
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Learning Realistic Sketching: A Multi-Agent Reinforcement
Learning Approach

Anonymous Authors

The supplementary material is organized into four sections. Ini-
tially, it provides a detailed description of the network structures
discussed in Section 3 of the main text. It then explores the training
details of our method corresponding to Section 3.5. Subsequently, it
examines the specifics of the render network as outlined in Section
3.4. Finally, it offers additional analysis and results for Section 4.5.

1 NETWORK STRUCTURE

Figure 1: The two neural network architectures are: (a) Style
Feature Extractor and (b) Render Network.

1.1 Style Feature Extractor
As illustrated in Figure 1.a, we employ an encoder-decoder archi-
tecture for the Style feature extractor. It takes a natural image 𝐼
as input and processes it through convolutional layers, two down-
sampling layers, three residual blocks, and two upsampling layers
to extract the feature map 𝐹 of the natural image. The decoder,
serving as a generator, converts 𝐹 into sketches. It achieves this
transformation through and a convolutional layer, outputting the
generated sketch 𝐼 .

1.2 Render Network
The renderer network achieves themapping from stroke parameters
and the current canvas to the subsequent canvas with the added
strokes. As illustrated in Figure 1.b, the network receives stroke
parameters 𝑎𝐷𝑡 , expands their dimensions to 4096 through four
fully connected layers, and reshapes them to 16 × 16 × 16. It then
processes this data through convolutional layers and PixelShuffle
operations to output a 1 × 128 × 128 rendered image.

1.3 Agent
As shown in Figure 2.a, for both agents, the networks receive inputs
from two sources that are combined via a concatenation operation.
The original feature map’s shape is 64× 256× 256. For the attention
agent, the state information channel count 𝑛1 is set to 8, and the

Figure 2: The two neural network architectures are: (a) Agent
and (b) Critic.

feature map is resized to 64 × 128 × 128 through interpolation. For
the drawing agent, the state information channel count 𝑛1 is set
to 4, and the input feature map undergoes ROI Align to crop and
resize the features of the drawing area to 64 × 128 × 128.

The merged feature is subsequently processed through residual
blocks and a fully connected network to generate actions. Con-
sidering the high variability and complexity of real-world images,
the agents benefit from implementing batch normalization. The
attention agent outputs the size and position of the next drawing
area 𝑎𝐴 , with an output dimension of 3. Meanwhile, the drawing
agent outputs stroke parameters 𝑎𝐷 , with an output dimension of
13.

1.4 Critic
The critic, a crucial component of the TD3 algorithm, predicts the
value 𝑄 of the state-action, which assesses the expected cumula-
tive reward of the current state and the agent’s action. As depicted
in Figure 2.b, for the attention module, the critic receives both
state and action inputs, where the state channel 𝑛2 is 8, compris-
ing (𝐶𝑡 , 𝐼𝑔𝑡 , 𝑀𝑡 , 𝑡). These inputs are concatenated and processed
through four residual blocks, concluding with an average pooling
layer that feeds into a fully connected network to compute the
value function 𝑄 .



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

In the drawing module, the critic only receives state inputs with
the channel count 𝑛2 set to 10, which includes (𝐶𝑡 ,𝐶𝑡 + 1, 𝐼𝑔𝑡 , 𝑡),
and outputs the value 𝑉 of the current state.

2 TRAINING DETAILS
In the training of the attention agent, we adopt a model-free ap-
proach due to the non-differentiable nature of the Paste operation,
which makes the state transition function non-differentiable. The
critic is to estimate the expected reward for the agent’s action 𝑎𝑡 at
state 𝑠𝑡 , utilizing the Bellman equation as used in Q-learning:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝑄 (𝑠𝑡+1, 𝜋 (𝑠𝑡+1)), (1)

where 𝑟 (𝑠𝑡 , 𝑎𝑡 ) represents the reward received from the environ-
ment for executing action 𝑎𝑡 at state 𝑠𝑡 . Meanwhile, the agent 𝜋𝐴
is optimized to maximize the estimated 𝑄 (𝑠𝑡 , 𝜋 (𝑠𝑡 )) by the critic.

