
Under review as a conference paper at ICLR 2024

MEMOIZATION-AWARE BAYESIAN OPTIMIZATION FOR
AI PIPELINES WITH UNKNOWN COSTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian optimization (BO) is an effective approach for optimizing expensive
black-box functions via potentially noisy function evaluations. However, few BO
techniques address the cost-aware setting, in which different samples impose dif-
ferent costs on the optimizer, particularly when costs are initially unknown. This
cost-aware BO setting is of special interest in tuning multi-stage AI pipelines, in
which we could apply caching techniques to store and reuse early-stage outputs in
favor of optimizing later stages, without incurring the costs of re-running the full
pipeline. In this paper, we propose the Expected-Expected Improvement Per Unit
Cost (EEIPU), a novel extension to the Expected Improvement (EI) acquisition
function that adapts to unknown costs in multi-stage pipelines. EEIPU fits indi-
vidual Gaussian Process (GP) models for each stage’s cost data and manages the
different cost regions of the search space, while balancing exploration-exploitation
trade-offs. Additionally, EEIPU incorporates early-stage memoization, reducing
redundant computations and costs by reusing the results of earlier stages, allowing
for more iterations than existing approaches within the specified budget. In the
cost-aware setting, EEIPU significantly outperforms comparable methods when
tested on both synthetic and real pipelines, returning higher objective function
values at lower total execution costs. This offers a significant advancement in
cost-aware BO for optimizing multi-stage machine learning pipelines.

1 INTRODUCTION

Machine Learning (ML) is a complex practice that extends beyond the final tuning of a trainable
model, but is rather a multi-stage process stretching from data collection to deployment. Due to
the cascade nature of ML or AI pipelines (i.e. the sequence of steps in the preparation, training, or
deployment of a model) where each step depends on previous stage outputs, optimization must be
performed on every stage to achieve the desired model performance. However, many stages in a
typical AI pipeline have no known analytical form, and thus cannot be optimized using non-black-box
techniques. This motivates Bayesian Optimization (BO), a black-box optimization method popular
for tasks whose objective functions are expensive and do not admit gradient information. BO relies
on potentially noisy function evaluations f(x1), f(x2), ..., f(xN) to create a surrogate model of the
function, thus facilitating sample-efficient optimization.

In BO, surrogate function modeling is typically achieved through a Gaussian Process (GP) model
(Rasmussen, 2004), which relies on an acquisition function for choosing the next evaluation point. As
one example, the Expected Improvement (EI) acquisition function Mockus et al. (1978) has become a
popular choice for minimizing the number of function evaluations by effectively balancing exploration
and exploitation (Frazier, 2018). EI is defined as the expected improvement a potential observation
has over the current optimal objective value, and is defined as EI(x) = E[max(f(x)− f(x∗), 0)].

Many standard BO techniques rely on the number of evaluations as a sole efficiency metric. While
optimizing for this metric is effective at reducing the number of optimization iterations, it works under
the assumption that evaluation costs are uniformly distributed across the function domain, which
does not hold in practice (e.g. depth of a decision tree could exponentially increase time complexity
in the worst case). It is, however, challenging to account for other costs during evaluation, since it
is usually impossible to know the cost of an evaluation before it is run for the first time. Previous
works have considered this issue, showing that EI behaves suboptimally when its performance is
measured by cost, rather than number, of evaluations. Some promising approaches, such as the

1

Under review as a conference paper at ICLR 2024

Expected Improvement Per Second (EIPS) (Snoek et al., 2012) and Cost Apportioned BO (CArBO)
(Lee et al., 2020), tackle this issue by proposing to fit a second GP to model log-costs ln c(x) under
the assumption of positive costs c(x) : X → R+, alongside f(x). These approaches, however, lack
details on the implementation of their proposal on real models.

Cost awareness becomes more important when tuning real-world AI pipelines, which frequently
contain multiple stages. Different pipeline stages incur different costs, and inter-stage dependency—
where each stage depends on previous outputs before being processed—creates, at first glance, a
bottleneck where the entire pipeline needs to run to completion before the acquisition function
proposes a new candidate point. Previous methods have generalized Bayesian Optimization to a
multi-stage setting (Kusakawa et al., 2021), attempting to optimize runtime by proposing a mechanism
to suspend pipelines in the middle of a multi-stage decision-making process; however, these methods
cannot function when costs are unknown.

In this paper, we propose the Expected-Expected Improvement Per Unit-cost (EEIPU) acquisition
function, illustrated in Figure 1, as an extension of EI that combines cost-aware Bayesian Optimization
with memoization—i.e. the ability to partially save and resume pipelines, thus lowering the cost of
rerunning the full pipeline—for the multi-stage setting. This allows for significantly more iterations
than comparable methods within the specified cost budget. EEIPU works by fitting a GP to model
the objective function f , as well as a separate log-cost GP for every stage of the pipeline. Per our
knowledge, there has been no published work that adapts cost awareness as well as memoization
awareness to multi-stage pipeline optimization with unknown costs. By applying memoization to
the pipeline, EEIPU reduces the cost of subspaces of evaluation points x ∈ X that match an already-
executed prefix of the pipeline stages, creating new opportunities for cost-efficient exploration. Our
main contributions can be summarized as follows:

• We propose EEIPU, a cost-aware acquisition function for pipeline settings, which extends
Expected Improvement (EI). After computing EI(x) for candidate points, EEIPU uses the
log-cost GP models to compute the expected total inverse cost, where the total cost C(x) is
defined as the sum of individual stage costs ci(x) of the pipeline. EEIPU is then defined as
EEIPU(x) ≜ E[EI(x)/C(x)] ≜ EI(x)× E[1/C(x)].

