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Abstract

The recent development of Large Language Models (LLMs) has been accompanied
by an effervescence of novel ideas and methods to better optimize the loss of deep
learning models. Claims from those methods are myriad: from faster convergence
to removing reliance on certain hyperparameters. However, the diverse experi-
mental protocols used to validate these claims make direct comparisons between
methods challenging. This study presents a comprehensive evaluation of recent
optimization techniques across standardized LLM pre-training scenarios, systemat-
ically varying model size, batch size, and training duration. Through careful tuning
of each method, we provide guidance to practitioners on which optimizer is best
suited for each scenario. For researchers, our work highlights promising directions
for future optimization research. Finally, by releasing our code and making all
experiments fully reproducible, we hope our efforts can help the development and
rigorous benchmarking of future methods.

1 Introduction

Over the past five years, Large Language Models (LLMs) [15} 159] 22| 48] have shown growth in
performance and size, demonstrating proficiency in various downstream tasks [80, [7,185]. The success
of LLM pretraining hinges on three key pillars: high-quality data [65} 44], architectural innovations
[31,115], and scalable optimization techniques.

Among these, the choice of optimizer has remained notably consistent in recent years, with Adam (W)
[38150] dominating deep learning for nearly a decade. However, recent advances [33}, 147, (84! 162}
66! [17] challenge this status quo, offering alternatives that surpass AdamW in speed, communication
efficiency [1] or final downstream performance on various benchmarks [12} 37], particularly for
autoregressive language modeling [70]]. Despite these innovations, current benchmarks and ablation
studies [96] 34] remain narrow in scope, often examining only isolated aspects of optimizer design.
This lack of systematic comparison makes it difficult to obtain trustworthy insights for practitioners,
or identify the next promising research directions.

In this work, our goal to revisit the problem of benchmarking optimizers for LLM pretraining.
We do so through standardized experiments which vary important parameters such as batch size,
model size, and the number of training iterations. This allows us to formulate an up-to-date list of
best-performing methods for the community of researchers and practitioners. We demonstrate the
efficiency of each considered method through careful tuning, and present insightful ablations along
the way. Furthermore, we provide a set of best practices for LLM pretraining that are applicable
regardless of the optimizer chosen.

‘We summarize our contributions as follows:
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(Contribution 1) We conduct the first large-scale, controlled benchmark of 11 different optimization
methods across diverse LLM training scenarios. A fair comparison is ensured by precise accounting
for compute costs, and extensive hyperparameter tuning. We identify optimal optimizer choices in
several relevant training regimes, for both dense and MoE architectures.

(Contribution 2) We perform comprehensive ablations of critical training hyperparameters—
including warmup duration, initialization schemes, gradient clipping, final learning rates, and learning
rate scheduler choices—providing actionable insights for optimizing LLM training in practice.

(Contribution 3) We open-source our full benchmarking toolkit, including training scripts, evaluation
pipelines, and hyperparameter configurations, to enable reproducible research and facilitate future
optimizer development.

For practitioners, our work provides an evidence-

based answer to the burning question: “Is Adam still
the most effective optimizer in the age of LLMs, or
can we achieve better performance at scale with
novel optimizers?”. For researchers, our work de-
livers a unified benchmarking framework for LLM
pretraining, along with extensive ablation studies
which systematically evaluate both popular and over-
looked optimizer designs—revealing previously un- 28
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explored tradeoffs between efficiency, stability, and 8 16 18
final model performance. Overall, our findings not Tokens (B)

only challenge long-held assumptions about opti- ix ——DMuon ——NARS —— ADCPT
mizer selection but also establish a foundation for

future advances in large-scale model training. By Figure 1: A comparison of leading optimiz-
bridging the gap between theoretical innovation and ~ €rs, for training a 720M parameter LLM.
practical deployment, this work aims to accelerate

progress in both research and industry applications

of LLM training.

2 Background & Related Work

Optimizers. While computer vision models often show comparable performance between SGD [72]]
and AdamW [94]], the landscape differs dramatically in LLM training. Recent work [95] demon-
strates that adaptive methods like AdamW provide substantially better optimization characteristics
for transformer-based language models. The question of why AdamW works so well has been a
long-standing topic of research [2} 160} 93,43, 41]. Modern methods often inherit AdamW’s core ideas
in their structure, such as ADOPT [83]] and AdEMAMix [[62]]. ADOPT has been motivated by solving
long-standing convergence issues in AdamW. By normalizing the second-order moment prior to the
momentum update, they eliminate the non-convergence issues of AdamW on smooth non-convex
functions. Meanwhile AAdEMAMix extends AdamW with an additional slower momentum buffer, i.e. a
slower exponential moving average (EMA), which allows the use of much larger momentum values,
accelerating convergence.

One interpretation of AdamW’s effectiveness lies in its sign-based update [42]: without the exponential
moving average (EMA), AdamW resembles signSGD [6]. Recent work [96] [36] has shown that
Signum (signSGD with momentum), can perform comparably to AdamW. Earlier, the community also
discussed Lion [9], a method with a similar sign-based structure. Signum and Lion offer memory
benefits due to the use of only a single instead of Adam’s two buffers for optimizer states.

Another family of methods stems from AdamW’s approximate second-order structure, where the
diagonal of the Fisher information matrix or other preconditioning approaches [52, 24]] are used as
the second moment estimate. This idea has given rise to Sophia [46], SOAP [84], and, to some extent,
Muon [33].

The parameter-free concept [61] has led to the development of Schedule-Free AdamW
(SF-AdamW) [17] and Prodigy [54)]. These optimizers do not require a decreasing learning rate
schedule, making them relevant for continual training. Last but not least, MARS [88]], builds upon this
line of research and incorporates a variance reduction mechanism in its update rule.
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Benchmarks. To a large extent, the benchmarking setup determines the final conclusions. Some
benchmarks are designed for short speedruns in terms of training or validation loss [32], while
others focus on a downstream target metric after training [96, [12| [76]. Methods that perform well
in short speedruns might not be optimal for longer training horizons as in real LLM training runs
(see Figure [3). ”But what constitutes a sufficiently long horizon?” ”What should be the compute
budget for LLM training?”” These are questions explored by scaling laws [35]. Early benchmarks
for optimizers and other ablation studies often rely on Chinchilla scaling laws [26] with a ratio of
roughly 20 tokens per parameter (TPR) needed for pretraining. However, recent research [69, [74]
argues that this is far from sufficient for production-ready models.

Another important issue is the choice of loss function. Recent setups have been using an auxiliary
z-loss [86, [11] in addition to cross-entropy, which requires further investigation. We believe this
choice is influenced by the use of the OLMo [58]] codebase, which we also address in our work.

Additionally, we found that previous setups for comparing optimizers do not align with recent best
practices regarding weight decay, learning rate decay, and overall hyperparameter tuning. All of these
questions are revisited in our work.

3 Experimental Setup

Notations. We use the following notations. Let «y be the learning rate, A the weight decay coefficient,
and 7 the total number of iterations. Momentum-related parameters are represented by the symbol 5.

Models & Data. For most experiments, we use a Llama-like transformer [48]] architecture, including
SwiGLU activations [77], RMSNorm [91], and RoPE embeddings [81]. We experiment with four
sizes of models: 124M, 210M, 583M, 720M. We train on a 1008 tokensﬂ subset of FineWeb
[64]. It consists of a cleaned and deduplicated corpus for LLM pretraining, which we tokenize using
the GPT-2 tokenizer prior to splitting into train and validation sequences. MoE setup described in

Appendix

Iterations & Batch size. Throughout our experiments, we use a sequence length of 512 tokens. For
clarity, we often report the batch size in tokens by writing Batch size X sequence length. For the 124M
model, we use batch sizes of 32 x 512 = 16k, 256 x 512 = 131k, and 512 x 512 = 262k tokens;
for the 210M model, we use a batch size of 256 x 512 = 131k; and for 583M model, we leverage
the batch sizes of 1024 x 512 = 524k and 3936 x 512 = 2M tokens. Depending on the model size,
we vary the number of iterations — also measured in tokens for compatibility with scaling laws and
to accommodate different batch size settings. We train 1241M and 210M models for equal durations
of {1,2.1,4.2,6.3,8.4,16.8}B tokens. This corresponds to T' € {64, 128,256, 384,512,1024}k
iterations for a batch size of 32, and T" € {8, 16, 32,48, 64, 128}k iterations for a batch size of 256.
For 583M models, we train on {13, 32} B tokens, corresponding to 7' € {6.5, 16}k iterations, resp.
T € {25,61.5}k iterations, for a batch size of 3936, resp. 1024. In the setup with 720M model,
we have T' € {8, 16,48}k iterations for a batch size of 1M tokens. Thus, for all model scales,
we include both Chinchilla optimal lengths of training and beyond. More details are available in

Appendix [C]

Loss. We train using the classical cross-entropy next token prediction loss. Some prior works
introducing optimizers use a z-loss in addition to cross-entropy [30} 11 86, |84} 96]. We found that
this has little impact and, therefore, do not use z-loss. An ablation showing results with and without
z-loss is in the appendix.

Hyperparameter Tuning. Training LLMs is a computationally intensive task. As a guidance,
practitioners often rely on insights gathered at lower scales, scaling laws, and other rules [87, [18]].
It is also commonplace to run experiments for only a shorter duration of training, as a way to test
certain hyperparameters prior to extending the training horizon to more iterations. Because a full
grid search over every hyperparameter, for each setting and optimizer, would be too costly, we
resort to a similar approach. More precisely, for each model size, batch size, and optimizer, we tune
optimization hyperparameters extensively for a number of training tokens which is near-Chinchilla
optimal. We then keep those hyperparameters when we increase the number of iterations. While we
found that the sensitivity to several hyperparameters can change as we increase the training horizon,
we found this approach simple and yet effective. The hyperparameters being considered depend on the

"https://huggingface.co/datasets/HuggingFaceFW/fineweb
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optimizer. We proceeded from small to large model scale, and used insights gathered at smaller scales
to guide the hyperparameter search at larger scales. Our hyperparameter sweeps are summarized in
Appendix [D] We present the clarifications regarding the connection between the number of iterations
and tokens for different batch size settings as well as the Chinchilla optimal length of training for
our models in Tables [3]and [5] As learning rate schedulers, we compare cosine [49], linear and
warmup-stable-decay (WSD) [27, 90, 28]]. Unless specified, we use a cosine scheduler. Results with
WSD and linear schedulers are discussed in Section[d] Recent works also emphasize the importance
of sufficiently decaying the learning rate [4, (75, 28]. As such, we take care to decay to 0.01 x ~y
instead of the often used 0.1 x ~. To give an idea of how much effort was put into tuning each
method, across all model sizes, batches and iterations, we trained a total of 2400 models, and have
spent roughly 30000 GPU hours.

