
Under review as a conference paper at ICLR 2024

ALPHAZERO-LIKE TREE-SEARCH CAN GUIDE LARGE
LANGUAGE MODEL DECODING AND TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) typically employ sampling or beam search, ac-
companied by prompts such as Chain-of-Thought (CoT), to boost reasoning and
decoding ability. Recent work like Tree-of-Thought (ToT) and Reasoning via
Planning (RAP) aim to augment the reasoning capabilities of LLMs by utilizing
tree-search algorithms to guide multi-step reasoning. These methods mainly focus
on LLMs’ reasoning ability during inference and heavily rely on human-designed
prompts to activate LLM as a value function, thus lacking general applicability and
scalability. To address these limitations, we present an AlphaZero-like tree-search
framework for LLMs (termed TS-LLM), systematically showing how tree-search
with a learned value function can guide LLMs’ decoding ability. TS-LLM distin-
guishes itself in two key ways: (1) Leveraging a learned LLM-based value func-
tion, our approach can be generally applied to different tasks beyond reasoning
(such as RLHF alignment), and LLMs of any size, without prompting advanced,
large-scale models. (2) It can guide LLM’s decoding during both inference and
training. Empirical evaluations across reasoning, planning, and RLHF alignment
tasks validate the effectiveness of TS-LLM, even on trees with a depth of 64.

1 INTRODUCTION

Pretrained autoregressively on extensive corpora, large language models (LLMs) (OpenAI, 2023;
Touvron et al., 2023a) have demonstrated their potential in a wide range of natural language tasks. A
plethora of recent studies have concentrated on improving LLMs task-solving capability, including
curation of larger and higher-quality general or domain-specific data (Touvron et al., 2023a; Zhou
et al., 2023; Gunasekar et al., 2023; Feng et al., 2023; Taylor et al., 2022), more sophisticated prompt
design (Wei et al., 2022; Zhou et al., 2022; Creswell et al., 2022), or better training algorithms
with Supervised Learning or Reinforcement Learning (RL) (Dong et al., 2023; Gulcehre et al.,
2023; Rafailov et al., 2023). When training LLMs with RL, LLMs’ generation can be naturally
formulated as a Markov Decision Process (MDP) and optimized with specific objectives. Following
this formulation, ChatGPT (Ouyang et al., 2022) emerges as a notable success, optimizing LLMs to
align human preference by leveraging RL from Human Feedback (RLHF) (Christiano et al., 2017).

Based on this formulation, LLMs’ generation can be further guided with planning algorithms such
as tree search. The success of AlphaZero (Silver et al., 2017b) has strongly proved the effectiveness
of tree search algorithms, especially Monte Carlo Tree Search (MCTS)(Kocsis & Szepesvári, 2006;
Coulom, 2006), in solving large-scale MDPs, including Atari and Go. It attracts recent efforts on the
potential of leveraging these principled planning approaches to improve LLMs’ reasoning ability.

Preliminary work in this field includes Tree-of-Thought (ToT) (Yao et al., 2023; Long, 2023) with
depth/breadth-first search and Reasoning-via-Planing (RAP)(Hao et al., 2023) with MCTS. They
successfully demonstrated a performance boost of searching on trees expanded by LLM through
self-evaluation. Despite the strides, current methods come with distinct limitations. Firstly, these
approaches mainly focus on enhancing LLMs’ reasoning ability, lacking general applicability in
different kinds of tasks, such as RLHF alignment. Secondly, as a model-based algorithm, the crucial
reward or value function of tree-search algorithms is mainly obtained by prompting LLMs for step-
level or trajectory-level reasoning. As a result, such algorithms lack their applicability and heavily
rely on both well-designed prompts and large-scale LMs, such as GPT4 or LLaMA-33B. Only LLMs
in such scale can provide reliably innate critic ability for reward and value estimation.

1

Under review as a conference paper at ICLR 2024

To address these problems, we introduce tree-search enhanced LLM (TS-LLM), an AlphaZero-like
framework that utilizes tree-search to improve LLMs’ performance on general natural language
tasks. TS-LLM extends previous work to AlphaZero-like deep tree-search with a learned LLM-
based value function and can guide LLM both during inference and training. Compared with previ-
ous work, TS-LLM has the following two new features:

• TS-LLM offers a generally applicable and scalable pipeline. It is generally applicable: (1)
TS-LLM can be versatile to different tasks beyond reasoning. It can even solve RLHF alignment
task in our experiment. (2) With a learned value function, TS-LLM can be applied to LLMs of
any size. It does not require any well-designed prompts or advanced, large-scale LLMs. Our
experiments show that TS-LLM can work for LLMs ranging from as small as 125M to as large as
7B. TS-LLM is also scalable: TS-LLM can conduct deep tree search, extending tree-search for
LLM generation up to a depth of 64. This is far beyond 10 in ToT and 7 in RAP.

• TS-LLM can potentially serve as a new LLM training paradigm beyond inference decoding.
By treating the tree-search operation as a policy improvement operator, we can conduct iterative
processes of policy improvement and evaluation, to further train the LLM.

Furthermore, we present an in-depth analysis of the core design elements in TS-LLM, delving into
the features, advantages, and limitations of different variations. We also offer a novel and reasonable
evaluation metric to fairly compare tree-search algorithms with other baselines. Through compre-
hensive empirical evaluations on reasoning, planning, and RLHF alignment tasks, we benchmark
the performance of various TS-LLM algorithm variants and underscore their superior capabilities.
This showcases TS-LLM’s potential as a universal framework to guide LLM decoding and training.

2 RELATED WORK

Multistep Reasoning in LLMs Multistep reasoning in language models has been widely stud-
ied, from improving the base model (Chung et al., 2022; Fu et al., 2023; Lewkowycz et al., 2022)
to prompting LLMs step by step (Kojima et al., 2022; Wei et al., 2022; Wang et al., 2022; Zhou
et al., 2022). Besides, a more relevant series of work has focused on enhancing reasoning through
evaluations, including learned reward models (Uesato et al., 2022; Lightman et al., 2023) and self-
evaluation (Shinn et al., 2023; Madaan et al., 2023). In this work, we apply evaluations to multistep
reasoning tasks and token-level RLHF alignment tasks by learning a value function and reward
model under the setting of a multistep decision-making process.

Search guided reasoning in LLMs While most CoT approaches have used a linear reasoning struc-
ture, recent efforts have been made to investigate non-linear reasoning structures such as trees (Jung
et al., 2022; Zhu et al., 2023). More recently, various approaches for searching on trees have been ap-
plied to find better reasoning paths, e.g. beam search in Xie et al. (2023), depth-/breadth-first search
in Yao et al. (2023) and Monte-Carlo Tree Search in (Hao et al., 2023). Compared with these meth-
ods, TS-LLM is a tree search guided LLM decoding and training framework with a learned value
function, which is more generally applicable to both reasoning tasks and other scenarios like RLHF
alignment tasks. Due to the limit of space, we leave a comprehensive comparison in Appendix A.

Finetuning LLMs with Augmentation Recent efforts have also been made to improve LLMs with
augmented data. Rejection sampling is a simple and effective approach for finetuning data augmen-
tation to improve LLMs’ ability on single/multiple task(s) such as multistep reasoning (Yuan et al.,
2023a; Zelikman et al., 2022) and alignment with human preference (Dong et al., 2023; Bai et al.,
2022). Given an augmented dataset, reinforcement learning approaches have been also used to fine-
tune LLMs (Gulcehre et al., 2023; Luo et al., 2023). Compared to previous works, TS-LLM lever-
ages tree search as a policy improvement operator to generate augmented samples to train both the
LLMs and the value function.

3 ENHANCING LARGE LANGUAGE MODEL WITH TREE SEARCH

In this section, we propose a versatile tree-search framework TS-LLM for guiding LLMs decod-
ing and training. TS-LLM is summarized in the right part of Fig.1, and we conduct a systematic
and comprehensive discussion about its key components. We start with the problem formulation
with different tree/node designs, illustrating how LLMs’ generation can be framed into a tree-search

2

Under review as a conference paper at ICLR 2024

𝒙𝟎:𝑳−𝟏
𝟏 , 𝒚𝟎:𝑻′−𝟏

𝟏

𝒙𝟎:𝑳−𝟏
𝟏 , 𝒚𝟎:𝑻′−𝟏

𝟐

𝒙𝟎:𝑳−𝟏
𝟏 , 𝒚𝟎:𝑻′−𝟏

𝟑

Task training set

3+8=11
(left: 1,1,11)

8*3=24
(left: 1,1,24)

1,1,3,8

8

*

3 1

3

+ -

3 1

1,1,3,8

1*24=24
(left: 1,24)

11+1=12
(left 1,12)

LLM Policy

Value/ORM

(Sec 3.2.3)
Aggregation

(Sec 3.2.2)
Algorithms

(Sec 3.2.1 and 3.3)
Value and Policy trainingSentence-level Token-level

(Sec 3.1)
Problem formulation

Figure 1: Left: Sentence/Token-level node on Game24 1. Right: Overall framework: TS-LLM is
a generally applicable and scalable pipeline with multiple choices of tree search approaches and
search aggregation methods. Firstly, with LLM finetuned on the task training set, TS-LLM gener-
ates trajectories to learn value/ORM. By treating tree search as a policy improvement operator, it
iteratively augments the training set and further improves the LLM and value/ORM.

pipeline. Secondly, we show how tree-search can help with LLM inference, including choices of
specific tree-search algorithms, value-function training techniques, and search aggregation methods.
Building upon tree-search enhanced inference, we present how tree-search can serve as a general
policy improvement operator for guiding LLMs training. Lastly, we discuss the tree-search algo-
rithm’s computation burdens for a fair comparison.

3.1 PROBLEM FORMULATION

We formulate the language generation process as a multi-step Markov Decision Process (MDP).
The particularity of natural language tasks is that both the action and state are in language space.
LLMs can serve as a policy πθ that samples sequences of tokens as actions. Assuming the length
of the output sequence and input prompt are T and L respectively, the probability for an LLM
policy to produce an output sequence y = (y0, y1, . . . , yT−1) conditioned on a prompt (input prefix)
x = (x0, x1, . . . , xL−1) is: πθ(y|x) =

∏T−1
t=0 πθ(yt|x0:L−1,y0:t−1).

For a given natural language task, we can define a reward function R(yt|x0:L−1,y0:t−1) as the task
performance feedback for intermediate generation yt at timestep t. Due to the lack of large-scale and
high-quality intermediate reward labels for general tasks, it is usually a sparse reward setting where
any intermediate reward from the first T − 1 timestep is zero except the last T -th step. A typical
case can be RLHF alignment task, where LLM can only receive the reward signal after it completes
the full generation. Following the same logic, y can also be viewed as a sequence of sentences.

Given the problem formulation above, we successfully transfer the problem of better generation to
optimization for higher cumulative reward. In this paper, we focus on how we can optimize it with
tree-search algorithms. A specific natural language task typically predefines the state space (with
language) and reward function (with task objective/metrics). What remains is the definition of action
space, or in the context of tree-search algorithm, the action node design problem.

Tree search algorithms have validated their effectiveness for different action spaces in traditional
RL research, including discrete action space (Silver et al., 2017a; Schrittwieser et al., 2020a) and
continuous action space (Hubert et al., 2021). For conducting tree-search on LLMs, we categorize
the action space design into the following two aspects:

• Sentence-level action nodes: For the tasks that have a step/sentence-level structure(e.g. chain-of-
thought reasoning), it is natural to treat each thought as a sentence-level action node. Fig. 1 shows
an example of sentence-level action nodes. This is also the technique adopted by ToT (Yao et al.,
2023) and RAP (Hao et al., 2023). For each non-terminal node, the search tree is expanded by
sampling serveral possible subsequent intermediate steps and dropping the duplicated generations.

• Token-level action nodes: Analogous to tree-search in discrete action space MDP, we can treat
each token as a discrete action for LLM policy and the tree search can be conducted in token-
level. We demonstrate an example of a Token-level action node in Fig. 1. For those tasks in which
intermediate steps are not explicitly defined(e.g. RLHF alignment), splitting an output sequence
into tokens might be a good choice.

