
Agent 1

Agent 2

River Tiles

(a) The initial setup with two agents and two river
tiles. When the river tiles become dirty, they are
shown as a brownish color instead.

Cleaning
Beam Tiles

Agent 1

Agent 2

(b) The result of both agents perform the “clean”
action. Both river tiles can be are cleaned since
Agent 1’s action is resolved first.

Figure 7: Cleanup, a Sequential Social Dilemma Game from Vinitsky et al. [2019].

Agent 1

Agent 2

(a) If there are no dirty river tiles in the path of the
cleaning beams, the beams will extend to the full
length of five tiles.

Agent 1

Agent 2

(b) If there is a dirty river tile in the path of a
beam, the beam will stop at the tile, changing it to
a “clean” river tile.

Figure 8: An example of Agent 1 using the “clean” action while facing East. The beams extend to a
length of up to five tiles. The “main” beam extends directly in front of the agent, while two auxiliary
beams start at the tiles directly next to the agent (one to the left and one to the right) and also extend
up to five tiles. A beam stops when it hits a dirty river tile.

A Additional Case Study Information

A.1 Race Conditions in Sequential Social Dilemma Games

The Sequential Social Dilemma Games, introduced in Leibo et al. [2017], are a kind of MARL
environment where good short-term strategies for single agents lead to bad long-term results for all of
the agents. New SSD environments, including the Cleanup environment, were introduced in Hughes
et al. [2018]. All of these have open source implementations in [Vinitsky et al., 2019]. The states of
these games are represented by a grid of tiles, where each tile represents either an agent or a piece of
the environment. In the Cleanup environment, the environment tiles can be empty tiles, river tiles,
and apple tiles. Collecting apple tiles results in a reward for the agent and the agents must clean the
river tiles with a “cleaning beam” for apple tiles to spawn. The cleaning beam extends in front of
agents, one tile at a time, until it hits a dirty river tile (“waste”) or extends to its maximum length of 5
tiles. Additionally, two more beams extend in front of the agent—one starting in the tile directly to
the agent’s left, and one from the tile on the right—until each hits a “waste” tile or reaches a length
of 5 tiles. The cleaning beam is shown in Figure 8a. Note that while beams stop at “waste” tiles, they
will continue to extend past clean river tiles.

The agents act sequentially in the same order every turn, including the firing of their beams. In the
case of two agents trying to occupy the same space, one is chosen randomly, however the tie breaking
with regards to the beams is biased, due to a bug. Consider the setup in Figure 7 where each agent
chooses the “clean” action for the next step. This results in Agent 1 firing their cleaning beam first,
clearing the close river tile. Next, Agent 2 fires their cleaning beam and they are able to clean the

13

Agent 2

Agent 1

(a) The same setup as in Figure 7, but with the
agent labels reversed.

Agent 2

Agent 1

(b) The result of both agents performing the “clean”
action, with this agent assignment.

Figure 9: The impact of switching the internal agent order on how the environment evolves. When
both agents clean, agent 1’s action is resolved first, and the main beam stops when it hits the near
dirty river tile, so the far river tile is not cleaned. In Figure 7, Agent 2’s beam was able to reach the
far beam because Agent 1’s beam cleaned the near tile first.

far river tile because the close tile has already been cleared by Agent 1. However, if we keep the
same placement and actions but switch the labels of the agents, we get a different result, seen in
Figure 9. Now, Agent 1 fires first and hits the close river tile and can no longer reach the far river
tile. In situations like these, the observation the second agent’s policy is using to act on is going to be
inherently wrong, and if it had the true environment state before acting it would very likely wish to
make a different choice.

This is a serious class of bug that’s very easy to introduce when using parallel action-based APIs,
while using AEC games-based APIs prevents the class entirely. In this specific instance, the bug had
gone unnoticed for years.

A.2 Reward Defects in Pursuit

We validated the impact of reward pruning experimentally by training parameter shared Ape-X DQN
[Horgan et al., 2018] (the best performing model on pursuit [Terry et al., 2020d]) four times using
RLLib [Liang et al., 2017] with and without reward pruning, achieving better results with reward
pruning every time and 22.03% more total reward on average Figure 10a, while PPO [Schulman et al.,
2017] learned 16.12% more reward on average with this Figure 10b. Saved training logs and all code
needed to reproduce the experiments and plots is available in the supplemental materials.

B Default Environments

This section surveys all the environments that are included in PettingZoo by default.

Atari

Atari games represent the single most popular and iconic class of benchmarks in reinforcement
learning. Recently, a multi-agent fork of the Arcade Learning Environment was created that allows
programmatic control and reward collection of Atari’s iconic multi-player games [Terry and Black,
2020]. As in the single player Atari environments, the observation is the rendered frame of the game,
which is shared between all agents, so there is no partial observability. Most of these games have
competitive or mixed reward structures, making them suitable for general study of adversarial and
mixed reinforcement learning. In particular, Terry and Black [2020] categorizes the games into 7
different types: 1v1 tournament games, mixed sum survival games (Space Invaders, shown in Figure
11a. is an example of this), competitive racing games, long term strategy games, 2v2 tournament
games, a four-player free-for-all game and a cooperative game.