Optimizers. Here is a list of the optimizers we considered in our work. For each algorithm, we
write in parentheses the optimizer-specific hyperparameters we tuned: AdamW([31, 82), SOAP(S1, 52)
and preconditioning frequency, Lion(f1,32), MARS(7,51,02) and Newton-Schulz hyperpa-
rameters, ADOPT(f31, 82), Signum(3), Prodigy(81, 32), SF-AdamW(f31, B2), Muon(y™, 3, 81, B2),
Sophia(p, 1, B2), AdEMAMix (8, B2, B3, @). When an optimizer has several momentum variants
e.g. Nesterov [57]] or Polyak [67]], we try both. In addition, we tune the learning rate y extensively
for all methods. We also try different gradient clipping, warmup steps, and weight-decay values. A
summary of the hyperparameters tested and selected for each model size is in Appendix D] All the
optimizers are described in depth in Appendix [A]

4 Results

We structure our story starting with smaller models and batch sizes, and gradually scaling up to larger
configurations. In some instances, we complement the core benchmarking results with additional
ablations and possible best-practices.

4.1 Benchmarking at Small Scale: Training Models of 124M Parameters

Using “small” batches. We first report results when using batches of 32 x 512 tokens in Figure 3]
We tune hyperparameters by training for 2.1B tokens (128k iterations) and then keep those hyperpa-
rameters for all other training durations. The best hyperparameters are reported in Appendix
‘We observe how, for the smallest number of iterations we considered (1B tokens = 64k), SOAP,
ADOPT and AdEMAMix all outperform AdamW, with SOAP being the best. As we increase the number
of iterations, AdEMAMix takes the lead while AdamW closes the gap with both ADOPT and SOAP. A
sign-based methods such as Lion and Signum are expected to perform poorly when the batch size is
small. Intuitively, this is due to the sign(-) operator being sensitive to gradient noise. As described
in its original paper, MARS also performs poorly when the batch size is small. We found Prodigy,
Muon and SF-AdamW to underperform in this setting compared to AdamW. On this scale, Prodigy
suffers from the lack of bias correction of the learning rate, as well as being sensitive to (51, 32) (see
Figure

Using “large” batches. We now report results when using batches of 256 x 512 tokens — 8x
larger than for our small batch setting. Results in Figure 2] show how Signum, Mars, Lion, Prodigy
greatly benefit from the increased batch size. Remarkably, we observe that the Prodigy method
scales similarly to AdamW. We emphasize the possible community interest in this algorithm as its
EMA Prodigy adaptively emulates the learning rate behaviour. For a small number of iterations
(e.g. T € {8k, 16k} corresponding to 1B and 2B tokens), all methods outperform AdamW except for
SF-AdamW and Sophia. As we increase the number of iterations ADOPT, SOAP, and AdEMAMix take
the lead. In particular, AdEMAMix has a consistent lead over other methods. While we anticipated—in
accordance with Vyas et al.[84]—that SOAP would greatly benefit from the larger batch size, its
behavior remains relatively consistent compared to our previous small batch setting.

Stability across training horizons. As mentioned in Section[3] we tune hyperparameters training
on 2.1B tokens and keep those hyperparameters when extending the training horizon. In Figure
we study whether it is possible to find better parameters for AdamW, SOAP, and AJEMAMix. When
training on 16.8B tokens, we see it is beneficial to increase the 3 from 0.999 to 0.9999. Without this
improvement, SOAP ends up matching the performances of AdEMAMix when extending the training
horizon further to 33.6B tokens (= 256k iterations). In our experiments, 53 = 0.999 is only better
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(a) Batch size 32 x 512 tokens. (b) Batch size 256 x 512 tokens.

Figure 2: Ranking of optimizers for 124M models with small and large batch sizes. In both
(a) and (b), we show the final validation loss for different training durations, corresponding to
different numbers of tokens. Above each token number, we write the number of training iterations
corresponding. In (a), we use a “small” batch size of 32 x 512 tokens. In (b), we use a larger batch
size of 256 x 512 tokens.

than 55 = 0.9999 when the number of training iterations is less than 32k. This matches observation
from [62]], which recommends reducing 83 when training for fewer iterations. We also test whether
the learning rate -y changes as we increase the number of tokens/iterations. In Figure 5] we run a
sweep over v when training for 16.8B tokens. While for most methods, the best v obtained in the
previous sweep remains optimal, this is not the case for SOAP and SF-AdamW, which can benefit from
a larger v = 0.002.

WSD vs. cosine & linear ~y-schedulers. Learning rate schedulers received a lot of attention recently
[79,128]. We conducted a series of experiments comparing WSD [27,90] and linear with cosine [49]
learning rate schedulers. Surprisingly, the performance gap between these two schedulers observed
in Figure is often significan{| for benchmarking optimizers. Consequently, we decided to adopt
the cosine scheduler for all further experiments.

Decaying ~ sufficiently. In Figure[8| we show the impact of decaying more or less the learning rate
7). From v = 10~3 we train models using cosine decay down to Yeng € {107%,107°,...,107°}.
We found that decaying the learning rate sufficiently matters. In particular, the often use rule
consisting in decaying to 0.1 x + is suboptimal. This agrees with the recent works [28} [75, |4].
Building on this findings, we consistently use cosine decay down to 0.01 x ~.

Takeaway 1. After the experiment in the small-batch setting, we conclude that: (i) AAEMAMix
scales in the best manner with the number of iterations, SOAP underperforms AdamW when the
length of training increases. ADOPT and Prodigy show almost equal performance across all
training durations. Sign-based methods, predictably, underperform when the batch size is small,
but what is interesting, is that Sophia diverges at all, even if trains with sufficiently small learning
rate.

Increasing the batch size further. We also run an experiment with batches of 512 x 512 = 262k
tokens, training for 64k iterations. Results in Figure 3] show mostly consistent results. Noticeably
MARS becomes the second best performing method behind AdEMAMix, followed closely by Prodigy,
Lion, and SOAP. Interestingly, Signum performs comparably to AdamW.

Takeaway 2. Taking into consideration large batch size setting, we found that many methods,
once properly tuned, can show a remarkable performance compared to AdamW and also outperform
it.

Weight decay ablation. As recent frameworks for LLM pretraining or ablation studies omit weight
decay as a default non-zero hyperparameter, some setups even mislead by not incorporating weight
decay in their experiments. In this work, we demonstrate the importance of weight decay and its

2We emphasize that the difference between the two schedulers is generally less than 5% of the total compute
spent. However, this still represents a significant gap in our benchmarking setup, e.g., SF-AdamW may outperform
AdamW in some settings (see Figure[25).
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Figure 3: Our results demonstrate that (a): scaling the batch size significantly improves MARS,
Signum, Lion and Prodigy making them as good as AdamW even for a long training for 16.8B tokens.
Which was not the case in Figure 2] (b), where we still observed a significant gap in performance; and
(b): indeed, with scaling of the number of iterations, the gap between SOAP and AdEMAMix narrow
and, finally, increases. But, on the other hand, with increase of the AdEMAMix (33 parameter, the
performance gap with SOAP reappears.

impact across different optimizers. Surprisingly, increasing weight decay while keeping the learning
rate constant proves to be an effective technique for training on shorter horizons. This approach is
so effective that methods like Signum and Lion with high weight decay significantly outperform
AdamW without weight decay (see Figure ). Implementation details also warrant attention. Coupled
weight decay is still used in some settings, including the PyTorch [63] optimizer implementations.
Notably, the popular implementation of Signum becomes ineffective when weight decay is applied.
Highlighting this oversight for the community, we contribute by demonstrating our implementation
of Signum (Algorithm [6) with decoupled weight decay. The influence of weight decay on model
weights is intriguing. As is known, model weights typically grow during training, but weight decay,
by modifying the optimized function, significantly reduces the growth of the model’s parameter norm.
Such ablations of weight decay are also of interest to the community [13}40]].

Regarding the ablation of weight decay for optimizers, we again select the best setup for each and
conduct a sweep over weight decay values. Our results are presented in Figure[d] and in Figure[23]
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Tokens (B) Tokens (B) Tokens (B)
(a) (b) ©

Figure 4: Larger weight decay achieves significantly better results when training on fewer
tokens. In (a) we observe that runs of AdamW, Signum, and Lion with the large weight decay of
0.5 consistently outperform the baseline AdamW with weight decay of 0.1 for all training durations
except for the last one. Notably, Signum and Lion with large weight decay perform even better than
AdamW with the same learning rate. In (b), we also consider a setting without weight decay. We
observe that this is suboptimal not only for AdamW, but also for the majority of other optimizers (see
Appendix [E:Z), while the typical weight decay of 0.1 remains the best for large training durations.
Importantly, in (c), we ablate the impact od weight decay on the model’s ¢5 norm.

With our weight decay ablation, we are ready to provide one more insight.

Takeaway 3. The use of weight decay, particularly a large decoupled weight decay term, can
significantly impact the final loss value and optimizer behavior. However, for extended training
horizons, a moderate, non-zero weight decay proves to be a robust option.

Learning rate sensitivity. Since we tune optimizers at a smaller scale and then extrapolate, we
pose the question whether the best learning rate we have found so far transfers to the larger training
duration. To verify this, we run 124M model on 16.8B tokens in 256 x 512 batch size setting,
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sweeping the learning rate across five typical values: {le=% 3e~4 5¢=% 1e73,2e~2}. The best
learning rate for each method at the moment of hyperparameter tuning on near Chinchilla-optimal
2.1B training duration we report in Appendix A summary of our results for larger number of
tokens is provided in Figure[5|and detailed results of the sweep are presented in Appendix [E.2]

2 Trained on 16.8B tokens (124M) 2 Trained on 16.8B tokens (124M)
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Figure 5: Optimal learning rate stability across optimizers. The optimal learning rate determined
during tuning on 2.1B tokens remains consistent after a learning rate sweep on 16.8B tokens for
most optimizers. In (a), we observe that sign-based methods and similar to them Sophia diverge with
increasing learning rate. Interestingly, in (b), SF-AdamW and SOAP demonstrate the best performance
with a large learning rate of 0.002. In our work, we further show that it is possible to increase the
learning rate even more for such methods.