1In our experiment on Game24, we only adopt the sentence-level node setting.

3

Under review as a conference paper at ICLR 2024

Note that for a proper state space, the node in both settings will be fixed once it is expanded.

Typically, the search space is determined by two algorithm-agnostic parameters, the tree max width
w and tree max depth d. In traditional RL, tree max-width typically refers to the size of action
space while tree max-depth represents the episode length. In LLM generation, both action space
designs have their own advantages and limitations over the search space. By splitting the generation
into sentences, sentence-level action nodes provide a relatively shallow tree (low tree max-depth),
simplifying the tree-search process. However, the large sample space of sentence-level generation
makes full enumeration of all possible sentences infeasible. We have to set a maximum tree width
w to subsample w nodes during the expansion, similar to the idea of Sampled MuZero(Hubert et al.,
2021). Such subsampling results in the gap, determined by w, between the tree-search space and
the LLM generation space. In addition, sentence-level action node often brings extra computation
burdens, which will be further discussed in Section 3.4. For token-level action nodes, though it
can get rid of the search space discrepancy and extra computational burdens, it greatly increases the
depth of the tree, making tree-search more challenging.

3.2 GUIDING LLM INFERENCE DECODING WITH TREE SEARCH

One of the benefits of tree-search algorithms is that they can optimize the cumulative reward by
mere search, without any gradient calculation or update. Tree-search algorithms can enhance LLM
generation without any further finetuning. In this section, given a fixed LLM policy, we present the
full pipeline to illustrate how to guide LLM inference with tree search approaches.

3.2.1 LEARNING AN LLM-BASED VALUE FUNCTION

As a model-based RL algorithm, tree search typically requires three models, including dynamic
transition model g, reward model r̂(Schrittwieser et al., 2020a), and value function v Silver et al.
(2017a). The dynamic transition in the LLM generation, given state st = (x0:L−1,y0:t−1) and
action at ∼ πθ(·|st), is known as: g

(
st, at) = (x0:L−1,y0:t). The value function v and reward

model r̂ are the main issues. ToT and RAP obtain these two models by prompting advanced LLMs,
such as GPT-4 or LLaMA-33B. As we will show in our experiment, specifically in Table 4, small
LLM cannot serve as a reliable value model to guide the tree search process.

To make the tree search algorithm generally applicable, our method leverages a learned LLM-based
value function vθ(s) conditioned on state s and a learned final-step outcome reward model (ORM)
r̂θ (Uesato et al., 2022) since most tasks can be formulated as sparse-reward problems. Note that
in fact the design of value function can be quite flexible and the essential aspect is its ability to
consistently assess the state. Since we mainly deal with language-based task, we utilize a shared
value network and reward model whose structure is a decoder-only transformer with an MLP to
output a scalar on each position of the input tokens. And typically, LLM value’s decoder is adapted
from original LLM policy πθ’s decoder, or alternatively, the LLM value vθ and policy πθ can have
a shared decoder (Figure 1.b in (Silver et al., 2017a)). For a sentence-level expanded intermediate
step st, we use the prediction scalar at the last token as its value prediction vθ(st). The final reward
can be obtained at the last token when feeding the full sentences (x0:L−1,y0:T−1) into the model.

Therefore, we use language model πθ as the policy to sample generations using the task training
dataset. With true label or a given reward function in training data, a set of sampled tuple Dtrain =

{(xj ,yj , rj)}j of size |Dtrain| can be obtained, where xj is the input text, yj = sj0:T j−1 is the output
text of T j steps and rj = R(yj |xj) is the ground-truth reward. Similar to the critic training in most
RL algorithms, we construct the value target zjt by TD-λ or MC estimate on each single step t. The
value network is optimized by mean squared error:

L(θ) = ED

T j−1∑
t=0

||vθ(sj0:t|xj)− zjt ||22

 . (1)

The ORM r̂θ(y0:T−1|x0:L−1) is learned with the same objective. Training an accurate value func-
tion and ORM is quite crucial for the tree-search process as they provide the main guidance during
the search. We will further illustrate how different training conditions influence the learned value
function, ORM, and corresponding tree-search performance in our experiment section.

4

Under review as a conference paper at ICLR 2024

3.2.2 TREE SEARCH ALGORITHMS

Given a learned value function, in this section, we present five types of tree-search algorithms. Due
to the space limitation, we leave the background, preliminaries and detailed comparison of these
tree-search algorithms in Appendix C.1.

MCTS with value function approximation (named as MCTS-α): This is the MCTS variants uti-
lized in AlphaZero (Silver et al., 2017a). Starting from the initial state, we choose the node of
state st as the root node and do several times of search simulations consisting of select, expand
and evaluate and backup, where the leaf node value evaluated by the learned value function will
be backpropagated to all its ancestor nodes. After the search, we choose an action proportional to
the root node’s exponentiated visit count, i.e. a ∼ N(st,a)

1/τ∑
b N(st,b)1/τ

, and move to the corresponding
next state. The above iteration will be repeated until finished. MCTS-α has two main features.
Firstly, MCTS-α cannot trace back to its previous states once it takes an action. So it cannot restart
the search from the initial state unless multiple searches are conducted which will be discussed in
Section 3.2.3. Secondly, MCTS-α utilizes a value function so it can conduct the backward oper-
ation during the intermediate steps, without the need to complete the full generation to obtain a
Monte-Carlo estimate.

MCTS: This approach was adopted in RAP (Hao et al., 2023), which refers to classic MCTS(Kocsis
& Szepesvári, 2006). Specifically, the process starts from the initial state node and then select until
finding a leaf node, if this node is non-terminal, expand it and repeat the previous select and expand
steps. If the process encounters a terminal node, its value will be evaluated and backup to the whole
path. In contrast to MCTS-α, it only back-propagates the value on the terminal nodes, relying on a
Monte-Carlo estimate of value, and it always starts searching from the initial state node.

MCTS-Rollout: Combining the features from the two algorithms above, we propose a new variant
MCTS-Rollout for tree search. Similar to MCTS, MCTS-Rollout always starts from the initial state
node. It further does the search simulations analogous to MCTS-α, and the backup process can
happen in the intermediate step with value function. It repeats the operations above until the process
finds N complete answers or reaches the computation limit (e.g. maximum number of tokens.)
MCTS-Rollout can be seen as an offline version of MCTS-α so they may have similar application
scope. The only difference is that MCTS-Rollout can scale up the token consumption for better
performance since it always reconducts the search from the beginning.

Breadth-first and Depth-first Search with value function based tree-pruning(BFS-V/DFS-V):
These two search algorithms were adopted in ToT (Yao et al., 2023). The core idea is to utilize
the value function to prune the tree for efficient search, while such pruning happens in tree breadth
and tree depth respectively. BFS-V can be regarded as a beam-search with cumulative reward as
the objective. In BFS-V, when setting beam size as k2, nodes with k-largest values are maintained
and expanded in each step. DFS-V chooses an unvisited node with the highest value until it finds a
complete path. To improve the search efficiency, DFS-V prunes trees by either dropping the nodes
whose value is below a predefined threshold or dropping the nodes of lower values.

3.2.3 MULTIPLE SEARCH AND SEARCH AGGREGATION

Inspired by Wang et al. (2022) and Uesato et al. (2022) that LLM can improve its performance on
reasoning tasks by sampling multiple times and aggregating the candidates, TS-LLM also has the
potential to aggregate N complete answers generated by multiple tree searches.

When conducting multiple tree searches, we usually adopt Intra-tree Search setting. Intra-tree
search conducts multiple tree searches on exactly the same tree, thus the state space is exactly the
same. Such a method is computationally efficient as the search tree can be reused multiple times.
However, the diversity of multiple generations might decrease because the former tree search might
influence the latter tree searches. Also, the search space is limited by the sentence-level actions
which are previously expanded in the tree and are fixed across multiple tree searches.

We refer to Appendix D.5 for an alternative setting called Inter-tree Search where we allow resam-
pling in the expansion process. Without further specification, all settings in our paper are under the
intra-tree search setting. Our next step is to aggregate these search results to obtain the final answer.
With a learned ORM, we consider the following three different aggregation methods:

2For BFS-V, we can get k complete answers by setting the beam size as k. Thus, k = N in BFS.

5

Under review as a conference paper at ICLR 2024

Table 1: Task setups. The node, tree max with and tree max depth are search space parameters.
Refer to Appendix D.6 and D.10 for how max tree-width and tree-depth are determined.

Search Space Hyperparameters

Task Category Train/test size Node Tree Max width Tree Max depth

GSM8k Mathematical Reasoning 7.5k / 1.3k Sentence 6 8
Game24 Mathematical Planning 1.0k / 0.3k Sentence 20 4

PrOntoQA Logical Reasoning 4.5k / 0.5k Sentence 6 15
RLHF Alignment 30k / 3k Token 50 64

Majority Vote. Wang et al. (2022) aggregates the answer f by using majority vote over multiple
random generation: f∗ = argmaxf

∑
yj 1final ans(yj)=f , where 1 is the indicator function.

ORM-Max. Given an outcome reward model, the aggregation can choose the answer f with maxi-
mum final reward, f∗ = final ans(argmaxyj r̂θ(y

j |xj)).
ORM-Vote. Given an outcome reward model, the aggregation can choose the answer f with the
sum of reward, namely f∗ = argmaxf

∑
yj ;final ans(yj)=f r̂θ(y

j |xj)

3.3 ENHANCING LLM TRAINING WITH TREE SEARCH

By plugging in the tree search operation, LLM can decode better compared to its original decoding
performance during inference, which in other words, is a policy improvement process. Based on this,
a new training/finetuning paradigm can be proposed, consisting of the following iterative process:

Policy improvement: We firstly generate tree-search trajectories based on πθold , vθold , and r̂θold . By
imitating new trajectories, LLM policy can be further improved to πθnew .

Policy evaluation: Train value function vθnew and ORM r̂θnew over the new sampled trajectories.

Such iterative process belongs to generalized policy iteration (Sutton & Barto, 2018), which is also
the procedure used in AlphaZero’s training. In our case, the training process involves finetuning
three networks on the tree-search augmented training dataset.: (1) Policy network πθ: Use cross-
entropy loss with trajectories’ tokens as target (2) Value network vθ: Mean squared error loss with
trajectories’ temporal difference (TD) or Monte-Carlo (MC) based value estimation as target, and
(3) ORM r̂θ: Mean squared error loss with trajectories’ final reward as target.

3.4 TREE SEARCH’S EXTRA COMPUTATION BURDENS

Tree-search algorithms will inevitably bring in additional computation burdens, especially in the
node expansion phase for calculating legal child nodes and their corresponding value. Prior method-
ologies, such as ToT and RAP, tend to benchmark their performance against baseline algorithms
using an equivalent number of generation paths (named Path@N). This approach overlooks the
additional computational demands of the tree-search process and makes the comparison unfair.

In the setting of sentence-level action nodes, such computational demands are substantial. This is
primarily because expanding a tree requires the generation of multiple sentences from a single parent
node. In contrast, a token-level action node can alleviate the computation demand for all child nodes.
A single forward inference can directly yield a probability distribution for all tokens so its search
space and computational overhead align closely with the random sampling strategy typically used
in LLM generation. Despite this, additional exploration steps (especially in Alphazero-like MCTS
search) still introduce further computation. To enable a more fair comparison between tree-search
and other baselines, we also should monitor the number of tokens generated for node expansion in
our experiments. This provides a meaningful and fair comparison of different algorithms’ perfor-
mance when operating under comparable token generation conditions.

4 EXPERIMENTS

In this section, we first introduce detailed experimental setups in Section 4.1. In Section 4.2, we
comprehensively present features of TS-LLM by answering six questions. Refer to Appendix D
and E for more settings, implementations, results, and visualizations. Our code is open-sourced at
https://github.com/iclr2024tsllm/ICLR2024_TS_LLM.

