick three methods: AdamW, SOAP, and AdEMAMix, and run experiments with a larger model of 583M parameters, and a large batch size of 2M tokens. The goal being to get closer to one of the

settings described in [84]. We train for 6500 and 16000 iterations, corresponding to 13B and 32B 272 tokens respectively.

Comparison between our setting and [84]. We found several key differences between our codebase and [84]: (i) we decay the learning rate to  $0.01 \times \gamma$  instead of  $0.1 \times \gamma$ , with  $\gamma$  being the maximum learning rate, (ii) we use typical weight decay values of e.g. 0.1 instead of smaller values such as 0.01 or 0.0001, (iii) we do not use a z-loss in addition to ours. It has been shown recently that properly decaying the learning rate has an important effect on the optimization [4]. We run an ablation to compare both settings and conclude that removing the z-loss and increasing the weight decay to 0.1 improves the results. Results further improve when the learning rate is decayed more. This ablation is shown in Figure 8.

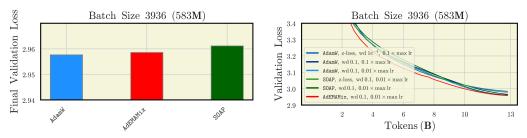


Figure 10: **Results for the** 583**M model.** On the **left**, we show our results when training for 6500 iterations. In this setting, AdamW gives best results, followed by AdEMAMix and then SOAP. This is surprising as it conflicts with findings from [84]. Those results are partly reconciled with the figure on the **right**. And we see that the difference in performance between models trained with and without the z-loss regularizer is quite minor.

#### **Extension to MoEs**

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

**Setup & Comparison.** Besides training dense Llama-like transformers, we also conver a comparison for MoE architectures [78]. Our variant of MoE is based on the Switch-Transformer implementation [20]. We use a classical linear gating with softmax and top-k routing (k = 2) and 8 experts. The activation functions remains the same as for the dense base model from Section 3. Such a configuration of the MoE model gives us approximately 520M parameters. We cover additional details in Appendix E.6. In this setting we train with a batch size of  $256 \times 512$  for  $T \in \{42, 336\}$ k iterations. Again we cover both a Chinchilla-optimal horizon and the beyond. We summarize the results in the following Table 1.

| Opt.     | 42 <b>k</b> | $336\mathbf{k}$ |
|----------|-------------|-----------------|
| AdEMAMix | 22.37       | 18.47           |
| D-Muon   | 22.67       | 18.51           |
| ADOPT    | 22.70       | 18.58           |
| AdamW    | 22.85       | 18.69           |
| Prodigy  | 22.82       | 18.78           |

| Opt.     | $42\mathbf{k}$ | $336\mathbf{k}$ |
|----------|----------------|-----------------|
| Lion     | 23.20          | 18.87           |
| Signum   | 23.31          | 19.09           |
| SF-AdamW | 23.34          | 19.13           |
| Sophia   | 23.41          | 19.22           |
| MARS     | 22.73          | 19.33           |

Table 1: Final validation perplexity for MoE training  $(\downarrow)$ .

# **Discussion**

Our advices on tuning each method. Overall, we validate the already widely used hyperparameters of  $\lambda = 0.1$  and  $T_{\text{warmup}} \approx 2k$ . For Lion—as mentioned in [9]—we find that the best value for  $\beta_1$ is consistently 0.99. The mechanism for Lion seems similar to AdEMAMix, one can imagine that Lion could be better with larger  $\beta_1$ , which would require schedulers. We also pose an interesting observation toward Prodigy: while it may not be so efficient with a super small batch sizes, with scaling of the model size and the batch size it becomes almost as competitive as AdamW. Importantly, Muon and D-Muon performed poorly at a small scale with relatively small batch sizes (32, 256), however, as we see in Figure 1

#### References

- [1] Kwangjun Ahn and Byron Xu. Dion: A communication-efficient optimizer for large models,2025.
- [2] Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance ofstochastic gradients, 2020.
- [3] C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix. *Applied Numerical Mathematics*, 57(11):1214–1229, 2007. Numerical Algorithms, Parallelism and Applications (2).
- Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness. Straight to zero: Why linearly decaying the learning rate to zero works best for llms, 2025.
- <sup>310</sup> [5] Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology, 2024.
- [6] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd: Compressed optimisation for non-convex problems, 2018.
- Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.
- [8] David Edwin Carlson, Edo Collins, Ya-Ping Hsieh, Lawrence Carin, and Volkan Cevher.
  Preconditioned spectral descent for deep learning. In *Neural Information Processing Systems*,
  2015.
- [9] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham,
   Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery
   of optimization algorithms, 2023.
- Savelii Chezhegov, Yaroslav Klyukin, Andrei Semenov, Aleksandr Beznosikov, Alexander
   Gasnikov, Samuel Horváth, Martin Takáč, and Eduard Gorbunov. Gradient clipping improves
   adagrad when the noise is heavy-tailed, 2024.
- 1328 [11] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, and Hyung Won. Palm: Scaling language modeling with pathways, 2022.
- [12] George E. Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,
   Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, Juhan
   Bae, Justin Gilmer, Abel L. Peirson, Bilal Khan, Rohan Anil, Mike Rabbat, Shankar Krishnan,
   Daniel Snider, Ehsan Amid, Kongtao Chen, Chris J. Maddison, Rakshith Vasudev, Michal
   Badura, Ankush Garg, and Peter Mattson. Benchmarking Neural Network Training Algorithms,
   2023.
- Francesco D'Angelo, Maksym Andriushchenko, Aditya Varre, and Nicolas Flammarion. Why do we need weight decay in modern deep learning?, 2024.
- 1339 [14] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient exact attention with io-awareness, 2022.
- [15] DeepSeek-AI. Deepseek-v3 technical report, 2024.
- 342 [16] Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation, 2023.
- [17] Aaron Defazio, Xingyu Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and
   Ashok Cutkosky. The road less scheduled, 2024.

- 345 [18] Nolan Dey, Quentin Anthony, and Joel Hestness. The practitioner's guide 346 to the maximal update parameterization. https://www.cerebras.ai/blog/ 347 the-practitioners-guide-to-the-maximal-update-parameterization, September 348 2024.
- [19] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
   and stochastic optimization. *Journal of Machine Learning Research*, 12(61):2121–2159, 2011.
- [20] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity, 2022.
- Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
   Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
   An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027,
   2020.
- 357 [22] Google Gemini Team. Gemini: A family of highly capable multimodal models, 2024.
- 358 [23] Alex Graves. Generating sequences with recurrent neural networks, 2014.
- Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimization, 2018.
- 361 [25] Nicholas J. Higham. Functions of Matrices. Society for Industrial and Applied Mathematics, 362 2008.
- [26] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
   Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
   Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
   Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
   Sifre. Training compute-optimal large language models, 2022.
- Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei
   Fang, Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zheng Leng Thai, Kaihuo Zhang, Chongyi
   Wang, Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia,
   Guoyang Zeng, Dahai Li, Zhiyuan Liu, and Maosong Sun. Minicpm: Unveiling the potential of
   small language models with scalable training strategies, 2024.
- <sup>373</sup> [28] Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin Jaggi. Scaling laws and compute-optimal training beyond fixed training durations, 2024.
- [29] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
   Wilson. Averaging weights leads to wider optima and better generalization, 2019.
- [30] Sami Jaghouar, Jack Min Ong, Manveer Basra, Fares Obeid, Jannik Straube, Michael Keiblinger,
   Elie Bakouch, Lucas Atkins, Maziyar Panahi, Charles Goddard, Max Ryabinin, and Johannes
   Hagemann. Intellect-1 technical report, 2024.
- [31] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
   Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
   Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier,
   Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak,
   Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
   William El Sayed. Mixtral of experts, 2024.
- [32] Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado,
   You Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt:
   Speedrunning the nanogpt baseline, 2024.
- [33] Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and
   Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024.
- [34] Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J. Kusner. No train no
   gain: Revisiting efficient training algorithms for transformer-based language models, 2023.

- [35] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
   Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
   models, 2020.
- [36] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feed back fixes signSGD and other gradient compression schemes. In *ICML 2019 International Conference on Machine Learning*, pages 3252–3261. PMLR, 2019.
- 399 [37] Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.
- 400 [38] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.
- 401 [39] Atli Kosson, Bettina Messmer, and Martin Jaggi. Analyzing & reducing the need for learning rate warmup in gpt training, 2024.
- 403 [40] Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational equilibrium: How weight decay balances learning across neural networks, 2024.
- [41] Frederik Kunstner. Why do machine learning optimizers that work, work? PhD thesis, University of British Columbia, 2024.
- [42] Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not
   the main factor behind the gap between sgd and adam on transformers, but sign descent might
   be, 2023.
- 410 [43] Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-tailed 411 class imbalance and why adam outperforms gradient descent on language models, 2024.
- [44] Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
   Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-lm: In search of the next
   generation of training sets for language models. Advances in Neural Information Processing
   Systems, 37:14200–14282, 2024.
- In the state of th
- Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic second-order optimizer for language model pre-training, 2024.
- [47] Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
   Weixin Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong
   Yin, Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang,
   Yongsheng Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin
   Yang. Muon is scalable for llm training, 2025.
- 426 [48] AI @ Meta Llama Team. The llama 3 herd of models, 2024.
- 427 [49] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.
- 428 [50] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.
- 429 [51] James Martens. New insights and perspectives on the natural gradient method, 2020.
- [52] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approx imate curvature. In *International conference on machine learning*, pages 2408–2417. PMLR,
   2015.
- Faulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
   Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
   precision training, 2018.
- 436 [54] Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free learner, 2024.

- 438 [55] A.S. Nemirovskii and Yu.E. Nesterov. Optimal methods of smooth convex minimization. *USSR Computational Mathematics and Mathematical Physics*, 25(2):21–30, 1985.
- Yu. Nesterov and V. Shikhman. Quasi-monotone Subgradient Methods for Nonsmooth Convex
   Minimization. *Journal of Optimization Theory and Applications*, 165(3):917–940, June 2015.
- 442 [57] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence  $o(1/k^2)$ , 1983.
- 444 [58] Team OLMo. 2 olmo 2 furious, 2024.
- 445 [59] OpenAI. Gpt-4 technical report, 2024.
- 446 [60] Francesco Orabona. Neural networks (maybe) evolved to make adam the best optimizer, 2020.
- 447 [61] Francesco Orabona and Dávid Pál. Open problem: Parameter-free and scale-free online 448 algorithms. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors, 29th Annual 449 Conference on Learning Theory, volume 49 of Proceedings of Machine Learning Research, 450 pages 1659–1664, Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR.
- 451 [62] Matteo Pagliardini, Pierre Ablin, and David Grangier. The ademamix optimizer: Better, faster, older, 2024.
- 453 [63] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
   454 Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
   455 Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
   456 Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
   457 high-performance deep learning library, 2019.
- Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell,
   Colin Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web
   for the finest text data at scale, 2024.
- [65] Guilherme Penedo, Hynek Kydlíček, Vinko Sabolčec, Bettina Messmer, Negar Foroutan, Martin
   Jaggi, Leandro von Werra, and Thomas Wolf. Fineweb2: A sparkling update with 1000s of
   languages, December 2024.
- 464 [66] Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and Volkan Cevher. Training deep learning models with norm-constrained lmos, 2025.
- [67] Boris Polyak. Some methods of speeding up the convergence of iteration methods. *Ussr Computational Mathematics and Mathematical Physics*, 4:1–17, 1964.
- [68] Boris Polyak. New method of stochastic approximation type. *Automation and Remote Control*,
   1990, 01 1990.
- Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving discrepancies in compute-optimal scaling of language models, 2024.
- 472 [70] Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-training. 2018.
- 474 [71] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. *OpenAI*, 2019.
- 476 [72] Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. *The Annals of Mathematical Statistics*, 22(3):400 407, 1951.
- 478 [73] David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. 1988.
- [74] Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
   Accounting for inference in language model scaling laws, 2024.
- Fabian Schaipp, Alexander Hägele, Adrien Taylor, Umut Simsekli, and Francis Bach. The surprising agreement between convex optimization theory and learning-rate scheduling for large model training, 2025.

- [76] Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley
   benchmarking deep learning optimizers, 2021.
- 486 [77] Noam Shazeer. Glu variants improve transformer, 2020.
- [78] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017.
- Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad,
   Adriana Meza Soria, David D. Cox, and Rameswar Panda. Power scheduler: A batch size and
   token number agnostic learning rate scheduler, 2024.
- 493 [80] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling Ilm test-time compute optimally can be more effective than scaling model parameters, 2024.
- [81] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:
   Enhanced transformer with rotary position embedding, 2023.
- [82] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and momentum in deep learning. In Sanjoy Dasgupta and David McAllester, editors, *Proceedings of the 30th International Conference on Machine Learning*, Proceedings of Machine Learning Research, pages 1139–1147, Atlanta, Georgia, USA, 17–19 Jun 2013.
   PMLR.
- 502 [83] Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Na-503 gahara, Tomoshi Iiyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. Adopt: Modified adam can converge with any  $\beta_2$  with the optimal rate, 2024.
- Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and Sham Kakade. Soap: Improving and stabilizing shampoo using adam, 2024.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
- [86] Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv,
   Da Pan, Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv
   preprint arXiv:2309.10305, 2023.
- [87] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
   Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large
   neural networks via zero-shot hyperparameter transfer, 2022.
- Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power of variance reduction for training large models, 2024.
- [89] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive
   methods for nonconvex optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
   N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
   volume 31. Curran Associates, Inc., 2018.
- [90] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers, 2022.
- 524 [91] Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019.
- [92] Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean
   Foster, and Sham Kakade. How does critical batch size scale in pre-training?, 2024.
- [93] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi,
   Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? *Advances in Neural Information Processing Systems*, 33:15383–15393, 2020.

- [94] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J Reddi,
   Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models?, 2020.
- [95] Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why
   transformers need adam: A hessian perspective, 2024.
- 534 [96] Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Decon-535 structing what makes a good optimizer for language models. *ICLR*, 2025.

# NeurIPS Paper Checklist

#### 1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: the contribution of this paper is described accurately in the abstract and introduction.

#### Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
  contributions made in the paper and important assumptions and limitations. A No or
  NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
  are not attained by the paper.