Warmup ablation. Another important ingredient of the pretraining is learning-rate warmup in
the initial phase of training. Recent studies have explored the necessity of warmup in modern
deep learning, with some investigating its elimination and others ablating it to improve model
performance and stability [92]]. We focus on the latter, examining how warmup affects optimizer
setup and whether it can significantly enhance performance. For each optimizer’s best configuration,
we vary warmup across three values: {0.27,1,4.2}B tokens, which corresponds to {2,8, 32}k
iterations. Our choice of the largest warmup value is inspired by [92]. We describe this experiment in
Appendix [E.2] Mainly, we observe that Signum and SF-AdamW perform better with a larger warmup
of 8k steps when training on 16.8B tokens. We also ablate the claim from [92]) that a warmup of 25%
of the Chinchilla optimal duration is the best. However, our findings contradict this assertion (see
Figure @) We show that a moderate values of the warmup, generally, is better, however, different
optimizers could prefer different number of warmup steps. As such, SF-AdamW, Sophia, Signum
prefer larger warmup, which is clearly depicted in Figure [6]

Batch Size 256 (124M, Trained on 16.8B Tokens)

N AdEMAMix BB ADOPT MMM Prodigy M Signum . Muon
[ soAP BN AdamW MMM MARS BN SF-AdamWw MMM Sophia

3.20

3.19

nal Validation Loss

Fi

316

0.27B 1B 12B
Warmup Tokens (B)

Figure 6: Warmup ablation. We report the final validation loss on the FineWeb dataset for 124M
model trained on the batch size of 256. We sweep over the batch sizes of {1.56%, 6.25%, 25%} of
the length of training, which corresponds to {2000, 8000, 32000}k iterations, respectively.

Cosine vs WSD. At the outset of our study, we indicated a preference for the cosine scheduler
over WSD. In this section, we provide a more detailed ablation of this choice. Having optimally
tuned the cosine scheduler for each optimizer, we replicate the setup of [28]], which allows us to
avoid adjusting additional hyperparameters. Our findings, which demonstrate the superiority of the
cosine scheduler across various optimization methods, are presented in Figure[7] and in the Appendix
Figures [25]and[26] These results not only validate our initial preference but also provide insights
into the interaction between learning rate schedules and different optimizers in large-scale language
model training.
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Figure 7: Comparisons between WSD and cosine scheduler. Notably, WSD and cosine scheduler
behave differently with respect to optimizer. In (a), the Muon optimizer shows a preference for WSD
across most training durations. Sophia exhibits an almost perfect match between both schedulers.

However, for AdamW, along with the majority of other optimizers studied (see Figure 26), we get
a better performance with cosine. We also report a detailed comparison with linear scheduler in

Appendix
4.2 Benchmarking at medium scale: Training Models of 210M Parameters

In this section, we verify if our selected hyperparameters from smaller 124IM allow accurate transfer
to a slightly larger model. We point out that the most important hyperparameters to be sweeped are
learning rate and gradient clipping. Regarding the learning rate, we observe that it only becomes a
sensitive choice for sign-based methods, while the optimal hyperparameters for AdamW remain the
same.

Results with a batch size of 256 x 512. Results provided in the Appendix in Figure[2T]are consistent
with those obtained training 124M models with large batches.

Cosine Decay (Adamil, 210M. max LR 10~%) ; Linear Decay (Adami, 210M, max LR 10~%) ; WSD Decay (Adami, 210M, max LR 5x 10*)

Final Validatio
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10 10" 10 10 10°° 10
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10 10 10 10
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Figure 8: Decaying the learning rate down to 0.01 X ~,, .. and beyond, instead of only to 10%
We observe a common pattern for different schedulers that decreasing the learning rate to moderate
10~2 value is a better choice than decreasing it down to zero. Interestingly, the linear learning rate
scheduler for models at a given scale, requires 0.001 X Vmax-
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Figure 9: Wall-clock time comparison. After conducting experiments for 124M and 210M models,
we are ready to present the wall-time comparison for each methods. For this purposes, we use a single
GPU, and run each optimizer for 100 iterations on a small batch size without gradient accumulation
and torch.compile. We report the wall-clock time per 100 iterations. We observe that all methods
take the roughly the same time or very close time to complete 100 iterations, with the exception of
Muon and SOAP. In addition, we point out that SOAP’s runtime exhibits a non-linear dependence on
the model size, due to its preconditioner matrices operations which are fast only for certain matrices
smaller than a predefined size.

4.3 Scaling Up: Benchmarking models of 583M and 720M Parameters

We pick three methods: AdamW, SOAP, and AJEMAMix, and run experiments with a larger model
of 583M parameters, and a large batch size of 2M tokens. The goal being to get closer to one of the
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settings described in [84]]. We train for 6500 and 16000 iterations, corresponding to 13B and 32B
tokens respectively.

Comparison between our setting and [84]. We found several key differences between our codebase
and [84]: (i) we decay the learning rate to 0.01 x «y instead of 0.1 x ~y, with y being the maximum
learning rate, (ii) we use typical weight decay values of e.g. 0.1 instead of smaller values such as 0.01
or 0.0001, (iii) we do not use a z-loss in addition to ours. It has been shown recently that properly
decaying the learning rate has an important effect on the optimization [4]]. We run an ablation to
compare both settings and conclude that removing the z-loss and increasing the weight decay to 0.1
improves the results. Results further improve when the learning rate is decayed more. This ablation
is shown in Figure 8]
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Figure 10: Results for the 583M model. On the left, we show our results when training for 6500
iterations. In this setting, AdamW gives best results, followed by AAEMAMIix and then SOAP. This
is surprising as it conflicts with findings from [84]. Those results are partly reconciled with the figure
on the right. And we see that the difference in performance between models trained with and without
the z-loss regularizer is quite minor.

5 Extension to MoEs

Setup & Comparison. Besides training dense Llama-like transformers, we also conver a com-
parison for MoE architectures [78]]. Our variant of MoE is based on the Switch-Transformer im-
plementation [20]. We use a classical linear gating with softmax and top-k routing (k = 2) and 8
experts. The activation functions remains the same as for the dense base model from Section 3] Such
a configuration of the MoE model gives us approximately 520M parameters. We cover additional
details in Appendix In this setting we train with a batch size of 256 x 512 for T' € {42,336}k
iterations. Again we cover both a Chinchilla-optimal horizon and the beyond. We summarize the
results in the following Table [T]

Opt. 42k | 336k Opt. 42k | 336k
AdEMAMix | 22.37 | 18.47 Lion 2320 | 18.87
D-Muon | 22.67 | 18.51 Signum | 23.31 | 19.09
ADOPT 2270 | 18.58 SF-AdamW | 23.34 | 19.13
AdamW 22.85 | 18.69 Sophia | 23.41 | 19.22
Prodigy | 22.82 | 18.78 MARS 2273 | 19.33

Table 1: Final validation perplexity for MoE training (/).

6 Discussion

Our advices on tuning each method. Overall, we validate the already widely used hyperparameters
of A = 0.1 and Tyarmup ~ 2k. For Lion—as mentioned in [9]—we find that the best value for 8;
is consistently 0.99. The mechanism for Lion seems similar to AdEMAMix, one can imagine that
Lion could be better with larger 31, which would require schedulers. We also pose an interesting
observation toward Prodigy: while it may not be so efficient with a super small batch sizes, with
scaling of the model size and the batch size it becomes almost as competitive as AdamW. Importantly,
Muon and D-Muon performed poorly at a small scale with relatively small batch sizes (32, 256),
however, as we see in Figure[]]
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: the contribution of this paper is described accurately in the abstract and
introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: we discuss a limitations and mention experiments we have not tried to run
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: this is not a theoretical work
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: we open-source our code
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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642 Answer: [Yes]

643 Justification: we provide our code and the datasets are mentioned clearly

644 Guidelines:

645 » The answer NA means that paper does not include experiments requiring code.

646 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
647 public/guides/CodeSubmissionPolicy) for more details.

648 * While we encourage the release of code and data, we understand that this might not be
649 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
650 including code, unless this is central to the contribution (e.g., for a new open-source
651 benchmark).

652 * The instructions should contain the exact command and environment needed to run to
653 reproduce the results. See the NeurIPS code and data submission guidelines (https:
654 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

655 * The authors should provide instructions on data access and preparation, including how
656 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
657 * The authors should provide scripts to reproduce all experimental results for the new
658 proposed method and baselines. If only a subset of experiments are reproducible, they
659 should state which ones are omitted from the script and why.

660 * At submission time, to preserve anonymity, the authors should release anonymized
661 versions (if applicable).

662 * Providing as much information as possible in supplemental material (appended to the
663 paper) is recommended, but including URLSs to data and code is permitted.

664 6. Experimental setting/details

665 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
666 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
667 results?

668 Answer: [Yes]

669 Justification: we specify all of the important hyperparameters as well as hyperparameter
670 tuning.

671 Guidelines:

672 * The answer NA means that the paper does not include experiments.

673 * The experimental setting should be presented in the core of the paper to a level of detail
674 that is necessary to appreciate the results and make sense of them.

675 * The full details can be provided either with the code, in appendix, or as supplemental
676 material.

677 7. Experiment statistical significance

678 Question: Does the paper report error bars suitably and correctly defined or other appropriate
679 information about the statistical significance of the experiments?

680 Answer:

681 Justification: in our large-scale experiments we could not affort so. and we are running all
682 of the experiment with the same seed for generation data splits, etc.

683 Guidelines:

684 * The answer NA means that the paper does not include experiments.

685 * The authors should answer "Yes" if the results are accompanied by error bars, confi-
686 dence intervals, or statistical significance tests, at least for the experiments that support
687 the main claims of the paper.

688 * The factors of variability that the error bars are capturing should be clearly stated (for
689 example, train/test split, initialization, random drawing of some parameter, or overall
690 run with given experimental conditions).

691 * The method for calculating the error bars should be explained (closed form formula,
692 call to a library function, bootstrap, etc.)

693 * The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: we provide this in Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: this paper is consistent with NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: there is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: we cite them and respect, see Sections E]and@]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: the paper does not propose new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: our work does not include research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: our work does not include research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: the core development of our work does not involve LLM:s.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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In this section, we describe all considered algorithms, presenting them in a unified formalism. We

start with notation and then discuss the algorithms according to their logical grouping:

23



889

890

891
892

893
894

895

896
897
898
899
900
901

902
903
904
905

906

907
908

909
910
911
912

913
914
915
916

917
918

920
921

1. Adam-like methods: AdamW (Algorithm [I)), ADOPT (Algorithm [2)) and AdEMAMix (Algorithm 3)).
2. Sign-based methods: Lion (Algorithm[)), Signum (Algorithms [5]and[6).

3. Approximate second-order optimizers: Muon (Algorithm 8], SOAP (Algorithm[I0) and Sophia
(Algorithm TT]).

4. Learning rate / scheduler-free learning algorithms: Schedule-Free AdamW (Algorithm [I2)),
Prodigy (Algorithm [T3).

5. MARS algorithms: (Algorithms [T4]to [I6).

Notation. In our work, we denote all vectors and matrices using bold symbols, while non-bold
symbols represent scalars. Let £ : D — R be an empirical loss function parameterized by «, and
mapping batch of inputs &€ C D to R. As g = VL (x, &) we denote a stochastic gradient of the
loss w.r.t. parameters @. For simplicity, we omit  in V and write VL (x, £). We use the following
standardized notation for specific symbols in our work: batch size — |£|, learning rate — -, weight
decay — A, momentum — /3, iteration counter ¢ with the total number of iterations — 7.