In the training of the drawing agent, we employ a model-based
approach because the render network is differentiable, allowing the
state transition function trans to be differentiable as well. The critic
inputs 𝑠𝑡+1 instead of both 𝑠𝑡 and 𝑎𝑡 , and predicts the expected re-
ward for the state. This leads to a new expected reward formulation,
a value function 𝑉 (𝑠𝑡 ), trained using discounted rewards:

𝑉 (𝑠𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝑉 (𝑠𝑡+1). (2)

Here, the agent𝜋𝐷 is optimized tomaximize 𝑟 (𝑠𝑡 , 𝜋 (𝑠𝑡 ))+𝑉 (trans(𝑠𝑡 ,
𝜋 (𝑠𝑡 ))) because the transition function 𝑠𝑡+1 = trans(𝑠𝑡 , 𝑎𝑡 ) is differ-
entiable.

3 RENDER NETWORK
Traditional rendering processes are non-differentiable due to dis-
crete rasterization operations, but neural renderers bridge this gap
by leveraging the inherent differentiability of deep neural networks.
Stroke renderers focus on mapping stroke parameters to canvas
images rather than transforming 3D models into 2D images. To
train effectively, they require differentiable renderers, enhancing
painting quality and convergence speed. Even if rendering environ-
ments produce excellent results, interacting with non-differentiable
painting environments deprives the agent of explicit feedback.

Figure 3: The architecture of the render network training.

As shown in Figure 3, during training, samples are generated
by the stroke generator program and trained through supervised

Figure 4: The left side shows the image rendered with stroke
parameters at boundary values, pasted back to the edge of
the overall canvas to ensure stroke continuity.

learning. Initially, stroke parameters are randomly sampled and
rendered on fixed-size white images, simulating a painter’s process.
These stroke parameters are then passed to the render network
to capture complex relationships between input parameters. The
network outputs generated images, aiming to resemble real images.
The 𝐿2 distance measures the similarity between generated and ren-
dered images, guiding parameter updates through backpropagation
to optimize network weights and reduce the distance.

To ensure the continuity of the strokes, we constrain the po-
sitions and thickness of control points within the canvas in the
Stroke Generator. As shown in Figure 4, we restrict the maximum
and minimum values of the 𝑥,𝑦 coordinates and the width𝑤 of the
control points to ensure strokes remain within the drawing area.
Because these constraints prevent strokes from reaching the canvas
edges, we apply padding to the canvas to ensure accurate depiction
of edge positions.

4 ADDITIONAL ANALYSIS AND RESULTS
Table 3 of the main text reveals that with 50 strokes, the VSketch
method, which employs VGG perceptual loss, ranks second only
to ours in terms of PSNR and SSIM. However, it underperforms
visually. This issue stems fromVSketch’s failure to preserve detailed
integrity, resulting in significant blank areas. Paradoxically, these
blank areas bring it closer to the ground truth at the pixel level than
other baselines. RST employs SLIC to segment images for stroke
initialization, frequently exceeding the predetermined number of
strokes and necessitating pixel-level post-processing, which can
disrupt the painting process. Consequently, as demonstrated in
Figure 6 of the main text, RST with 50 strokes yields textures and
details that surpass typical results for that stroke count.

Figure 5 further demonstrates the comparison between ourmethod
and baselines under 1000 strokes, while Figure 6 illustrates the inter-
mediate stages of our sketching process, which align with human
sketching habits. Initially, our method sets up the general structure
and then progressively refines the details in subsequent stages. Ad-
ditionally, supplementary materials include a video titled "sequen-
tial_realistic_ sketching.mp4," showcasing our method’s sketching
process from start to finish under a scenario of 1000 strokes.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Learning Realistic Sketching: A Multi-Agent Reinforcement Learning Approach ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348Natural Image (a) CLIPasso (b) SNP (c) VSketch (d) RST (e) Ours

Figure 5: Additional comparison of existing drawing methods under scenarios with 1000 strokes.



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Natural
Image

Timestep
25

Timestep
50

Timestep
100

Timestep
250

Timestep
500

Timestep
1000

Figure 6: Drawing progression over a series of timesteps.


	1 Network Structure
	1.1 Style Feature Extractor
	1.2 Render Network
	1.3 Agent
	1.4 Critic

	2 Training Details
	3 Render Network
	4 Additional Analysis and Results