#### 2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: we discuss a limitations and mention experiments we have not tried to run

- Guidelines:The answer NA means that the paper has no limitation while the answer No means that
  - the paper has limitations, but those are not discussed in the paper.The authors are encouraged to create a separate "Limitations" section in their paper.
  - The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
  - The authors should reflect on the scope of the claims made, e.g., if the approach was
    only tested on a few datasets or with a few runs. In general, empirical results often
    depend on implicit assumptions, which should be articulated.
  - The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
  - The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
  - If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
  - While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

# 3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: this is not a theoretical work
Guidelines:

• The answer NA means that the paper

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

# 4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we open-source our code

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived
  well by the reviewers: Making the paper reproducible is important, regardless of
  whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
  - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
  - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
  - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
  - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

#### 5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

| 642 | Answer: [Yes]                                                             |
|-----|---------------------------------------------------------------------------|
| 643 | Justification: we provide our code and the datasets are mentioned clearly |
| 644 | Guidelines:                                                               |
| 645 | • The answer NA means that paper does not include experiments requ        |
|     | • Diago see the NeurIDC and and date submission avidelines (b++           |

- iring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/ public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https: //nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

# 6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

690

691

692

693

Justification: we specify all of the important hyperparameters as well as hyperparameter tuning.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

# 7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: in our large-scale experiments we could not affort so. and we are running all of the experiment with the same seed for generation data splits, etc.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error
  of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how
  they were calculated and reference the corresponding figures or tables in the text.

# 8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730 731

732

733

734

735

736

737

738

739

740

741

742

Justification: we provide this in Appendix

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

# 9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: this paper is consistent with NeurIPS Code of Ethics.

#### Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
  deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

### 10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: there is no societal impact of the work performed.

#### Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal
  impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

# 11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: the paper poses no such risks.

#### Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
  not require this, but we encourage authors to take this into account and make a best
  faith effort.

# 12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: we cite them and respect, see Sections 1 and 2

#### Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

 If this information is not available online, the authors are encouraged to reach out to the asset's creators.

#### 13. New assets

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

819

820

821 822

823

824

825

826

827

828

830

831

832

833

834

835

836

837

838 839

840

841

842

843

844

845

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: the paper does not propose new assets.

#### Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

#### 14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: our work does not include research with human subjects.

#### Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

# 15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: our work does not include research with human subjects.

#### Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

#### 16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or 846 non-standard component of the core methods in this research? Note that if the LLM is used 847 only for writing, editing, or formatting purposes and does not impact the core methodology, 848 scientific rigorousness, or originality of the research, declaration is not required. 849 Answer: [NA] 850 Justification: the core development of our work does not involve LLMs. 851 Guidelines: 852 • The answer NA means that the core method development in this research does not 853 involve LLMs as any important, original, or non-standard components. 854 • Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) 855 for what should or should not be described. 856

# Contents

| 858                                                         | 1 | Intr                                        | oduction                                                                                                                                                                                                                                        | 1                                            |  |  |  |  |  |  |  |
|-------------------------------------------------------------|---|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|--|--|--|
| 859                                                         | 2 | Bacl                                        | kground & Related Work                                                                                                                                                                                                                          | 2                                            |  |  |  |  |  |  |  |
| 860                                                         | 3 | Experimental Setup 3                        |                                                                                                                                                                                                                                                 |                                              |  |  |  |  |  |  |  |
| 861                                                         | 4 | Results 4                                   |                                                                                                                                                                                                                                                 |                                              |  |  |  |  |  |  |  |
| 862                                                         |   | 4.1                                         | Benchmarking at Small Scale: Training Models of 124M Parameters                                                                                                                                                                                 | 4                                            |  |  |  |  |  |  |  |
| 863                                                         |   | 4.2                                         | Benchmarking at medium scale: Training Models of 210M Parameters                                                                                                                                                                                | 8                                            |  |  |  |  |  |  |  |
| 864                                                         |   | 4.3                                         | Scaling Up: Benchmarking models of $583\mathbf{M}$ and $720\mathbf{M}$ Parameters                                                                                                                                                               | 8                                            |  |  |  |  |  |  |  |
| 865                                                         | 5 | Exte                                        | ension to MoEs                                                                                                                                                                                                                                  | 9                                            |  |  |  |  |  |  |  |
| 866                                                         | 6 | Disc                                        | ussion                                                                                                                                                                                                                                          | 9                                            |  |  |  |  |  |  |  |
| 867                                                         | A | Opti                                        | imizers we study                                                                                                                                                                                                                                | 23                                           |  |  |  |  |  |  |  |
| 868                                                         |   | A.1                                         | AdamW, ADOPT, AdEMAMix                                                                                                                                                                                                                          | 24                                           |  |  |  |  |  |  |  |
| 869                                                         |   | A.2                                         | Sign-based methods: Lion and Signum                                                                                                                                                                                                             | 25                                           |  |  |  |  |  |  |  |
| 870                                                         |   | A.3                                         | Muon, SOAP, Sophia                                                                                                                                                                                                                              | 29                                           |  |  |  |  |  |  |  |
| 871                                                         |   | A.4                                         | Schedule-Free AdamW, Prodigy                                                                                                                                                                                                                    | 32                                           |  |  |  |  |  |  |  |
| 872                                                         |   | A.5                                         | MARS                                                                                                                                                                                                                                            | 33                                           |  |  |  |  |  |  |  |
| 873                                                         | В | Imp                                         | lementation                                                                                                                                                                                                                                     | 35                                           |  |  |  |  |  |  |  |
|                                                             | ~ | Mod                                         | lel & Data                                                                                                                                                                                                                                      | 35                                           |  |  |  |  |  |  |  |
| 874                                                         | С | MOC                                         |                                                                                                                                                                                                                                                 |                                              |  |  |  |  |  |  |  |
| 874<br>875                                                  | D |                                             | erparameter tuning                                                                                                                                                                                                                              | 36                                           |  |  |  |  |  |  |  |
|                                                             |   |                                             | erparameter tuning 124M parameters model                                                                                                                                                                                                        | <b>36</b> 37                                 |  |  |  |  |  |  |  |
| 875                                                         |   | Нур                                         | -                                                                                                                                                                                                                                               |                                              |  |  |  |  |  |  |  |
| 875<br>876                                                  |   | <b>Нур</b><br>D.1                           | 124M parameters model                                                                                                                                                                                                                           | 37                                           |  |  |  |  |  |  |  |
| 875<br>876<br>877                                           |   | Hyp<br>D.1<br>D.2<br>D.3                    | 124M parameters model                                                                                                                                                                                                                           | 37<br>38                                     |  |  |  |  |  |  |  |
| 875<br>876<br>877<br>878                                    | D | Hyp<br>D.1<br>D.2<br>D.3                    | 124M parameters model                                                                                                                                                                                                                           | 37<br>38<br>38                               |  |  |  |  |  |  |  |
| 875<br>876<br>877<br>878                                    | D | Hyp D.1 D.2 D.3                             | 124M parameters model                                                                                                                                                                                                                           | 37<br>38<br>38                               |  |  |  |  |  |  |  |
| 875<br>876<br>877<br>878<br>879                             | D | Hyp D.1 D.2 D.3 Add E.1                     | 124M parameters model 210M parameters model 600M parameters model itional results Benchmarking: 124M                                                                                                                                            | 37<br>38<br>38<br>38                         |  |  |  |  |  |  |  |
| 875<br>876<br>877<br>878<br>879<br>880<br>881               | D | Hyp D.1 D.2 D.3 Add E.1 E.2                 | 124M parameters model 210M parameters model 600M parameters model itional results Benchmarking: 124M Ablations for 124M model                                                                                                                   | 37<br>38<br>38<br>38<br>38                   |  |  |  |  |  |  |  |
| 875<br>876<br>877<br>878<br>879<br>880<br>881<br>882        | D | Hyp D.1 D.2 D.3 Add E.1 E.2 E.3             | 124M parameters model 210M parameters model 600M parameters model itional results Benchmarking: 124M Ablations for 124M model Benchmarking: 210M                                                                                                | 37<br>38<br>38<br>38<br>38<br>38<br>40       |  |  |  |  |  |  |  |
| 875<br>876<br>877<br>878<br>879<br>880<br>881<br>882<br>883 | D | Hyp D.1 D.2 D.3 Add E.1 E.2 E.3 E.4         | 124M parameters model 210M parameters model 600M parameters model  itional results Benchmarking: 124M Ablations for 124M model Benchmarking: 210M Ablations for 210M model                                                                      | 37<br>38<br>38<br>38<br>38<br>38<br>40<br>40 |  |  |  |  |  |  |  |
| 875<br>876<br>877<br>878<br>879<br>880<br>881<br>882<br>883 | D | Hyp D.1 D.2 D.3 Add E.1 E.2 E.3 E.4 E.5 E.6 | 124M parameters model 210M parameters model 600M parameters model itional results Benchmarking: 124M Ablations for 124M model Benchmarking: 210M Ablations for 210M model Wall-clock performance of optimizers across models of different scale | 37<br>38<br>38<br>38<br>38<br>38<br>40<br>40 |  |  |  |  |  |  |  |

- 889 1. Adam-like methods: AdamW (Algorithm 1), ADOPT (Algorithm 2) and AdEMAMix (Algorithm 3).
- 2. Sign-based methods: Lion (Algorithm 4), Signum (Algorithms 5 and 6).
- 3. Approximate second-order optimizers: Muon (Algorithm 8), SOAP (Algorithm 10) and Sophia (Algorithm 11).
- 4. Learning rate / scheduler-free learning algorithms: Schedule-Free AdamW (Algorithm 12), Prodigy (Algorithm 13).
- 5. MARS algorithms: (Algorithms 14 to 16).

Notation. In our work, we denote all vectors and matrices using bold symbols, while non-bold symbols represent scalars. Let  $\mathcal{L}: \mathcal{D} \to \mathbb{R}$  be an empirical loss function parameterized by  $\boldsymbol{x}$ , and mapping batch of inputs  $\boldsymbol{\xi} \subset \mathcal{D}$  to  $\mathbb{R}$ . As  $\boldsymbol{g} = \nabla_{\boldsymbol{x}} \mathcal{L}\left(\boldsymbol{x}, \boldsymbol{\xi}\right)$  we denote a stochastic gradient of the loss w.r.t. parameters  $\boldsymbol{x}$ . For simplicity, we omit  $\boldsymbol{x}$  in  $\nabla$  and write  $\nabla \mathcal{L}\left(\boldsymbol{x}, \boldsymbol{\xi}\right)$ . We use the following standardized notation for specific symbols in our work: batch size  $-|\boldsymbol{\xi}|$ , learning rate  $-\gamma$ , weight decay  $-\lambda$ , momentum  $-\beta$ , iteration counter t with the total number of iterations -T.

And basic notation for symbols in the algorithms: m, v – are first and second moment estimates, respectively, with their bias corrected versions  $\hat{m}, \hat{v}$ , and beta parameters —  $\beta_1, \beta_2$ . We denote the dot product of two vectors z, y as  $\langle z, y \rangle$ , while  $z \odot y$  stands for their element-wise product. All division and addition operations in the described algorithms are element-wise.

#### 906 A.1 AdamW, ADOPT, AdEMAMix

907 AdamW. Our baseline — Adam(W), has become a de facto optimizer for deep learning, demonstrating 908 impressive performance across diverse domains: from tabular data to diffusion and language models.

The method originated from the ideas of Adagrad [19] and RMSProp [23], which utilize a second moment estimate v in their update rule. However, Adam(W) enhanced this prior scheme by incorporating momentum [55, 82], establishing itself as a state-of-the-art method for a wide range of tasks. All other algorithms we consider also employ a similar, if not identical, momentum scheme.

Another key aspect of AdamW is its decoupled weight decay  $\lambda$  [50], unlike Adam. We use the decoupled weight decay scheme for all methods to ensure consistency and emphasize its importance for optimizer comparison, hyperparameter tuning, and final performance. This is clearly observable, e.g., for Signum (Algorithm 5).

#### Algorithm 1 AdamW

```
1: Input: Initial parameters \boldsymbol{x}_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, \beta_2, \varepsilon.

2: Initialize: \boldsymbol{m}_0 \leftarrow \boldsymbol{0}, \boldsymbol{v}_0 \leftarrow \boldsymbol{0}

3: for t \in [T] do

4: \boldsymbol{g}_t \leftarrow \nabla \mathcal{L}(\boldsymbol{x}_t, \boldsymbol{\xi}_t)

5: \boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + (1-\beta_1) \boldsymbol{g}_t

6: \boldsymbol{v}_t \leftarrow \beta_2 \boldsymbol{v}_{t-1} + (1-\beta_2) \boldsymbol{g}_t \odot \boldsymbol{g}_t

7: \hat{\boldsymbol{m}}_t \leftarrow \boldsymbol{m}_t/(1-\beta_1^t), \hat{\boldsymbol{v}}_t \leftarrow \boldsymbol{v}_t/(1-\beta_2^t)

8: \boldsymbol{x}_{t+1} \leftarrow \boldsymbol{x}_t - \gamma_t \left(\frac{\hat{\boldsymbol{m}}_t}{\sqrt{\hat{\boldsymbol{v}}_t + \varepsilon}} + \lambda \boldsymbol{x}_t\right)

9: end for

10: Return: \boldsymbol{x}_T
```

ADOPT. Recently, [83] proposed a modification of Adam, by removing the current gradient  $g_t$  from the second moment estimate  $v_t$  and changing the order of the momentum update  $m_t$  and the normalization by the second moment estimate. As shown in line 8 of Algorithm 2, the parameter update depends only on the previous value of the second moment estimate  $v_{t-1}$ . The authors analyze the convergence of ADOPT with the following update rule:

$$m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \frac{g_t}{\max\{\sqrt{v_{t-1}}, \varepsilon\}},$$
  
 $x_{t+1} \leftarrow x_t - \gamma_t m_t.$ 

However, the practical implementation differs in a few details. To tackle instabilities caused by near-zero gradients during the early stages of training, the authors propose using a clipping on  $g_t/\max\{\sqrt{v_{t-1}},\varepsilon\}$ , which we formalize as the clamp operation. Given a vector g and a positive scalar c, it is defined as:

$$\operatorname{clamp}\left(\boldsymbol{g},c\right)^{(i)} = \min\left\{\max\left\{g^{(i)},-c\right\},c\right\}. \tag{1}$$

Thus, the element-wise clamp operation preserves  $g_t$  from the division by near-zero values.