And basic notation for symbols in the algorithms: m, v — are first and second moment estimates,
respectively, with their bias corrected versions 11, ¥, and beta parameters — 1, #2. We denote the
dot product of two vectors z, y as (z,y), while z ® y stands for their element-wise product. All
division and addition operations in the described algorithms are element-wise.

A.1 AdamW, ADOPT, AEMAMix

AdamW. Our baseline — Adam (W), has become a de facto optimizer for deep learning, demonstrating
impressive performance across diverse domains: from tabular data to diffusion and language models.

The method originated from the ideas of Adagrad [[19] and RMSProp [23]], which utilize a second
moment estimate v in their update rule. However, Adam (W) enhanced this prior scheme by incorpo-
rating momentum [55} I82]], establishing itself as a state-of-the-art method for a wide range of tasks.
All other algorithms we consider also employ a similar, if not identical, momentum scheme.

Another key aspect of AdamW is its decoupled weight decay A [50], unlike Adam. We use the
decoupled weight decay scheme for all methods to ensure consistency and emphasize its importance
for optimizer comparison, hyperparameter tuning, and final performance. This is clearly observable,
e.g., for Signum (Algorithm ).

Algorithm 1 AdamW

1: Input: Initial parameters x(, number of iterations 7, learning rate y;, weight decay A, 31, o, €.
: Initialize: mq < 0, vy < O

: fort e [T]do

: gy < VL(xy, &)

2

3

4

55 my < fimy_1 + (1 - B1)g,

6: vy Povi—1 + (1 — f2)g, © g,

7: ’ﬁ’l,t Fmt/(l_ﬁﬁ), 'lAJt e"-’t/(l_ﬁé)
8 T & Te— VYt \/vmle + Az

9: end for

0: Return: x

1

ADOPT. Recently, [83] proposed a modification of Adam, by removing the current gradient g,
from the second moment estimate v, and changing the order of the momentum update 1, and the
normalization by the second moment estimate. As shown in 1ine 8 of Algorithm[2] the parameter
update depends only on the previous value of the second moment estimate v;_;. The authors analyze
the convergence of ADOPT with the following update rule:

my < fimy_1 + (1 — B1)

9i
max{,/0;_1,e}’

Tit1 < Ty — VM.
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However, the practical implementation differs in a few details. To tackle instabilities caused by
near-zero gradients during the early stages of training, the authors propose using a clipping on
g:/ max{,/v;_1,e}, which we formalize as the clamp operation. Given a vector g and a positive
scalar c, it is defined as:

clamp (g, c)(i) = min {max {g(i), fc} ,c} . )
Thus, the element-wise clamp operation preserves g, from the division by near-zero values.

The authors theoretically claim that ADOPT achieves the optimal convergence bound for non-convex
objectives, regardless of the choice of the 55 parameter. We empirically investigate this claim and
observe that, contrary to the theoretical results, there is a significant performance gap for different
choices of (3, in practice.

Algorithm 2 ADOPT
1: Input: Initial parameters x(, number of iterations 7, learning rate -y;, weight decay A, 31, 3o, €.
. Initialize: m < 0, vy < VL(xo, &) ® VL(x0, &)
: fort e [T)do
: gt «— VZ:(wtvst)
cp /4 > Update clipping value schedule

2
3
4
5
6: My fimy_1 + (1 — fi)clamp (W orTe] Ct)
7
8
9
0

vy Povi—1 + (1 — f2)g; © g,
: Tirq — Ty — Y (My + Ay > Update without v
: end for
: Return: xr

AdEMAMix. Another Adam-like optimizer we study is AdEMAMix [62]. This work argues that using
a single EMA to accumulate past gradients in the first moment estimate m can be sub-optimal, as it
cannot simultaneously prioritize both immediate past and older gradients. In Algorithm 3] the authors
incorporate two EMAs: one — Adam-like EMA for m (fast), and another — a slow EMA mslow
(see 1ine 7) with an additional S5 parameter. In its update rule, the algorithms balances fast and
slow EMAs with the constant factor « (see 1ine 10 of Algorithm[3). This algorithmic design helps
AdEMAMix benefit from older gradients and results in smoother loss curves during training.

However, to mitigate the effect of early instabilities, the authors use two additional schedulers for o
and O3 — alpha_scheduler and beta_scheduler, formalized in our work as follows:

. ta
alpha_scheduler(t,a,T,) = min T
«@

IOg(ﬁstart) 10g(63)
(1= 75 ) log(Bs) + 7L og(Buvare)

beta_scheduler(t, 33, Sstart, 13,) = min ¢ exp , B3

In all experiments, we set Sstart = 1, and the warmup parameters equal to the length of training:
Ty =T, =T.

One thing that should be commented — « and 8 schedulers are seemingly contradict the idea of
WSD scheduler. However, setting T, T3, to be longer than the first checkpoint of the WSD does
not significantly impact the final performance. Thus, AdEMAMix can still be combined with recent
findings regarding the WSD scheduler.

A.2 Sign-based methods: Lion and Signum

Another branch of methods includes sign-based Lion and Signum. To some extend, one can
classify Adam as a sign-based method also, but we mention only Lion and Signum as they explicitly
incorporate the sign operation in the update rule.

These methods, particularly Signum, have been unfairly overlooked in the context of LLM pretraining.
However, our results demonstrate that, with sufficiently large batch sizes and at moderate model
scales, these optimizers perform on par with Adam, and in some cases, even outperform it.
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Algorithm 3 AGEMAMix

1: Input: Initial parameters x(, number of iterations 7, learning rate y;, weight decay A, 51, (2,
B3, Bstart> @, beta_scheduler, alpha_scheduler, warmup parameters 7, and T, €.
2: Initialize: mg < 0, m§°¥ « 0, vy « 0

3: fort € [T] do

4: B3(t) < beta_scheduler(t, 83, Sstart, 185 ), (t) < alpha_scheduler(t, o, T,) >
Update 85 and « schedulers

5: g, — Vﬁ(mt,ﬁt)

6: my <— ,Blmt_l + (1 — 51)915

7. mioV — Ba(t)mioY + (1 — Bs(t))g, > Update slow EMA

8: v < fovi1+ (1 — B2)g; © gy

9: mt%mt/(l—ﬂf), i)t(—})t/(l—ﬁé)

10: Tl — Ty — Ve (% + A\xy

11: end for

12: Return: x

Lion. And the first method of this kind is Lion [9]]. This optimizer is symbolically discovered in
the program space of first-order optimization primitives. Lion updates its EMA of m after updating
the parameters and has additional term (1 — ;1)g whis adds to the momentum. This interpolation
Bimi_1 + (1 — B1)g, (see line 6 of Algorithm makes the symbolic-discovered idea behind
Lion similar to the idea of the AdEMAMix optimizer.

Algorithm 4 Lion

1: Input: Initial parameters &, number of iterations 7', learning rate ;, weight decay A, 51, 2.
2: Initialize: mg < 0

3: fort € [T]) do

4: g, < VL(x,E,)

5: my;  Bomy_q + (1 — Ba)g, > Update EMA of g,
6: i1 < @y — v (sign (Bimy—1 + (1 — B1)gy) + Axy)

7: end for

8: Return: xr

Signum. Another sign-based method, which is the adoptation of signSGD — Signum [6]], or
signSGD with momentum. This method differs from Lion in the interpolation term between EMA
of momentum and current gradient, as well as in the Signum’s update rule a current EMA is used.

Importantly, while Signum is not as widespread for LLM pretraining and stands mostly as a theoretical
artifact, recent practitioner’s studies also start to use Signum for scalable training [96]. Mostly, due
to the memory-efficiency of Signum compared to AdamW.

In this regard, we want to make an important point — many recent PyTorch [63]] implementations of
the Signum optimizer, unlikely, are not suitable for this method, impairing the potential performance
from using it.

The main problem of many open-source implementations is a use of decoupled weight decay in
the PyTorch implementation of SGDM (SGD with momentum) [82]]. Indeed, with a decoupled weight
decay, the update of Algorithm [5|transforms into:

Tiy1 @ — yesign (Bmy1 + (1 - B)g, — A1 - B)g,) ,

which affects the sign of the update, leading to potentially wrong optimization direction if the weight
decay is sufficiently large.

Another popular failure while using Signum is incorrectly tractable PyTorch implementation of
SGDM. It does not include such EMA as 1line 5 in Algorithm[5] on the other hand, in PyTorch, the
momentum update depends on the dampening parameter 7:

my < fmy_1+ (1 —7)g,,
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which is zero by default. Therefore, the typical update rule, reflecting the actual Signum behavior in
practice corresponds to the following update:

XTyp1 — T — Y (sign(Bmy_1 + (1 —7)g,) + Azy) ,

where the weight decay is decoupled and, consequently, does not affect the sign.

g < g, + Bmy,

improves Signum. Since enabling Nesterov momentum requires zero dampening 7, we revisited the
descrition of Algorithm 5] and propose more practical, PyTorch-compatible version of Signum in

Algorithm 6]
Algorithm 5 Signum (basic) Algorithm 6 Signum (our PyTorch variant)
1: Input: Initial parameters &g, number of 1: Input: Initial parameters xy, number of
iterations 7', learning rate y;, weight decay iterations 7', learning rate 7,, weight decay
A, momentum [3. A, momentum [3.
2: Initialize: mg < 0 2: Initialize: mq < 0
3: fort € [T] do 3: fort € [T] do
4 gy < VL(x, &) 4 g, < L(x1, &)
5: my < Bmy_1 + (1 — B)g, 5: my < Bmy_1 + g,
6: Lyl < Ty — Vit (sign (mt) -+ )\ﬂ?t) 6: Tii1 < Ty —
7: end for vt (sign (Bmy + g;) + \xt)
8: Return: xr 7: end for
8: Return: x

Moreover, to prevent other researchers and practitioners from the possible wrong use of Signum and
for the reproducibility purposes, we provide our Python code.