6

https://github.com/iclr2024tsllm/ICLR2024_TS_LLM

Under review as a conference paper at ICLR 2024

4.1 EXPERIMENT SETUPS

Task setups. For a given MDP, the nature of the search space is primarily characterized by two di-
mensions: depth and width. To showcase the efficacy of tree-search algorithms across varied search
spaces, we evaluate all algorithms on four tasks with different search widths and depths, including
the mathematical reasoning task GSM8k (Cobbe et al., 2021), mathematical planning task Game24
(Yao et al., 2023), logical reasoning task PrOntoQA (Saparov & He, 2022), and RLHF alignment
task using synthetic RLHF data (Dahoas). The specific task statistics and search space hyperparam-
eters are listed in Table 1. These hyperparameters, especially max search width and search depth,
are determined by our exploration experiments. They can effectively present the characteristics of a
task and define its search space. Refer to Appendix D.1 for more details of our evaluation tasks.

Benchmark algorithms. In our experiment, we benchmark all tree-search algorithms introduced
in section 3.2.2, including MCTS-α, MCTS-Rollout, MCTS, BFS-V, and DFS-V. Note that BFS-V,
DFS-V, and MCTS are TS-LLM’s variants instead of ToT(Yao et al., 2023) or RAP(Hao et al., 2023)
baselines. The main difference is that we adopt a learned value function rather than prompting LLM.
In our Question 3 and Table 4, we will present the results in ToT and RAP settings. In addition, we
want to clarify that our experiments are not designed to validate our newly adopted MCTS-α and
MCTS-Rollout are the new state-of-the-art among all search algorithms. We will present in our
experiments that each search algorithm has its own task scope. We compare TS-LLM’s variants
with direct decoding methods: CoT greedy decoding, and CoT with self-consistency (Wang et al.,
2022) (denoted as CoT-SC). Considering the search space gap between direct decoding and tree
decoding (especially the sentence-level action node discussed in the section 3.1), we include the
CoT-SC-Tree baseline which conducts CoT-SC over the tree’s sentence nodes.

Tree-search details. Trees are expanded with sentence-level action nodes in GSM8k, Game24, and
PrOntoQA, specifically, the output sequence is split into steps by ‘\n’. For GSM8k and PrOntoQA
problems, we expand each node with at most 6 actions by LLM inference on the current state until
outputs ‘\n’ or ‘<EOS>’, while for Game24 problems, we expand each node with at most 20 actions.
We use token-level action nodes for RLHF aligment task. As we mentioned in section 3.2.2, such
setting will result in a really deep search tree to a depth of 64.

Model and training details. For the rollout policy used in tree-search, we use LLaMA2-7B (Tou-
vron et al., 2023b) on three reasoning tasks, and GPT-2-small (125M) on the RLHF alignment task.
All LLMs will be first supervise-finetuned (SFT) on the tasks’ training set, enabling their zero-shot
CoT ability. Thus, CoT in our experiments refers to zero-shot greedy decoding. For value and
ORM training, the data are generated by sampling the SFT policy’s rollouts on the training set. Our
policy LLM and value LLM are two separate models but are adapted from the same base model.

4.2 RESULTS AND DISCUSSIONS

Question 1: How does TS-LLM perform in different generation tasks regarding the metric of
Path@1/Path@N? Do Path@1/Path@N provide a reasonable metric? (Sec. 3.2.2 and 3.4)

In Table 2, we first provide the comparison between TS-LLM variants with the CoT baseline re-
garding the Path@1 performance. Path@1 means each algorithm only generates one answer. In this
setting, the first three methods—MCTS, BFS-V, and DFS-V degenerate into the greedy search over
value function 4. We also refer readers to the first row of Fig 3 for Path@N result, where MCTS,
BFS-V and DFS-V are different. TS-LLM variants generally outperform the CoT baseline under
Path@1/@N metric, showing that the value function provides effective guidance during LLM’s de-
coding process. However, notable exceptions are also seen in the RLHF task where MCTS, BFS-V,
and DFS-V underperform under Path@1/@N metric. From our results, we want to highlight two
things. Firstly, MCTS, BFS-V, and DFS-V generally perform pretty well in shallow search problems
(8 for GSM8K and 4 for Game24) while MCTS-α and MCTS-Rollout are dominant in searching on
deep trees (15 for ProntoQA and 64 for RLHF). Secondly, the backward operation is quite impor-
tant in deep search since MCTS, BFS-V, and DFS-V do not incorporate this operation in the Path@1
result.

3Generally, the tree-search state space changes with different seeds for random sampling and algorithm-
dependent expansion orders. In the intra-tree setting, the tree node will be fixed once expanded.

4In Path@1 setting, we set beam size as 1 for BFS-V, search time as 1 for DFS and MCTS. MCTS@1 does
not include the backward operation because it only happens after finding one complete path.

7

Under review as a conference paper at ICLR 2024

Table 2: Path@1 results of all TS-LLM variants and the CoT baseline with #token. For CoT-
SC variants, we present Path@N , and N is determined by maintaining the same level of token
computation as TS-LLM’s variants. For the alignment task, SCORM means the best score of CoT-
SC candidates, and SCMAJ refers to the average. CoT-SC-Tree also degenerates to CoT-SC in this
task. MCTS/BFS-V/DFS-V degenerate to greedy value search, so the only uncertainty happens at
node expansion. Sentence-level tasks still have variations by sampling while token-level task is
deterministic.3

Method Performance(%) / # Tokens Reward / # Forward

GSM8k Game24 PrOntoQA RLHF(token-level)

CoT-greedy 41.4 ± 0.0 98 12.7 ± 0.0 76 48.8 ± 0.0 92 0.318 ± 0.0 57.8
MCTS-α 51.9 ± 0.6 561 63.3 ± 1.9 412 99.4 ± 0.2 190 2.221 ± 0.0 186

MCTS-Rollout 47.8 ± 0.8 3.4k 71.3 ± 2.5 670 96.9 ± 0.6 210 1.925 ± 0.0 809
MCTS 52.2 ± 1.7 486 64.0 ± 3.2 371 94.2 ± 1.6 125 -1.295 ± 0.0 61.8
BFS-V 52.5 ± 1.3 485 64.8 ± 2.9 369 94.4 ± 0.3 126 -1.295 ± 0.0 61.8
DFS-V 51.8 ± 0.6 486 66.3 ± 1.9 369 93.3 ± 0.8 126 -1.295 ± 0.0 61.8

CoT-SCMAJ 46.8 ± 1.1 500 14.6 ± 1.8 684 61.1 ± 1.4 273 -0.253 ± 0.01 580
CoT-SCORM 52.3 ± 0.8 500 50.6 ± 2.0 684 83.2 ± 1.3 273 1.517 ± 0.01 580

CoT-SC-TreeMAJ 45.8 ± 1.3 508 10.8 ± 1.6 651 59.8 ± 0.7 186 - -
CoT-SC-TreeORM 51.8 ± 1.2 508 47.9 ± 1.4 651 83.6 ± 0.4 186 - -

Table 3: Path@1 metric on Game24 with different node size.

Method Performance(%) / # tokens

expand by 6 expand by 20 expand by 50

MCTS-α 41.6 243 63.3 413 74.5 573
Rollout 43.8 401 71.3 670 80.7 833
BFS-V 43.2 206 64.8 370 74.6 528

CoT-SC-Tree@10 38.8 508 48.3 656 48.3 707
CoT-SC@10 - - - - 52.9 0.8k

Table 4: Results of TS-LLM vari-
ants on Game24 by prompting
LLaMA2-7B as the value func-
tion (Setting used in ToT/RAP).

Method Performance(%)

CoT-greedy 12.71 ± 0.0
BFS@1 9.2 ± 3.3

MCTS-α@1 8.08 ± 0.3

Despite the superiority of TS-LLM, we argue that the metric Path@1/Path@N may not be that rea-
sonable. In table 2, we also include the number of computations used in Path@1 generation (number
of tokens in sentence-level and number of forward computation in token-level). We also refer read-
ers to the second row of Fig 3 for Path@N result, with token/forward number as the x-axis. For
Path@1/N, TS-LLM variants consume much more computation than the CoT baseline. To enable a
fair comparison, we provide additional baselines, CoT-SC and CoT-SC-Tree with two aggregation
methods: majority-vote (MAJ) and ORM-vote (denoted as ORM, and it utilizes the learned ORM in
TS-LLM). In Table 2, we show results within a similar scale of computation consumption with TS-
LLM variants. Under this situation, TS-LLM’s advantages largely decrease when compared with
CoT-SCORM, especially on GSM8K (only BFS greedy value search is the best). We are surprised
to see that such simple algorithms can also have outstanding performance when compared fairly.
Despite this, in Table 2 and the second row of Fig 3, most tree-search algorithms are still dominant
in the rest three tasks given the same (CoT-SC-Tree) or larger search space (CoT-SC).

Question 2: How do node expansion sizes and tree width influence the performance? (Sec. 3.1)

As discussed in Sec. 3.1), the search space is limited by maximum tree width. Thus, we investi-
gate the possible influence introduced by different tree constructions on Game24 with different node
expansion sizes. Specifically, we set the number of maximal expanded node size as 6, 20, and 50.
Table 3 lists the Path@1 performance and the number of tokens generated comparing TS-LLM’s
variants, CoT-SC and CoT-SC-Tree. The almost doubled performance boost from 43.8 to 80.7 in-
dicates the impact of different expansion sizes and tree-width, improving TS-LLM’s performance
upper bound. In addition, we find BFS-V can show great performance with less token consumption
under small tree-max-width setting (width=6), while MCTS-Rollout can finally be stronger by con-
suming more tokens (width=20/50). It inspires us that different tree-max-width and search space
may also lead to different algorihtm superiority. The comparison among search algorithms should
be conducted and concluded under the same search space. We refer the readers to Appendix D.6 for
additional results on GSM8K and ProntoQA, where we further validate our conclusions in Q1/Q2.

Question 3: Why do we need a learned value function and how to train that? (Sec. 3.2.1)

8

Under review as a conference paper at ICLR 2024

Figure 2: Different Value training on GSM8k

CoT-SC@10orm-vote BFS MCTS-α MCTS

50

60

P
er

fo
rm

an
ce

(%
)

mixed

pure

pure,less

Table 5: Different value training for iterative up-
date on GSM8k

Method Policy Value Performance(%)

MCTS-α πθ0 {v, r̂}θ0 51.9 ± 0.6
MCTS-α πθ0 {v, r̂}RL

θ1
52.0 ± 0.5

MCTS-α πθ0 {v, r̂}θ1 53.2 ± 0.3

MCTS-α πθ1 {v, r̂}θ0 54.1 ± 0.9
MCTS-α πθ1 {v, r̂}RL

θ1
55.2 ± 1.2

MCTS-α πθ1 {v, r̂}θ1 56.5 ± 0.6

100 101

sequences

−1

0

1

2

3

R
ew

ar
d

Mean

Best

100 101 102

sequences

40

45

50

55

60

P
er

fo
rm

an
ce

(%
)

best-of-3-aggregations

100 101 102

sequences

10

20

30

40

50

60

70

80

P
er

fo
rm

an
ce

(%
)

best-of-3-aggregations

100 101

sequences

50

60

70

80

90

100

P
er

fo
rm

an
ce

(%
)

best-of-3-aggregations

102 103

Forward

−1

0

1

2

3

R
ew

ar
d

(a) RLHF

Mean

Best

102 103 104

tokens

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

P
er

fo
rm

an
ce

(%
)

(b) GSM8k

best-of-3-aggregations

103

tokens

40

50

60

70

80

90
P

er
fo

rm
an

ce
(%

)

(c) Game24

best-of-3-aggregations

102 103

tokens

90

92

94

96

98

100

102

P
er

fo
rm

an
ce

(%
)

(d) PrOntoQA

best-of-3-aggregations

CoT CoT-SC CoT-SC-Tree BFS DFS MCTS MCTS-Rollout MCTS-α MCTS-α inter-trees MCTS-α intra-trees

Figure 3: Mean/max reward for RLHF alignment and the best results of 3 aggregations for the rest
tasks w.r.t. number of sequences (Path@N) on the 1st row and the number of tokens on the 2nd row.