• Our proposal combines cost awareness with sample efficiency by assigning a cost cooling factor
η to the expected inverse cost, which sequentially decreases as a function of the provided cost
budget. This budget-based cost-cooling approach, proposed by Lee et al. (2020), aims to set
a cost-effective initial design that exploits low-cost regions, before sequentially encouraging
the algorithm to explore higher cost regions for potentially optimal candidate points when the
low-cost search space is sufficiently explored.

• EEIPU is memoization-aware: it caches the output of each pipeline stage. By reusing earlier
stage outputs, EEIPU reduces the cost of exploring parameter regions in later stages.

• We run EEIPU on a wide range of experiments on both synthetic and real multi-stage pipelines.
Our results find that EEIPU significantly outperforms existing BO baselines by achieving similar,
if not higher, objective values, while only incurring a fraction of the runtime costs.

2 BACKGROUND

An early work addressing cost-aware black box function optimization is Snoek et al. (2012), who
introduce the expected improvement per second (EIPS) acquisition function. Their innovation is
the incorporation of a duration function into the traditional EI acquisition function. The logarithm
of said duration function is used as a a cost function, and modeled with a Gaussian process. The
scaling of EI by the cost function term allows the acquisition function to account for the differences
in wall-clock time that be incurred by different evaluated points in the hyperparameter search space.

Lee et al. (2020), however, in their work on Cost-Aware Bayesian Optimization (CArBO), rename
EIPS as EIPU, making the observation that this method often underperforms relative to EI. They
reimagine EIPU(x) = EI(x)/c(x)η by introducing an exponent η term into the cost function in the
denominator. This eta factor, as it decays, reduces EIPU to EI, in effect allowing for expensive
evaluations to be explored after cheaper ones have been fully exploited. While the results were
promising, both techniques proposed by Snoek et al. (2012) and Lee et al. (2020) handle BO in
the unknown-cost setting by fitting a cost GP to a single pipeline stage, which prevents them from

2

Under review as a conference paper at ICLR 2024

Potential
Candidates

XM

XN

YN

ln(c1)
N

ĉk

m
em

o

+ / η

EIŷ

max XN+1

Chosen
Candidate

EEIPU

expln(ck)
N

ĉk-1

x
ĉ1

Figure 1: EEIPU Pipeline Architecture. Given a set of N observations, their corresponding objective
values, the costs of running them on each stage of the k-stage pipeline, and the remaining optimization
budget, we fit k + 1 GP models. During each BO iteration, EEIPU generates M potential candidates
XM , and estimates their objective and per-stage costs by sampling from the GP models. Then, (1)
∀x ∈ XM , the objective GP samples are used to estimate EI(x), and (2) the samples from the k cost
GPs are used to estimate the expected costs. Memoized stages, if any, have their costs discarded
by the memo gate, leaving only non-memoized stages to compute expected inverse cost E[1/C(x)],
which is raised to the power η for a cost-cooling mechanism (Lee et al., 2020). The product of (1)
and (2) defines the EEIPU acquisition function, which is maximized to return the chosen candidate
for the current BO iteration. See Section 3 for details.

taking advantage of memoization in multi-stage pipelines. Abdolshah et al. (2019) also address a
single-stage setting, but in a specific context where search space dimensions are rank-ordered by
a known cost. Here, they address cost awareness in a multi-objective (CA-MOBO) setting with a
non-uniform cost landscape by specifying cost-aware constraints over the search space. The cost
constraints are specified as a sorted tuple of indexes that indicate the order of dimensions of the search
space according to the cost of changing the values at that dimension. CA-MOBO, thus, constrains the
acquisition function to search inexpensive regions by fixing lower values for the cheaper regions while
searching the space of the more expensive region. However, this approach requires foreknowledge of
the cost landscape and the relative change in costs with respect to the change in the dimensions.

Cost evaluation in BO with an unknown cost landscape has also been studied by some recent works.
Astudillo et al. (2021) develop a strategy that factors cost as an unknown variable in a cost budget-
constrained setting. The paper not only considers the cost of evaluating an objective function but also
the cost of identifying the next point to evaluate as part of the total budget using a non-myopic policy.
Likewise, Zhang et al. (2022) also attempts to solve the hyperparameter optimization problem with a
cost-budget, using a non-myopic searching technique that considers both the past knowledge of the
objective and cost functions and the effect of depleting the budget based on the balance available.

Two important works (Lin et al., 2021; Kusakawa et al., 2021) have attempted to address the multi-
stage setting. The LaMBO technique of Lin et al. (2021) models the objective function as a GP and
optimizes the acquisition function with cost awareness to query the next point for evaluation. The
paper models the multi-stage cost awareness as a multi-armed bandit problem, whereby switching
costs between two different arms (or hyperparameter variables) incurs a cost. This technique simulates
a memoization-like process when switching between bandit arms, through making variables in earlier
stages of the pipeline more costly to evaluate, hence opting for a cheaper path of only evaluating later
stages. However, this approach assumes that the cost function is known in all partitions of the search
space. This leaves open the problem of how to deal with non-theoretical scenarios in which a cost or
duration function is unknown, and how that changes when applied in a multistage process.

