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Learning Realistic Sketching: A Multi-Agent Reinforcement
Learning Approach
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The supplementary material is organized into four sections. Ini-
tially, it provides a detailed description of the network structures
discussed in Section 3 of the main text. It then explores the training
details of our method corresponding to Section 3.5. Subsequently, it
examines the specifics of the render network as outlined in Section
3.4. Finally, it offers additional analysis and results for Section 4.5.

1 NETWORK STRUCTURE

Figure 1: The two neural network architectures are: (a) Style
Feature Extractor and (b) Render Network.

1.1 Style Feature Extractor
As illustrated in Figure 1.a, we employ an encoder-decoder archi-
tecture for the Style feature extractor. It takes a natural image 𝐼
as input and processes it through convolutional layers, two down-
sampling layers, three residual blocks, and two upsampling layers
to extract the feature map 𝐹 of the natural image. The decoder,
serving as a generator, converts 𝐹 into sketches. It achieves this
transformation through and a convolutional layer, outputting the
generated sketch 𝐼 .

1.2 Render Network
The renderer network achieves themapping from stroke parameters
and the current canvas to the subsequent canvas with the added
strokes. As illustrated in Figure 1.b, the network receives stroke
parameters 𝑎𝐷𝑡 , expands their dimensions to 4096 through four
fully connected layers, and reshapes them to 16 × 16 × 16. It then
processes this data through convolutional layers and PixelShuffle
operations to output a 1 × 128 × 128 rendered image.

1.3 Agent
As shown in Figure 2.a, for both agents, the networks receive inputs
from two sources that are combined via a concatenation operation.
The original feature map’s shape is 64× 256× 256. For the attention
agent, the state information channel count 𝑛1 is set to 8, and the

Figure 2: The two neural network architectures are: (a) Agent
and (b) Critic.

feature map is resized to 64 × 128 × 128 through interpolation. For
the drawing agent, the state information channel count 𝑛1 is set
to 4, and the input feature map undergoes ROI Align to crop and
resize the features of the drawing area to 64 × 128 × 128.

The merged feature is subsequently processed through residual
blocks and a fully connected network to generate actions. Con-
sidering the high variability and complexity of real-world images,
the agents benefit from implementing batch normalization. The
attention agent outputs the size and position of the next drawing
area 𝑎𝐴 , with an output dimension of 3. Meanwhile, the drawing
agent outputs stroke parameters 𝑎𝐷 , with an output dimension of
13.

1.4 Critic
The critic, a crucial component of the TD3 algorithm, predicts the
value 𝑄 of the state-action, which assesses the expected cumula-
tive reward of the current state and the agent’s action. As depicted
in Figure 2.b, for the attention module, the critic receives both
state and action inputs, where the state channel 𝑛2 is 8, compris-
ing (𝐶𝑡 , 𝐼𝑔𝑡 , 𝑀𝑡 , 𝑡). These inputs are concatenated and processed
through four residual blocks, concluding with an average pooling
layer that feeds into a fully connected network to compute the
value function 𝑄 .
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In the drawing module, the critic only receives state inputs with
the channel count 𝑛2 set to 10, which includes (𝐶𝑡 ,𝐶𝑡 + 1, 𝐼𝑔𝑡 , 𝑡),
and outputs the value 𝑉 of the current state.

2 TRAINING DETAILS
In the training of the attention agent, we adopt a model-free ap-
proach due to the non-differentiable nature of the Paste operation,
which makes the state transition function non-differentiable. The
critic is to estimate the expected reward for the agent’s action 𝑎𝑡 at
state 𝑠𝑡 , utilizing the Bellman equation as used in Q-learning:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝑄 (𝑠𝑡+1, 𝜋 (𝑠𝑡+1)), (1)

where 𝑟 (𝑠𝑡 , 𝑎𝑡 ) represents the reward received from the environ-
ment for executing action 𝑎𝑡 at state 𝑠𝑡 . Meanwhile, the agent 𝜋𝐴
is optimized to maximize the estimated 𝑄 (𝑠𝑡 , 𝜋 (𝑠𝑡 )) by the critic.