Listing 1: Signum code skeleton using PyTorch

from typing import Dict

import torch

class Signum(torch.optim.Optimizer):

def _ _init__(

self ,

params ,

Ir=1e-3,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False ,
sign_update=True,

if Ir < 0.0:

raise ValueError(f"Invalid learning

if momentum < 0.0:

raise ValueError(f"Invalid momentum value:

)
if weight_decay < 0.0:

rate :

{1r}")

{momentum } "

raise ValueError(f"Invalid weight_decay value: {

weight_decay}")

defaults =
Ir=Ir,

dict (
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def

momentum=momentum,
dampening=dampening ,
weight_decay=weight_decay ,
nesterov=nesterov ,
sign_update=sign_update ,

)

if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a

momentum and zero dampening")

super () .__init__ (params, defaults)

__setstate__ (self, state):

super (). __setstate__ (state)

for group in self.param_groups:

group.setdefault("nesterov", False)

@torch.no_grad ()

def

_init_state (self , example, state=None):
assert isinstance (example, torch.Tensor)
assert isinstance(state, Dict) or state is None
if state is None:
state = {}
state["step"] = 0
state [ "momentum_buffer"] = torch.clone(example).detach ()
return state

@torch.no_grad ()

def

_compute_update (
self , grad, state, Ir, momentum, nesterov , dampening,
sign_update , xxkwargs

if momentum != 0: # Signum check
buf = state["momentum_buffer" ]
buf.mul_(momentum) .add_(grad, alpha=1 - dampening)

if nesterov:

grad = grad.add(buf, alpha=momentum)
else:

grad = buf

if sign_update:
grad = grad.sign ()

return grad % (-1Ir)

@torch.no_grad ()

def

step (self, closure=None):
"""Performs a single optimization step.

Args:
closure (Callable, optional): A closure that
reevaluates the model
and returns the loss.
loss = None
if closure is not None:
with torch.enable_grad ():
loss = closure ()
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for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue

grad = p.grad
state = self.state[p]

if group["weight_decay"] != 0:
p.mul_(1 — group["lr"] = group["weight_decay"
D
if len(state) == O:

self. _init_state (example=p, state=state)
if not group["momentum" ]:
state .pop("momentum_buffer", None)

state["step"] += 1

update = self._compute_update (
grad ,
state ,
group["1r"],
group [ "momentum" ],
group["nesterov"],
group [ "dampening"],
group["sign_update"],

)

p.add_(update)

return loss

A.3 Muon, SOAP, Sophia

Next page of the methods covers algorithms that rather aim to use more information about the
problem’s curvature (SOAP [84]], Sophia [46]) or perform fast updates of matrix parameters involving
higher order computations (Muon [33]).

Contrary to the chronological order, we discuss them starting from the recent one — Muon and end
up with Sophia.

Muon. Specifically designed for the speedrun comparisons, this method surpasses AdamW baseline
on nanoGPT pretraining benchmark [32]]. Claims from the Muon extend to faster learning, lower
memory usage and better sample-efficiency with a small wall-clock time overhead. However, there
are not much to say about the final performance given a particular budget of tokens to train on.

The reason why the Muon is a good option for speedrun pretraining lies in its structure — Muon treats
different layers in different way. One dimensional (1D) parameters, large embedding layers, scalar
parameters (such as Layer Norm parameters) and the output layer of LLM (1m_head) are optimized
by AdamW. And all parameters with two or more dimensions, e.g., Multi-Head Attention layers are
optimized by Algorithm[7] which we call MuonNon1D.

Inspired by Shampoo’s preconditioners [24]], the authors of MuonNon1D incorporated an orthogonal-
ization step to compute the SVD transformation of gradient matrix. Before the orthogonalization step,
MuonNon1D represents SGD with Nesterov momentum. To ensure fast orthogonalization procedure,
the authors, insiped by [5]], use Newton-Schulz procedure [25]. As the number of Newton-Schulz
iterations increases, the closer resulting matrix becomes to U V" from SVD transformation. The
authors also mention that Muon can be thought of as a second way of smoothing spectral steepest
descent [8]], with a different set of memory and runtime trade-offs compared to Shampoo.
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Algorithm 7 MuonNon1D (for non-1D parameters)

1: Input: Initial non-1D parameters xo, number of iterations 7', learning rate -;, momentum /3,
number of Newton-Schulz iterations Txs, a, b, ¢ coefficients.

2: Initialize: mg < 0

3: fort € [T] do

4: g, < VL(z, &)

5: my + fmy_1 + g,
6: g, < Bmy + g, > Practical implementation of Nesterov momentum
7: Set: wo <+ g,//|g:|lF
8: for n € [Txg] do
2 . .
9: Wi — aw, + bw,w,) + ¢ (ww,)) w, > Newton-Schulz iteration
10: end for
11: Ti41 & Ty — VtWTys
12: end for

13: Return: xr

Algorithm 8 Muon (general scheme)

1: Input: Initial parameters o, number of iterations 7. Muon’s parameters: learning rate 7},
momentum [, number of Newton-Schulz iterations Txs, a, b, ¢ coefficients. AdamW’s parameters:
learning rate 7', weight decay A, 31, (2, €.
for ¢ € [T] do ¢, € {embeds, scalar_params,lm_head}
T}
Xy, < AdamW (x},7¢, X, B1, B2, e, T = 1) > One iteration of AdamW
! — x;
x| < MuonNoniD (x},~{, Txs, 3,a,b,¢,T = 1) > One iteration of MuonNon1D
end for
Return: =4, =

Importantly, we noticed that the original algorithmic description of Muon optimizer, provided in the
official repositoryﬂ differs from the actual one, presented in Algorithm In the original code, as
well as in our benchmarking, weight decay do not applies to the matrix parameters in the optimizer
state of MuonNon1D, which means that the only weight decay used during training is AdamW’s weight
decay. From this perspective, we observe that the gap between the final loss values for runs with 0.1
and 0 weight decay values almost disappears, while the run with 0.5 weight decay becomes the worst,
which is not the case for other optimizers. We describe this in our weight decay ablations.

SOAP. [84] proposed new, improved modification of Shampoo [24]. SOAP reduces the computational
overhead optimizing only two dimensional layers (2D) via Algorithm[9} while running AdamW for 1D
layers. At initialization, preconditioners are computed via eigenvector decomposition of the initial
gradient matrices eigenbasis (VL(xo,&,)VL(xo, &) " ): VL(T0, &) VL(w0,&9)" = qAq™?,
where A stands for the diagonal matrix whose diagonal elements are the corresponding eigenvalues.
For the rest of the iterations, SOAPNon1D performs the QR decomposition (see lines 15, 16 of
Algorithm[9) for all 2D layers, which is the main computational part of the method.

A key idea behind the SOAP optimizer is:

1. Given the slowly changing coordinate basis provided by eigenvectors [ and r, SOAP updates its
second moment estimates in this basis, i.e., it runs AdamW in another, rotated space.

2. To update the eigenvectors of I and r, SOAP runs QR decomposition with preconditioning frequency
@.
In Algorithm[9} if one would set both g; and g, to identity, then we would recover Adam.

The overall SOAP algorithm can be formalized as follows:

*https://github.com/KellerJordan/modded-nanogpt
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Algorithm 9 SOAPNon1D (for non-1D parameters)

1: Input: Initial parameters x(, number of iterations 7', learning rate ~y;, weight decay A, 51, 52,
preconditioning frequency ¢, €.

2: Initialize: mg < 0, vg <+ O
3: Initialize preconditioners: q;, q, < eigenbasis (VL(zo,&,)VL(z0,&) ")
4: fort € [T do
5: g, < VL(x, &)
6 g, q 9,4, > Rotate g,
7. m< By + (1= Bi)g,
8: m} + q mq, > Compute Adam’s statistics in rotational space
9: vy Pavi_1 + (1 - PBa2)g; © gy
/1_ A3t
10: Ve — %11_7;2 > Optional: use bias correction
1
11: T4l — Tt — Ve (ql%qj + )\:ct> > Perform update in original space
12: l; « Boly—1 + (1 — B2)g,9,/ > Update preconditioners

13 Ty Bori_1 + (1 —B2)g/ g, t =1 (mod @)
15: g, < QR(rq,)

16: end for

17: Return: x

Algorithm 10 SOAP (general scheme)

1: Input: Initial parameters x(, number of iterations 7, learning rate y;, weight decay A, 51, B2,
preconditioning frequency ¢, €.
2: fort € [T] do x; € {embeds, scalar_params,1lm_head}

3 oz

4: xp,, < AdamW (x},7v4, A, 1, B2, e, T = 1) > One iteration of AdamW
5: 5 — xy

6: @3, < SOAPNoniD (x,7¢, A, B, B2,e,T = 1) > One iteration of SOAPNon1D
7: end for

8: Return: xf., x5,

Sophia. Despite being named as second-order optimizer, Sophia [46] performs an update, quite
similar to Adam’s. It also leverages the diagonal preconditioner h, but not the curvature information
of the optimization problem, which depends on the non-diagonal terms of the Hessian. One should
notice that Sophia were introduced with two types of preconditioners — Hutchinson [3]] and Gauss-
Newton-Bartlett [51]]. Since the latter one shows more promising performance, we consider only this
type of preconditioner for Sophia.

Every ¢ iterations, Sophia updates its second moment estimate by computing the gradient g of the
empirical loss £ given softmax of the logits instead of the true logits. Multiplying by the batch size,
we obtain h, after that, Sophia updates the EMA of h.

Importantly, we found out, that algorithmic description of Sophia in the original paper differs in

minor details from the code implementatiorﬂ Indeed, the update rule in their work formulates as
follows:

— 1 e 1

T Ty — yclamp | —————

t+1 t— Ve p max{phs,c}’ )

where clamp is defined as in Equation (I)). On the other hand, the code from the official repository
suggests:

Listing 2: Sophia update skeleton using PyTorch
# update step

*https://github.com/Liuhong99/Sophia
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step_t += 1

# Perform stepweight decay
param.mul_(1 - Ir * weight_decay)

# Decay the first and second moment running average coefficient
exp_avg.mul_(betal).add_(grad, alpha=1 - betal)

else:
step_size_neg = —1r

ratio = (exp_avg.abs() / (rho % bs % hess + le—15)).clamp (None

, 1)
param . addcmul_(exp_avg.sign (), ratio, value=step_size_neg)

Therefore, the actual update of Sophia is wrongly tractated in the original paper and should be
corrected and equal to the 1ine 16 of Algorithm [T1]

(Takeaway 4. The actual update rule of Sophta differs from its description in the original paper)

Algorithm 11 Sophia

1: Input: Initial parameters xy, number of iterations 7', learning rate -;, weight decay A, 51, B2,
estimator frequency ¢, scaling factor p, €.

2: Initialize: mg < 0, hg < 0

3: fort € [T] do

4: g: < V£($t,€t)

5: my < Bimy_1 + (1 —F1)g; t =1 (mod ¢)

6: pe &, > Obtain logits from batch
7: pt + softmax (p:) > Sample from logits
8: L(x, &) + pt > Loss, where p; are labels

9: gt «— V[’(mtvét)

10: hi < €19, © g, .