Kusakawa et al. (2021) refer to the multi-stage setting as a cascade process. They develop an efficient
technique for suspending the multi-stage decision-making process in the middle of the cascade when
poor-performing candidates are detected. While their work aims to address the problem of high
evaluation costs at each stage, they also assume that costs are known. Furthermore, they assume that
the cost for each stage is fixed. In our setting, the cost at a given stage is a modeled as a function of
the hyperparameters corresponding to that stage.

3

Under review as a conference paper at ICLR 2024

3 METHODOLOGY

In this section, we detail our EEIPU method. This approach can broadly be categorized into three
interconnected components: cost awareness, memoization awareness, and cost cooling. We provide
a detailed description of each mechanism, which are combined to define the EEIPU framework as
shown in Figure 1. Because our method follows an iterative process, we will explain the components
through a single BO iteration for choosing an optimal set of parameters Xi to run through a k-stage
pipeline, where sj is used to refer to each stage, xij is the set of parameters in Xi corresponding to
sj , yij is the output of running Xi through sj , which is then fed to sj+1, until the final output Yi is
obtained. cij refers to the cost of running Xi through stage sj of the pipeline.

3.1 COST AWARENESS WITH UNKNOWN COSTS

Snoek et al. (2012) extend EI to incorporate cost awareness in a single-stage setting as

EIPS(x) :=
EI(x)
c(x)

(1)

which was then improved by Lee et al. (2020), who redefined cost awareness in a more robust way as

CArBO(x) :=
EI(x)
c(x)η

(2)

where c(x) is the cost of evaluating the observation x, and η is a cost-cooling factor. Snoek et al.
(2012) and Lee et al. (2020) briefly mention the cost modeling process for handling unknown costs,
but provide no details about the inverse cost estimation nor a source code to reproduce their results.
Therefore, for our experiment setting, we adapt EIPS and CArBO to our unknown cost setting to
evaluate the advantage of combining cost with memoization-awareness.

We also leverage our synthetic experiments to define EIPU-MEMO, an oracle version of the
memoization-aware EEIPU that is granted knowledge of the true cost function of the pipeline.
Note that this definition of EIPU-MEMO does not meet the requirements of our cost-aware setting, in
which the cost function is unknown and must be learned. EIPU-MEMO serves as a theoretical version
of EEIPU to verify the the intended behavior of our approach beyond the randomness that comes
with modeling costs using GP models. Details on this experiment can be found in Appendix D.

To make our method practical in a real setting, we further extend the aforementioned EIPU-MEMO
to a multi-stage setting, and provide a detailed approach to estimating the expected total inverse cost.
With unknown evaluation costs, we leverage the GP setting that we fit on {X ,Y} and apply it to
costs alongside objectives. When a new observation Xi is chosen by the acquisition function, it is run
through the multi-stage pipeline to obtain the final objective value Yi, which is added to our set of
observations for model retraining in the following iteration. Additionally, we keep track of the costs
of running Xi through each stage of the pipeline, which serves to build k cost datasets, which are then
used to fit k separate cost-GP models on {X , ln(cj)},∀j ∈ {1, 2, ..., k} for cost prediction. Under
the assumption of positive costs, GP models are fit to log-costs rather than raw values. Positivity
is then enforced through predicting costs as cj = exp(ln(cj)). For the purposes of this paper, we
assume that the costs of different stages of the pipeline are independent of each other when modeling
the stage-wise cost-GPs.

We thus define the Expected-Expected Improvement Per Unit-cost (EEIPU) acquisition function to
be EEIPU(x) ≜ E[EI(x)/C(x)], i.e., the expected EIPU acquisition, or equivalently the product of
expected improvement (EI) and the expected total inverse cost I(x) = E[1

C(x)]. Initially, a batch of
M potential candidates {X} is generated using BoTorch’s optimize acqf() function (Balandat
et al., 2020) and passed to EEIPU. The process of returning the candidate Xm with the highest
EEIPU value begins with a standard computation of EI(Xm) (Mockus et al., 1978). Then, because
E[1

C(x)] ̸=
1

E[C(x)] , and because our cost-GP models are fit on individual stages in order to allow for
independent stage-cost discounting during the memoization process, the inverse cost is therefore
estimated by running the following process on each candidate Xm:

1. We apply Monte Carlo sampling to retrieve a batch of D predictions from every log-cost GP,
where D is chosen to represent a fair and unbiased estimation of the stage cost.

4

Under review as a conference paper at ICLR 2024

f(x) = 5.0x1 = 1.2 x2= 4.0 x3 = 3.5

c1 = 5.1 c2 = 1.0 c3 = 2.0

(a)

x1 = ? x2 = ? x3 = ?

c1 = ? c2 = ? c3 = ?

(b)

x1 = 1.2 x2 = ? x3 = ?

c1 = 0 c2 = ? c3 = ?

(c)

x1 = 1.2 x2 = 4.0 x3 = ?

c1 = 0 c2 = 0 c3 = ?

(d)

Figure 2: Prefix pooling for 1 observation (a) in a 3-stage pipeline. Each stage has a single parameter,
respectively represented by x1, x2, and x3, with corresponding costs c1, c2, c3. Since the query
in (a) is completed, both the cost and output value of each stage are stored. The first 2 stages of
the observation are cached as prefixes (c) & (d) in order to avoid rerunning them if need be. “?”
indicates un-memoized stages, and the empty prefix (b) is used for open-ended search. This process
is independently applied to every observation chosen by the acquisition function.

2. After sampling D × k predictions for each candidate Xm, we compute the total cost for each
sample as Cd =

∑k
j=1 cd,j , for all d ∈ {1, 2, ..., D}.