In the training of the drawing agent, we employ a model-based
approach because the render network is differentiable, allowing the
state transition function trans to be differentiable as well. The critic
inputs 𝑠𝑡+1 instead of both 𝑠𝑡 and 𝑎𝑡 , and predicts the expected re-
ward for the state. This leads to a new expected reward formulation,
a value function 𝑉 (𝑠𝑡 ), trained using discounted rewards:

𝑉 (𝑠𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝑉 (𝑠𝑡+1). (2)

Here, the agent𝜋𝐷 is optimized tomaximize 𝑟 (𝑠𝑡 , 𝜋 (𝑠𝑡 ))+𝑉 (trans(𝑠𝑡 ,
𝜋 (𝑠𝑡 ))) because the transition function 𝑠𝑡+1 = trans(𝑠𝑡 , 𝑎𝑡 ) is differ-
entiable.

3 RENDER NETWORK
Traditional rendering processes are non-differentiable due to dis-
crete rasterization operations, but neural renderers bridge this gap
by leveraging the inherent differentiability of deep neural networks.
Stroke renderers focus on mapping stroke parameters to canvas
images rather than transforming 3D models into 2D images. To
train effectively, they require differentiable renderers, enhancing
painting quality and convergence speed. Even if rendering environ-
ments produce excellent results, interacting with non-differentiable
painting environments deprives the agent of explicit feedback.

Figure 3: The architecture of the render network training.

As shown in Figure 3, during training, samples are generated
by the stroke generator program and trained through supervised

Figure 4: The left side shows the image rendered with stroke
parameters at boundary values, pasted back to the edge of
the overall canvas to ensure stroke continuity.

learning. Initially, stroke parameters are randomly sampled and
rendered on fixed-size white images, simulating a painter’s process.
These stroke parameters are then passed to the render network
to capture complex relationships between input parameters. The
network outputs generated images, aiming to resemble real images.
The 𝐿2 distance measures the similarity between generated and ren-
dered images, guiding parameter updates through backpropagation
to optimize network weights and reduce the distance.

To ensure the continuity of the strokes, we constrain the po-
sitions and thickness of control points within the canvas in the
Stroke Generator. As shown in Figure 4, we restrict the maximum
and minimum values of the 𝑥,𝑦 coordinates and the width𝑤 of the
control points to ensure strokes remain within the drawing area.
Because these constraints prevent strokes from reaching the canvas
edges, we apply padding to the canvas to ensure accurate depiction
of edge positions.

4 ADDITIONAL ANALYSIS AND RESULTS
Table 3 of the main text reveals that with 50 strokes, the VSketch
method, which employs VGG perceptual loss, ranks second only
to ours in terms of PSNR and SSIM. However, it underperforms
visually. This issue stems fromVSketch’s failure to preserve detailed
integrity, resulting in significant blank areas. Paradoxically, these
blank areas bring it closer to the ground truth at the pixel level than
other baselines. RST employs SLIC to segment images for stroke
initialization, frequently exceeding the predetermined number of
strokes and necessitating pixel-level post-processing, which can
disrupt the painting process. Consequently, as demonstrated in
Figure 6 of the main text, RST with 50 strokes yields textures and
details that surpass typical results for that stroke count.

Figure 5 further demonstrates the comparison between ourmethod
and baselines under 1000 strokes, while Figure 6 illustrates the inter-
mediate stages of our sketching process, which align with human
sketching habits. Initially, our method sets up the general structure
and then progressively refines the details in subsequent stages. Ad-
ditionally, supplementary materials include a video titled "sequen-
tial_realistic_ sketching.mp4," showcasing our method’s sketching
process from start to finish under a scenario of 1000 strokes.
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Figure 5: Additional comparison of existing drawing methods under scenarios with 1000 strokes.
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Figure 6: Drawing progression over a series of timesteps.
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