11: ht < ﬂght,(ﬁ + (]. — 62)’745

12: hy < h;_4

13: Tyl ¢ Ty — Ve (sign(mt) min { p‘,:':j_‘s, 1} + /\:ct)
14: end for

15: Return: o

A4 Schedule-Free AdamW,Prodigy

In this section, we outline two more players — Schedule-Free AdamW [[17] and Prodigy [54].
Both of them have a promising advantages and require less hyperparameter tuning which paves the
road to parameter-free optimizers.

Schedule-Free AdamW. [17]introduced a concept of schedule-free optimizers. Underlying idea
behind his Schedule-Free SGD and Schedule-Free AdamW is to remove the scheduler with
iterate averaging. Particularly, schedule-free method uses an interpolation between Polyak-Ruppert
averaging [68| 73] and Primal averaging [S6] for momentum update instead of usual EMA (1ine 4
of Algorithm[T2). To avoid undesirable behavior during scalable training the authors also propose
internal warmup (see 1ine 7 of Algorithm[I2)) which uses the general number of warmup iterations
parameter in the code, this gradually increases the learning rate and, at the same time, ensures Adam’s
bias correction.

An interesting result we observe, SF-AdamW shows the best performance with larger number of
warmup iterations compared to other methods.
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Another key point — training with SF-AdamW is sensitive to the choice of beta parameters. Unlike
in AdamW, these parameters serve different purposes in SF-AdamW: as [3; acts as an interpolation
parameter between two sequences, and 35 controls the EMA of the second moment estimate, which
relates to y sequence rather than the model parameters  (line 6 of Algorithm|[I2). For Adam it is
common to analyze in theory the case, when 8 = 1 — 1/T [89,[10], i.e., the choice of the “optimal”
beta parameters depends on the length of training. Which is also the case for SF-AdamW, making
it not fully schedule-free. [28] observed this sensitivity to beta parameters, and we go beyond this
ablation also.

Importantly, the authors mention that disabling the gradient norm clipping is crucial for schedule-free
runs, however, we do not observe this in practice, demonstrating the contrary results.

Algorithm 12 SF-AdamW

1: Input: Initial parameters xy, number of iterations 7', learning rate -y, weight decay A, (1, B2,
warmup iterations Tyarmup, €-

2: Inmitialize: z( < xg, vg + O

3: fort € [T) do

4: Y, — (1= B1)ze + frzy

5: g: < VL(y;, &)

6: vy < P + (1 — B2)g, © g,

7: Yt v/ 1 — B min{1, ¢/ Twarmup }

8: Zep1 4 20— 7 (9¢/ (VUi +€) + Ayy)
. V2

9: Ct+1 < S, Vi

10: Tip1 < (1 — Ct+1)£L't + Ci412t41

11: end for

12: Return:

Prodigy. Improving the D-Adaptation concept [16], [54] derived an Adam-like method, which
use an EMA for the learning rate (see lines 8, 9 of Algorithm [I3), approximating the Adam’s
update of the second moment estimate EMA. The derived update reflects an EMA of d.g, sequence
rather than g,. Idea of such a method is to come up with a scheme that is able to remove the
hand-tuned learning rate via sequence which adapts during training on the fly. In Algorithm[I3] d; is
such a sequence that affects botth first and second moment estimates, and evolves according to 1ine
10.

Crucially, Prodigy does not need the learning rate tuning (typically, we initialize v = 1), however, it
still can be compatible with learning rate schedules, which we verify experimentally at scale. We also
show that d; sequence indeed acts similarly to cosine learning rate scheduler, with usually smaller
learning rate at initialization and a bit larger values of it at maximum Moreover, this method scales
reliably similar to AdamW, making it a promising choice for future development of parameter-free
methods.

A.5 MARS

Very recently, [88] introduce MARS — a series optimizers, which incorporate modern adaptive methods
[50, 9] and approximate second-order methods [24] with variance reduction update update style.

This optimization framework gave a birth to: MARS-AdamW — our main baseline which we call simply
MARS, MARS-Lion and MARS-Shampoo. We mainly include MARS-AdamW in our ablation studies, but
report results for other two optimizers.

The authors modified a variance reduction update introducing a sclaing parameter 7, which we call
variance reduction scaling in the outlined algorithms and experiments. This parameter controls the
scale of gradient correction — see line 5 of Algorithms[I4]to[T6]
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Algorithm 13 Prodigy

1: Input: Initial parameters ¢, number of iterations 7, learning rate -y, weight decay A, 31, 52, €.
2: Initialize: dy < 1076,y < 1, mg < 0, vy < 0,79 < 0, 5o < 0 > Optional: use scheduler
on vy

3: fort € [T] do

4: g; < Vﬁ(mt,ﬁt)

5: my < ,81mt_1 + (1 — /gl)dtgt
6: vy Bovi_1 + (1 — Bo)dig, © g,

7 e v/ 1= B8/ (1 — ) > Optional: use bias correction
8: e < /Bari—1 + (1 — V/Ba)ndi (g, o — x¢)

9: 8t ¢ /Pasi_1 + (1 — /B2)ned?g,
10: dt+1 — max{dt, H;ﬁ}
11: Tiy] < Ty — ’Ytdt (mt/ ( Ut + dtf) + )\(Et)
12: end for
13: Return: xr

An important detail, we follow only the approximate scheme of MARS-like optimizers, i.e., we evaluate
the gradient g, in different stochasticity, meaning

g = V‘C ($t7€t) )
9i1 =VL(xi1,€&_1).

Importantly, in the same spirit as for SOAP and Muon, the authors use MARS-like algorithms for layers
with two and more dimensions, for 1D layers, embeds, scalar parameters and final the head layer of
neural network, this method utilize AdamW. Such a choice allows use MARS in the more fast and still
efficient way. Following the practices from their work, we also use MARS only for 2D layers.

MARS (MARS-AdamW). For AdamW-like algorithm, the difference occurs at the computation of 1,
and v;, where instead of the gradient, the variance reduction update c¢; is used.

Algorithm 14 MARS (MARS-AdamW)

1: Input: Initial parameters x(, number of iterations 7', learning rate ~y,, weight decay A, 51, 52,
variance reduction scaling 7, .

2: Initialize: mg < 0, vg <+ O

3: fort € [T]) do

4: 9. «— V[’(whgt)

s e g+ (90— 90) el > 1
6: Ct (*Ct/HCt”Q

7: my < Simy_1 + (1 - P)e

8: v < Bovi1 + (1 — fa)c © ¢

9: ﬁzﬂ—mt/(l—ﬁf), f)t<—vt/(1—ﬁ§)
10: LTi41 = Lt — Mt \/%;zf%a %_‘A:ct

11: end for
12: Return: x

MARS-Lion. Similarly for Lion-like algorithm, the authors use scaled gradient correction with the
current gradient — c¢;.

MARS-Shampoo. The same holds for MARS-Shampoo. One key comment here, is that to compute
SVD of the first moment estimate, the authors also use Newton-Schulz iteration [5, 25]. In our
experiments we use 10 iterations of this orthogonalization scheme for MARS-Shampoo.
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Algorithm 15 MARS-Lion

: Input: Initial parameters x(, number of iterations 7, learning rate ;, weight decay A, (1,
variance reduction scaling 7, €.

: Initialize: mg <+ 0, vy < O

: fort e [T)do

: gy < ‘71:(:Bt7 €t)

Ct < gy ‘*‘77113}31 (9: = 9e-1) lleell2 > 1

ct < ci/lledl2

my < fimy_1 + (1 — f1)ey

L1 = Tt — Vi (sign (mt) + Al’t)
end for
: Return: x1

—_

SRR N AL
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Algorithm 16 MARS-Shampoo

1: Input: Initial parameters xy, number of iterations 7', learning rate -;, weight decay A, (i,
variance reduction scaling 7, €.
Initialize: my + 0, vg <+ 0
for¢ € [T] do
gy < ‘7l:(:nt7 €t)

¢ — g+ 1725 (9, — 9i-1)
my — fimy_1 + (1 — fr)e
Ut7 Et, Vt — SVD(mt)
Tip1 =Tt — Nt (UtV: + )\a:t)
end for
Return:

Y ® D AERR

Ju—

B Implementation

Our code is based on an extension of nanoGPTE] and uses PyTorch [63] as well as FlashAttention
[14]. We incorporate mixed-precision training [53]], i.e., we train in bfloat16 precision, except for
normalization modules and softmax which we train in £1oat32. The optimizer states are also stored
in float32. The majority of the experiments were performed using a cluster of A100-SXM4-80GB
GPUs as well as H1I00-HBM3-80GB. We trained both in a single GPU regime and in DDP [45] (from
2 to 8 GPUs per one run). We estimate that the full cost of all experiments for our project to roughly
30000 GPU hours.

C Model & Data

Architecture details. In our project, we use Llama-like family of models [48]. We implement
the the popular in the community decoder-only transformer with SwiGLU activation functions [[77],
RoPE embeddings [81], RMSNorm [91]. The vocabulary is based on the GPT2 [71] tokenizer[ﬂand
contains 50304 tokens.

The number of parameters in our models is fully configurable, and we present the exact configurations
used in our experiment in Table

Dataset. Our main findings are obtained on the subset of FineWeb [64] with 100B tokensﬂ cleaned
and deduplicated corpus for LLM pretraining, which we split into train and validation sequences.
During training, we evaluate the models with a fixed set of 32 batches of our chosen sequence length
(512 for almost all experiments, the same context length as training) to establish the validation loss
curves. At the end of training, we compute the full validation loss and perplexity (this loss is reported

Shttps://github.com/karpathy/nanoGPT
Shttps://github.com/openai/tiktoken
Thttps://huggingface.co/datasets/HuggingFaceFW/fineweb

35


https://github.com/karpathy/nanoGPT
https://github.com/openai/tiktoken
https://huggingface.co/datasets/HuggingFaceFW/fineweb

Table 2: Hyperparameters for our Llama-like models.

# Parameters 124M 210M 600M
Hidden size 768 768
# Attention heads 12 12
# Layers 12 24
Init std 0.02 0.02 0.02
Use bias no no no
RMSNorm epsilon | 0.00001 | 0.00001 | 0.00001
Positional encoding | RoPE RoPE RoPE

1255 as Final Validation Loss in the figures). We also performed our initial results on the subset of
1256 OpenWebText2 dataset [21]].

1257 D Hyperparameter tuning

1258 How do we tune hyperparameters? We perform systematic hyperparameter tuning for all algo-
1259 rithms, starting with smaller models (124M, 210M) and extrapolating to larger ones. Our tuning
1260 process focused on two primary settings: Small batch setting (32 batch size) and Large batch
1261 setting (256 batch size). For both settings, we use a sequence length of 512 tokens, resulting in
1262 16k and 130k tokens per batch, respectively. If the batch cannot fit into memory, we use gradient
1263 accumulation steps, while maintaining the effective batch size.