3. The total inverse cost is then estimated as:

I(x) = E
C(x)∼N (µ,K(x,x′))

[1

C(x)

]
≈ 1

D

D∑
d=1

1

Cd
. (3)

3.2 MEMOIZATION AWARENESS

In this section, we discuss our memoization approach, where we cache stage-wise outputs of pre-
viously evaluated candidate points, in order to bypass the need of rerunning prefix stages when
attempting to further optimize later stages of the pipeline.

Given the task of hyperparameter tuning, we start with N previously evaluated hyperparameter
combinations. Each hyperparameter combination is divided into k subsets, every one of which
corresponds to a separate stage of the pipeline. A set of N × (k − 1) prefixes are cached,
such that the corresponding stage outputs can easily be retrieved by using the stage’s hyperpa-
rameters as a querying key. The caching process of a 3-stage pipeline is explained in Figure 5,
and works by memoizing all k − 1 prefix stages of an observation Xi, excluding the complete
set. In other words, we memoize an observation Xi by caching the following configurations:
{[(xi,1, yi,1)], [(xi,1, yi,1), (xi,2, yi,2)], ..., [(xi,1, yi,1), (xi,2, yi,2), ..., (xi,k−1, yi,k−1)]}, This sepa-
rate database is built and stored for every evaluated candidate point, in addition to the empty prefix
[()], which is used to encourage exploring entirely new configurations. Let this database be referred
to as PX

When generating M candidate points for EEIPU computation, as detailed in Section 3.1, we equally
divide M into a random batch of subsets of PX , in addition to the empty subset {[()]}. Prefix values
of each candidate point are then fixed to the values of their corresponding cached stages, before
randomly assigning values to the later, unmemoized stages. This process ensures that the empty prefix
serves to explore entirely new areas of the search space, while the other points exploit previously
seen areas, for a chance of a potentially higher objective value at a fraction of the cost.

The M potential candidates are then run through EEIPU to compute the expected-expected im-
provement per unit cost of each of the generated configurations, as per Section 3.1. To incorporate
memoization into the process, we pass a δ parameter to the forward function for cost discounting,
which stands for the number of cached stages for each configuration being evaluated. When running
a candidate Xm through EEIPU, we sample expected costs from GP models δ+1 through k, whereas
the expected costs for stages 1 through δ are set as an ϵ-cost to account for overhead while discounting
the cost of running the full stages of the pipeline, and leveraging their cached outputs instead without
the need of sampling their expected costs. More formally, the total cost of a potential candidate Xm

is set by EEIPU to be:

E
[
C(x)

]
= E

[k∑
j=1

cj(x)
]
=

k∑
j=1

E
[
cj(x)

]
≈

δ∑
j=1

ϵ+

k∑
j=δ+1

E
[
cj(x)

]
, (4)

5

Under review as a conference paper at ICLR 2024

where the stagewise costs cj(x) ∼ N (µ,K(x, x′)). This cost discounting process serves to assign a
high level of importance to cached configurations, such that, when compared to another un-memoized
configuration with a relatively close expected improvement, priority would be assigned to cheaper
evaluations, especially during earlier iterations of the optimization process.

Following the prefix cost discounting in Eq. (4), applied to the expectation in Eq. (3), EEIPU in-
corporates cost awareness by defining I(x) as the expected inverse cost after discounting, and the
expected-expected improvement per unit cost of a candidate Xm as:

EEIPU(x) = EI(x) ∗ I(x) (5)

3.3 COST COOLING

The main aim of our method is to incorporate cost awareness to redefine expected improvement in a
practical setting. However, the standard EI has an undeniable advantage in choosing candidates with
the highest expected improvement over objective value, and prioritizing low-cost regions throughout
the optimization process may eventually lead to compromising on objective value in favor of low
evaluation costs.

To tackle this issue, we adopt a budget-based cost-cooling mechanism to assign a high level of
importance to low-cost regions during earlier iterations of the process, before gradually pushing
EEIPU towards exploring higher-cost regions in later iterations of the process, as the assigned budget
decreases. We implement this by using an annealing schedule on the cost, inspired by the EI-COOL
method (Lee et al., 2020). Cost cooling is defined by a factor η, which applies an exponential decay
to the expected inverse cost I(x). This factor is set to an initial value η0 = 1, which is then decayed
every iteration with respect to the remaining optimization budget, such that: ηi =

remaining budget
total budget . This

adds the following update to the EEIPU computation in Eq. (5):
EEIPU(x) = EI(x) ∗ I(x)η (6)

3.4 EEIPU FRAMEWORK AND MAIN CONTRIBUTIONS

The components detailed above make up the EEIPU method, illustrated in Figure 1. EEIPU is the
first multi-stage BO approach to incorporate cost and memoization awareness with unknown costs.
Table 1 highlights our main contribution over existing methods.

When comparing EEIPU against the most related methods listed in Table 1, we found that none
of those methods, other than EI (Mockus et al., 1978), provided source code for their proposals.
Therefore, we chose the most adaptable approaches to EEIPU, which are CArBO (Lee et al., 2020)
and EIPS (Snoek et al., 2012), and adapted them to our unknown-cost setting. While LaMBO (Lin
et al., 2021) implements a memoization variant, it deals with a fairly different setting of switching
costs than our proposed method approaches the problem. Because the paper did not provide sufficient
information to reproduce the algorithm and problem setting, and the paper authors did not respond to
our request for code, implementing LaMBO would therefore require a complete switch of our problem
setting and how we set our environment. In our experiments, we aim to identify the potential of cost
awareness and memoization awareness on synthetic as well as real AI pipelines by running EEIPU
against the EI, CArBO, and EIPS acquisition functions. The pseudocode of our EEIPU algorithm
detailing the prefix sampling and the EEIPU computation processes is defined in Algorithm 1.