In Table 4, we provide a motivating example by prompting LLaMA2-7b-base as the value function
and reward model for TS-LLM on Game24. This is the setting used in ToT and RAP. The perfor-
mance drop of BFS-V and MCTS-α indicates the incapability of small language models as reliable
evaluators, which motivates us to substitute it with a learned value function and ORM as a general
solution for any task and LLM with any size.

Therefore, we investigate data collection and training paradigms for value function and ORM in TS-
LLM. In Figure 2, we investigate the influence of data amount and diversity by training with mixed
data uniformly sampled from checkpoints of all SFT epochs (mixed); data purely sampled from the
last checkpoint (pure); 1/3 data of the pure setting (pure,less). The results of CoT-SCORM-vote@10
underscore the diversity of sampled data in learning a better ORM. The Path@1 results of 3 TS-
LLM variants show that the amount of sampled data is of great importance. We leave a detailed
discussion of how value and reward function training is influenced in iterative training (Sec. 3.3)
when answering Question 5. Our final conclusion is that collecting a diverse dataset is better for
the ORM and collecting as much data as possible is better for value function training.

Question 4: How TS-LLM is improved by aggregating over multiple results? (Sec. 3.2.3)

In Fig. 3, we demonstrate the mean/max reward for the RLHF task and the best of 3 aggregation
results for the rest three tasks. We measure the performance of aggregation w.r.t path number and
token consumption. From the figure, we mainly summarize two conclusions: Firstly, Most TS-LLM
variants benefit from aggregation and can show large strengths compared with other baselines.
CoT-SC only beats TS-LLM in GSM8k with the same token size, mainly because of its larger search
space. TS-LLM variants are still dominant when compared with CoT-SC-Tree. Secondly, tree-
search algorithms’ aggregation benefits less than CoT-SC in small-scale problems. In GSM8K
and Game24, TS-LLM struggles to improve under large aggregation numbers. We believe this is
because of: (1) The search space gap between CoT-SC and tree-search algorithms. Tree-search
algorithms inherently explore fewer sentences, which is validated by comparing token consumption

9

Under review as a conference paper at ICLR 2024

Table 6: Iterative update results. θ0 is the old parameter while θ1 is the new one after one iteration.
We compare all combinations of policy and value on GSM8k (left) and RLHF alignment (right).

Method Policy Value Performance(%)

Greedy πθ0 - 41.4 ± 0.0
Greedy πθ1 - 47.9 ± 0.0
Greedy RFT k=50 - 47.0 ± 0.0
Greedy RFT k=100 - 47.5 ± 0.0

MCTS-α πθ0 {v, r̂}θ0 51.9 ± 0.6
MCTS-α πθ0 {v, r̂}θ1 53.2 ± 0.3
MCTS-α πθ1 {v, r̂}θ0 54.1 ± 0.9
MCTS-α πθ1 {v, r̂}θ1 56.5 ± 0.6

Method Policy Value Performance(%)

Greedy πθ0 - 0.39 ± 0.0
Greedy πθ1 - 1.87 ± 0.0
Greedy RFT N=5 - 1.16 ± 0.0
Greedy PPO - 2.53 ± 0.0

MCTS-α πθ0 {v, r̂}θ0 2.221 ± 0.0
MCTS-α πθ0 {v, r̂}θ1 2.482 ± 0.0
MCTS-α πθ1 {v, r̂}θ0 2.532 ± 0.0
MCTS-α πθ1 {v, r̂}θ1 2.670 ± 0.0

between CoT-SC-Tree@50 and CoT-SC@50. (2) Different tree searches are not independent. The
latter search might be influenced by the previous one, which decreases generation diversity.

Question 5: Can TS-LLM further train LLM iteratively? (Sec. 3.3)

To answer this question, we conduct initial experiments for one iterative update. We utilize MCTS-
α with old policy πθ0 , value vθ0 and ORM r̂θ0 , to sample answers on the training dataset as an
augmentation to the origin one. It will be further used to finetune these models to (πθ1 , vθ1 , r̂θ1). We
include two baselines, RFT (Yuan et al., 2023b), which utilizes rejection sampling to finetune the
policy, with different sampling numbers k or top N , and PPO (Schulman et al., 2017) for the RLHF
task. Note that PPO conducts multiple iterative updates. It is not fully comparable to our method
and we only add it for completeness. Refer to Appendix D.8 and D.9 for more experimental details.

In Table. 6, we list results of iterative update on the GSM8K and RLHF, covering greedy decoding
and MCTS-α over all policy and value combinations. Our empirical results validate that TS-LLM
can further train LLM policy, value and ORM, boosting performance with the new policy πθ1 , new
value and ORM {v, r̂}θ1 , or both (πθ1 , {v, r̂}θ1) in CoT greedy decoding and MCTS-α. πθ1 ’s
greedy performance is even slightly better than RFT which is specifically designed for GSM8k. We
believe by further extending TS-LLM to multi-update, we can make it more competitive though cur-
rently πθ1 still cannot beat PPO-based policy. For the training of value function and ORM (Question
3), we compare MCTS-α in Table 5. We train value and ORM in two paradigms, one ({v, r̂}θ1) is
optimized from the initial weights and mixture of old and new tree-search data; another({v, r̂}RL

θ1
)

is optimized from {v, r̂}θ0 with only new tree-search data. This is called RL because training critic
model in RL utilizes a similar process of continual training. The results show that {v, r̂}θ1 out-
performs {v, r̂}RL

θ1
on both old and new policy when conducting tree search, contrary to the normal

situation in traditional iterative RL training.

5 CONCLUSION

In this work, we propose TS-LLM, an LLM inference and training framework guided by Alphazero-
like tree search that is generally versatile for different tasks and scaled to token-level expanded tree
spaces. Empirical results validate that TS-LLM can enhance LLMs decoding and serve as a new
training paradigm. We leave further discussion of our limitation and future work in Appendix B.

10

Under review as a conference paper at ICLR 2024

REFERENCES

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large lan-
guage models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

Dahoas. Synthetic-instruct-gptj-pairwise. https://huggingface.co/datasets/
Dahoas/synthetic-instruct-gptj-pairwise.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan, Shizhe Diao, Jipeng Zhang, Kashun Shum,
and Tong Zhang. Raft: Reward ranked finetuning for generative foundation model alignment.
arXiv preprint arXiv:2304.06767, 2023.

Xidong Feng, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue Yang, Kun Shao, David Mguni,
Yali Du, and Jun Wang. Chessgpt: Bridging policy learning and language modeling. arXiv
preprint arXiv:2306.09200, 2023.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller language
models towards multi-step reasoning. arXiv preprint arXiv:2301.12726, 2023.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are
all you need. arXiv preprint arXiv:2306.11644, 2023.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In International
Conference on Machine Learning, pp. 4476–4486. PMLR, 2021.

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras,
and Yejin Choi. Maieutic prompting: Logically consistent reasoning with recursive explanations.
arXiv preprint arXiv:2205.11822, 2022.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

11

https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise
https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise

Under review as a conference paper at ICLR 2024

Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre, Miruna Pislar, Jean-Baptiste Lespiau, Ioannis
Antonoglou, Karen Simonyan, and Oriol Vinyals. Machine translation decoding beyond beam
search. arXiv preprint arXiv:2104.05336, 2021.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Making ppo even better: Value-guided monte-carlo tree search decoding, 2023.

Jieyi Long. Large language model guided tree-of-thought. arXiv preprint arXiv:2305.08291, 2023.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Nadia Matulewicz. Inductive program synthesis through using monte carlo tree search guided by a
heuristic-based loss function. 2022.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint arXiv:2305.18290, 2023.

Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathematics and Artifi-
cial Intelligence, 61(3):203–230, 2011.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. arXiv preprint arXiv:2210.01240, 2022.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020a.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard B Segal. On the scalability of parallel uct. In International Conference on Computers and
Games, pp. 36–47. Springer, 2010.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

12

Under review as a conference paper at ICLR 2024

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017a.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017b.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for
science. arXiv preprint arXiv:2211.09085, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-Yen Kan, Junxian He, and Qizhe
Xie. Decomposition enhances reasoning via self-evaluation guided decoding. arXiv preprint
arXiv:2305.00633, 2023.

Haotian Xu. No train still gain. unleash mathematical reasoning of large language models with
monte carlo tree search guided by energy function. arXiv preprint arXiv:2309.03224, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang Zhou. Scal-
ing relationship on learning mathematical reasoning with large language models. arXiv preprint
arXiv:2308.01825, 2023a.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang Zhou. Scal-
ing relationship on learning mathematical reasoning with large language models. arXiv preprint
arXiv:2308.01825, 2023b.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

13

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Under review as a conference paper at ICLR 2024

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B Tenenbaum, and Chuang Gan.
Planning with large language models for code generation. arXiv preprint arXiv:2303.05510,
2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. arXiv preprint arXiv:2305.11206, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang, Yongfeng Huang, Ruyi Gan, Jiaxing Zhang,
and Yujiu Yang. Solving math word problems via cooperative reasoning induced language
models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 4471–4485, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.245. URL https://aclanthology.org/2023.
acl-long.245.

14

https://aclanthology.org/2023.acl-long.245
https://aclanthology.org/2023.acl-long.245

Under review as a conference paper at ICLR 2024

A MORE RELATED WORK AND COMPARISONS

Here we discuss the differences between TS-LLM and relevant work mentioned in Sec 2 in detail.

Recent efforts have been made to investigate non-linear reasoning structures such as trees(Jung et al.,
2022; Zhu et al., 2023; Xu, 2023; Xie et al., 2023; Yao et al., 2023; Hao et al., 2023). Approaches
for searching on trees with LLM’s self-evaluation have been applied to find better reasoning paths,
e.g. beam search in Xie et al. (2023), depth-/breadth-first search in Yao et al. (2023) and Monte-
Carlo Tree Search in (Hao et al., 2023). Compared with these methods, TS-LLM is a tree search
guided LLM decoding framework with a learned value function, which is more generally applicable
to reasoning tasks and other scenarios like RLHF alignment. TS-LLM includes comparisons be-
tween different tree search approaches, analysis of computation cost, and shows the possibility of
improving both the language model and value function iteratively. The most relevant work, CoRe
(Zhu et al., 2023), proposes to finetune both the reasoning step generator and learned verifier for
solving math word problems using MCTS for reasoning decoding which is the most relevant work
to ours. Compared with CoRe, in this work TS-LLM distinguishes itself by:
1. TS-LLM is generally applicable to a wide range of reasoning tasks and text generation tasks
under general reward settings, from sentence-level trees to token-level trees. But CoRe is proposed
for Math Word Problems and only assumes a binary verifier (reward model).
2. In this work, we conduct comprehensive comparisons between popular tree search approaches on
reasoning, planning, and RLHF alignment tasks. We fairly compare linear decoding approaches like
CoT and CoT-SC with tree search approaches w.r.t. computation efficiency.
3. TS-LLM demonstrates potentials to improve LLMs’ performance of direct decoding as well
as tree search guided decoding, while in CoRe the latter cannot be improved when combining the
updated generator (language model policy) with the updated verifier (value function) together.

Other related topic:
Search guided decoding in LLMs Heuristic search and planning like beam search or MCTS have
also been used in NLP tasks including machine translation (Leblond et al., 2021) and code gener-
ation (Zhang et al., 2023; Matulewicz, 2022). During our preparation for the appendix, we find a
concurrent work (Liu et al., 2023) which is proposed to guide LLM’s decoding by reusing the critic
model during PPO optimization to improve language models in alignment tasks. Compared with
this work, TS-LLM focuses on optimizing the policy and value model through tree search guided
inference and demonstrates the potential of continuously improving the policy and value models.
And TS-LLM is generally applicable to both alignment tasks and reasoning tasks by conducting
search on token-level actions and sentence-level actions.