The authors theoretically claim that ADOPT achieves the optimal convergence bound for non-convex objectives, regardless of the choice of the  $\beta_2$  parameter. We empirically investigate this claim and observe that, contrary to the theoretical results, there is a significant performance gap for different choices of  $\beta_2$  in practice.

# Algorithm 2 ADOPT

931

932

933

934

935

936

946

```
1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, \beta_2, \varepsilon.

2: Initialize: m_0 \leftarrow 0, v_0 \leftarrow \nabla \mathcal{L}(x_0, \boldsymbol{\xi}_0) \odot \nabla \mathcal{L}(x_0, \boldsymbol{\xi}_0)

3: for t \in [T] do

4: g_t \leftarrow \nabla \mathcal{L}(x_t, \boldsymbol{\xi}_t)

5: c_t \leftarrow t^{1/4} \triangleright Update clipping value schedule

6: m_t \leftarrow \beta_1 m_{t-1} + (1-\beta_1) \operatorname{clamp}\left(\frac{g_t}{\max\{\sqrt{v_{t-1},\varepsilon}\}}, c_t\right)

7: v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g_t \odot g_t

8: x_{t+1} \leftarrow x_t - \gamma_t (m_t + \lambda x_t) \triangleright Update without v_t

9: end for

10: Return: x_T
```

AdEMAMix. Another Adam-like optimizer we study is AdEMAMix [62]. This work argues that using a single EMA to accumulate past gradients in the first moment estimate m can be sub-optimal, as it cannot simultaneously prioritize both immediate past and older gradients. In Algorithm 3, the authors incorporate two EMAs: one — Adam-like EMA for m (fast), and another — a slow EMA m (see line 7) with an additional  $\beta_3$  parameter. In its update rule, the algorithms balances fast and slow EMAs with the constant factor  $\alpha$  (see line 10 of Algorithm 3). This algorithmic design helps AdEMAMix benefit from older gradients and results in smoother loss curves during training.

However, to mitigate the effect of early instabilities, the authors use two additional schedulers for  $\alpha$  and  $\beta_3$  – alpha\_scheduler and beta\_scheduler, formalized in our work as follows:

$$\begin{split} & \texttt{alpha\_scheduler}(t,\alpha,T_\alpha) = \min\left\{\frac{t\alpha}{T_\alpha},\alpha\right\}, \\ & \texttt{beta\_scheduler}(t,\beta_3,\beta_{\text{start}},T_{\beta_3}) = \min\left\{\exp\left(\frac{\log(\beta_{\text{start}})\log(\beta_3)}{\left(1-\frac{t}{T_{\beta_3}}\right)\log(\beta_3) + \frac{t}{T_{\beta_3}}\log(\beta_{\text{start}})}\right),\beta_3\right\}. \end{split}$$

In all experiments, we set  $\beta_{\text{start}} = \beta_1$ , and the warmup parameters equal to the length of training:  $T_{\alpha} = T_{\beta_3} = T$ .

One thing that should be commented —  $\alpha$  and  $\beta$  schedulers are seemingly contradict the idea of WSD scheduler. However, setting  $T_{\alpha}$ ,  $T_{\beta_3}$  to be longer than the first checkpoint of the WSD does not significantly impact the final performance. Thus, Ademanix can still be combined with recent findings regarding the WSD scheduler.

# A.2 Sign-based methods: Lion and Signum

Another branch of methods includes sign-based Lion and Signum. To some extend, one can classify Adam as a sign-based method also, but we mention only Lion and Signum as they explicitly incorporate the sign operation in the update rule.

These methods, particularly Signum, have been unfairly overlooked in the context of LLM pretraining.

However, our results demonstrate that, with sufficiently large batch sizes and at moderate model scales, these optimizers perform on par with Adam, and in some cases, even outperform it.

#### Algorithm 3 AdEMAMix

```
1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, \beta_2,
             \beta_3,\,\beta_{
m start},\,\alpha,\, beta_scheduler, alpha_scheduler, warmup parameters T_{eta_3} and T_{lpha},\,arepsilon.
  2: Initialize: m_0 \leftarrow 0, m_0^{\text{slow}} \leftarrow 0, v_0 \leftarrow 0
  3: for t \in [T] do
                         \beta_3(t) \leftarrow \mathtt{beta\_scheduler}(t, \beta_3, \beta_{\mathtt{start}}, T_{\beta_3}), \alpha(t) \leftarrow \mathtt{alpha\_scheduler}(t, \alpha, T_{\alpha})
             Update \beta_3 and \alpha schedulers
                        \boldsymbol{g}_t \leftarrow \nabla \mathcal{L}(\boldsymbol{x}_t, \boldsymbol{\xi}_t)
                       \begin{aligned} & \boldsymbol{g}_t \leftarrow \boldsymbol{V} \mathcal{L}(\boldsymbol{x}_t, \boldsymbol{\zeta}_t) \\ & \boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + (1 - \beta_1) \boldsymbol{g}_t \\ & \boldsymbol{m}_t^{\text{slow}} \leftarrow \beta_3(t) \boldsymbol{m}_{t-1}^{\text{slow}} + (1 - \beta_3(t)) \boldsymbol{g}_t \\ & \boldsymbol{v}_t \leftarrow \beta_2 \boldsymbol{v}_{t-1} + (1 - \beta_2) \boldsymbol{g}_t \odot \boldsymbol{g}_t \\ & \hat{\boldsymbol{m}}_t \leftarrow \boldsymbol{m}_t / (1 - \beta_1^t), \quad \hat{\boldsymbol{v}}_t \leftarrow \boldsymbol{v}_t / (1 - \beta_2^t) \\ & \boldsymbol{x}_{t+1} \leftarrow \boldsymbol{x}_t - \gamma_t \left( \frac{\hat{\boldsymbol{m}}_t + \alpha(t) \boldsymbol{m}_t^{\text{slow}}}{\sqrt{\hat{\boldsymbol{v}}_t + \varepsilon}} + \lambda \boldsymbol{x}_t \right) \end{aligned}
  6:
  7:
                                                                                                                                                                                                                                                        ▶ Update slow EMA
  8:
  9:
10:
11: end for
12: Return: x_T
```

Lion. And the first method of this kind is Lion [9]. This optimizer is symbolically discovered in the program space of first-order optimization primitives. Lion updates its EMA of m after updating the parameters and has additional term  $(1 - \beta_1)g$  whis adds to the momentum. This interpolation  $\beta_1 m_{t-1} + (1 - \beta_1)g_t$  (see line 6 of Algorithm 4) makes the symbolic-discovered idea behind Lion similar to the idea of the AdEMAMix optimizer.

#### Algorithm 4 Lion

```
1: Input: Initial parameters \boldsymbol{x}_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, \beta_2.

2: Initialize: \boldsymbol{m}_0 \leftarrow \mathbf{0}

3: for t \in [T] do

4: \boldsymbol{g}_t \leftarrow \nabla \mathcal{L}(\boldsymbol{x}_t, \boldsymbol{\xi}_t)

5: \boldsymbol{m}_t \leftarrow \beta_2 \boldsymbol{m}_{t-1} + (1-\beta_2) \boldsymbol{g}_t > Update EMA of \boldsymbol{g}_t

6: \boldsymbol{x}_{t+1} \leftarrow \boldsymbol{x}_t - \gamma_t \left(\operatorname{sign}(\beta_1 \boldsymbol{m}_{t-1} + (1-\beta_1) \boldsymbol{g}_t) + \lambda \boldsymbol{x}_t\right)

7: end for

8: Return: \boldsymbol{x}_T
```

Signum. Another sign-based method, which is the adoptation of signSGD — Signum [6], or signSGD with momentum. This method differs from Lion in the interpolation term between EMA of momentum and current gradient, as well as in the Signum's update rule a current EMA is used.

Importantly, while Signum is not as widespread for LLM pretraining and stands mostly as a theoretical artifact, recent practitioner's studies also start to use Signum for scalable training [96]. Mostly, due to the memory-efficiency of Signum compared to AdamW.

In this regard, we want to make an important point — many recent PyTorch [63] implementations of the Signum optimizer, unlikely, are not suitable for this method, impairing the potential performance from using it.

The main problem of many open-source implementations is a use of decoupled weight decay in the PyTorch implementation of SGDM (SGD with momentum) [82]. Indeed, with a decoupled weight decay, the update of Algorithm 5 transforms into:

$$x_{t+1} \leftarrow x_t - \gamma_t \operatorname{sign} \left(\beta m_{t-1} + (1-\beta)g_t - \lambda(1-\beta)g_t\right)$$

which affects the sign of the update, leading to potentially wrong optimization direction if the weight decay is sufficiently large.

Another popular failure while using Signum is incorrectly tractable PyTorch implementation of SGDM. It does not include such EMA as line 5 in Algorithm 5, on the other hand, in PyTorch, the momentum update depends on the dampening parameter  $\tau$ :

$$\boldsymbol{m}_t \leftarrow \beta \boldsymbol{m}_{t-1} + (1-\tau)\boldsymbol{g}_t,$$

which is zero by default. Therefore, the typical update rule, reflecting the actual Signum behavior in practice corresponds to the following update:

$$\boldsymbol{x}_{t+1} \leftarrow \boldsymbol{x}_t - \gamma_t \left( \text{sign} \left( \beta \boldsymbol{m}_{t-1} + (1-\tau) \boldsymbol{g}_t \right) + \lambda \boldsymbol{x}_t \right),$$

where the weight decay is decoupled and, consequently, does not affect the sign.

$$g_t \leftarrow g_t + \beta m_t$$

improves Signum. Since enabling Nesterov momentum requires zero dampening  $\tau$ , we revisited the descrition of Algorithm 5, and propose more practical, PyTorch-compatible version of Signum in Algorithm 6.

# Algorithm 5 Signum (basic)

```
    Input: Initial parameters x<sub>0</sub>, number of iterations T, learning rate γ<sub>t</sub>, weight decay λ, momentum β.
    Initialize: m<sub>0</sub> ← 0
```

```
2: Initialize: m_0 \leftarrow 0

3: for t \in [T] do

4: g_t \leftarrow \nabla \mathcal{L}(x_t, \xi_t)

5: m_t \leftarrow \beta m_{t-1} + (1-\beta)g_t

6: x_{t+1} \leftarrow x_t - \gamma_t \left(\text{sign}\left(m_t\right) + \lambda x_t\right)
```

7: end for 8: Return:  $x_T$ 

# Algorithm 6 Signum (our PyTorch variant)

1: **Input:** Initial parameters  $x_0$ , number of iterations T, learning rate  $\gamma_t$ , weight decay  $\lambda$ , momentum  $\beta$ .

```
2: Initialize: m_0 \leftarrow 0
```

3: **for** 
$$t \in [T]$$
 **do**  
4:  $\boldsymbol{g}_t \leftarrow \mathcal{L}(\boldsymbol{x}_t, \boldsymbol{\xi}_t)$ 

5: 
$$m_t \leftarrow \beta m_{t-1} + g_t$$

6: 
$$egin{aligned} & m{x}_{t+1} & \leftarrow & m{x}_t \\ & \gamma_t \left( \text{sign} \left( eta m{m}_t + m{g}_t \right) + \lambda m{x}_t \right) \end{aligned}$$

7: end for

8: Return:  $x_T$ 

Moreover, to prevent other researchers and practitioners from the possible wrong use of Signum and for the reproducibility purposes, we provide our Python code.

Listing 1: Signum code skeleton using PyTorch

```
from typing import Dict
983
984
    import torch
985
986
987
    class Signum (torch.optim.Optimizer):
988
         def __init__(
989
              self,
990
              params,
991
              1r = 1e - 3,
992
              momentum = 0,
993
994
              dampening = 0,
              weight_decay = 0,
995
              nesterov=False,
996
              sign_update=True,
997
         ):
998
              if 1r < 0.0:
999
                   raise ValueError(f"Invalid learning rate: {lr}")
1000
              if momentum < 0.0:
1001
                   raise ValueError(f"Invalid momentum value: {momentum}"
1002
1003
              if weight_decay < 0.0:
1004
                   raise ValueError(f"Invalid weight decay value: {
1005
                       weight_decay \ " )
1006
1007
              defaults = dict(
1008
                   1r=1r,
1009
```

```
momentum=momentum,
1010
                  dampening=dampening,
1011
                  weight_decay=weight_decay,
1012
                  nesterov=nesterov,
1013
                  sign_update=sign_update,
1014
1015
              if nesterov and (momentum \leq 0 or dampening != 0):
1016
                  raise ValueError ("Nesterov momentum requires a
1017
                      momentum and zero dampening")
1018
             super().__init__(params, defaults)
1019
1020
         def __setstate__(self, state):
1021
              super().__setstate__(state)
1022
              for group in self.param_groups:
1023
                  group.setdefault("nesterov", False)
1024
1025
         @torch.no_grad()
1026
         def _init_state(self, example, state=None):
1027
              assert isinstance (example, torch. Tensor)
1028
              assert isinstance (state, Dict) or state is None
1029
              if state is None:
1030
                  state = \{\}
1031
              state["step"] = 0
1032
              state["momentum_buffer"] = torch.clone(example).detach()
1033
              return state
1034
1035
         @torch.no_grad()
1036
1037
         def _compute_update(
              self, grad, state, lr, momentum, nesterov, dampening,
1038
                 sign_update, **kwargs
1039
         ):
1040
              if momentum != 0: # Signum check
1041
                  buf = state["momentum_buffer"]
1042
                  buf.mul_(momentum).add_(grad, alpha=1 - dampening)
1043
1044
                  if nesterov:
1045
                       grad = grad.add(buf, alpha=momentum)
1046
1047
                  else:
                       grad = buf
1048
1049
              if sign_update:
1050
                  grad = grad.sign()
1051
1052
              return grad * (-1r)
1053
1054
1055
         @torch.no grad()
         def step(self, closure=None):
1056
              """Performs a single optimization step.
1057
1058
1059
             Args:
                  closure (Callable, optional): A closure that
1060
                      reevaluates the model
1061
                      and returns the loss.
1062
              ,, ,, ,,
1063
              loss = None
1064
              if closure is not None:
1065
                  with torch.enable_grad():
1066
                       loss = closure()
1067
1068
```

```
for group in self.param_groups:
1069
                   for p in group["params"]:
1070
                        if p. grad is None:
1071
                             continue
1072
1073
                        grad = p.grad
1074
                        state = self.state[p]
1075
1076
                        if group["weight_decay"] != 0:
1077
                             p.mul_(1 - group["lr"] * group["weight_decay"
1078
                                 1)
1079
1080
                        if len(state) == 0:
1081
                             self._init_state(example=p, state=state)
1082
                             if not group["momentum"]:
1083
                                  state.pop("momentum_buffer", None)
1084
1085
                        state [ "step " ] += 1
1086
1087
                        update = self._compute_update(
1088
                             grad,
1089
                             state
1090
                             group["lr"],
1091
                             group ["momentum"],
1092
                             group["nesterov"],
1093
                             group ["dampening"],
1094
                             group["sign_update"],
1095
1096
1097
                        p.add_(update)
1098
1099
              return loss
1100
```

#### A.3 Muon, SOAP, Sophia

1101

Next page of the methods covers algorithms that rather aim to use more information about the problem's curvature (SOAP [84], Sophia [46]) or perform fast updates of matrix parameters involving higher order computations (Muon [33]).