Table 1: Main EEIPU Contributions Relative to Comparable BO Methods

Acquisition Function Cost-Aware Unknown Costs Multi-Stage Memoization-Aware

EI (Mockus et al., 1978) No No No No
CArBO (Lee et al., 2020) Yes Yes No No
EIPS (Snoek et al., 2012) Yes Yes No No
Multi-stage BO (Kusakawa et al., 2021) No No Yes Yes
LaMBO (Lin et al., 2021) Yes No Yes Yes
EEIPU Yes Yes Yes Yes

4 EXPERIMENTS

In this section, we define our synthetic experiment setting, where we tested EEIPU against CArBO,
EIPS, and EI on a set of benchmark functions, typically used for standard BO practices in previous

6

Under review as a conference paper at ICLR 2024

Algorithm 1 Maximizing EEIPU (Expected-Expected Improvement Per Unit) Acquisition Function

Require: All prefix stages in the evaluated dataset P , GPy , GPci∀i ∈ {1, 2, ...,K}, M , D, lo bounds,
hi bounds, remaining budget, total budget
N = len(P), n cand = M/N
for (n stages, pref) in P do ▷ Iterate over all memoized hyperparameter prefixes

δ ← len(pref), lo bounds[: δ]← pref, hi bounds[: δ]← pref
▷ Monte Carlo sampler draws samples that prefix-match the prefix values

cands = generate random candidates(δ,n cands, (lo bounds,hi bounds))
for i in range(len(cands)) do ▷ Maximize EEIPU via Monte Carlo sampling

X ← cands[i], Ŷ ← GPy(X,D) ▷ D is the number of sampled predictions per GP sampling
for s in n stages do Ĉs ← ϵ if s < δ else Ĉs ← GPcs(X[: s], D)

▷ Discount the cost of memoized stages
end for
EI← compute expected improvement(Ŷ)

I← compute expected inverse costs(Ĉ)
η ← remaining budget

total budget

EEIPU[i]← EI× Iη
end for
return argmax(EEIPU)

end for

works (Kirschner et al., 2019; Vellanki et al., 2017). Then, we ran the same set of acquisition
functions on a stacking, as well as a segmentation pipeline to demonstrate and evaluate the practical
uses of EEIPU in real AI pipelines. To ensure unbiased results, we ran every experiment on T = 10
independent trials, every one of which uses a different seed for the initial warmup design to ensure a
fair comparison between different acquisition function performances.

The initial design occurs before training the GP models, where we run the model through a group of
seeded randomized hyperparameter combinations and collect a set of observations, along with their
corresponding objective values and stagewise runtime costs, to get enough data for model training, as
well as to obtain an idea of the desired budget of each experiment. We collected N0 = 10 warmup
hyperparameter combinations, and set the total optimization budget as a function of the warmup
budget. We ran all acquisition functions for both synthetic and real experiments on the same settings,
including initial datasets used to train the GP models, in order to ensure a fair comparison. Every
iteration, we generate M = 512 raw samples (potential candidate points) with r = 10 random
restarts. We also sample D = 1, 000 values from each of the cost and objective GP models, in order
to estimate their corresponding expectations. Figures 3 and 4 omit progress during the warmup
iterations, as said warmup exhibits similar results and behavior across all acquisition functions.

4.1 SYNTHETIC PIPELINES

For our synthetic experiments, we defined our own objective and cost functions, such that:

• The objective functions would have a complex analytical form.

• The cost functions would have a wide range of values spanning across the objective function
domain, mainly to avoid uniformly distributed evaluation costs.

We define one synthetic BO function per stage, which takes the corresponding stage’s hyperparameters
as input variables, then define the objective as the sum of the stage-wise functions. Similarly, we
define one cost function per stage as a combination of cosine, sine, polynomial, and logistic functions,
while ensuring ck(x) ∈ R+∗ for every cost value across the objective function’s search space. The
objective functions the cost functions we designed are defined in Appendix C.

Figure 3 shows that, with the use of memoization, EEIPU manages to run for twice the iteration count
of other acquisition functions using the same total budget, without compromising on the objective
value achieved by the end of the optimization process. In Section 5, we discuss these results further,
and quantify the performance of each acquisition function to highlight the superiority of integrating
memoization with cost awareness.

7

Under review as a conference paper at ICLR 2024

Figure 3: This figure shows every acquisition function’s performance on both synthetic functions:
f(x) = Beale2D+Hartmann3D+Ackley3D with stagewise cost functions [3, 4, 5] per Table 5
(Top Row), and f(x) = Branin2D + Beale2D + Michale2D with stagewise cost functions
[1, 2, 3] (Bottom Row). Left plots show the best objective value achieved by each acquisition function
with respect to the consumed budget, where a quicker progression to the top means a higher objective
value achieved at only a fraction of the cost of other methods. Middle plots show the best objective
value achieved with respect to the iteration count, which stops as soon as the allocated experiment
budget is fully consumed. Right plots show the consumed cost per iteration, where a slower progress
means a lower cost induced with every iteration.