B LIMITATION AND FUTURE WORK

Currently, our method TS-LLM still cannot scale to really large-scale scenarios due to the extra
computation burdens introduced by node expansion and value evaluation. Additional engineering
work such as key value caching is required to accelerate the tree-search. In addition, we do not cover
all feasible action-space designs for tree search and it is flexible to propose advanced algorithms to
automatically construct a tree mixed with both sentence-level expansion and token-level expansion,
etc. We leave such exploration for future work. For MCTS aggregation, the current method still
struggles to improve under large aggregation numbers. some new algorithms that can encourage
multi-search diversity might be needed. Currently, we are still actively working on scaling up our
method both during inference and training (especially multi-iteration training).

C BACKGROUNDS AND DETAILS OF EACH TREE-SEARCH ALGORITHMS IN
TS-LLM

C.1 PRELIMINARIES OF MONTE CARLO TREE-SEARCH ALGORIHTMS

Once we build the tree, we can use various search algorithms to find a high-reward trace. However,
it’s not easy to balance between exploration and exploitation during the search process, especially
when the tree is sufficiently deep. Therefore we adopt Monte Carlo Tree Search(MCTS) variants
as choices for strategic and principled search. Instead of the four operations in traditional MCTS

15

Under review as a conference paper at ICLR 2024

(Kocsis & Szepesvári, 2006; Coulom, 2006), we refer to the search process in AlphaZero (Silver
et al., 2017a) and introduce 3 basic operations of a standard search simulation in it as follows, when
searching actions from current state node s0:

Select It begins at the root node of the search tree, of the current state, s0, and finishes when reaching
a leaf node sL at timestep L. At each of these L timesteps(internal nodes), an action(child node) is
selected according to at = argmax

a
(Q(st, a) + U(st, a)) where U(st, a) is calculated by a variant

of PUCT algorithm (Rosin, 2011):

U(s, a) = cpuct · πθ(s, a)

√∑
b N(s, b)

1 +N(s, a)
(2)

where N(s, a) is the visit count of selecting action a at node s, and cpuct = log((
∑

b N(s, b) +
cbase + 1)/cbase) + cinit is controlled by visit count and two constants. This search control strategy
initially prefers actions with high prior probability and low visit count, but asymptotically prefers
actions with high action-value.

Expand and evaluate After encountering a leaf node sL by select, if sL is not a terminal node, it
will be expanded by the language model policy. The state of the leaf node is evaluated by the value
network, noted as v(sL). If sL is a terminal node, if there is an oracle reward function R, then
v(sL) = R(sL), otherwise, in this paper, we use an ORM r̂ as an approximation of it.

Backup After expand and evaluate on a leaf node, backward the statistics through the path
sL, sL−1, . . . , s0, for each node, increase the visit count by N(st, at) = N(st, at) + 1, and the
total action-value are updated as W (st, at) = W (st, at) + v(sL), the mean action-value are up-
dated as Q(st, at) = W (st, at)/N(st, at).

C.2 COMPARISON OF TREE-SEARCH ALGORITHMS IN TS-LLM

In this paper, we introduce three variants of MCTS based on the above basic operations. Among the
3 variants, MCTS-α is closer to AlphaZero(Silver et al., 2017a) and MCTS is closer to traditional
Monte-Carlo Tree Search(Kocsis & Szepesvári, 2006). While MCTS-Rollout is closer to best-first
search or A*-like tree search.

The major difference between the first three MCTS variants and BFS-V/DFS-V adopted from the
ToT paper(Yao et al., 2023) is that the first three MCTS variants will propagate (i.e. the backup
operation) the value and visit history information through the search process. MCTS-α and MCTS-
Rollout bacpropagate after the expand operation or visiting a terminal node. MCTS backpropagates
the information only after visiting a terminal node. For DFS-V, the children of a non-leaf node is
traversed in a non-decreasing order by value. For efficient exploration, we tried 2 heuristics to prune
the subtrees, (1) drop the children nodes with low value by prune ratio. (2) drop the children nodes
lower than a prune value.

D EXPERIMENT DETAILS

D.1 TASK SETUPS

GSM8k GSM8k (Cobbe et al., 2021) is a commonly used numerical reasoning dataset, Given a
context description and a question, it takes steps of mathematical reasoning and computation to
arrive at a final answer. There are about 7.5k problems in the training dataset and 1.3k problems in
the test dataset.
Game24 We also test our methods on Game24(Yao et al., 2023) which has been proven to be hard
even for state-of-the-art LLMs like GPT-4. Each problem in Game24 consists of 4 integers between
1 and 13. And LLMs are required to use each number exactly once by (+ − ×÷) to get a result
equal to 24 We follow Yao et al. (2023) by using a set of 1362 problems sorted from easy to hard
according to human solving time. We split the first 1k problems as the training dataset and the last
362 hard problems as the test dataset. For each problem in the training dataset, we collect data for
SFT by enumerating all possible correct answers.
PrOntoQA PrOntoQA (Saparov & He, 2022) is a typical logical reasoning task in which a language
model is required to verify whether a hypothesis is true or false given a set of facts and logical rules.

16

Under review as a conference paper at ICLR 2024

There are 4k problems in the training dataset and 500 problems in the test dataset.
RLHF We choose a synthetic RLHF dataset Dahoas5 serving as the query data. We split the dataset
to 30000/3000 as training and test set respectively. For the reward model, we choose reward-model-
deberta-v3-large-v26 from OpenAssistant, which is trained from several RLHF datasets.

D.2 SFT AND VALUE TRAINING DETAILS

SFT in GSM8k, Game24 and PrOntoQA: For GSM8k, Game24 and PrOntoQA, we first train
LLaMA2-7b on the training dataset The training is conducted on 8 NVIDIA A800 GPUs, using a
cosine scheduler decaying from lr=2e-5 to 0.0 with a warmup ratio of 0.03, batch size 128 for 3
epochs. For GSM8k and Game24 we use the checkpoint at the last epoch as the direct policy in
experiments, while for PrOntoQA we use the checkpoint at the 1st epoch since the others overfit.

Value training in GSM8k, Game24 and PrOntoQA: Then we train the value function on the data
rollout by the SFT policy. In GSM8k and Game24, For each model checkpoints of 3 epochs during
SFT, we first collect 100 outputs per problem in the training dataset, then duplicate the overlapped
answers, labeled each answer with our training set outcome reward ocracle. For data sampled by
ech model checkpoint, we subsample 17 answers per problem, which is in total at most 51 answers
per problem after deduplication. In PrOntoQA, we only sample 50 answers per problem with the
first epoch model checkpoint and then do deduplication.

The value functions are trained in the same setting as supervised finetuning. We set the reward to be
1 when the output answer is correct and -1 otherwise. Then we use MC with γ = 1 to compute the
returns. We do model selection on a validation dataset sampled from the direct policy model. For
GSM8k, we train the value function and ORM for one epoch, while for Game24 and PrOntoQA we
train the value function and ORM for 3 epochs.

SFT in RLHF alignment: We utilize GPT2-open-instruct7, a GPT2-Small model supervised-
finetuned over several instruction-tuning dataset.

Value training in RLHF alignment: Based on the SFT model, we collect 50 rollouts by the SFT
policy for each question in the training set and label their final reward with the reward model. Then
we train the value function and ORM for 2 epochs.

Note that here we start training the value function and ORM from the data sampled by the SFT
policy model through direct decoding just as an initialization of the value function and ORM. After
that TS-LLM can optimize the policy model, value function, and ORM simultaneously by adding
new data sampled from tree search into the training buffer.

D.3 DETAILS OF VALUE DATASET ABLATION

Here we introduce the details of building mixed, pure and pure,less datasets on GSM8k for value
training in Fig 2. For each model checkpoints of 3 epochs during SFT, we first collect 100 outputs
per problem in GSM8k training dataset, and then duplicate the overlapped answers, labeled each
answer with our training set outcome reward ocracle. we sample multiple output sequences with
temperature=0.7, top p=1.0 and top k=100.
mixed dataset: For each deduplicated dataset sampled by models of 3 epochs, we subsample 17
answers per problem.
pure dataset: we subsample 50 answers per problem from deduplicated dataset sampled by the last
epoch policy model.
pure,less dataset: we subsample 17 answers per problem from deduplicated dataset sampled by the
last epoch policy model.

For the results in Table 5, the details of training {v, r̂}θ1 can be find in Sec D.9. We use MC with
γ = 1 to compute the returns. Here we describe the details of training {v, r̂}RL

θ1
, we use the collected

78.7k samples in Sec D.8 to optimize {v, r̂}θ0 . The training uses a cosine scheduler decaying from
lr=2e-5 to 0.0 with a warmup ratio of 0.03, batch size 128 for 3 epochs.

5https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise
6https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2
7https://huggingface.co/vicgalle/gpt2-open-instruct-v1

17

Under review as a conference paper at ICLR 2024

D.4 DETAILS OF APPLYING EACH TREE SEARCH APPROACH

We present the implementation details and hyperparameters of all tree search approaches here.

Firstly, we refer to Table 1 for basic settings of each task. We set temperature=1.0, top p=1.0,
top k=100 when using LLM to generate tree actions. To compute logprobs when expand actions in
RLHF alignment task trees, we also use a temperature of 1.0.

For MCTS variants including MCTS-α, MCTS-Rollout and MCTS, we need to define the hyper-
paramter in PUCT algorithm:

cpuct = log((
∑
b

N(s, b) + cbase + 1)/cbase) + cinit (3)

In this paper, we fixed cbase with 19652 and set cinit = 3 for GSM8k, Game24 and RLHF alignment
tasks, set cinit = 0.3 for PrOntoQA tasks. Specifically, in MCTS-α, we set the number of simulations
before making an action to 5 for GSM8k, Game24 and PrOntoQA, 10 for RLHF alignment. We
deterministically sampled actions with the largest visit count. And in MCTS-Rollout, we set an
computation upperbound as number of generated tokens or number of model forwards, which is
51200 in GSM8k and Game24, 1800 in PrOntoQA and 5000 in RLHF alignment.

For DFS-V, the children of a non-leaf node is traversed in a non-decreasing order by value. For
efficient exploration, we tried 2 heuristics to prune the subtrees, (1) drop the children nodes with
low value by prune ratio. (2) drop the children nodes lower than a prune value. We set prune ratio
to be 0.7 for GSM8k, Game24 and PrOntoQA, and 0.9 for RLHF alignment task.

All Path@1 results for each tree search approach is conducted with 3 seeds and show the mean and
standard deviation. Note that for Path@1 results of tree search approaches, the randomness comes
from the node expansion process where we use an LLM to sample candidate actions. While for
CoT-SC results, the randomness comes from sampling during direct decoding.

D.5 DETAILS OF AGGREGATION RESULTS

Another alternative setting for conducting multiple searches in Inter-tree Search. Inter-tree Search
builds a new tree for each new search, which increases the diversity of the search space, with extra
computation burdens proportional to the search times. Thus, the intra-setting will have a larger state
space compared with intra-tree setting. Our experiment results shown in Fig 3 (comparing MCTS-α
intra-tree and inter-tree settings) also verify the performance gain brought by the larger search space.

We also present the details of how we sample multiple answers with tree search approaches and
aggregate them into a final answer.

For the results of CoT-SC-Tree on Table 2 and Table 3, they can be viewed as intra-tree searches.
For the results in Figure 3, only MCTS-α inter-trees were conducted with inter-tree searches, other
tree-search algorithms (MCTS, MCTS-Rollout, BFS-V, DFS-V) were all conducted with intra-tree
searches

Note that for all tree search algorithms except BFS-V, multiple searches are conducted in a sequential
manner, while for BFS-V which can actually be regarded as Beam-Search, the number of searches
means the number of beam size.

When sampling multiple intra-tree answers with MCTS-α, we use a stochastic sampling setting.
To ensure MCTS-α to explore sufficently, when selecting action of the current node, before doing
several times of simulation, we add Dirichlet noise into the language model’s prior probability of
the current root node s0, i.e. π′

θ(s0, a) = (1 − ϵ)πθ(s0, a) + ϵη, where η ∼ Dir(0.3), and we

set ϵ = 0.25 for both tasks. Actions are sample based on visit count, i.e. a ∼ N(st,a)
1/τ∑

b N(st,b)1/τ
,

where we set τ = 1. After returning with a complete path, we clear the node statistics (Q(st, at)
and N(st, at)) on the tree to eliminate the influence of previous searches, while the tree structure
is maintained. This setting is denoted as clear-tree when presented in the table. In summary,
when we only measure path@1 performance, we adopt MCTS-α (no sampling). But when we
measure the aggregation performance, we use MCTS-α-intra tree or MCTS-α-inter tree. In
MCTS-α-intra tree we will activate the clear-tree and stochastic sampling setting.