1105 Contrary to the chronological order, we discuss them starting from the recent one — Muon and end 1106 up with Sophia.

Muon. Specifically designed for the speedrun comparisons, this method surpasses AdamW baseline on nanoGPT pretraining benchmark [32]. Claims from the Muon extend to faster learning, lower memory usage and better sample-efficiency with a small wall-clock time overhead. However, there are not much to say about the final performance given a particular budget of tokens to train on.

The reason why the Muon is a good option for speedrun pretraining lies in its structure — Muon treats different layers in different way. One dimensional (1D) parameters, large embedding layers, scalar parameters (such as Layer Norm parameters) and the output layer of LLM (1m\_head) are optimized by AdamW. And all parameters with two or more dimensions, e.g., Multi-Head Attention layers are optimized by Algorithm 7, which we call MuonNon1D.

Inspired by Shampoo's preconditioners [24], the authors of MuonNon1D incorporated an orthogonalization step to compute the SVD transformation of gradient matrix. Before the orthogonalization step, MuonNon1D represents SGD with Nesterov momentum. To ensure fast orthogonalization procedure, the authors, insiped by [5], use Newton-Schulz procedure [25]. As the number of Newton-Schulz iterations increases, the closer resulting matrix becomes to  $UV^{\top}$  from SVD transformation. The authors also mention that Muon can be thought of as a second way of smoothing spectral steepest descent [8], with a different set of memory and runtime trade-offs compared to Shampoo.

# **Algorithm 7** MuonNon1D (for non-1D parameters)

```
1: Input: Initial non-1D parameters x_0, number of iterations T, learning rate \gamma_t, momentum \beta,
        number of Newton-Schulz iterations T_{NS}, a, b, c coefficients.
      Initialize: m_0 \leftarrow 0
 3: for t \in [T] do
               oldsymbol{g}_t \leftarrow 
abla \mathcal{L}(oldsymbol{x}_t, oldsymbol{\xi}_t)
 4:
               \boldsymbol{m}_t \leftarrow \beta \boldsymbol{m}_{t-1} + \boldsymbol{g}_t
 5:
               \boldsymbol{g}_t \leftarrow \beta \boldsymbol{m}_t + \boldsymbol{g}_t
                                                                                              ▶ Practical implementation of Nesterov momentum
 6:
               Set: \boldsymbol{w}_0 \leftarrow \boldsymbol{g}_t / \|\boldsymbol{g}_t\|_F for n \in [T_{\mathrm{NS}}] do
 7:
 8:
                      \boldsymbol{w}_{n+1} \leftarrow a \boldsymbol{w}_n + b \boldsymbol{w}_n \boldsymbol{w}_n^{\top} + c \left( \boldsymbol{w}_n \boldsymbol{w}_n^{\top} \right)^2 \boldsymbol{w}_n
 9:

    Newton-Schulz iteration

10:
11:
               \boldsymbol{x}_{t+1} \leftarrow \boldsymbol{x}_t - \gamma_t \boldsymbol{w}_{T_{\text{NS}}}
12: end for
13: Return: x_T
```

# Algorithm 8 Muon (general scheme)

```
1: Input: Initial parameters x_0, number of iterations T. Muon's parameters: learning rate \gamma_t^{\mathtt{M}}, momentum \beta, number of Newton-Schulz iterations T_{\mathrm{NS}}, a,b,c coefficients. AdamW's parameters: learning rate \gamma_t^{\mathtt{A}}, weight decay \lambda, \beta_1, \beta_2, \varepsilon.

2: for t \in [T] do x_t \in \{\mathtt{embeds}, \mathtt{scalar\_params}, \mathtt{lm\_head}\}

3: x_t^{\mathtt{A}} \leftarrow x_t

4: x_{t+1}^{\mathtt{A}} \leftarrow \mathtt{AdamW} (x_t^{\mathtt{A}}, \gamma_t^{\mathtt{A}}, \lambda, \beta_1, \beta_2, \varepsilon, T = 1) \triangleright One iteration of AdamW 5: x_t^{\mathtt{M}} \leftarrow x_t

6: x_{t+1}^{\mathtt{M}} \leftarrow \mathtt{MuonNon1D} (x_t^{\mathtt{M}}, \gamma_t^{\mathtt{M}}, T_{\mathrm{NS}}, \beta, a, b, c, T = 1) \triangleright One iteration of MuonNon1D 7: end for 8: Return: x_T^{\mathtt{A}}, x_T^{\mathtt{M}}
```

Importantly, we noticed that the original algorithmic description of Muon optimizer, provided in the official repository<sup>3</sup>, differs from the actual one, presented in Algorithm 7. In the original code, as well as in our benchmarking, weight decay do not applies to the matrix parameters in the optimizer state of MuonNon1D, which means that the only weight decay used during training is AdamW's weight decay. From this perspective, we observe that the gap between the final loss values for runs with 0.1 and 0 weight decay values almost disappears, while the run with 0.5 weight decay becomes the worst, which is not the case for other optimizers. We describe this in our weight decay ablations.

SOAP. [84] proposed new, improved modification of Shampoo [24]. SOAP reduces the computational overhead optimizing only two dimensional layers (2D) via Algorithm 9, while running AdamW for 1D layers. At initialization, preconditioners are computed via eigenvector decomposition of the initial gradient matrices eigenbasis  $(\nabla \mathcal{L}(x_0, \xi_0) \nabla \mathcal{L}(x_0, \xi_0)^\top)$ :  $\nabla \mathcal{L}(x_0, \xi_0) \nabla \mathcal{L}(x_0, \xi_0)^\top = q \Lambda q^{-1}$ , where  $\Lambda$  stands for the diagonal matrix whose diagonal elements are the corresponding eigenvalues. For the rest of the iterations, SOAPNon1D performs the QR decomposition (see lines 15, 16 of Algorithm 9) for all 2D layers, which is the main computational part of the method.

1137 A key idea behind the SOAP optimizer is:

- 1. Given the slowly changing coordinate basis provided by eigenvectors l and r, SOAP updates its second moment estimates in this basis, i.e., it runs AdamW in another, rotated space.
- 2. To update the eigenvectors of  $\boldsymbol{l}$  and  $\boldsymbol{r}$ , SOAP runs QR decomposition with preconditioning frequency  $\phi$ .
- In Algorithm 9, if one would set both  $q_l$  and  $q_r$  to identity, then we would recover AdamW.
- The overall SOAP algorithm can be formalized as follows:

<sup>&</sup>lt;sup>3</sup>https://github.com/KellerJordan/modded-nanogpt

# Algorithm 9 SOAPNon1D (for non-1D parameters)

```
1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, \beta_2,
             preconditioning frequency \phi, \varepsilon.
           Initialize: m_0 \leftarrow 0, v_0 \leftarrow 0
   3: Initialize preconditioners: q_l, q_r \leftarrow \text{eigenbasis}\left(\nabla \mathcal{L}(x_0, \xi_0) \nabla \mathcal{L}(x_0, \xi_0)^{\top}\right)
   4: for t \in [T] do
                      \begin{aligned} \mathbf{r} & t \in [T] \, \mathbf{do} \\ & \boldsymbol{g}_t \leftarrow \nabla \mathcal{L}(\boldsymbol{x}_t, \boldsymbol{\xi}_t) \\ & \boldsymbol{g}_t' \leftarrow \boldsymbol{q}_t^{\top} \boldsymbol{g}_t \boldsymbol{q}_r \\ & \boldsymbol{m} \leftarrow \beta_1 \boldsymbol{m}_{t-1} + (1-\beta_1) \boldsymbol{g}_t \\ & \boldsymbol{m}_t' \leftarrow \boldsymbol{q}_l^{\top} \boldsymbol{m}_t \boldsymbol{q}_r \\ & \boldsymbol{v}_t \leftarrow \beta_2 \boldsymbol{v}_{t-1} + (1-\beta_2) \boldsymbol{g}_t' \odot \boldsymbol{g}_t' \\ & \gamma_t \leftarrow \gamma_t \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\ & \boldsymbol{x}_{t+1} \leftarrow \boldsymbol{x}_t - \gamma_t \left( \boldsymbol{q}_l \frac{\boldsymbol{m}_t'}{\sqrt{\boldsymbol{v}_{t+\varepsilon}}} \boldsymbol{q}_r^{\top} + \lambda \boldsymbol{x}_t \right) \end{aligned}
   6:
                                                                                                                                                                                                                                                                                               \triangleright Rotate g_+
                                                                                                                                                                          ▷ Compute Adam's statistics in rotational space
                                                                                                                                                                                                                               ▷ Optional: use bias correction
11:
                                                                                                                                                                                                                  ▶ Perform update in original space
                        \boldsymbol{l}_t \leftarrow \beta_2 \boldsymbol{l}_{t-1} + (1 - \beta_2) \boldsymbol{g}_t \boldsymbol{g}_t
12:
                                                                                                                                                                                                                                                 ▶ Update preconditioners
                        \begin{aligned} & \boldsymbol{r}_t \leftarrow \beta_2 \boldsymbol{r}_{t-1} + (1-\beta_2) \boldsymbol{g}_t^{\intercal} \boldsymbol{g}_t \ t \equiv 1 \pmod{\phi} \\ & \boldsymbol{q}_l \leftarrow \mathtt{QR} \left( \boldsymbol{l}_t \boldsymbol{q}_l \right) \\ & \boldsymbol{q}_r \leftarrow \mathtt{QR} \left( \boldsymbol{r}_t \boldsymbol{q}_r \right) \end{aligned}
13:
14:
15:
16: end for
17: Return: x_T
```

# Algorithm 10 SOAP (general scheme)

```
1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, \beta_2, preconditioning frequency \phi, \varepsilon.

2: for t \in [T] do x_t \in \{\text{embeds, scalar\_params, lm\_head}\}

3: x_t^{\mathtt{A}} \leftarrow x_t

4: x_{t+1}^{\mathtt{A}} \leftarrow \operatorname{AdamW}(x_t^{\mathtt{A}}, \gamma_t, \lambda, \beta_1, \beta_2, \varepsilon, T = 1) \triangleright One iteration of AdamW

5: x_t^{\mathtt{S}} \leftarrow x_t

6: x_{t+1}^{\mathtt{S}} \leftarrow \operatorname{SOAPNon1D}(x_t^{\mathtt{S}}, \gamma_t, \lambda, \beta_1, \beta_2, \varepsilon, T = 1) \triangleright One iteration of SOAPNon1D

7: end for

8: Return: x_T^{\mathtt{A}}, x_T^{\mathtt{S}}
```

Sophia. Despite being named as second-order optimizer, Sophia [46] performs an update, quite 1144 similar to Adam's. It also leverages the diagonal preconditioner h, but not the curvature information of the optimization problem, which depends on the non-diagonal terms of the Hessian. One should 1146 notice that Sophia were introduced with two types of preconditioners — Hutchinson [3] and Gauss-1147 Newton-Bartlett [51]. Since the latter one shows more promising performance, we consider only this 1148 type of preconditioner for Sophia. 1149 Every  $\phi$  iterations, Sophia updates its second moment estimate by computing the gradient  $\hat{g}$  of the 1150 empirical loss  $\mathcal{L}$  given softmax of the logits instead of the true logits. Multiplying by the batch size, 1151 we obtain  $\hat{h}$ , after that, Sophia updates the EMA of  $\hat{h}$ . 1152 Importantly, we found out, that algorithmic description of Sophia in the original paper differs in 1153 minor details from the code implementation<sup>4</sup>. Indeed, the update rule in their work formulates as 1154 follows: 1155

$$\boldsymbol{x}_{t+1} \leftarrow \boldsymbol{x}_t - \gamma_t \texttt{clamp}\left(\frac{\boldsymbol{m}_t}{\max\{\rho\boldsymbol{h}_t, \varepsilon\}}, 1\right),$$

where clamp is defined as in Equation (1). On the other hand, the code from the official repository suggests:

Listing 2: Sophia update skeleton using PyTorch

1158 # update step

<sup>&</sup>lt;sup>4</sup>https://github.com/Liuhong99/Sophia

```
step_t += 1
1159
1160
    # Perform stepweight decay
1161
    param.mul_(1 - lr * weight_decay)
1162
1163
    # Decay the first and second moment running average coefficient
1164
    exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
1165
1166
1167
         step\_size\_neg = -1r
1168
1169
         ratio = (\exp_a vg.abs() / (rho * bs * hess + 1e-15)).clamp(None)
1170
1171
         param.addcmul_(exp_avg.sign(), ratio, value=step_size_neg)
1172
```

Therefore, the actual update of Sophia is wrongly tractated in the original paper and should be corrected and equal to the line 16 of Algorithm 11.