4.2 SEGMENTATION AND STACKING PIPELINES

In this section, we define the two AI pipelines used in our real experiments, as summarized in Figure 4.
We define the stage components, tunable hyperparameters, target output, as well as the evaluation
metric (objective value). The stagewise cost of running these pipelines is defined by the wall time
execution duration of the corresponding stage.

The stacking pipeline is a two-staged pipeline for classifying loan applicants into default or no default
categories. The first stage fits an ensemble of four classifiers: Extreme Gradient Boosting, Extra
Trees Classifier, Random Forest, and CatBoost, while the second stage fits a Logistic Regression
classifier on the outputs of the first. For the first stage, we optimize six hyperparameters (that include
number of estimators C, the maximum depth max depth, and the learning rate lr across the four
models), while for the second stage, we optimize three hyperparameters (regularization parameter C,
tolerance parameter tol, and the maximum number of iterations max iter). The objective used in
this experiment is the area under the receiver operating characteristics AUROC.

The segmentation pipeline, on the other hand, is a pipeline for semantic segmentation of aerial images.
It is a three-stage pipeline. The first stage is a data pre-processing stage with six hyperparameters. The
hyperparameters are the mean µ and standard deviation σ values for normalising the images across
the RGB channels. The second stage is a UNet architecture for which we optimize the batch size BS,
maximum learning rate lr, and weight decay. The final stage is a post-processing stage that applies a
conditional random fields algorithm to suppress noisy pixels. We optimize the compatibility transform
matrix compat, the tuple of standard deviation of the x and y dimensions of the segmentation mask
sdim, and the probability that the ground truth probability is accurate gt prob.

5 RESULTS

When looking at the best objective value achieved by every acquisition function with respect to
the iteration count, we occasionally observe slower progress for EEIPU relative to the remaining
acquisition function to converge towards a similar best objective value. However, with the help of
memoized observations, EEIPU makes up for the slow progress with a much higher total number
of iterations, eventually leading to a higher objective value achieved by the end of the optimization

8

Under review as a conference paper at ICLR 2024

Figure 4: This figure shows summary plots of our real experiments. The stacking pipeline (Top row)
is a two-stage pipeline with a total budget of 600 seconds, while the segmentation pipeline (Bottom
row) is a three-stage pipeline with a total budget of 32, 000 seconds.

process. Tables 2 quantifies and summarizes the performance of every acquisition function on both
synthetic and real pipelines.
Table 2: Table summary of each acquisition function’s performance on each pair of pipelines in
our synthetic, as well as our real experiments. The functions are evaluated based on their average
highest-achieved objective value by the time the total budget is fully exhausted in each trial.

EEIPU EI EIPS CArBO
Beale2D + Hartmann3D + Ackley3D −2.51± 0.48 −3.04± 0.39 −3.59± 0.46 3.20± 0.49
Branin2D + Beale2D + Michale2D −1.88± 0.26 −2.36± 0.37 −2.36± 0.48 −2.65± 0.53
Segmentation Pipeline 0.741± 1e−3 0.740± 1e−3 0.739± 1e−3 0.738± 1e−3

Stacking Pipeline 0.20± 0.01 0.19± 1e−3 0.18± 1e−3 0.19± 1e−3

EEIPU managed to outperform every comparable acquisition function, achieving state-of-the-art
results within the allocated optimization budget, while managing a significantly higher number of
iterations at every turn, as highlighted in Table 3 below.
Table 3: Table summary of each acquisition function’s performance in our synthetic, as well as our
real experiments. The functions are evaluated based on the number of iterations they completed
during the optimization process before fully exhausting the allocated budget.

EEIPU EI EIPS CArBO
Beale2D + Hartmann3D + Ackley3D 77 30 35 35
Branin2D + Beale2D + Michale2D 66 32 34 35
Segmentation Pipeline 65 36 37 37
Stacking Pipeline 97 39 41 41

6 CONCLUSION

In this paper, we demonstrated the potential of scaling cost-aware BO up to multi-stage pipeline
optimization, highlighting the importance of introducing memoization into the optimization process.
EEIPU has achieved state-of-the-art results on both synthetic as well as real experiments – it incurs
significantly lower total cost per BO iteration compared to existing cost-aware methods. In particular,
EEIPU memoizes earlier pipeline stages in order to reduce the cost of optimizing later stages; the
result is fully-automated, pipeline-wide optimization at a fraction of the originally anticipated cost.
As future work, we may consider studying certain limitations of EEIPU – as described in Appendix E
– which arise when objective functions are strongly correlated with costs.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Majid Abdolshah, Alistair Shilton, Santu Rana, Sunil Gupta, and Svetha Venkatesh. Cost-aware
multi-objective bayesian optimisation. arXiv preprint arXiv:1909.03600, 2019.

David H Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic Publishers,
1987.

Raul Astudillo, Daniel R. Jiang, Maximilian Balandat, Eytan Bakshy, and Peter I. Frazier. Multi-step
budgeted bayesian optimization with unknown evaluation costs. CoRR, abs/2111.06537, 2021.
URL https://arxiv.org/abs/2111.06537.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham,
Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient
Monte-Carlo Bayesian Optimization. In Advances in Neural Information Processing Sys-
tems 33, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
f5b1b89d98b7286673128a5fb112cb9a-Abstract.html.

L. C. W. Dixon and G. P. Szegö. Towards global optimisation 2. Elsevier, 1978.

Peter I. Frazier. A tutorial on bayesian optimization, 2018.