18

Under review as a conference paper at ICLR 2024

When sampling multiple answers with other tree-search methods, we only utilize the intra-tree ag-
gregation variant, without stochastic sampling and clear-tree setting. This is because only MCTS-α
and MCTS-rollout can conduct the above sampling and clear-tree operation. And we temporarily
only apply such setting on MCTS-α.

In ORM-vote, since we train the ORM with the reward signal -1 and 1, given a list of N answers
to be aggregated, we first normalize its values {r̂(yj)}j with min-max normalization make them in
[0, 1].

D.6 RESULTS OF DIFFERENT NODE EXPANSION ON TASKS

Table 7, Table 8 and Table 9 show the path@1 results of MCTS-α, MCTS-Rollout, BFS-V under
different numbers of tree-max-width w on GSM8k, Game24 and ProntoQA. And we also show the
results of CoT-SC-TreeORM@10 and CoT-SCORM@10, which are aggregated by ORM-vote. The
results are conducted under 3 seeds and we show the average value and standard deviation.

Let us first clarify how we choose the specific tree max width. For tree-max-width w in GSM8k,
Game24, and ProntoQA, we first start with an initial value w = 6. Then by increasing it (10
in GSM8K, 20 in Game 24, and 10 in ProntoQA), we can see the trends in performance and
computation consumption. In ProntoQA/GSM8K, the performance gain is quite limited while the
performance gain is quite large in Game24. So at last, we in turn try smaller tree-max-width in
GSM8K/ProntoQA (3) and also try even larger tree-max-width (50) in Game24. Our final choice of
w (in Table 1) is based on the trade-off between the performance and the computation consumption.
Currently, our selection is mainly based on empirical trials and it might be inefficient to determine
the appropriate tree-max-width w. We think this procedure can be more efficient and automatic by
comparing it with the results of CoT-SC on multiple samples to balance the tradeoff between per-
formance and computation consumption. Because CoT-SC examples can already provide us with
information about the model generation variation and diversity. We can also leverage task-specific
features, e.g. in Game24, the correctness of early steps is very important, so a large w can help to
select more correct paths from the first layers on the search trees.

For the analysis of the results in Table 7, Table 8 and Table 9. We can mainly draw two conclusions
aligned with that in Q1/Q2 in the main paper.

First, the overall trend that larger search space represents better tree-search performance still holds.
For most tree-search settings, larger tree-max-width w and search space bring in performance gain.
The only exception happens at MCTS-Rollout on GSM8k decreases when the tree-max-width w =
10, this is due to the limitation of computation(limitation on the number of generated tokens which
is 51200 per problem) is not enough in wider trees which results in more null answers. Despite the
gain, the number of generated tokens also increases as the tree-max-width w becomes larger.

Secondly, the conclusions in the main paper about comparing different search algorithms still hold.
BFS performs pretty well in shallow search problems like (GSM8K/Game24). Though we can still
see MCTS-α and MCTS-Rollout improve by searching in large tree-max-width (such as Game24
expanded by 50), the performance gain is mainly attributed to the extra token consumption and is
quite limited. For deeper search problems like ProntoQA (15) and RLHF (64), the performance gap
is obvious and more clear among all expansion widths. This aligns with our conclusion in Q1’s
analysis.

Table 7: Path@1 metric on GSM8k with different node size.

Method Performance(%) / # tokens

expand by 3 expand by 6 expand by 10

MCTS-α 49.2 ± 0.04 460 51.9 ± 0.6 561 51.7 ± 0.5 824
MCTS-Rollout 47.2 ± 0.8 856 47.8 ± 0.8 3.4k 45.9 ± 0.9 7.1k

BFS-V 49.1 ± 0.8 260 52.5 ± 1.3 485 52.2 ± 0.9 778
CoT-SC-TreeORM@10 52.4 ± 1.2 604 54.6 ± 0.7 780 54.5 ± 1.1 857

CoT-SCORM@10 - - - - 56.4 ± 0.6 1.0k

19

Under review as a conference paper at ICLR 2024

Table 8: Path@1 metric on Game24 with different node size.

Method Performance(%) / # tokens

expand by 6 expand by 20 expand by 50

MCTS-α 41.6 ± 0.8 243 63.3 ± 1.9 412 74.5 ± 0.7 573
MCTS-Rollout 43.8 ± 5.3 401 71.3 ± 2.5 670 80.7 ± 1.5 833

BFS-V 43.2 ± 2.0 206 64.8 ± 2.9 370 74.6 ± 0.5 528
CoT-SC-TreeORM@10 38.8 ± 2.0 508 48.3 ± 3.0 656 48.3 ± 4.2 707

CoT-SCORM@10 - - - - 52.9 ± 2.1 0.8k

Table 9: Path@1 metric on ProntoQA with different node size.

Method Performance(%) / # tokens

expand by 3 expand by 6 expand by 10

MCTS-α 94.1 ± 0.1 151 99.4 ± 0.2 190 99.8 ± 0.2 225
MCTS-Rollout 85.9 ± 0.8 151 96.9 ± 0.6 210 99.3 ± 0.4 264

BFS-V 83.7 ± 1.0 105 94.4 ± 0.3 126 97.6 ± 0.3 145
CoT-SC-TreeORM@10 91.9 ± 0.8 290 98.2 ± 0.4 417 99.1 ± 0.1 494

CoT-SCORM@10 - - - - 98.0 ± 0.7 0.9k

D.7 RESULTS PER TASK PER AGGREGATION

We show detailed results of GSM8k on Table 10, results of Game24 on Table 11, Table 12 for
PrOnToQA and Table 13 for RLHF alignment. Due to the limit of computation resources, we show
the results under 1 seed except for the path@1 results.

D.8 SAMPLING DETAILS OF ITERATIVE UPDATE

We verify the idea of iteratively enhancing language model policy and value function model on the
GSM8k and RLHF datasets.

Sampling in GSM8k: When sampling from the 7.5k problems in the GSM8k training dataset,
we sample 12 sequences per problem in one sentence-level expanded tree, after deduplication, this
results in 78.7k distinct answers, and 73.2% are correct answers. The sample parameters are listed
in Table 14.

Sampling in RLHF alignment: We collect 10 answers for each training set problem sampled by
MCTS-α. We list the specific hyperparameters in Table 15.

To collect data for the rejection sampling baseline, we first sample 10 sequences per problem and
then use the top 5 sequences for supervised fine-tuning.

D.9 TRAINING DETAILS OF ITERATIVE UPDATE

Policy training in GSM8k: We construct the dataset for supervised finetuning by combining data
in the training dataset with 57.6k correct answers sampled in Sec D.8 which results in 64.1k distinct
correct answers. And we train the new policy model πθ1 from the starting base model LLaMA2-7b
for 3 epochs, following Yuan et al. (2023a). The training setting is the same as described in Sec D.2.

Value training in GSM8k: We construct the dataset for value and ORM training by combining the
data used to train {v, r̂}θ0 with 78.7k answers sampled by MCTS-α in Sec D.8. To fairly compare
{v, r̂}θ1 with {v, r̂}θ0 , we drop samples in the former dataset to keep at most 51− 12 = 39 answers
per problem resulting in 359k distinct answers. And we train the new value function {v, r̂}θ1 from
the value model with its initial weight(before being updated on any data) for 3 epochs. The training
setting is the same as described in Sec D.2.

Policy training in RLHF alignment: For the MCTS-α’s training, we subsample the top 5 answers
from the full 10 candidates (mentioned in Appendix D.8) to serve as the SFT dataset. For the RFT

20

Under review as a conference paper at ICLR 2024

Table 10: Detailed Results in GSM8k

Method N Majority-vote ORM-vote ORM-max #Token

CoT - 41.4 41.4 41.4 0.1k

CoT-SC 1 38.21 38.21 38.21 0.1k
CoT-SC 10 51.93 57.47 53.83 1k
CoT-SC 20 54.44 59.44 54.74 2k
CoT-SC 50 56.79 61.03 54.44 5k
CoT-SC 100 58.15 62.70 53.68 10k

CoT-SC-Tree 1 37.91 37.91 37.91 0.1k
CoT-SC-Tree 10 50.19 53.15 50.95 0.8k
CoT-SC-Tree 20 52.69 55.12 52.84 1.3k
CoT-SC-Tree 50 54.51 57.16 53.45 2.7k

BFS-V 1 52.5 52.5 52.5 0.5k
BFS-V 10 58.98 56.25 54.97 3.1k
BFS-V 20 58.91 56.79 52.39 5.3k
BFS-V 50 59.29 59.36 53.22 10.1k

DFS-V 1 51.8 51.8 51.8 0.5k
DFS-V 10 53.75 54.66 53.37 1.2k
DFS-V 20 54.89 55.50 53.53 1.6k

MCTS-α (no sampling) 1 51.9 51.9 51.9 0.5k

MCTS-α-intra tree 1 46.78 46.78 46.78 0.7k
MCTS-α-intra tree 10 57.85 56.86 54.36 3.4k
MCTS-α-intra tree 20 58.83 58.23 55.19 5.3k

MCTS-α-inter trees 1 51.9 51.9 51.9 0.5k
MCTS-α-inter trees 10 57.92 58.53 55.34 5.5k
MCTS-α-inter trees 20 58.83 59.06 54.97 11.1k
MCTS-α-inter trees 50 58.76 61.26 53.98 27.8k

MCTS 1 52.2 52.2 52.2 0.5k
MCTS 10 57.92 55.72 53.75 2.4k
MCTS 20 58.61 56.79 54.74 4.0k
MCTS 50 59.36 58.23 53.75 7.5k

MCTS-Rollout 1 47.8 47.8 47.8 3.4k
MCTS-Rollout 10 51.10 50.49 49.81, 5.4k
MCTS-Rollout 20 51.86 51.25 50.19 6.1k
MCTS-Rollout 50 52.69 52.24 50.49 7.2k

n=5 baseline, we subsample the top 5 answers from 50 direct decodings as the SFT dataset. For the
training of the PPO algorithm, we adopt the implementation from trlx8. We sample 20 answers for
each question in total, which maintains the same level of token consumption during the PPO rollouts
as that of MCTS-α.

Value training in RLHF alignment: We construct the value and ORM dataset by mixing data
from SFT-policy direct decoding and from MCTS-α. To make the comparison fair, the new value
function’s training utilizes the same amount of data as the old one by subsampling 40 answers (from
50 shown in Appendix D.2) from direct decoding data and all 10 answers (shown in Appendix D.8)
generated by MCTS-α. We train our value function with learning rate 2e-5 and cosine scheduler
from the initial model (instead of continuing training from the old value function) for 2 epochs.