**Takeaway 4.** The actual update rule of Sophia differs from its description in the original paper.

# Algorithm 11 Sophia

1175

```
1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, \beta_2,
         estimator frequency \phi, scaling factor \rho, \varepsilon.
  2: Initialize: m_0 \leftarrow 0, h_0 \leftarrow 0
 3: for t \in [T] do
4: \boldsymbol{g}_t \leftarrow \nabla \mathcal{L}(\boldsymbol{x}_t, \boldsymbol{\xi}_t)
5: \boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + (1 - \beta_1) \boldsymbol{g}_t \ t \equiv 1 \pmod{\phi}
                                                                                                                                                                               ▷ Obtain logits from batch
                  p_t \leftarrow \mathtt{softmax}\left(p_t\right)

    Sample from logits

                  \hat{\mathcal{L}}(\boldsymbol{x}_t, \boldsymbol{\xi}_t) \leftarrow p_t
  8:
                                                                                                                                                                              \triangleright Loss, where p_t are labels
  9:
                  \hat{m{g}}_t \leftarrow 
abla \hat{m{\mathcal{L}}}(m{x}_t, m{\xi}_t)
                  \hat{m{h}}_t \leftarrow |m{\xi}_t| \hat{m{g}}_t \odot \hat{m{g}}_t
                  egin{aligned} oldsymbol{h}_t &\leftarrow eta_2 oldsymbol{h}_{t-\phi} + (1-eta_2) \hat{oldsymbol{h}}_t \ oldsymbol{h}_t &\leftarrow oldsymbol{h}_{t-1} \end{aligned}
11:
12:
                  oldsymbol{x}_{t+1} \leftarrow oldsymbol{x}_t - \gamma_t \left( 	extst{sign}(oldsymbol{m}_t) \min \left\{ rac{|oldsymbol{m}_t|}{
ho oldsymbol{h}_t + arepsilon}, 1 
ight\} + \lambda oldsymbol{x}_t 
ight)
13:
14: end for
15: Return: x_T
```

# 1176 A.4 Schedule-Free AdamW, Prodigy

In this section, we outline two more players — Schedule-Free AdamW [17] and Prodigy [54].

Both of them have a promising advantages and require less hyperparameter tuning which paves the road to parameter-free optimizers.

Schedule-Free AdamW. [17] introduced a concept of schedule-free optimizers. Underlying idea behind his Schedule-Free SGD and Schedule-Free AdamW is to remove the scheduler with iterate averaging. Particularly, schedule-free method uses an interpolation between Polyak-Ruppert averaging [68, 73] and Primal averaging [56] for momentum update instead of usual EMA (line 4 of Algorithm 12). To avoid undesirable behavior during scalable training the authors also propose internal warmup (see line 7 of Algorithm 12) which uses the general number of warmup iterations parameter in the code, this gradually increases the learning rate and, at the same time, ensures Adam's bias correction.

An interesting result we observe, SF-AdamW shows the best performance with larger number of warmup iterations compared to other methods.

Another key point — training with SF-AdamW is sensitive to the choice of beta parameters. Unlike 1190 in AdamW, these parameters serve different purposes in SF-AdamW: as  $\beta_1$  acts as an interpolation 1191 parameter between two sequences, and  $\beta_2$  controls the EMA of the second moment estimate, which 1192 relates to y sequence rather than the model parameters x (line 6 of Algorithm 12). For Adam it is 1193 common to analyze in theory the case, when  $\beta_2 = 1 - 1/T$  [89, 10], i.e., the choice of the "optimal" 1194 beta parameters depends on the length of training. Which is also the case for SF-AdamW, making 1195 1196 it not fully schedule-free. [28] observed this sensitivity to beta parameters, and we go beyond this ablation also. 1197

Importantly, the authors mention that disabling the gradient norm clipping is crucial for schedule-free runs, however, we do not observe this in practice, demonstrating the contrary results.

#### Algorithm 12 SF-AdamW

```
1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma, weight decay \lambda, \beta_1, \beta_2, warmup iterations T_{\text{warmup}}, \varepsilon.

2: Initialize: z_0 \leftarrow x_0, v_0 \leftarrow \mathbf{0}

3: for t \in [T] do

4: y_t \leftarrow (1-\beta_1)z_t + \beta_1x_t

5: g_t \leftarrow \nabla \mathcal{L}(y_t, \xi_t)

6: v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2)g_t \odot g_t

7: \gamma_t \leftarrow \gamma \sqrt{1-\beta_2^t} \min\{1, t/T_{\text{warmup}}\}

8: z_{t+1} \leftarrow z_t - \gamma_t \left(g_t/(\sqrt{v_t} + \varepsilon) + \lambda y_t\right)

9: c_{t+1} \leftarrow \frac{\gamma_t^2}{\sum_{t=0}^t} \gamma_t^2

10: x_{t+1} \leftarrow (1-c_{t+1})x_t + c_{t+1}z_{t+1}

11: end for

12: Return: x_T
```

Prodigy. Improving the D-Adaptation concept [16], [54] derived an Adam-like method, which use an EMA for the learning rate (see lines 8, 9 of Algorithm 13), approximating the Adam's update of the second moment estimate EMA. The derived update reflects an EMA of  $d_t \mathbf{g}_t$  sequence rather than  $\mathbf{g}_t$ . Idea of such a method is to come up with a scheme that is able to remove the hand-tuned learning rate via sequence which adapts during training on the fly. In Algorithm 13,  $d_t$  is such a sequence that affects botth first and second moment estimates, and evolves according to line 10.

Crucially, Prodigy does not need the learning rate tuning (typically, we initialize  $\gamma=1$ ), however, it still can be compatible with learning rate schedules, which we verify experimentally at scale. We also show that  $d_t$  sequence indeed acts similarly to cosine learning rate scheduler, with usually smaller learning rate at initialization and a bit larger values of it at maximum Moreover, this method scales reliably similar to AdamW, making it a promising choice for future development of parameter-free methods.

#### A.5 MARS

1200

1201

1202

1203

1204

1205 1206

1213

Very recently, [88] introduce MARS — a series optimizers, which incorporate modern adaptive methods [50, 9] and approximate second-order methods [24] with variance reduction update update style.

This optimization framework gave a birth to: MARS-AdamW — our main baseline which we call simply MARS, MARS-Lion and MARS-Shampoo. We mainly include MARS-AdamW in our ablation studies, but report results for other two optimizers.

The authors modified a variance reduction update introducing a sclaing parameter  $\eta$ , which we call variance reduction scaling in the outlined algorithms and experiments. This parameter controls the scale of gradient correction – see line 5 of Algorithms 14 to 16.

# Algorithm 13 Prodigy

```
1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma, weight decay \lambda, \beta_1, \beta_2, \varepsilon.

2: Initialize: d_0 \leftarrow 10^{-6}, \gamma \leftarrow 1, m_0 \leftarrow 0, v_0 \leftarrow 0, r_0 \leftarrow 0, s_0 \leftarrow 0 \quad \triangleright Optional: use scheduler on \gamma

3: for t \in [T] do

4: g_t \leftarrow \nabla \mathcal{L}(x_t, \xi_t)

5: m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) d_t g_t

6: v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) d_t^2 g_t \odot g_t

7: \gamma_t \leftarrow \gamma \sqrt{1 - \beta_2^t}/(1 - \beta_1^t) \quad \triangleright Optional: use bias correction

8: r_t \leftarrow \sqrt{\beta_2} r_{t-1} + (1 - \sqrt{\beta_2}) \gamma_t d_t^2 \langle g_t, x_0 - x_t \rangle

9: s_t \leftarrow \sqrt{\beta_2} s_{t-1} + (1 - \sqrt{\beta_2}) \gamma_t d_t^2 g_t

10: d_{t+1} \leftarrow \max\{d_t, \frac{r_t}{\|s_t\|_1}\}

11: x_{t+1} \leftarrow x_t - \gamma_t d_t \left(m_t / \left(\sqrt{v_t} + d_t \varepsilon\right) + \lambda x_t\right)

12: end for

13: Return: x_T
```

An important detail, we follow only the approximate scheme of MARS-like optimizers, i.e., we evaluate the gradient  $g_t$  in different stochasticity, meaning

$$\begin{split} \boldsymbol{g}_t &= \nabla \mathcal{L} \left( \boldsymbol{x}_t, \boldsymbol{\xi}_t \right), \\ \boldsymbol{g}_{t-1} &= \nabla \mathcal{L} \left( \boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t-1} \right). \end{split}$$

Importantly, in the same spirit as for SOAP and Muon, the authors use MARS-like algorithms for layers with two and more dimensions, for 1D layers, embeds, scalar parameters and final the head layer of neural network, this method utilize AdamW. Such a choice allows use MARS in the more fast and still efficient way. Following the practices from their work, we also use MARS only for 2D layers.

MARS (MARS-AdamW). For AdamW-like algorithm, the difference occurs at the computation of  $m_t$  and  $v_t$ , where instead of the gradient, the variance reduction update  $c_t$  is used.

# Algorithm 14 MARS (MARS-AdamW)

- 1: Input: Initial parameters  $x_0$ , number of iterations T, learning rate  $\gamma_t$ , weight decay  $\lambda$ ,  $\beta_1$ ,  $\beta_2$ , variance reduction scaling  $\eta$ ,  $\varepsilon$ .

  2: Initialize:  $m_0 \leftarrow 0$ ,  $v_0 \leftarrow 0$ 3: for  $t \in [T]$  do

  4:  $g_t \leftarrow \nabla \mathcal{L}(x_t, \xi_t)$ 5:  $c_t \leftarrow g_t + \eta \frac{\beta_1}{1-\beta_1} \left(g_t g_{t-1}\right) \|c_t\|_2 > 1$ 6:  $c_t \leftarrow c_t/\|c_t\|_2$ 7:  $m_t \leftarrow \beta_1 m_{t-1} + (1-\beta_1)c_t$ 8:  $v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2)c_t \odot c_t$ 9:  $\hat{m}_t \leftarrow m_t/(1-\beta_1^t)$ ,  $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ 10:  $x_{t+1} = x_t \gamma_t \left(\frac{\hat{m}_t}{\sqrt{\hat{v}_t + \varepsilon}} + \lambda x_t\right)$ 11: end for

  12: Return:  $x_T$
- MARS-Lion. Similarly for Lion-like algorithm, the authors use scaled gradient correction with the current gradient  $c_t$ .
- MARS-Shampoo. The same holds for MARS-Shampoo. One key comment here, is that to compute SVD of the first moment estimate, the authors also use Newton-Schulz iteration [5, 25]. In our experiments we use 10 iterations of this orthogonalization scheme for MARS-Shampoo.

#### Algorithm 15 MARS-Lion

```
1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, variance reduction scaling \eta, \varepsilon.

2: Initialize: m_0 \leftarrow 0, v_0 \leftarrow 0

3: for t \in [T] do

4: g_t \leftarrow \nabla \mathcal{L}(x_t, \xi_t)

5: c_t \leftarrow g_t + \eta \frac{\beta_1}{1-\beta_1} \left(g_t - g_{t-1}\right) \|c_t\|_2 > 1

6: c_t \leftarrow c_t/\|c_t\|_2

7: m_t \leftarrow \beta_1 m_{t-1} + (1-\beta_1)c_t

8: x_{t+1} = x_t - \gamma_t \left( \operatorname{sign}(m_t) + \lambda x_t \right)

9: end for

10: Return: x_T
```

# Algorithm 16 MARS-Shampoo

```
1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, variance reduction scaling \eta, \varepsilon.

2: Initialize: m_0 \leftarrow 0, v_0 \leftarrow 0

3: for t \in [T] do

4: g_t \leftarrow \nabla \mathcal{L}(x_t, \xi_t)

5: c_t \leftarrow g_t + \eta \frac{\beta_1}{1-\beta_1} \left(g_t - g_{t-1}\right)

6: m_t \leftarrow \beta_1 m_{t-1} + (1-\beta_1) c_t

7: U_t, \Sigma_t, V_t \leftarrow \text{SVD}(m_t)

8: x_{t+1} = x_t - \gamma_t \left(U_t V_t^\top + \lambda x_t\right)

9: end for

10: Return: x_T
```

# **B** Implementation

1235

1243

Our code is based on an extension of nanoGPT<sup>5</sup> and uses PyTorch [63] as well as FlashAttention [14]. We incorporate mixed-precision training [53], i.e., we train in bfloat16 precision, except for normalization modules and softmax which we train in float32. The optimizer states are also stored in float32. The majority of the experiments were performed using a cluster of A100-SXM4-80GB GPUs as well as H100-HBM3-80GB. We trained both in a single GPU regime and in DDP [45] (from 2 to 8 GPUs per one run). We estimate that the full cost of all experiments for our project to roughly 30000 GPU hours.

#### C Model & Data

- Architecture details. In our project, we use Llama-like family of models [48]. We implement the the popular in the community decoder-only transformer with SwiGLU activation functions [77], RoPE embeddings [81], RMSNorm [91]. The vocabulary is based on the GPT2 [71] tokenizer <sup>6</sup> and contains 50304 tokens.
- The number of parameters in our models is fully configurable, and we present the exact configurations used in our experiment in Table 2.
- Dataset. Our main findings are obtained on the subset of FineWeb [64] with 100B tokens <sup>7</sup>, cleaned and deduplicated corpus for LLM pretraining, which we split into train and validation sequences. During training, we evaluate the models with a fixed set of 32 batches of our chosen sequence length (512 for almost all experiments, the same context length as training) to establish the validation loss curves. At the end of training, we compute the full validation loss and perplexity (this loss is reported

<sup>&</sup>lt;sup>5</sup>https://github.com/karpathy/nanoGPT

<sup>&</sup>lt;sup>6</sup>https://github.com/openai/tiktoken

<sup>&</sup>lt;sup>7</sup>https://huggingface.co/datasets/HuggingFaceFW/fineweb

Table 2: Hyperparameters for our Llama-like models.

| # Parameters        | 124M    | 210M    | 600M    |
|---------------------|---------|---------|---------|
| Hidden size         | 768     | 768     |         |
| # Attention heads   | 12      | 12      |         |
| # Layers            | 12      | 24      |         |
| Init std            | 0.02    | 0.02    | 0.02    |
| Use bias            | no      | no      | no      |
| RMSNorm epsilon     | 0.00001 | 0.00001 | 0.00001 |
| Positional encoding | RoPE    | RoPE    | RoPE    |

as Final Validation Loss in the figures). We also performed our initial results on the subset of OpenWebText2 dataset [21].