A. O. Hartmann. Theoretical study of some bulk properties of solids. Physical Review B, 6(2):450,
1972.

Johannes Kirschner, Mojmı́r Mutný, Nicole Hiller, Rasmus Ischebeck, and Andreas Krause. Adap-
tive and safe bayesian optimization in high dimensions via one-dimensional subspaces. CoRR,
abs/1902.03229, 2019. URL http://arxiv.org/abs/1902.03229.

Shunya Kusakawa, Shion Takeno, Yu Inatsu, Kentaro Kutsukake, Shogo Iwazaki, Takashi Nakano,
Toru Ujihara, Masayuki Karasuyama, and Ichiro Takeuchi. Bayesian optimization for cascade-type
multi-stage processes. arXiv preprint arXiv:2111.08330, 2021.

Eric Hans Lee, Valerio Perrone, Cedric Archambeau, and Matthias Seeger. Cost-aware bayesian
optimization. arXiv preprint arXiv:2003.10870, 2020.

Chi-Heng Lin, Joseph D Miano, and Eva L Dyer. Bayesian optimization for modular black-box
systems with switching costs. In Uncertainty in Artificial Intelligence, pp. 1024–1034. PMLR,
2021.

Zbigniew Michalewicz. Genetic algorithms + data structures = evolution programs. Springer-Verlag,
1996.

Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of bayesian methods for
seeking the extremum. Towards Global Optimization, 2:117–129, 1978.

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media,
2006.

Carl Edward Rasmussen. Gaussian Processes in Machine Learning, pp. 63–71. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-28650-9. doi: 10.1007/978-3-540-28650-9 4.
URL https://doi.org/10.1007/978-3-540-28650-9_4.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms, 2012.

Pratibha Vellanki, Santu Rana, Sunil Gupta, David Rubin, Alessandra Sutti, Thomas Dorin, Mur-
ray Height, Paul Sanders, and Svetha Venkatesh. Process-constrained batch bayesian optimisa-
tion. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/1f71e393b3809197ed66df836fe833e5-Paper.pdf.

Jiawei Zhang, Wei Yang, Hao Zhang, Jianfeng Gao, and Tie-Yan Liu. Bo over iterative learners w/
structured responses: A budget-aware planning approach. CoRR, abs/2204.07004, 2022. URL
https://arxiv.org/abs/2204.07004.

10

https://arxiv.org/abs/2111.06537
https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html
http://arxiv.org/abs/1902.03229
https://doi.org/10.1007/978-3-540-28650-9_4
https://proceedings.neurips.cc/paper_files/paper/2017/file/1f71e393b3809197ed66df836fe833e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/1f71e393b3809197ed66df836fe833e5-Paper.pdf
https://arxiv.org/abs/2204.07004

Under review as a conference paper at ICLR 2024

APPENDIX

A PROBLEM SETUP

We consider a “black-box cost” multistage pipeline setting, in which the goal is to maximize a single
objective function f : X → R with no gradients or analytical form. This function f is the output of
a K-stage AI pipeline, where xk ∈ Xk are the tunable hyperparameters of stage k of said pipeline.
Let x ∈ X = X1 × X2 × . . . × XK be the set of hyperparameters across all stages, Y = f(X) be
the objective value returned by the pipeline, and Ck be the cost of running stage k of the K-stage
pipeline. Observe that every stage k has its own cost function, but there is only one objective function
f for the entire pipeline.

Under this setting, our goal is to find the optimizer of f(x), while leveraging the properties of the
multistage setting to minimize the total cost required over all iterations/queries. In this paper, we
propose EEIPU, a cost-efficient memoization-aware BO acquisition function that, in a nutshell,
evaluates the expected-expected improvement per unit cost of potential hyperparameter candidates X .
EEIPU uses uncertainty modeling to compute its value, and proposes a memoization-based caching
mechanism to minimize the budget of running an observation through the pipeline, which increases
the total number of iterations under a fixed optimization budget, therefore maximizing the chances of
finding the optimizer of f(x) compared to existing methods.

Our setting differs from that of LaMBO (Lin et al, 2021) and Multistage BO (Kusakawa et al, 2021),
which are methods that implement a memoization-like technique for multi-stage pipelines., Impor-
tantly, neither method is applicable (at least, not without substantial modifications or assumptions) to
our black-box cost setting. LaMBO employs a slowly moving bandit (SMB) algorithm that uses a
tree structure to represent the tunable hyperparameters, partitioned into user-defined modules with the
aim of minimizing the cost of updating hyperparameter modules between adjacent iterations. This
approach relies on users to specify a partitioning of the hyperparameter space, something that is not
required by EEIPU. While the LaMBO paper provides a “bisection” heuristic for partitioning the
parameter space, this causes the tree size (number of leaves) to grow exponentially with increasing
hyperparameter dimension. Furthermore, each LaMBO iteration requires solving a local BO problem
for every leaf in the tree, hence limiting its usefulness in high-dimensional hyperparameter spaces.

As for Multi-stage BO, it requires stronger assumptions on cost functions than are admissible in
our black-box cost setting: (1) their setting assumes prior knowledge of the cost of running every
stage of their pipeline, and furthermore, they assume the tunable parameters do not affect costs; (2)
Multi-stage BO requires each pipeline stage to have a separate objective function, whereas in our
setting, there is only one objective function for the entire pipeline. Our setting is consistent with the
majority of Machine Learning pipelines, where the desired objective - such as a validation accuracy
or other metrics - is only known after the entire pipeline finishes execution; intermediate stages do
not possess their own objective functions.