Butterfly

Of all the default environments included, the majority of them are competitive. We wanted to
supplement this with a set of interesting graphical cooperative environments. Pistonball, depicted

14

10k 20k 30k 40k 50k
Episode

100

200

300

400

500

600

A
ve

ra
ge

To
ta

lR
ew

ar
d

Pursuit

Unpruned 0
Unpruned 1
Unpruned 2
Unpruned 3

Pruned 0
Pruned 1
Pruned 2
Pruned 3

(a) Learning on the pursuit environment with and without pruned rewards, using parameter sharing based on
Ape-X DQN. This shows an average of an 22.03% improvement by using this method.

10k 20k 30k 40k 50k
Episode

60

70

80

90

100

110

120

A
ve

ra
ge

To
ta

lR
ew

ar
d

Pursuit

Unpruned 0
Unpruned 1
Unpruned 2
Unpruned 3

Pruned 0
Pruned 1
Pruned 2
Pruned 3

(b) Learning on the pursuit environment with and without reward pruning, using parameter sharing based on
PPO. Reward pruning increased the total reward by 16.12% on average.

in Figure 11b, is an environment where pistons need to coordinate to move a ball to the left, while
only being able to observe a local part of the screen. It requires learning nontrivial emergent behavior
and indirect communication to perform well. Knights Archers Zombies is a game in which agents
work together to defeat approaching zombies before they can reach the agents. It is designed to be a
fast paced, graphically interesting combat game with partial observability and heterogeneous agents,
where achieving good performance requires extraordinarily high levels of agent coordination. In
Cooperative pong two dissimilar paddles work together to keep a ball in play as long as possible. It
was intended to be a be very simple cooperative continuous control-type task, with heterogeneous
agents. Prison was designed to be the simplest possible game in MARL, and to be used as a debugging
tool. In this environment, no agent has any interaction with the others, and each agent simply receives
a reward of 1 when it paces from one end of its prison cell to the other. Prospector was created to
be a very challenging game for conventional methods—it has two classes of agents with different
goals, action spaces, and observation spaces (something many current cooperative MARL algorithms
struggle with), and has very sparse rewards (something all RL algorithms struggle with). It is intended
to be a very difficult benchmark for MARL, in the same vein as Montezuma’s Revenge.

Classic

Classical board and card games have long been some of the most popular environments in reinforce-
ment learning [Tesauro, 1995, Silver et al., 2016, Bard et al., 2019]. We include all of the standard
multiplayer games in RLCard [Zha et al., 2019]: Dou Dizhu, Gin Rummy, Leduc Hold’em, Limit Texas
Hold’em, Mahjong, No-limit Texas Hold’em, and Uno. We additionally include all AlphaZero games,
using the same observation and action spaces—Chess and Go. We finally included Backgammon,
Connect Four, Checkers, Rock Paper Scissors, Rock Paper Scissors Lizard Spock, and Tic Tac Toe to
add a diverse set of simple, popular games to allow for more robust benchmarking of RL methods.

MAgent

The MAgent library, from Zheng et al. [2017] was introduced as a configurable and scalable en-
vironment that could support thousands of interactive agents. These environments have mostly
been studied as a setting for emergent behavior [Pokle, 2018], heterogeneous agents [Subramanian
et al., 2020], and efficient learning methods with many agents [Chen et al., 2019]. We include a

15

(a) Atari: Space Invaders (b) Butterfly: Pistonball

(c) Classic: Chess

(d) MAgent: Adversarial Pursuit

(e) MPE: Simple Adversary
(f) SISL: Multiwalker

Figure 11: Example environments from each class.

number of preset configurations, for example the Adversarial Pursuit environment shown in Figure
11d. We make a few changes to the preset configurations used in the original MAgent paper. The
global "minimap" observations in the battle environment are turned off by default, requiring implicit
communication between the agents for complex emergent behavior to occur. The rewards in Gather
and Tiger-Deer are also slightly changed to prevent emergent behavior from being a direct result of
the reward structure.

MPE

The Multi-Agent Particle Environments (MPE) were introduced as part of Mordatch and Abbeel
[2017] and first released as part of Lowe et al. [2017]. These are 9 communication oriented environ-
ments where particle agents can (sometimes) move, communicate, see each other, push each other
around, and interact with fixed landmarks. Environments are cooperative, competitive, or require
team play. They have been popular in research for general MARL methods Lowe et al. [2017],
emergent communication [Mordatch and Abbeel, 2017], team play [Palmer, 2020], and much more.
As part of their inclusion in PettingZoo, we converted the action spaces to a discrete space which
is the Cartesian product of the movement and communication action possibilities. We also added

16

comprehensive documentation, parameterized any local reward shaping (with the default setting
being the same as in Lowe et al. [2017]), and made a single render window which captures all the
activities of all agents (including communication), making it easier to visualize.