# 1257 D Hyperparameter tuning

How do we tune hyperparameters? We perform systematic hyperparameter tuning for all algorithms, starting with smaller models (124M, 210M) and extrapolating to larger ones. Our tuning process focused on two primary settings: Small batch setting (32 batch size) and Large batch setting (256 batch size). For both settings, we use a sequence length of 512 tokens, resulting in 16k and 130k tokens per batch, respectively. If the batch cannot fit into memory, we use gradient accumulation steps, while maintaining the effective batch size.

We also include ablations on even larger batch size for 124M models, where we train on 512 batch size (260k tokens correspondingly). And larger, 583M models, we train on 3936 batch size, preserving the basic sequence length of 512, i.e., 4M tokens.

We first run multiple experiments, greed searching hyperparameters, on near Chinchilla optimal length of training using *cosine learning rate scheduler* (except for SF-AdamW):

- for 124M models we tune at 2.1B tokens for both small (32) and large (256) batch size setting,
- for 210M models we tune at 4.2B tokens for our large batch size setting,
- for 583M models we also consider a setting with and without z-loss.
- We present the configurations for different training horizons in Tables 3 and 5.

Table 3: Lengths of training for **Small batch settings** ( $32 \times 512$ ).

| # Parameters    | Tokens (Iterations) |                                 |                                  |                                  |                                  | Ch. Tokens                        |                 |
|-----------------|---------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------|
| $124\mathbf{M}$ | 1B(64k)             | $2.1\mathbf{B} (128\mathbf{k})$ | $4.2\mathbf{B} (256\mathbf{k})$  | $6.3\mathbf{B}\ (384\mathbf{k})$ | 8.4 <b>B</b> (512 <b>k</b> )     | $16.8\mathbf{B} (1024\mathbf{k})$ | $2.5\mathbf{B}$ |
| $210\mathbf{M}$ | 1B(64k)             | $2.1\mathbf{B} (128\mathbf{k})$ | $4.2\mathbf{B}\ (256\mathbf{k})$ | $6.3\mathbf{B}\ (384\mathbf{k})$ | $8.4\mathbf{B}\ (512\mathbf{k})$ | $16.8\mathbf{B} (1024\mathbf{k})$ | $4.2\mathbf{B}$ |

Table 4: Lengths of training for Large batch settings ( $256 \times 512$ ).

| # Parameters    | Tokens (Iterations)         |                                  |                                 |                                  |                             |                                  | Chinchilla Tokens |
|-----------------|-----------------------------|----------------------------------|---------------------------------|----------------------------------|-----------------------------|----------------------------------|-------------------|
| $124\mathbf{M}$ | $1\mathbf{B} (8\mathbf{k})$ | $2.1\mathbf{B} (16\mathbf{k})$   | 4.2 <b>B</b> (32 <b>k</b> )     | 6.3 <b>B</b> (48 <b>k</b> )      | 8.4 <b>B</b> (64 <b>k</b> ) | $16.8\mathbf{B} (128\mathbf{k})$ | $2.5\mathbf{B}$   |
| $210\mathbf{M}$ | 1B(8k)                      | $2.1\mathbf{B} \ (16\mathbf{k})$ | $4.2\mathbf{B}\ (32\mathbf{k})$ | $6.3\mathbf{B} \ (48\mathbf{k})$ | 8.4 <b>B</b> (64 <b>k</b> ) | $16.8\mathbf{B}(128\mathbf{k})$  | $4.2\mathbf{B}$   |

Important to note, for larger models, we mostly kept the best hyperparameters found for the 124M

model and re-tuned the learning rate and gradient clipping. We summarize this process in Appen-

1275 dices D.1 to D.3.

Additionally, when we report an of one particular hyperparameters, we mean that corresponding algorithm has already been tuned and, thus, we show only how one particular hyperparameter affects

the overall performance.

Hyperparameters used in our WSD scheduler experiments. Once we found the best setting for each method using cosine learning rate scheduler, we are ready to obtain the optimal performance of our method with WSD scheduler [27]. Here we follow the rule of thumb from [28]:

Table 5: Lengths of training for **X-Large batch settings** ( $1984 \times 512$ ).

| # Parameters    | Tokens (Iterations)        |                               | Chinchilla Tokens |               |
|-----------------|----------------------------|-------------------------------|-------------------|---------------|
| $720\mathbf{M}$ | $8\mathbf{B}(8\mathbf{k})$ | $16\mathbf{B} (16\mathbf{k})$ | 48B (48k)         | 14.4 <b>B</b> |

- use half the optimal learning rate for the cosine scheduler,
- use 20% of iterations for cooldown phase,
- use  $(1-\sqrt{x})$  decay shape for the cooldown phase,
- the only difference is that we do not employ stochastic weight averaging [29].
- 1286 Therefore, we maintain most hyperparameters across optimizers, only re-tuning the learning rate. For
- methods like Muon and MARS, we reduce both AdamW's learning rate and the learning rate for non-1D
- parameters. This approach ensures a fair comparison while accounting for the unique properties of
- each optimizer.
- 1290 Indeed, this rule of thumb works better in our setting also, e.g., see the comparison between linear
- decay shape and  $(1-\sqrt{x})$  in
- We report a series of comparisons between cosine learning rate scheduler and WSD in

# Hyperparameters used in z-loss experiments.

## 294 **D.1** 124M parameters model

Table 6: AdamW hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

| Hyperparameter                | Small batch setting                          | Large batch setting                          |
|-------------------------------|----------------------------------------------|----------------------------------------------|
| Learning rate                 | 0.0001, <b>0.0005</b> , 0.0008, 0.001, 0.002 | 0.0001, 0.0003, 0.0005, <b>0.001</b> , 0.002 |
| Batch size                    | 32                                           | 256                                          |
| Sequence length               | 512                                          | 512                                          |
| Number of warmup steps        | <b>3000</b> , 5000, 8000                     | 500, 1000, <b>2000</b> , 3000, 8000, 32000   |
| Weight decay                  | 0.1                                          | no, 0.1, <b>0.5</b> , 0.7                    |
| Learning rate decay scheduler | WSD, cosine                                  | WSD, cosine                                  |
| Gradient clipping             | no, <b>0.5</b> , 1, 1.5                      | no, 0.5, 1                                   |
| AdamW $eta_1$                 | 0.5, <b>0.8</b> , 0.9                        | 0.8, 0.9                                     |
| AdamW $eta_2$                 | 0.95, <b>0.999</b>                           | 0.95, 0.99, <b>0.999</b> , 0.9999            |

Table 7: ADOPT hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

| Hyperparameter                | Small batch setting   | Large batch setting                          |
|-------------------------------|-----------------------|----------------------------------------------|
| Learning rate                 | 0.001                 | 0.0001, 0.0003, 0.0005, <b>0.001</b> , 0.002 |
| Batch size                    | 32                    | 256                                          |
| Sequence length               | 512                   | 512                                          |
| Number of warmup steps        | <b>3000</b> , 8000    | <b>2000</b> , 8000, 32000                    |
| Weight decay                  | 0.1                   | no <b>0.1</b> , 0.5                          |
| Learning rate decay scheduler | WSD, cosine           | WSD, cosine                                  |
| Gradient clipping             | 0.5                   | no, 0.5, 1                                   |
| ADOPT $eta_1$                 | 0.9                   | 0.8, <b>0.9</b>                              |
| ADOPT $eta_2$                 | <b>0.999</b> , 0.9999 | 0.5, <b>0.999</b> , 0.9999                   |

Table 8: AdEMAMix hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

| Hyperparameter                | Small batch setting                          | Large batch setting                          |
|-------------------------------|----------------------------------------------|----------------------------------------------|
| Learning rate                 | 0.0001, <b>0.0005</b> , 0.0008, 0.001, 0.002 | 0.0001, 0.0003, 0.0005, <b>0.001</b> , 0.002 |
| Batch size                    | 32                                           | 256                                          |
| Sequence length               | 512                                          | 512                                          |
| Number of warmup steps        | <b>3000</b> , 8000                           | <b>2000</b> , 8000, 32000                    |
| Weight decay                  | 0.1                                          | no, 0.1, <b>0.5</b> , 0.7                    |
| Learning rate decay scheduler | WSD, cosine                                  | WSD, cosine                                  |
| Gradient clipping             | no, <b>0.5</b> , 1, 1.5                      | no, <b>0.5</b> , 1                           |
| ${\tt AdEMAMix}\ \beta_1$     | 0.5, <b>0.8</b> , 0.9                        | 0.8, <b>0.9</b>                              |
| $\texttt{AdEMAMix}\ \beta_2$  | 0.999                                        | <b>0.999</b> , 0.9999                        |
| AdEMAMix $eta_3$              | 0.999, <b>0.9999</b> , 0.99995               | <b>0.999</b> , 0.9999                        |
| ${\tt AdEMAMix} \ \alpha$     | 5, 8, 12                                     | 8                                            |

Table 9: Lion hyperparameter tuning for our  $124\mathbf{M}$  parameter large language models. Bold hyperparameters are the best.

| Hyperparameter                | Small batch setting                    | Large batch setting                  |
|-------------------------------|----------------------------------------|--------------------------------------|
| Learning rate                 | 0.00005, <b>0.0001</b> , 0.0005, 0.001 | 0.0001, 0.0005, <b>0.001</b> , 0.002 |
| Batch size                    | 32                                     | 256                                  |
| Sequence length               | 512                                    | 512                                  |
| Number of warmup steps        | 3000                                   | <b>2000</b> , 8000, 32000            |
| Weight decay                  | no, 0.1, 0.2, <b>0.5</b>               | no, 0.1, <b>0.5</b> , 0.7            |
| Learning rate decay scheduler | WSD, cosine                            | WSD, cosine                          |
| Gradient clipping             | 0.5                                    | no, <b>0.5</b> , 1                   |
| Lion $eta_1$                  | 0.7, <b>0.9</b> , 0.99                 | 0.5, <b>0.9</b>                      |
| Lion $eta_2$                  | 0.9, <b>0.99</b> , 0.999               | <b>0.99</b> , 0.999                  |

#### 1295 **D.2** 210M parameters model

## 1296 **D.3** 600M parameters model

### 1297 E Additional results

### 1298 E.1 Benchmarking: 124M

- 1299 In this section, we provide complete results for the benchmarking part presented in Section 4.1.
- 1300 We cover both the large batch setting and the small batch setting, reporting the full curves with
- validation loss dynamics across different training durations.
- 1302 Given the quite a lot number of methods under consideration, we divide them into two groups: those
- that outperform AdamW and those that underperform relative to AdamW. We use AdamW loss curves
- as the reference point in both figures. We summarize our findings for the small batch size of 32 in
- Figure 12. And for the large batch size of 256 in Figures 13 and 14.

### 1306 E.2 Ablations for 124M model

- 1307 Fail of Sophia.
- 1308 Clipping & SF-AdamW.
- 1309 Betas sensitivity.
- Warmup ablation. In this section we detaily describe the main part in Section 4.1.
- We study the impact of batch size on the final validation loss obtained. For all methods, we sweep over
- warmup lengths of  $\{1.56\%, 6.25\%, 25\%\}$  of the total training duration to examine each method's

Table 10: Signum hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

| Hyperparameter                | Small batch setting          | Large batch setting                                |
|-------------------------------|------------------------------|----------------------------------------------------|
| Learning rate                 | 0.0003, 0.0005, <b>0.001</b> | 0.0001, 0.00030.0005, 0.0003, <b>0.001</b> , 0.002 |
| Batch size                    | 32                           | 256                                                |
| Sequence length               | 512                          | 512                                                |
| Number of warmup steps        | 2000, <b>3000</b>            | <b>2000</b> , 8000, 32000                          |
| Weight decay                  | no, 0, <b>0.1</b> , 0.5      | no, 0, <b>0.1</b> , 0.5, 0.7                       |
| Learning rate decay scheduler | WSD, cosine                  | WSD, cosine                                        |
| Gradient clipping             | no, <b>0.5</b> , 1           | no, <b>0.5</b> , 1                                 |
| Momentum                      | no, 0.9, <b>0.95</b>         | no, 0.9, <b>0.95</b> , 0.99                        |
| Nesterov momentum             | no, <b>yes</b>               | no, <b>yes</b>                                     |

Table 11: Muon hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

| Hyperparameter                     | Small batch setting                          | Large batch setting                          |
|------------------------------------|----------------------------------------------|----------------------------------------------|
| Learning rate AdamW                | 0.0001, 0.0003, 0.0005, <b>0.001</b> , 0.002 | 0.0001, 0.0003, 0.0005, <b>0.001</b> , 0.002 |
| Learning rate Muon                 | 0.001, <b>0.01</b> , 0.02                    | 0.001, <b>0.01</b> , 0.02                    |
| Batch size                         | 32                                           | 256                                          |
| Sequence length                    | 512                                          | 512                                          |
| Number of warmup steps             | <b>3000</b> , 8000                           | <b>2000</b> , 8000, 32000                    |
| Weight decay                       | no, <b>0.1</b> , 0.5                         | no, <b>0.1</b> , 0.5                         |
| Learning rate decay scheduler      | WSD, cosine                                  | WSD, cosine                                  |
| Gradient clipping                  | no, <b>0</b> .5                              | no, <b>0.5</b> , 1.0                         |
| Momentum Muon                      | 0.9, 0.95, <b>0.99</b>                       | <b>0.95</b> , 0.99                           |
| Optimizer for 1D layers            | AdamW                                        | AdamW                                        |
| Optimizer for 1D layers, $\beta_1$ | 0.8, 0.9                                     | 0.8, 0.9                                     |
| Optimizer for 1D layers, $\beta_2$ | 0.99, <b>0.999</b> , 0.9999                  | 0.99, 0.999, 0.9999                          |
| Newton-Schulz a                    | 3.4445                                       | 3.4445                                       |
| Newton-Schultz b                   | -4.7750                                      | -4.7750                                      |
| Newton-Schultz c                   | 2.0315                                       | 2.0315                                       |
| Nesterov momentum                  | no, <b>yes</b>                               | no, <b>yes</b>                               |

sensitivity to warmup. For AdamW, we extend this sweep to  $\{1.56\%, 5\%, 6.25\%, 10\%, 25\%\}$ . We

specifically consider the 1.56% and 6.25% percentages because the former represents a typical

number of warmup steps (2000) for models of our scale, while the latter (6.25% of 128000 steps)

aligns with the warmup strategy used in Llama [48].