B ADDITIONAL EXPERIMENTS

B.1 SYNTHETIC EXPERIMENT

Figure 5: This figure shows the performance of all acquisition functions on a 30-dimensional 5-stage
pipeline with a budget of 8, 000 cost units.

11

Under review as a conference paper at ICLR 2024

B.2 REAL EXPERIMENTS

Figure 6: This figure shows summary plots of our real experiments. The stacking pipeline (Top
row) is a two-stage pipeline with a total budget of 1, 000 seconds, while the T5 Distillation pipeline
(Bottom row) is a three-stage pipeline with a total budget of 25, 000 seconds.

C SYNTHETIC FUNCTIONS

The synthetic functions we used in our experiments, detailed in Section 4.1, are standard BO functions
defined in Table 4 below.

Table 4: Objective Functions used for Synthetic Pipelines

Function Name Formula

Branin-2D (Dixon & Szegö, 1978) (x2 − 5.1
4π2 x

2
2 +

5
π
x1 − 6)2 + 10(1− 1

8π
) cos(x1) + 10

Hartmann-3D (Hartmann, 1972) −
∑4

i=1 αi exp(−
∑3

j=1 Aij(xj − Pij)
2)

Beale-2D (Nocedal & Wright, 2006) (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2 + (2.625− x1 + x1x
3
2)

2

Ackley-3D (Ackley, 1987) −20 exp(−0.2
√

1
3

∑3
i=1 x

2
i)− exp(1

3

∑3
i=1 cos(2πxi)) + 20 + e1

Michale-2D (Michalewicz, 1996)
∑2

i=1 sin(xi)(sin(ix
2
i /π)

20)

Table 5: Synthetic Functions Used for Evaluating Stage Costs

Cost Type Function Stage Dimension Formula

1 Logistic + Cosine 2 20 cos(x1) +
100

1+exp(−5x2)
+ 60

2 Logistic + Polynomial 2 20
1+exp(−3x1)

+ x3
2 + 100

3 Cosine - Sine 2 50 cos(x1)− 20 sin(x2) + 100
4 Polynomial + Cosine + Sine 3 5x2

1 + 30 cos(x2) + 15 sin(x3) + 50
4 Logistic + Cosine + Polynomial 3 20

1+exp(−4x1)
+ 30 cos(x2) + x3

3 + 75

D EEIPU’S THEORETICAL UPPER-BOUND

EEIPU’s theoretical upper-bound, referred to as EIPU-MEMO, is an oracle version of our method
which has full access to the true cost function, therefore bypassing the need for fitting stagewise cost
GPs. While EEIPU is theoretically able to achieve a higher objective value due to the randomness
that stems from modeling costs, EIPU-MEMO is guaranteed to use the true cost of an observation
to compute EEIPU(X). Therefore, we consider EIPU-MEMO to be an oracle version of EEIPU
which behaves exactly as intended by our algorithm. Figure 7 shows the behavior of EEIPU and
EIPU-MEMO when ran on our synthetic pipelines.

12

Under review as a conference paper at ICLR 2024

Figure 7: This figure shows summary plots of EIPU-MEMO’s performance on our synthetic pipelines
compared to EEIPU.

EIPU-MEMO follows the intended behavior of our cost-aware design, which leads it to finding better
objective values at a slightly faster pace than EEIPU. However, the consumed budget per iteration
(right) plot shows that EEIPU’s cost modeling process succeeds in approximating the majority of the
costs chosen by EIPU-MEMO, which is a good indicator of EEIPU’s ability to model and estimate
costs.

E LIMITATIONS

When the objective function we are optimizing for is positively correlated with the cost function,
the optimal objective value f(x∗) would be located at a very high-cost region. In this case, sample-
efficient techniques, such as EI (Mockus et al., 1978) could potentially find the optimal objective
value by immediately targeting the high cost regions where the expected improvement is maximized,
while EEIPU is initially directed towards low-cost regions for a large part of the optimization process.

To overcome this limitation, we speculate that the following procedure may be effective: the warmup
iterations can be altered to prioritize hyperparameter choices in high-variance/uncertain regions
of the search space. Intuitively, this variation of EEIPU initially prioritizes the acquisition of
cost and objective information over a wide search space. When objective is correlated with cost,
this allows high-cost-high-objective regions to be quickly discovered in earlier iterations, without
wasting iterations on low-cost-low-objective regions. Future work may also include early stopping
mechanisms where the optimization process is stopped (based on criteria to be developed) before the
cost budget is fully exhausted.

F DETAILS OF THE COMPUTE ENVIRONMENT

We set up our experiments on a server node with 4 NVIDIA A100-SXM4-40GB GPUs and 128 CPU
cores with 2 threads per core. While our node had 4 GPUs, our experiments only used 1 GPU at a
time, since parallelization was unnecessary for the data and model sizes in our pipeline experiments.
For more resource-intensive pipelines, any of the commonly-used parallelization methods (e.g. data-
parallelism, model-parallelism or pipeline-parallelism) can be applied to the pipeline; this would not
interfere with EEIPU’s proper functioning.

13

	Introduction
	Background
	Methodology
	Cost Awareness with Unknown Costs
	Memoization Awareness
	Cost Cooling
	EEIPU Framework and Main Contributions

	Experiments
	Synthetic Pipelines
	Segmentation and Stacking Pipelines

	Results
	Conclusion
	Problem Setup
	Additional Experiments
	Synthetic Experiment
	Real Experiments

	Synthetic Functions
	EEIPU's theoretical upper-bound
	Limitations
	Details of the Compute Environment