D.10 HYPERPARAMETER SELECTION PROTOCOLS

Here we present the selection protocols of hyperparameters.
8https://github.com/CarperAI/trlx

21

Under review as a conference paper at ICLR 2024

Table 11: Detailed Results in Game24

Method N Majority-vote ORM-vote ORM-max #Token

CoT - 12.7 12.7 12.7 0.1k

CoT-SC 1 9.94 9.94 9.94 0.1k
CoT-SC 10 13.54 50.83 50.83 0.8k
CoT-SC 20 14.36 65.75 65.47 1.6k
CoT-SC 50 16.30 78.45 78.45 4.0k
CoT-SC 100 18.23 84.25 84.53 7.9k

CoT-SC-Tree 1 9.67 9.67 9.67 0.1k
CoT-SC-Tree 10 11.33 48.34 48.34 0.7k
CoT-SC-Tree 20 13.26 61.60 62.15 1.1k
CoT-SC-Tree 50 16.57 69.61 69.89 2.0k

BFS-V 1 64.8 64.8 64.8 0.4k
BFS-V 10 47.79 70.72 70.99 1.6k
BFS-V 20 27.62 69.34 69.34 2.3k
BFS-V 50 7.18 70.17 70.72 3.7k

DFS-V 1 66.3 66.3 66.3 0.4k
DFS-V 10 50.83 62.98 64.09 0.4k
DFS-V 20 50.83 62.98 64.09 0.6k

MCTS-α (no sampling) 1 63.3 63.3 63.3 0.4k

MCTS-α-intra tree 1 64.36 64.36 64.36 0.4k
MCTS-α-intra tree 10 66.85 67.68 63.90 0.9k
MCTS-α-intra tree 20 67.13 69.34 68.78 1.1k
MCTS-α-intra tree 50 67.96 69.89 69.34 1.4k

MCTS-α-inter trees 1 63.3 63.3 63.3 0.4k
MCTS-α-inter trees 10 72.65 82.87 82.32 4.1k
MCTS-α-inter trees 20 72.93 84.25 83.15 8.3k

MCTS 1 64.0 64.0 64.0 0.4k
MCTS 10 70.44 70.72 70.17 0.8k
MCTS 20 72.10 72.10 71.27 1.1k
MCTS 50 72.38 72.38 71.55 1.6k

MCTS-Rollout 1 71.3 71.3 71.3 0.7k
MCTS-Rollout 10 73.48 73.20 72.65 0.9k
MCTS-Rollout 20 73.48 73.48 72.38 1.0k
MCTS-Rollout 50 73.48 73.48 72.38 1.1k

Tree search general hyperparameters: the tree-max-depth d limits the search depth of tree and
tree-max-width w controls the max number of child nodes during node expansion. For the tree-max-
width w, we refer the reader to Appendix D.6 for more discussions. We choose tree-max-depth d
according to the statistics of the distribution of the number of steps from the dataset sampled by the
LLM policy on the training set. Specifically, we statistically analyzed the number distribution of
sentences in the training set, and in our experiments, these sentences are split by ‘\n’. For GSM8K,
we set the tree-max-depth d at around the 99th percentile of the entire number distribution, to cover
most query input and drop the outliers. Game24 has a fixed search depth of 4. For ProntoQA, we
set the tree-max-depth d at the upper bound of the entire number distribution. For RLHF, this is not
a reasoning task with CoT steps, so the depth can be flexible. We set it as the default value. In most
cases, the depth of tree-max-depth d will not be reached. Because the node expansion will be termi-
nated when we detect our pre-defined stop words in the generation (such as ‘The answer is’ or
the ‘<EOS>’ token).

Specific hyperparameters for Monte Carlo Tree Search variants: Basically we adopted the de-
fault values from Schrittwieser et al. (2020b) and Silver et al. (2017a) for most of the hyperparam-

22

Under review as a conference paper at ICLR 2024

Table 12: Detailed Results in PrOntoQA

Method N Majority-vote ORM-vote ORM-max #Token

CoT - 48.8 48.8 48.8 92

CoT-SC 1 54.40 54.40 54.40 91.25
CoT-SC 3 63.60 82.40 82.40 273.75
CoT-SC 10 58.40 97.80 97.80 912.55
CoT-SC 20 57.00 99.80 99.80 1.8k

CoT-SC-Tree 1 50.20 50.20 50.20 82.02
CoT-SC-Tree 10 62.40 98.40 98.40 413.58
CoT-SC-Tree 20 61.00 99.40 99.40 632.91

BFS-V 1 94.40 94.40 94.40 125.52
BFS-V 10 99.00 100.00 100.00 837.78
BFS-V 20 98.60 99.80 99.80 1.5k

DFS-V 1 93.30 93.30 93.30 124.46
DFS-V 10 95.60 96.20 96.00 178.79
DFS-V 20 95.60 96.20 96.20 180.92

MCTS-α (no sampling) 1 99.40 99.40 99.40 183.66

MCTS-α-intra tree 1 97.20 97.20 97.20 208.68
MCTS-α-intra tree 10 99.80 99.80 99.80 364.96
MCTS-α-intra tree 20 99.80 99.80 99.80 441.31

MCTS-α-inter trees 1 99.40 99.40 99.40 183.66
MCTS-α-inter trees 10 100.00 100.00 100.00 1.9k
MCTS-α-inter trees 20 100.00 100.00 100.00 3.8k

MCTS 1 94.20 94.20 94.20 126.65
MCTS 10 99.60 99.60 99.60 182.88
MCTS 20 100.00 100.00 100.00 240.16

MCTS-Rollout 1 96.90 96.90 96.90 210.41
MCTS-Rollout 10 99.20 99.20 99.20 220.16
MCTS-Rollout 20 99.20 99.20 99.20 224.16

eters, such as cbase = 19652 in Equation 3, τ = 1.0 for MCTS-alpha stochastic search. And for
the Dirichlet noise of MCTS-α stochastic search as mentioned in Appendix D.5, we adopted the de-
fault value in Silver et al. (2017a) as 0.3, which is specified for chess. We do find that in MCTS-α,
MCTS-Rollout and MCTS, cinit can affect the balance between exploration and exploitation, and we
chose it by running several trials from two possible values: {0.3, 3.0}. Moreover, for MCTS-α, the
hyperparameter num of simulation, nsimulation is chosen as 5 for shallow trees (tree max-depths less
than of equal to 15 over GSM8k, Game24 and ProntoQA) and 10 in deep trees(a tree max-depth of
64 in RLHF), controlling the search complexity at each step.

Specific hyperparameters for BFS-/DFS-V: BFS-V does not have hyperparameters for single
search. For DFS-V, the children of a non-leaf node is traversed in a non-decreasing order by its value.
For the sake of efficient exploration, we tried 2 heuristics to prune the subtrees, (1) drop the children
nodes with lower values by prune ratio. (2) drop the children nodes lower than a prune value. The
latter is adopted from Yao et al. (2023). In our experiments, we tried possible prune values from
{0.5, 0.0,−0.5} or None, we found that setting a high prune value like 0.5 or 0.0 may introduce
significant performance drop, however, setting a higher prune value may introduce very closer an-
swers. Therefore, we finally use prune ratio for efficient exploration during searching on the tree
with DFS-V. We set prune ratio to be 0.7 for GSM8k, Game24 and PrOntoQA (tree-max-widths of
6, 6, 20), and 0.9 for RLHF alignment task since its much wider(a tree-max-width of 50).

23

Under review as a conference paper at ICLR 2024

Table 13: Detailed Results in RLHF alignment

Method N Mean Best #Forward

CoT 1 0.387 0.387 57.8

CoT-SC 1 -0.164 -0.164 58
CoT-SC 10 -0.182 1.592 0.6k
CoT-SC 20 -0.175 1.972 1.2k
CoT-SC 50 -0.176 2.411 2.9k

BFS-V 1 -1.295 -1.295 61.8
BFS-V 10 -1.523 -1.065 0.6k
BFS-V 20 -1.520 -0.948 1.2k
BFS-V 50 -1.474 -0.813 3.1k

DFS-V 1 -1.295 -1.295 61.8
DFS-V 10 -1.67 -1.17 64.8
DFS-V 20 -1.69 -1.08 66.9
DFS-V 50 -1.71 -0.99 71.9

MCTS-α (no sampling) 1 2.221 2.221 186

MCTS-α-intra tree 1 1.538 1.538 198.50
MCTS-α-intra tree 10 1.527 3.052 1.6k
MCTS-α-intra tree 20 1.533 3.311 3.1k

MCTS 1 -1.295 -1.295 61.8
MCTS 10 -1.146 0.160 0.6k
MCTS 20 -1.08 0.528 1.2k
MCTS 50 -0.961 0.981 2.8k

MCTS-Rollout 1 1.925 1.925 0.8k
MCTS-Rollout 10 2.278 2.540 1.1k
MCTS-Rollout 20 2.376 2.643 1.2k
MCTS-Rollout 50 2.491 2.746 1.3k

Table 14: Hyperparameters of sampling in GSM8k for LLM decoding(left), tree construction set-
ting(middle), and MCTS-α setting(right).

Hyperparameter value

temperature 1.0
top p 1.0
top k 100

Hyperparameter value

Tree Max width 6
Tree Max depth 8

Node Sentence

Hyperparameter value

num simulation 5
clear tree True

stochastic sampling True
cbase 19652
cinit 3
τ 1.0

Table 15: Hyperparameters of sampling in RLHF alignment for LLM decoding(left), tree construc-
tion setting(middle), and MCTS-α setting(right).

Hyperparameter value

temperature 1.0
top p 1.0
top k 50

Hyperparameter value

Tree Max width 50
Tree Max depth 64

Node Token

Hyperparameter value

num simulation 5
clear tree True

stochastic sampling True
cbase 19652
cinit 3
τ 1.0

D.11 WALL-TIME AND ENGINEERING CHALLENGES

Table 16, Table 17 and Table 18 show the wall-time of running different tree search algorithms
implemented in TS-LLM , searching for one answer per problem (i.e. path@1). We also show the

24

Under review as a conference paper at ICLR 2024

wall-time of CoT greedy decoding and CoT-SC@10 with ORM aggregation as comparisons. We
record the wall-time of inferencing over the total test dataset of each task.

The experiments were conducted on the same machine with 8 NVIDIA A800 GPUs, the CPU infor-
mation is Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz.

We can find that the comparisons of wall-time within all the implemented tree-search algorithms in
TS-LLM are consistent with those of the number of generated tokens. However, compared to CoT
greedy decoding, the wall-time results of most tree search algorithms in TS-LLM are between two
and three times of CoT greedy decoding’s wall-time, excepting MCTS-Rollout runs for a very long
time on GSM8k. And when comparing the wall-time and number of generated tokens between the
tree-search methods and CoT-SCORM@10, TS-LLM is not as computationally efficient as CoT-SC
decoding due to the complicated search procedures and extra computation introduced by calling
value functions in the intermediate states.

There are two more things we want to clarify. Firstly, as we mentioned in Appendix B, our current
implementation only provides an algorithm prototype without specific engineering optimization. We
find a lot of repeated computations are performed in our implementation when evaluating the child
node’s value. Overall, there still exists great potential to accelerate the tree-search process, which
will be discussed in the next paragraph. We are continuously working on this (we will discuss the
engineering challenges in the next paragraph). Secondly, this wall-time is just Path@1 result so
they have different token consumptions, and DFS-V, BFS-V, and MCTS will degenerate into greedy
value search as we mentioned before. We are also working on monitoring the time consumption for
Path@N results so we can compare them when given the same scale of token consumption.

Engineering challenges and potentials. Here we present several engineering challenges and po-
tentials to increase the tree-search efficiency.

• Policy and Value LLM with the shared decoder. Our current implementation utilizes separate
policy and value decoders but a shared one might be a better choice for efficiency. If so, most extra
computation brought by value evaluation can be reduced to simple MLP computation (from the
additional value head) by reusing computation from LLM’s policy rollout. It can largely increase
the efficiency. We only need to care about the LLM’s rollout computations under this setting.

• KV cache and computation reuse. KV cache is used in most LLM’s inference processes such as
the Huggingface transformer’s (Wolf et al., 2020) generation function. It saves compute resources
by caching and reusing previously calculated key-value pairs in self-attention. In the tree search
problem, when expanding or evaluating a node, all preceding calculations for its ancestor nodes
can be KV-cached and reused. However, because of the large state space of tree nodes, we cannot
cache all node calculations since the GPU memory is limited and the communication between
GPU/CPU is also inefficient (if we choose to store such cache in CPU). More engineering work is
needed to handle the memory and time tradeoff.

• Large-batch vectorization. Currently, our node expansion and node evaluation are only vector-
ized and batched given one parent node. We may conduct batch inference over multiple parent
nodes for large-batch vectorization when given enough computing resources.

• Parallel tree-search over multi-GPUs. Our implementation handles each tree over a single GPU.
AlphaZero (Silver et al., 2017a) leverages parallel search over the tree(Segal, 2010), using multi-
thread search to increase efficiency. In LLM generation setting, the main bottleneck comes from
the LLM inference time on GPU. Thus more engineering work is needed for conducting parallel
tree-search over multi-GPUs.