Contrary to the insights from [92], we observe that 25% of the Cinchilla optimal duration is far from

being the best batch size for pretraining. We emphasize that their results were obtained for 85M

models and then extrapolated to larger scales. However, in our setting, we found the basic 2000 steps

a more suitable option for warmup. 25% of Chinchilla optimal length of training, for our 124M

model is 620M tokens.

We provide the warmup sweep for AdamW in Figure 19

In addition to validating the results from [92], we report the sensitivity of different optimizers to the

number of warmup steps by conducting a sweep over the aforementioned percentages. A summary of

this experiment — Figure 6.

#### Muon Newton-Schulz iterations.

## 1327 Weight decay ablation.

1326

1328 Learning rate sensitivity. In this part of the work, we meticulously replicate the learning rate

sweep process and present comprehensive results. Consistent with our experimental setup, we aim

to determine the true impact of the learning rate and its transferability to longer training horizons.

Table 12: SOAP hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

| Hyperparameter                | Small batch setting               | Large batch setting                           |
|-------------------------------|-----------------------------------|-----------------------------------------------|
| Learning rate                 | 0.005, <b>0.001</b>               | 0.0001, 0.0003, 0.0005, <b>0.001</b> , 0.002  |
| Batch size                    | 32                                | 256                                           |
| Sequence length               | 512                               | 512                                           |
| Number of warmup steps        | <b>3000</b> , 8000                | <b>2000</b> , 4000, 8000, 12000, 16000, 32000 |
| Weight decay                  | 0.1                               | no, <b>0.1</b> , 0.5                          |
| Learning rate decay scheduler | WSD, cosine                       | WSD, cosine                                   |
| Gradient clipping             | 0.5                               | no, <b>0.5</b> , 1                            |
| Preconditioner dimension      | 10000                             | 10000                                         |
| Preconditioning frequency     | 1, 5, <b>10</b>                   | 1, 5, <b>10</b>                               |
| SOAP $eta_1$                  | 0.8, <b>0.9</b>                   | 0.8, <b>0.9</b> , 0.95                        |
| SOAP $eta_2$                  | 0.95, 0.99, <b>0.999</b> , 0.9999 | 0.95, 0.99, <b>0.999</b> , 0.9999             |

Table 13: Sophia hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

| Hyperparameter                | Small batch setting                          | Large batch setting                                |
|-------------------------------|----------------------------------------------|----------------------------------------------------|
| Learning rate                 | 0.0001, <b>0.0003</b> , 0.0005, 0.001, 0.002 | 0.0001, 0.0003, 0.0005, <b>0.001</b> , 0.002, 0.01 |
| Batch size                    | 32                                           | 256                                                |
| Sequence length               | 512                                          | 512                                                |
| Number of warmup steps        | <b>2000</b> , 3000                           | <b>2000</b> , 8000, 32000                          |
| Weight decay                  | 0.1                                          | no, <b>0.1</b> , 0.5                               |
| Learning rate decay scheduler | WSD, cosine                                  | WSD, cosine                                        |
| Gradient clipping             | 0.5                                          | no, <b>0.5</b> , 1                                 |
| Estimator                     | Gauss-Newton-Bartlett                        | Gauss-Newton-Bartlett                              |
| Estimator frequency           | 10                                           | 10                                                 |
| Sophia $eta_1$                | 0.9                                          | 0.8, <b>0.9</b>                                    |
| Sophia $eta_2$                | 0.95, <b>0.999</b> , 0.9999, 0.99999         | 0.95, <b>0.999</b> , 0.9999, 0.99999               |
| Sophia $ ho$                  | 0, 0.03, <b>0.04</b>                         | 0, 0.03, <b>0.04</b>                               |

For each optimizer (except Prodigy), we vary only the learning rate while maintaining the best hyperparameter settings obtained during our initial tuning (see Appendices D and D.1) on 2.1B tokens for the 124M parameter model. We present the results of the learning rate sweep in Figure 24.

Cosine vs WSD. We present our results for two batch size settings: 32 and 256. At first, our initial results in small batch setting on the OpenWebText2 (OWT2) dataset, we present in Figure 25.

We report the final validation loss on the FineWeb dataset for  $124\mathbf{M}$  model trained on the batch size of 256. We use our tuned with cosine scheduler methods. For WSD, we follow the rule of thumb from [28]: 20% of steps for the cooldown,  $1-\sqrt{x}$  decay shape, and the learning rate is half the optimal for cosine, i.e., 0.0005 if we have the best learning rate 0.001 for the method. Additionally, we point out that we do not include stochastic weight averaging in the comparison, which might potentially enhance the performance of optimizers with WSD.

### Gradient norm patterns.

1342

- 1343 E.3 Benchmarking: 210M
- 1344 E.4 Ablations for 210M model
- 1345 E.5 Wall-clock performance of optimizers across models of different scale
- 346 E.6 Extension to MoEs.

Table 14: Schedule-Free AdamW hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

| Hyperparameter                | Small batch setting                          | Large batch setting                                 |
|-------------------------------|----------------------------------------------|-----------------------------------------------------|
| Learning rate                 | 0.0001, 0.0003, 0.0005, <b>0.001</b> , 0.005 | 0.0001, 0.0003, 0.0005, <b>0.001</b> , 0.002, 0.005 |
| Batch size                    | 32                                           | 256                                                 |
| Sequence length               | 512                                          | 512                                                 |
| Number of warmup steps        | <b>3000</b> , 8000                           | 2000, 4000, <b>8000</b> , 12000, 16000, 32000       |
| Weight decay                  | no, 0.05, <b>0.1</b> , 0.5                   | no, $0.05$ , $0.1$ , $0.5$                          |
| Learning rate decay scheduler | no                                           | no                                                  |
| Gradient clipping             | no, <b>0</b> .5                              | no, <b>0.5</b> , 1                                  |
| Schedule-Free AdamW $eta_1$   | <b>0.9</b> , 0.95, 0.98                      | <b>0.9</b> , 0.95, 0.98                             |
| Schedule-Free AdamW $eta_2$   | 0.95, 0.99, 0.999, <b>0.9999</b> , 0.99999   | 0.95, 0.99, 0.999, <b>0.9999</b> , 0.99999          |

Table 15: Prodigy hyperparameter tuning for our  $124\mathbf{M}$  parameter large language models. Bold hyperparameters are the best.

| Hyperparameter                | Small batch setting         | Large batch setting                           |
|-------------------------------|-----------------------------|-----------------------------------------------|
| Learning rate                 | 0.5, 1                      | 0.5, <b>1</b> , 2, 10, 100                    |
| Batch size                    | 32                          | 256                                           |
| Sequence length               | 512                         | 512                                           |
| Number of warmup steps        | <b>3000</b> , 8000          | <b>2000</b> , 4000, 8000, 12000, 16000, 32000 |
| Weight decay                  | no, <b>0.1</b> , 0.5        | no, 0.1, 0.5                                  |
| Learning rate decay scheduler | no, WSD, cosine             | no, WSD, <b>cosine</b>                        |
| Gradient clipping             | no, <b>0.5</b> , 1          | no, <b>0.5</b> , 1                            |
| Prodigy $eta_1$               | 0.9                         | 0.8, <b>0.9</b>                               |
| Prodigy $eta_2$               | 0.99, <b>0.999</b> , 0.9999 | <b>0.999</b> , 0.9999                         |
| Prodigy bias correction       | no, <b>yes</b>              | no, <b>yes</b>                                |

Table 16: MARS (MARS-AdamW) hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

| Hyperparameter                    | Small batch setting                  | Large batch setting                  |
|-----------------------------------|--------------------------------------|--------------------------------------|
| Learning rate AdamW               | 0.0001, 0.0005, <b>0.001</b> , 0.003 | 0.0001, 0.0005, <b>0.001</b> , 0.003 |
| Learning rate MARS                | 0.001, <b>0.003</b>                  | 0.001, <b>0.003</b>                  |
| Batch size                        | 32                                   | 256                                  |
| Sequence length                   | 512                                  | 512                                  |
| Number of warmup steps            | 2000, <b>3000</b>                    | <b>2000</b> , 8000, 32000            |
| Weight decay MARS                 | no, <b>0</b> .1                      | no, <b>0.1</b> , 0.5                 |
| Weight decay for 1D layers        | 0.1                                  | 0.1                                  |
| Learning rate decay scheduler     | WSD, cosine                          | WSD, cosine                          |
| Gradient clipping                 | 0.5                                  | 0.5                                  |
| Optimizer for 1D layers           | AdamW                                | AdamW                                |
| Optimizer for 1D layers $\beta_1$ | 0.8, 0.9                             | 0.8, 0.9, 0.95                       |
| Optimizer for 1D layers $\beta_2$ | 0.95, 0.99, <b>0.999</b>             | 0.95, 0.99, <b>0.999</b>             |
| MARS $eta_1$                      | 0.9, <b>0.95</b>                     | 0.9, <b>0.95</b>                     |
| MARS $eta_2$                      | 0.95, <b>0.99</b>                    | 0.95, <b>0.99</b>                    |
| VR scaling factor $\eta$          | 0.024, <b>0.025</b>                  | 0.024, <b>0.025</b>                  |

Table 17: MARS-Lion hyperparameter tuning for our  $124\mathbf{M}$  parameter large language models. Bold hyperparameters are the best.

| Hyperparameter                    | Small batch setting                  | Large batch setting                  |  |  |
|-----------------------------------|--------------------------------------|--------------------------------------|--|--|
| Learning rate Lion                | <b>0.0001</b> , 0.0005, 0.001, 0.003 | <b>0.0001</b> , 0.0005, 0.001, 0.003 |  |  |
| Learning rate MARS                | <b>0.0001</b> , 0.001, 0.003         | <b>0.0001</b> , 0.001, 0.003         |  |  |
| Batch size                        | 32                                   | 256                                  |  |  |
| Sequence length                   | 512                                  | 512                                  |  |  |
| Number of warmup steps            | 2000, <b>3000</b>                    | <b>2000</b> , 8000, 32000            |  |  |
| Weight decay MARS                 | no, <b>0</b> .1                      | no, <b>0.1</b> , 0.5                 |  |  |
| Weight decay for 1D layers        | 0.1                                  | 0.1                                  |  |  |
| Learning rate decay scheduler     | WSD, cosine                          | WSD, cosine                          |  |  |
| Gradient clipping                 | 0.5                                  | 0.5                                  |  |  |
| Optimizer for 1D layers           | Lion                                 | Lion                                 |  |  |
| Optimizer for 1D layers $\beta_1$ | 0.8, <b>0.9</b>                      | 0.8, <b>0.9</b> , 0.95               |  |  |
| Optimizer for 1D layers $\beta_2$ | 0.95, 0.99, <b>0.999</b>             | 0.95, 0.99, <b>0.999</b>             |  |  |
| MARS $eta_1$                      | 0.9, <b>0.95</b>                     | 0.9, <b>0.95</b>                     |  |  |
| MARS $eta_2$                      | 0.95, <b>0.99</b>                    | 0.95, <b>0.99</b>                    |  |  |
| VR scaling factor $\eta$          | 0.024, <b>0.025</b>                  | 0.024, <b>0.025</b>                  |  |  |

Table 18: MARS-Shampoo hyperparameter tuning for our  $124\mathbf{M}$  parameter large language models. Bold hyperparameters are the best.

| Hyperparameter                    | Small batch setting                  | Large batch setting                  |  |  |  |
|-----------------------------------|--------------------------------------|--------------------------------------|--|--|--|
| Learning rate Shampoo             | 0.0001, 0.0005, <b>0.001</b> , 0.003 | 0.0001, 0.0005, <b>0.001</b> , 0.003 |  |  |  |
| Learning rate MARS                | 0.001, <b>0.003</b>                  | 0.001, <b>0.003</b>                  |  |  |  |
| Batch size                        | 32                                   | 256                                  |  |  |  |
| Sequence length                   | 512                                  | 512                                  |  |  |  |
| Number of warmup steps            | 2000, <b>3000</b>                    | <b>2000</b> , 8000, 32000            |  |  |  |
| Weight decay MARS                 | no, <b>0</b> .1                      | no, <b>0.1</b> , 0.5                 |  |  |  |
| Weight decay for 1D layers        | 0.1                                  | 0.1                                  |  |  |  |
| Learning rate decay scheduler     | WSD, cosine                          | WSD, cosine                          |  |  |  |
| Gradient clipping                 | 0.5                                  | 0.5                                  |  |  |  |
| Optimizer for 1D layers           | Shampoo                              | Shampoo                              |  |  |  |
| Optimizer for 1D layers $\beta_1$ | 0.8, <b>0.9</b>                      | 0.8, <b>0.9</b> , 0.95               |  |  |  |
| Optimizer for 1D layers $\beta_2$ | 0.95, 0.99, <b>0.999</b>             | 0.95, 0.99, <b>0.999</b>             |  |  |  |
| MARS $eta_1$                      | 0.9, <b>0.95</b>                     | 0.9, <b>0.95</b>                     |  |  |  |
| MARS $eta_2$                      | 0.95, <b>0.99</b>                    | 0.95, <b>0.99</b>                    |  |  |  |
| VR scaling factor $\eta$          | 0.024, <b>0.025</b>                  | 0.024, <b>0.025</b>                  |  |  |  |

Table 19: Hyperparameters for our Llama-like models for the wall-clock experiments.

| # Parameters        | 30M     | 52M     | 80M     | 124M    | 150M    | 210M    | 360M    | 720M    | 1B      |
|---------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Hidden size         | 384     | 512     | 768     | 768     | 768     | 768     | 1024    | 2048    | 1792    |
| # Attention heads   | 6       | 8       | 6       | 12      | 12      | 12      | 16      | 16      | 14      |
| # Layers            | 8       | 8       | 6       | 12      | 16      | 24      | 24      | 12      | 24      |
| Init std            | 0.02    | 0.02    | 0.02    | 0.02    | 0.02    | 0.02    | 0.02    | 0.02    | 0.02    |
| Use bias            | no      |
| RMSNorm epsilon     | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 |
| Positional encoding | RoPE    |

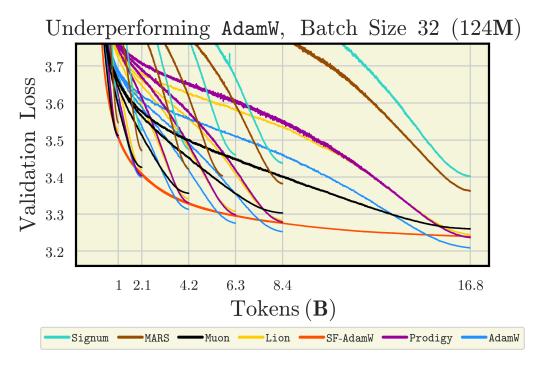


Figure 11: **Ranking of optimizers in the small-batch setting.** In the small-batch setting AdamW outperforms most of the optimizaers we study.