1264 We also include ablations on even larger batch size for 124M models, where we train on 512
1265 batch size (260k tokens correspondingly). And larger, 583M models, we train on 3936 batch size,
1266 preserving the basic sequence length of 512, i.e., 4M tokens.

1267 We first run multiple experiments, greed searching hyperparameters, on near Chinchilla optimal
1268 length of training using cosine learning rate scheduler (except for SF-AdamW):

1269 e for 124M models we tune at 2.1B tokens for both small (32) and large (256) batch size setting,
1270 e for 210M models we tune at 4.2B tokens for our large batch size setting,
1271 for 583M models we also consider a setting with and without z-loss.

1272 We present the configurations for different training horizons in Tables [3]and 5]

Table 3: Lengths of training for Small batch settings (32 x 512).

# Parameters Tokens (Iterations) Ch. Tokens
124M 1B (64k) | 2.1B (128k) | 4.2B (256k) | 6.3B (384k) | 8.4B (512k) | 16.8B (1024k) 2.5B
210M 1B (64k) | 2.1B (128k) | 4.2B (256k) | 6.3B (384k) | 8.4B (512k) | 16.8B (1024k) 4.2B

Table 4: Lengths of training for Large batch settings (256 x 512).

# Parameters Tokens (Iterations) Chinchilla Tokens
124M 1B (8k) | 2.1B (16k) | 4.2B (32k) | 6.3B (48k) | 8.4B (64k) | 16.8B (128k) 2.5B
210M 1B (8k) | 2.1B (16k) | 4.2B (32k) | 6.3B (48k) | 8.4B (64k) | 16.8B (128k) 4.2B

1273 Important to note, for larger models, we mostly kept the best hyperparameters found for the 124M
1274 model and re-tuned the learning rate and gradient clipping. We summarize this process in Appen-

1275 dices[D.1lto[D3]

1276 Additionally, when we report an of one particular hyperparameters, we mean that corresponding
1277 algorithm has already been tuned and, thus, we show only how one particular hyperparameter affects
1278 the overall performance.

1279 Hyperparameters used in our WSD scheduler experiments. Once we found the best setting for

1280 each method using cosine learning rate scheduler, we are ready to obtain the optimal performance of
1281 our method with WSD scheduler [27]]. Here we follow the rule of thumb from [28]]:
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Table 5: Lengths of training for X-Large batch settings (1984 x 512).

# Parameters

Tokens (Iterations)

Chinchilla Tokens

720M

8B (8k) | 16B (16k) | 48B (48k)

14.4B

e use half the optimal learning rate for the cosine scheduler,

e use 20% of iterations for cooldown phase,

e use (1 — /z) decay shape for the cooldown phase,

the only difference is that we do not employ stochastic weight averaging [29].

Therefore, we maintain most hyperparameters across optimizers, only re-tuning the learning rate. For
methods like Muon and MARS, we reduce both AdamW’s learning rate and the learning rate for non-1D
parameters. This approach ensures a fair comparison while accounting for the unique properties of

each optimizer.

Indeed, this rule of thumb works better in our setting also, e.g., see the comparison between linear

decay shape and (1 — v/z) in

We report a series of comparisons between cosine learning rate scheduler and WSD in

Hyperparameters used in z-1oss experiments.

D.1 124M parameters model

Table 6: AdamW hyperparameter tuning for our 124M parameter large language models. Bold

hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.0001,0.0005, 0.0008, 0.001,0.002 | 0.0001,0.0003,0.0005,0.001, 0.002
Batch size 32 256
Sequence length 512 512
Number of warmup steps 3000, 5000, 8000 500, 1000, 2000, 3000, 8000, 32000
Weight decay 0.1 no, 0.1,0.5,0.7
Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping no, 0.5,1,1.5 no, 0.5,1
AdamW /3; 0.5,0.8,0.9 0.8,0.9
AdamW 35 0.95,0.999 0.95,0.99,0.999, 0.9999

Table 7: ADOPT hyperparameter tuning for our 124M parameter large language models. Bold

hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.001 0.0001, 0.0003, 0.0005, 0.001, 0.002
Batch size 32 256
Sequence length 012 512
Number of warmup steps 3000, 8000 2000, 8000, 32000
Weight decay 0.1 no 0.1,0.5
Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping 0.5 no, 0.5,1
ADOPT 34 0.9 0.8,0.9
ADOPT f35 0.999,0.9999 0.5,0.999,0.9999
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Table 8: AdEMAMix hyperparameter tuning for our 124M parameter large language models. Bold

hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.0001, 0.0005, 0.0008, 0.001,0.002 | 0.0001,0.0003,0.0005,0.001,0.002
Batch size 32 256
Sequence length 512 512
Number of warmup steps 3000, 8000 2000, 8000, 32000
Weight decay 0.1 no, 0.1,0.5,0.7
Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping no, 0.5,1,1.5 no, 0.5,1
AdEMAMix (5 0.5,0.8,0.9 0.8,0.9
AJEMAMix (3o 0.999 0.999,0.9999
AdEMAMix (33 0.999, 0.9999, 0.99995 0.999,0.9999
AJEMAMix o 5,8,12 8

Table 9: Lion hyperparameter tuning for our 124M parameter large language models. Bold hyperpa-

rameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.00005, 0.0001, 0.0005,0.001 | 0.0001,0.0005,0.001,0.002
Batch size 32 256
Sequence length 512 512
Number of warmup steps 3000 2000, 8000, 32000
Weight decay no, 0.1,0.2,0.5 no, 0.1,0.5,0.7
Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping 0.5 no, 0.5,1
Lion 0.7,0.9,0.99 0.5,0.9
Lion (35 0.9,0.99,0.999 0.99,0.999

D.2 210M parameters model
D.3 600M parameters model

E Additional results

E.1 Benchmarking: 124M

In this section, we provide complete results for the benchmarking part presented in Section
We cover both the large batch setting and the small batch setting, reporting the full curves with
validation loss dynamics across different training durations.

Given the quite a lot number of methods under consideration, we divide them into two groups: those
that outperform AdamW and those that underperform relative to AdamW. We use AdamW loss curves
as the reference point in both figures. We summarize our findings for the small batch size of 32 in
Figure[I2] And for the large batch size of 256 in Figures[13]and [I4]

E.2 Ablations for 124IM model

Fail of Sophia.
Clipping & SF-AdamW.
Betas sensitivity.

Warmup ablation. In this section we detaily describe the main part in Section 4.1}

We study the impact of batch size on the final validation loss obtained. For all methods, we sweep over
warmup lengths of {1.56%), 6.25%,25%} of the total training duration to examine each method’s
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Table 10: Signum hyperparameter tuning for our 124M parameter large language models. Bold

hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.0003,0.0005,0.001 | 0.0001,0.00030.0005,0.0003,0.001, 0.002
Batch size 32 256
Sequence length 512 512
Number of warmup steps 2000, 3000 2000, 8000, 32000
Weight decay no, 0,0.1,0.5 no, 0,0.1,0.5,0.7
Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping no, 0.5,1 no, 0.5,1
Momentum no, 0.9,0.95 no, 0.9,0.95,0.99
Nesterov momentum no, yes no, yes

Table 11: Muon hyperparameter tuning for our 124M parameter large language models. Bold

hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate AdamW 0.0001,0.0003, 0.0005,0.001,0.002 | 0.0001,0.0003,0.0005,0.001, 0.002
Learning rate Muon 0.001,0.01,0.02 0.001,0.01,0.02
Batch size 32 256
Sequence length 512 512
Number of warmup steps 3000, 8000 2000, 8000, 32000
Weight decay no, 0.1,0.5 no, 0.1,0.5
Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping no, 0.5 no, 0.5,1.0
Momentum Muon 0.9,0.95,0.99 0.95,0.99
Optimizer for 1D layers AdamW AdamW
Optimizer for 1D layers, 1 0.8,0.9 0.8,0.9
Optimizer for 1D layers, (52 0.99,0.999, 0.9999 0.99,0.999, 0.9999
Newton-Schulz a 3.4445 3.4445
Newton-Schultz b —4.7750 —4.7750
Newton-Schultz ¢ 2.0315 2.0315
Nesterov momentum no, yes no, yes

sensitivity to warmup. For AdamW, we extend this sweep to {1.56%, 5%, 6.25%, 10%, 25%}. We
specifically consider the 1.56% and 6.25% percentages because the former represents a typical
number of warmup steps (2000) for models of our scale, while the latter (6.25% of 128000 steps)
aligns with the warmup strategy used in Llama [48]].

Contrary to the insights from [92], we observe that 25% of the Cinchilla optimal duration is far from
being the best batch size for pretraining. We emphasize that their results were obtained for 85M
models and then extrapolated to larger scales. However, in our setting, we found the basic 2000 steps
a more suitable option for warmup. 25% of Chinchilla optimal length of training, for our 124M

model is 620M tokens.

We provide the warmup sweep for AdamW in Figure 19|

In addition to validating the results from [92], we report the sensitivity of different optimizers to the
number of warmup steps by conducting a sweep over the aforementioned percentages. A summary of

this experiment — Figure [6]

Muon Newton-Schulz iterations.

Weight decay ablation.

Learning rate sensitivity.

In this part of the work, we meticulously replicate the learning rate

sweep process and present comprehensive results. Consistent with our experimental setup, we aim
to determine the true impact of the learning rate and its transferability to longer training horizons.
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Table 12: SOAP hyperparameter tuning for our 124M parameter large language models. Bold

hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.005,0.001 0.0001, 0.0003, 0.0005,0.001, 0.002
Batch size 32 256
Sequence length 512 512
Number of warmup steps 3000, 8000 2000, 4000, 8000, 12000, 16000, 32000
Weight decay 0.1 no, 0.1,0.5
Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping 0.5 no, 0.5,1
Preconditioner dimension 10000 10000
Preconditioning frequency 1,5,10 1,5,10
SOAP 3 0.8,0.9 0.8,0.9,0.95
SOAP (35 0.95,0.99,0.999, 0.9999 0.95,0.99,0.999, 0.9999

Table 13: Sophia hyperparameter tuning for our 124M parameter large language models. Bold

hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.0001, 0.0003, 0.0005, 0.001,0.002 | 0.0001,0.0003,0.0005,0.001,0.002,0.01
Batch size 32 256
Sequence length 512 512
Number of warmup steps 2000, 3000 2000, 8000, 32000
Weight decay 0.1 no, 0.1,0.5
Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping 0.5 no, 0.5,1
Estimator Gauss-Newton-Bartlett Gauss-Newton-Bartlett
Estimator frequency 10 10
Sophia 1 0.9 0.8,0.9
Sophia (5 0.95,0.999, 0.9999, 0.99999 0.95,0.999, 0.9999, 0.99999
Sophia p 0,0.03,0.04 0,0.03,0.04

For each optimizer (except Prodigy), we vary only the learning rate while maintaining the best
hyperparameter settings obtained during our initial tuning (see Appendices [D] and [D.1I)) on 2.1B
tokens for the 124M parameter model. We present the results of the learning rate sweep in Figure 24]

Cosine vs WSD. We present our results for two batch size settings: 32 and 256. At first, our initial
results in small batch setting on the OpenWebText2 (OWT2) dataset, we present in Figure 25

We report the final validation loss on the FineWeb dataset for 124IM model trained on the batch size
of 256. We use our tuned with cosine scheduler methods. For WSD, we follow the rule of thumb
from [28]: 20% of steps for the cooldown, 1 — /z decay shape, and the learning rate is half the
optimal for cosine, i.e., 0.0005 if we have the best learning rate 0.001 for the method. Additionally,
we point out that we do not include stochastic weight averaging in the comparison, which might
potentially enhance the performance of optimizers with WSD.