• Tree-Search with speculative decoding Speculative decoding (Leviathan et al., 2023) is a pivotal
technique to accelerate LLM inference by employing a smaller draft model to predict the target
model’s outputs. During the speculative decoding, the small LLM gives a generation proposal
while the large LLM is used to evaluate and determine whether to accept or reject the proposal.
This is similar to the tree-search process with value function pruning the sub-tree. There exists
potential that by leveraging small LLMs as the rollout policy while large LLMs as the value
function, we can also have efficient tree-search implementations.

25

Under review as a conference paper at ICLR 2024

Table 16: Wall-time results on GSM8k
Method Overall Time(sec) Average Time(sec) #Average Token

CoT-Greedy 216.93 0.17 98
CoT-SCORM@10 479.03 0.37 1k

MCTS 378.13 0.29 486
MCTS-α 527.31 0.41 561

MCTS-Rollout 2945.94 2.27 3.4k
BFS-V 383.08 0.29 485
DFS-V 387.00 0.30 486

Table 17: Wall-time results on Game24
Method Overall Time(sec) Average Time(sec) #Average Token

CoT-Greedy 44.88 0.15 76
CoT-SCORM@10 86.53 0.29 0.8k

MCTS 81.22 0.27 371
MCTS-α 134.19 0.45 412

MCTS-Rollout 193.18 0.64 670
BFS-V 79.48 0.26 369
DFS-V 80.46 0.27 369

Table 18: Wall-time results on ProntoQA
Method Overall Time(sec) Average Time(sec) #Average Token

CoT-Greedy 74.09 0.15 77
CoT-SCORM@10 218.12 0.44 0.8k

MCTS 130.15 0.26 125
MCTS-α 236.26 0.47 190

MCTS-Rollout 238.62 0.48 210
BFS-V 130.35 0.26 126
DFS-V 130.47 0.26 126

D.12 DISCUSSION ABOUT SHARED LLM DECODER FOR BOTH POLICY AND CRITIC.

As we mentioned in Appendix D.11, using a shared decoder for the policy and value LLM might
further improve the computation efficiency for the tree-search process. Therefore, we conducted an
ablation to compare the model under the settings of a shared decoder and the setting of separated
decoders on Game24.

We first describe the training setting of both types of models we compared. For the setting of
separated decoder, we refer to Appendix D.2 for details about dataset and training hyperparameters.
For the setting of shared decoder, we train the shared policy and value LLM with the same data used
in the setting of separated decoder. During training, a batch from the supervised finetuning (SFT)
dataset and a batch from the value training dataset are sampled, the total loss of the shared policy
and value LLM is computed by Ltotal = LSFT + 0.5 · LValue, where LSFT is the cross entropy loss
of predicting the next token in the groundtruth answer and LValue is the Mean Square Error loss as
we described in Equation 1. The training is conducted on 8 NVIDIA A800 GPUs, using a cosine
scheduler decaying from lr=2e-5 to 0.0 with a warmup ratio of 0.03, a batch size of 128 for the
supervised finetuning dataset and a batch size of 128 for the value training dataset. And we trained
the shared decoder model for 3 epochs. This training setting is the same as used in the separated
decoder setting.

We will compare these two types of model in the perspective of performance and computation effi-
ciency. All tree-search algorithms are conducted under the same hyperparameters as those in Table 2
on Game24 in which the tree-max-width w is set to 20.

26

Under review as a conference paper at ICLR 2024

Table 19 shows the comparisons of the two types of model on performance. Though the performance
of CoT (CoT greedy decoding) of shared decoder model increases from 12.7 to 16.3, the number
of tokens generated per problem also increases greatly from 76 to 166. By checking the models’
outputs, we find the shared decoder model doesn’t always obey the rules of Game24(There are
only 4 steps of calculations and each number must be used exactly once). It usually outputs multiple
steps, more than the four steps required in Game24. This might be regarded as hallucination problem
which happens more frequently than in the separated decoder model. For the results of CoT-SC-
TreeORM@10 (search by LLM’s prior on trees and aggregated by ORM-vote), we observe close
results of CoT-SCORM@10 Meanwhile, for the results of MCTS-α, MCTS-Rollut, BFS-V and CoT-
SC-TreeORM@10, there is only a small difference between the performance of the two models.
We also observe an increase in the number of token generated per problem. This is because the
shared decoder model is prone to output more invalid answers than the separated decoder model.
Therefore, there are more distinct actions proposed in the last layers of the trees.

Next, we show some preliminary comparisons in Table 20 on the computation efficiency of the sep-
arated decoder model and the shared decoder model, from the results of expanding a tree node and
evaluating its children. Specifically, Table 20 presents the node expansion time and value calculation
time with/without KV Cache under token-level and sentence-level situations. For the token-level
node, we set w = 50 while for the sentence-level node, we set w = 20. The results successfully
present that a shared decoder can largely increase the computational efficiency for value estimation
(20x in the token-level setting and 9x in the sentence-level setting).

In all, in this section, we initially conduct explorations on leveraging shared policy and value LLM
decoder. The result proves the potential of computational efficiency for the shared structure. How-
ever, more work is needed to help the stability of policy/value performance.

Table 19: Comparisions of separated/shared LLM decoder policy and critic models on Game24

Method Performance(%) / # tokens

Separated Decoder Shared Decoder

CoT 12.7 76 16.3 166
CoT-SCORM@10 52.9 ± 2.1 0.8k 52.8 ± 2.4 1.9k

MCTS-α 63.3 ± 1.9 412 64.1 ± 1.3 561
MCTS-Rollout 71.3 ± 2.5 670 70.6 ± 0.4 855

BFS-V 64.8 ± 2.9 370 63.0 ± 1.0 495
CoT-SC-TreeORM@10 48.3 ± 3.0 656 45.5 ± 2.0 745

Table 20: Time (seconds) on policy expansion and value evaluation for a single tree node. When
using a shared LLM decoder for policy and value LLM, we can use KV Cache for value calculation.
It is much more efficient than a separate value decoder without KV cache.

Node Type Policy Expansion Value with Cache Value without Cache

Token-Level 0.067 0.074 2.02

Sentence-Level 0.165 0.122 1.03

E QUALITATIVE RESULTS

Here we present some qualitative results of generation for different methods in Table 21 (for
Game24), Table 22 (for GSM8k), Table 23 (for ProntoQA) and 24 (for the RLHF alignment task).

27

Under review as a conference paper at ICLR 2024

Problem: 4 8 9 13

Methods Response Correctness

CoT 8 + 13 = 21 (left: 4 9 21)
4 - 9 = -5 (left: -5 21)
21 - -5 = 26 (left: 26)
The answer is (8 + 13) - (4 - 9) = 26

No

BFS-V 9 + 3 = 12 (left: 4 8 12)
12 / 4 = 3 (left: 3 8)
3 * 8 = 24 (left: 24)
The answer is (9 + 3) / 4 * 8 = 24

No

MCTS-α 13 - 9 = 4 (left: 4 4 8)
4 * 4 = 16 (left: 8 16)
16 + 8 = 24 (left: 24)
The answer is 4 * (13 - 9) + 8 = 24

Yes

MCTS-Rollout 13 - 9 = 4 (left: 4 4 8)
4 * 4 = 16 (left: 8 16)
16 + 8 = 24 (left: 24)
The answer is (13 - 9) * 4 + 8 = 24

Yes

Table 21: Qualitative examples of Game24 outputs

28

Under review as a conference paper at ICLR 2024

Question: A new program had 60 downloads in the first month. The number of downloads in the
second month was three times as many as the downloads in the first month, but then reduced by
30% in the third month. How many downloads did the program have total over the three months?

Methods Response Correct

CoT The number of downloads in the second month was 3*60 = 180
The number of downloads in the third month was 180*0.30 = 54
The total number of downloads for the three months was
60+180+54 = 294
The answer is 294

No

BFS-V In the second month, the program had 60*3=180 downloads
In the third month, the program had 180*30/100=54 downloads
which was 30% less than the previous month
Total downloads for the program in the three months was
60+180+54=294
The answer is 294

No

MCTS-α The program had 60 x 3 = 180 downloads in the second month.
The downloads in the third month was 180 x 0.30 = 54 down-
loads lesser than the previous month.
So, the program had 180 - 54 = 126 downloads in the third
month.
Therefore, the program had 60 + 180 + 126 = 366 downloads
over the three months.
The answer is 366

Yes

MCTS-Rollout The number of downloads in the second month was 3 times as
many as the downloads in the first month, which means the pro-
gram had 3*60 = 180 downloads in the second month.
The total number of downloads for the two months was 180+60
= 240 In the third month, the program had 180-30/100*180 =
120 downloads, 30% of the number of downloads it had in the
second month.
The total number of downloads for the three months was
240+120 = 360
The answer is 360

No

Table 22: Qualitative examples of GSM8k outputs

29

Under review as a conference paper at ICLR 2024

Question: Butterflies are lepidopterans. Every arthropod is small.
Whales are not small. Invertebrates are animals. Every insect is an
arthropod. Lepidopterans are insects. Every insect is six-legged. Every
arthropod is an invertebrate. Animals are multicellular. Polly is a lepi-
dopteran. Is the statement ”Polly is not small” true or false?

Methods Response Correct

CoT Polly is a lepidopteran.
Lepidopterans are insects.
Polly is an insect.
Every insect is an arthropod.
Polly is an arthropod.
Every arthropod is small.
Polly is small.
The answer is true.

No

BFS-V Polly is a lepidopteran.
Lepidopterans are insects.
Polly is an insect.
Every insect is an arthropod.
Polly is an arthropod.
Every arthropod is small.
Polly is small.
Polly is small.
The answer is false.

Yes

MCTS-α Polly is a lepidopteran.
Lepidopterans are insects.
Polly is an insect.
Every insect is an arthropod.
Polly is an arthropod.
Every arthropod is small.
Polly is small.
The answer is false.

Yes

MCTS-Rollout Polly is a lepidopteran.
Lepidopterans are insects.
Polly is an insect.
Every insect is an arthropod.
Polly is an arthropod.
Every arthropod is small.
Polly is small.
The answer is false.

Yes

Table 23: Qualitative examples of ProntoQA outputs

30

Under review as a conference paper at ICLR 2024

Prompt: What careers am I good at.

Methods Response Reward

CoT You can be a great career at any career
you choose. Depending on your inter-
ests and skills, you may be able to find
a variety of jobs that align with your in-
terests and skills.

-2.625

BFS-V Some careers great careers to do pro-
fessionally are entrepreneur in health-
care policy policy advocacy consulting
public diplomacy leadership policy in-
novation in global issues managing in-
formation theory. Some great careers to
achieve excellence in healthcare man-
agement include doctor psychologist

-2.03

MCTS-α You may be good at a variety of careers,
depending on your interests and skills.
Some of the most popular careers in-
clude software engineer, data scientist.
You may also be good at a variety of
fields such as finance, marketing, and
business administration.

-1.67

Table 24: Qualitative examples of RLHF outputs

31

	Introduction
	Related work
	Enhancing Large language model with Tree Search
	problem formulation
	Guiding LLM inference decoding with Tree Search
	Learning an LLM-based Value Function
	Tree Search Algorithms
	Multiple Search and Search Aggregation

	Enhancing LLM Training with Tree Search
	Tree Search's extra Computation Burdens

	Experiments
	Experiment Setups
	Results and Discussions

	Conclusion
	More Related Work and Comparisons
	Limitation and future work
	Backgrounds and details of each tree-search algorithms in TS-LLM
	Preliminaries of Monte Carlo Tree-search Algorihtms
	Comparison of tree-search algorithms in TS-LLM

	Experiment Details
	Task setups
	SFT and value training details
	Details of value dataset ablation
	Details of applying each tree search approach
	Details of aggregation results
	Results of different node expansion on tasks
	Results per task per aggregation
	sampling details of iterative update
	Training details of iterative update
	Hyperparameter Selection Protocols
	Wall-time and Engineering challenges
	Discussion about Shared LLM decoder for both policy and critic.

	Qualitative Results