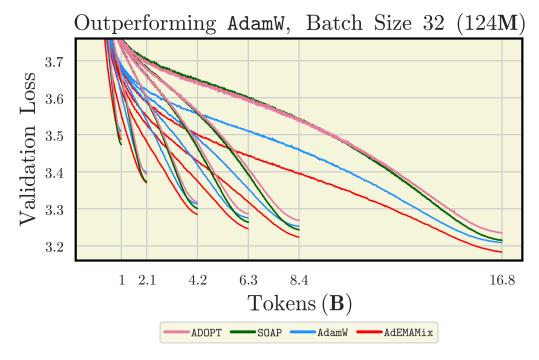


Figure 12: **Ranking of optimizers in the small-batch setting.** Here only AdEMAMix, SOAP and ADOPT show a remarkable performance compared to AdamW.

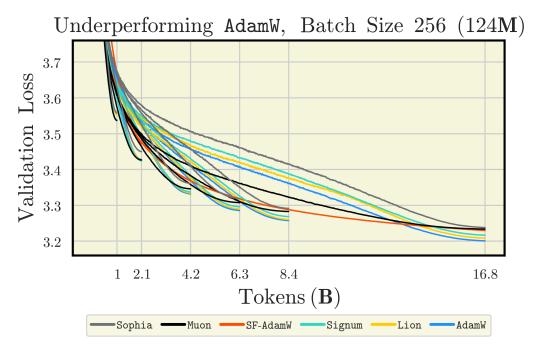


Figure 13: Ranking of optimizers in the large-batch setting.

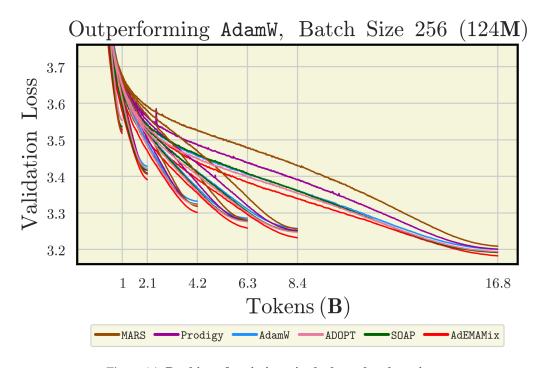


Figure 14: Ranking of optimizers in the large-batch setting.

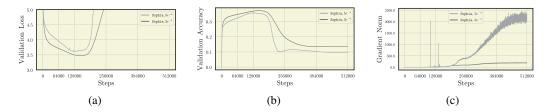


Figure 15: Sophia diverges in the small-batch setting even with sufficiently small learning rate.

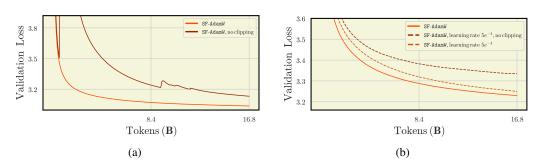


Figure 16: Clipping is significant for Schedule-Free.

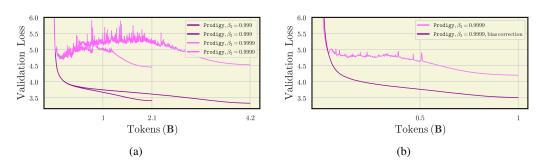


Figure 17: Prodigy is sensitive to beta parameters in the small-batch setting.

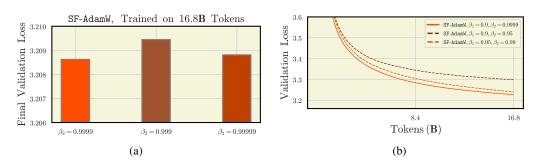


Figure 18: Impact of beta parameters on Schedule-Free.

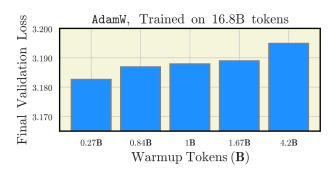


Figure 19: **Warmup sweep for** AdamW. We observe that the smaller yet reasonable warmup value is the best, however, this is not true for other methods like Signum and SF-AdamW (see ??).

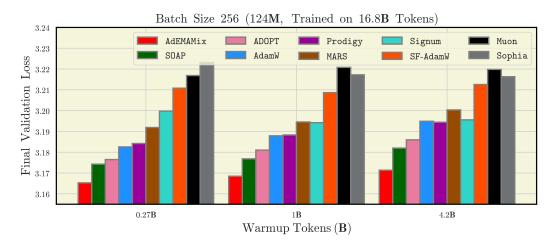


Figure 20: Warmup ablation. We report the final validation loss on the FineWeb dataset for 124M model trained on the batch size of 256. We sweep over the batch sizes of  $\{1.56\%, 6.25\%, 25\%\}$  of the length of training, which corresponds to  $\{2000, 8000, 32000\}$ k iterations, respectively.

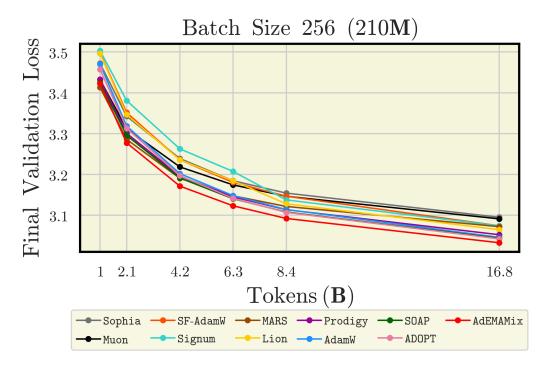


Figure 21: Ranking of optimizers in the large-batch setting.

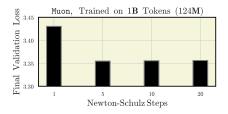


Figure 22: Muon's dependence on the number of Newton-Schulz iterations.

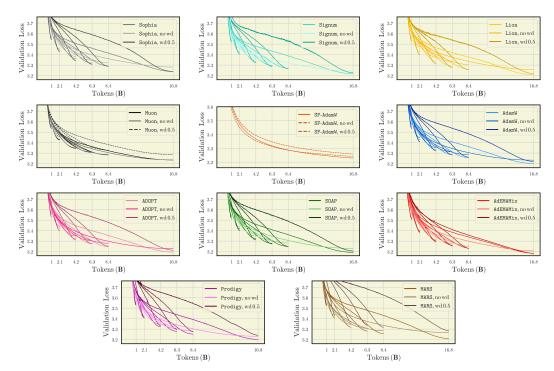


Figure 23: Larger weight decay achieves significantly better results when training on fewer tokens. We report the final validation loss on the FineWeb dataset for 124M model trained on the batch size of 256. We observe that the mmajority of runs with the large weight decay of 0.5 consistently outperform the same optimizer with weight decay of 0.1 for all training durations except for the last one. Notably, Signum and Lion with large weight decay perform even better than AdamW with the same learning rate. We also consider a setting without weight decay. We observe that this is suboptimal for most of other optimizers, while the typical weight decay of 0.1 remains the best for large training durations. An interesting thing we observe for optimizers that train one dimensional and two dimensional parameters in a different way — Muon, MARS. Indeed, the corresponding runs with the weight decay of 0.5 are always worse than then 0.1 baseline and, in some cases, even worse than runs without weight decay. For Muon, we connect this effect to its algorithmic design, where weight decay is not used to optimize matrix parameters (see Algorithm 7). For MARS, we only vary the weight decay that corresponds to matrix parameters, while keeping 0.1 for all scalar, one dimensional and final layer parameters. In this case, we conclude that the gap between large and small weight decay values narrows significantly faster.

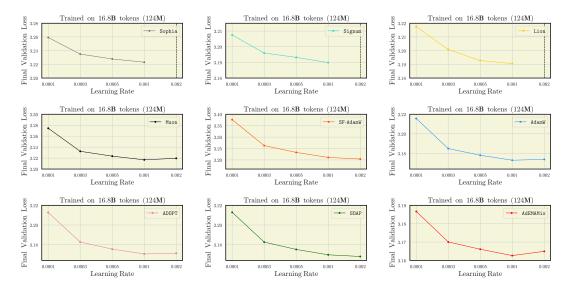


Figure 24: **Learning rate sensitivity.** We report the final validation loss on the FineWeb dataset for 124M model trained on the batch size of 256. In the current setting, only SOAP and SF-AdamW reach the better performance with the large leraning rate of 0.02. On the other hand, Sophia and all sign-based methods (Signum and Lion) diverge with this value of the learning rate.

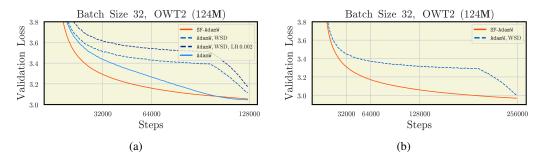


Figure 25: **WSD** scheduler underperforms both AdamW with cosine scheduler and SF-AdamW. Once the learning rate and beta parameters of SF-AdamW and AdamW are properly tuned, we observe a surprisingly large gap in performance between WSD scheduler and its competitors. Figure (b) suggests that this gap may potentially diminish with extended training. To investigate this further, we conduct a scalable comparison between tuned WSD and cosine baselines across longer training horizons.

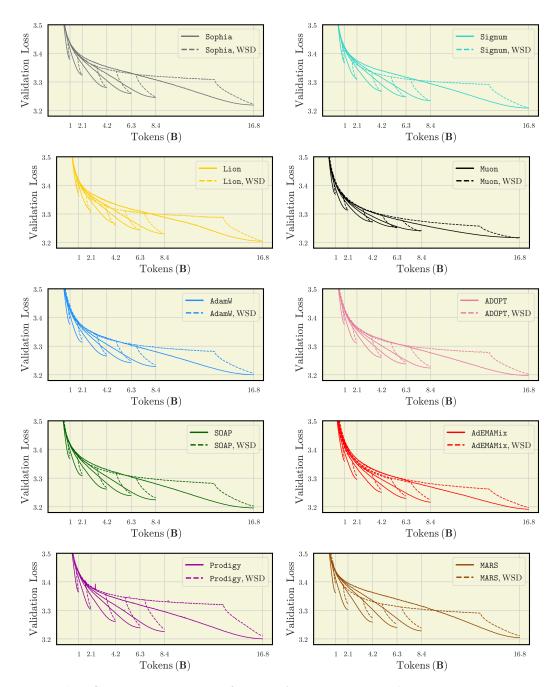


Figure 26: WSD scheduler underperforms cosine. We report the final validation loss on the FineWeb dataset for 124M model trained on the batch size of 256. We observe that WSD still can match the performance of cosine on Sophia, Signum, Lion, i.e., on the sign-based methods, and even outperform for Muon. Although the gap in performance is not particularly significant, but for benchmarking purposes, we decide to stick to the cosine scheduler because those gap still plays a substantial role in our setup.

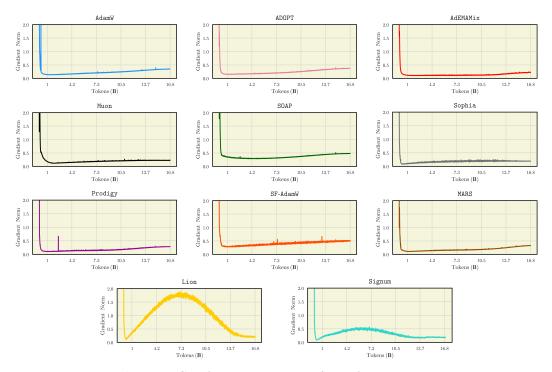


Figure 27: Gradient Norm patterns for cosine scheduler.

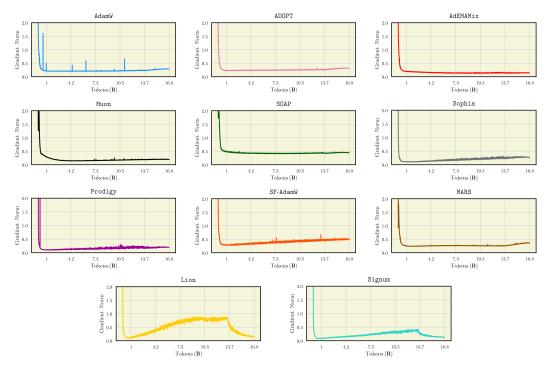


Figure 28: Gradient Norm patterns for WSD scheduler.



Figure 29: Ranking of optimizers in the large-batch setting.

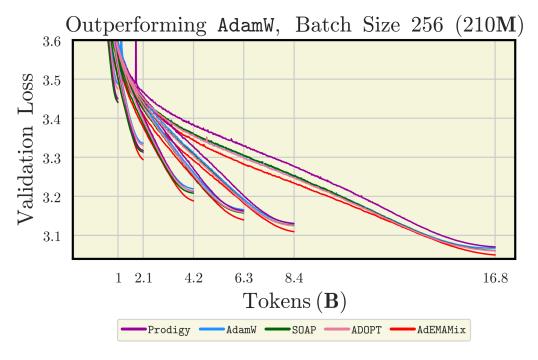


Figure 30: Ranking of optimizers in the large-batch setting.