Gradient norm patterns.

E.3 Benchmarking: 210M
E.4 Ablations for 210M model
E.5

E.6 Extension to MoEs.

40

Wall-clock performance of optimizers across models of different scale




Table 14: Schedule-Free AdamW hyperparameter tuning for our 124IM parameter large language
models. Bold hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.0001, 0.0003, 0.0005,0.001,0.005 | 0.0001,0.0003,0.0005,0.001, 0.002, 0.005
Batch size 32 256
Sequence length 012 012
Number of warmup steps 3000, 8000 2000, 4000, 8000, 12000, 16000, 32000
Weight decay no, 0.05,0.1,0.5 no, 0.05,0.1,0.5
Learning rate decay scheduler no no
Gradient clipping no, 0.5 no, 0.5,1
Schedule-Free AdamW (3 0.9,0.95,0.98 0.9,0.95,0.98

Schedule-Free AdamW [

0.95,0.99,0.999, 0.9999, 0.99999

0.95,0.99, 0.999, 0.9999, 0.99999

Table 15: Prodigy hyperparameter tuning for our 124M parameter large language models. Bold

hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate 0.5,1 0.5,1,2,10,100
Batch size 32 256
Sequence length 512 512
Number of warmup steps 3000, 8000 2000, 4000, 8000, 12000, 16000, 32000
Weight decay no, 0.1,0.5 no, 0.1,0.5
Learning rate decay scheduler no, WSD, cosine no, WSD, cosine
Gradient clipping no, 0.5, 1 no, 0.5,1
Prodigy (3, 0.9 0.8,0.9
Prodigy 32 0.99,0.999, 0.9999 0.999,0.9999
Prodigy bias correction no, yes no, yes

Table 16: MARS (MARS-AdamW) hyperparameter tuning for our 124MM parameter large language
models. Bold hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate AdamW 0.0001, 0.0005, 0.001,0.003 | 0.0001,0.0005,0.001,0.003
Learning rate MARS 0.001,0.003 0.001,0.003
Batch size 32 256
Sequence length 512 512
Number of warmup steps 2000, 3000 2000, 8000, 32000
Weight decay MARS no, 0.1 no, 0.1,0.5
Weight decay for 1D layers 0.1 0.1
Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping 0.5 0.5
Optimizer for 1D layers AdamW AdamW
Optimizer for 1D layers 31 0.8,0.9 0.8,0.9,0.95
Optimizer for 1D layers (35 0.95,0.99,0.999 0.95,0.99,0.999
MARS (1 0.9,0.95 0.9,0.95
MARS 0.95,0.99 0.95,0.99
VR scaling factor 7 0.024,0.025 0.024,0.025
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Table 17: MARS-Lion hyperparameter tuning for our 124MM parameter large language models. Bold

hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate Lion 0.0001,0.0005, 0.001,0.003 | 0.0001,0.0005,0.001,0.003
Learning rate MARS 0.0001,0.001, 0.003 0.0001,0.001, 0.003
Batch size 32 256
Sequence length 512 512
Number of warmup steps 2000, 3000 2000, 8000, 32000
Weight decay MARS no, 0.1 no, 0.1,0.5
Weight decay for 1D layers 0.1 0.1
Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping 0.5 0.5
Optimizer for 1D layers Lion Lion
Optimizer for 1D layers 31 0.8,0.9 0.8,0.9,0.95
Optimizer for 1D layers (32 0.95,0.99,0.999 0.95,0.99,0.999
MARS (1 0.9,0.95 0.9,0.95
MARS 0.95,0.99 0.95,0.99
VR scaling factor 7 0.024,0.025 0.024,0.025

Table 18: MARS-Shampoo hyperparameter tuning for our 124M parameter large language models.

Bold hyperparameters are the best.

Hyperparameter Small batch setting Large batch setting
Learning rate Shampoo 0.0001, 0.0005, 0.001,0.003 | 0.0001,0.0005,0.001,0.003
Learning rate MARS 0.001,0.003 0.001,0.003
Batch size 32 256
Sequence length 512 512
Number of warmup steps 2000, 3000 2000, 8000, 32000
Weight decay MARS no, 0.1 no, 0.1,0.5
Weight decay for 1D layers 0.1 0.1
Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping 0.5 0.5
Optimizer for 1D layers Shampoo Shampoo
Optimizer for 1D layers 3 0.8,0.9 0.8,0.9,0.95
Optimizer for 1D layers (5 0.95,0.99,0.999 0.95,0.99,0.999
MARS 0.9,0.95 0.9,0.95
MARS 3 0.95,0.99 0.95,0.99
VR scaling factor 7 0.024,0.025 0.024,0.025

Table 19: Hyperparameters for our Llama-like models for the wall-clock experiments.

# Parameters 30M 52M S80M 124M 150M 210M 360M 720M 1B
Hidden size 384 512 768 768 768 768 1024 2048 1792
# Attention heads 6 8 6 12 12 12 16 16 14
# Layers 8 8 6 12 16 24 24 12 24
Init std 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Use bias no no no no no no no no no
RMSNorm epsilon | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001
Positional encoding RoPE RoPE RoPE RoPE RoPE RoPE RoPE RoPE RoPE
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Underperforming AdamW, Batch Size 32 (124M)
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Figure 11: Ranking of optimizers in the small-batch setting. In the small-batch setting AdamW
outperforms most of the optimizaers we study.

Outperforming AdamW, Batch Size 32 (124M)
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Figure 12: Ranking of optimizers in the small-batch setting. Here only AdEMAMix, SOAP and
ADOPT show a remarkable performance compared to AdamW.
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Underperforming AdamW, Batch Size 256 (124M)
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Figure 13: Ranking of optimizers in the large-batch setting.
Outperforming AdamW, Batch Size 256 (124M)
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Figure 14: Ranking of optimizers in the large-batch setting.
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Figure 15: Sophia diverges in the small-batch setting even with sufficiently small learning rate.
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Figure 16: Clipping is significant for Schedule-Free.
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Figure 17: Prodigy is sensitive to beta parameters in the small-batch setting.
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Figure 18: Impact of beta parameters on Schedule-Free.
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7] AdamW, Trained on 16.8B tokens

Q 3.200

A

=

S 3.190

-

=

=

= 3.180

<

>

= 3170

R=

P~ 0.27B 0.84B 1B 1.67B 1.2B
Warmup Tokens (B)

Figure 19: Warmup sweep for AdamW. We observe that the smaller yet reasonable warmup value is
the best, however, this is not true for other methods like Signum and SF-AdamW (see ??).
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Figure 20: Warmup ablation. We report the final validation loss on the FineWeb dataset for 124M
model trained on the batch size of 256. We sweep over the batch sizes of {1.56%, 6.25%, 25%} of
the length of training, which corresponds to {2000, 8000, 32000}k iterations, respectively.
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Figure 21: Ranking of optimizers in the large-batch setting.
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Figure 22: Muon’s dependence on the number of Newton-Schulz iterations.
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Figure 23: Larger weight decay achieves significantly better results when training on fewer
tokens. We report the final validation loss on the FineWeb dataset for 124M model trained on
the batch size of 256. We observe that the mmajority of runs with the large weight decay of 0.5
consistently outperform the same optimizer with weight decay of 0.1 for all training durations except
for the last one. Notably, Signum and Lion with large weight decay perform even better than AdamW
with the same learning rate. We also consider a setting without weight decay. We observe that this is
suboptimal for most of other optimizers, while the typical weight decay of 0.1 remains the best for
large training durations. An interesting thing we observe for optimizers that train one dimensional
and two dimensional parameters in a different way — Muon, MARS. Indeed, the corresponding runs
with the weight decay of 0.5 are always worse than then 0.1 baseline and, in some cases, even worse
than runs without weight decay. For Muon, we connect this effect to its algorithmic design, where
weight decay is not used to optimize matrix parameters (see Algorithm[7). For MARS, we only vary the
weight decay that corresponds to matrix parameters, while keeping 0.1 for all scalar, one dimensional
and final layer parameters. In this case, we conclude that the gap between large and small weight
decay values narrows significantly faster.
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Figure 24: Learning rate sensitivity. We report the final validation loss on the FineWeb dataset
for 124M model trained on the batch size of 256. In the current setting, only SOAP and SF-AdamW
reach the better performance with the large leraning rate of 0.02. On the other hand, Sophia and all
sign-based methods (Signum and Lion) diverge with this value of the learning rate.
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Figure 25: WSD scheduler underperforms both AdamW with cosine scheduler and SF-AdamW.
Once the learning rate and beta parameters of SF-AdamW and AdamW are properly tuned, we observe
a surprisingly large gap in performance between WSD scheduler and its competitors. Figure (b)
suggests that this gap may potentially diminish with extended training. To investigate this further,
we conduct a scalable comparison between tuned WSD and cosine baselines across longer training

horizons.
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Figure 26: WSD scheduler underperforms cosine. We report the final validation loss on the
FineWeb dataset for 124M model trained on the batch size of 256. We observe that WSD still can
match the performance of cosine on Sophia, Signum, Lion, i.e., on the sign-based methods, and
even outperform for Muon. Although the gap in performance is not particularly significant, but for
benchmarking purposes, we decide to stick to the cosine scheduler because those gap still plays a
substantial role in our setup.
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Figure 27: Gradient Norm patterns for cosine scheduler.
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Figure 28: Gradient Norm patterns for WSD scheduler.
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Figure 29: Ranking of optimizers in the large-batch setting.
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Figure 30: Ranking of optimizers in the large-batch setting.
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