SISL

We finally included the three cooperative environments introduced in Gupta et al. [2017]: Pursuit,
Waterworld, and Multiwalker. Pursuit is a standard pursuit-evasion game Vidal et al. [2002] where
pursuers are controlled in a randomly generated map. Pursuer agents are rewarded for capturing
randomly generated evaders by surrounding them on all sides. Waterworld is a continuous control
game where the pursuing agents cooperatively hunt down food targets while trying to avoid poison
targets. Multiwalker (Figure 11f) is a more challenging continuous control task that is based on
Gym’s BipedalWalker environment. In Multiwalker, a package is placed on three independently
controlled robot legs. Each robot is given a small positive reward for every unit of forward horizontal
movement of the package, while they receive a large penalty for dropping the package.

B.1 Butterfly Baselines

Whne environments are introduced to the literature, it is customary for them to include baselines to
provide a general sense of the difficulty of the environment and to provide something to compare
against. We do this here for the Butterfly environments that this library introduces for the first time;
similar baselines exist in the papers introducing all other environments. For our baseline learning
method we used used fully parameter shared PPO [Schulman et al., 2017] from Stable-Baselines3
(SB3) [Raffin et al., 2019]. We use the SuperSuit wrapper library [Terry et al., 2020c] for prepro-
cessing similar to that in Mnih et al. [2015], convert the observations to grayscale, resize them
to 96x96 images, and use frame-stacking to combine the last four observations. Furthermore, for
cooperative_pong_v3 and knights_archers_zombies_v7, we invert the color of alternating agent’s
observations by subtracting it from the maximum observable value to improve learning and differ-
entiate which agent type an observation came from for the parameter shared neural network, per
Terry et al. [2020a]. On the prospector_v4 environment, we add an extra channel to the observations
which is set to the maximum possible value if the agent belongs to the opposite agent type, else zero.
Both these modifications allow us to use parameter-shared PPO across non-homogeneous agents. On
prospector_v4 we also pad observation and agent spaces as described in Terry et al. [2020a] to allow
for learning with a single fully parameter shared neural network.

After tuning hyperparameters with RL Baselines3 Zoo [Raffin, 2020], our baselines learns an optimal
policy in the Pistonball environment and Cooperative Pong environments and learns reasonably
in the Knights Archers Zombies and Prospector environments without achieving optimal policies.
Plots showing results of 10 training runs of the best hyperparameters are shown in Figure 12.
All code and hyperparameters for these runs is available at https://github.com/jkterry1/
Butterfly-Baselines.

C Formal Definitions

C.1 Partially Observable Stochastic Games

The formal definition of a POSG is shown in Definition 1. This definition can be viewed as the typical
Stochastic Games model [Shapley, 1953] with the addition of POMDP-style partial observability.

Definition 1. A Partially-Observable Stochastic Game (POSG) is a tuple
〈S, s0, N, (Ai)i∈[N], P, (Ri)i∈[N], , (Ωi)i∈[N], , (Oi)i∈[N]〉, where:

• S is the set of possible states.

• s0 is the initial state.

• N is the number of agents. The set of agents is [N].

• Ai is the set of possible actions for agent i.

• P : S ×
∏

i∈[N]Ai × S → [0, 1] is the transition function. It has the property that for all
s ∈ S, for all (a1, a2, . . . , aN) ∈

∏
i∈[N]Ai,

∑
s′∈S P (s, a1, a2, . . . , aN , s

′) = 1.

17

https://github.com/jkterry1/Butterfly-Baselines
https://github.com/jkterry1/Butterfly-Baselines

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

A
ve

ra
ge

To
ta

lR
ew

ar
d

(a) knights_archers_zombies_v7

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Steps 1e6

-300

-200

-100

0

100

200

300

A
ve

ra
ge

To
ta

lR
ew

ar
d

(b) pistonball_v4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Steps 1e6

-55

-50

-45

-40

-35

-30

-25

-20

-15

A
ve

ra
ge

To
ta

lR
ew

ar
d

(c) cooperative_pong_v3

0 2 4 6 8
Steps 1e7

-80

-60

-40

-20

0

20

40

A
ve

ra
ge

To
ta

lR
ew

ar
d

(d) prospector_v4

Figure 12: Total reward when learning on each Butterfly environment via parameter-shared PPO.

• Ri : S ×
∏

i∈[N]Ai × S → R is the reward function for agent i.

• Ωi is the set of possible observations for agent i.

• Oi : Ai × S × Ωi → [0, 1] is the observation function. It has the property that∑
ω∈Ωi

Oi(a, s, ω) = 1 for all a ∈ Ai and s ∈ S.

C.2 Extensive Form Games

The definition given here follows closely that of Osborne and Rubinstein [1994], to which we refer
the reader for a more in-depth discussion of Extensive Form Games and their formal definition.

Definition 2. An Extensive Form Game is defined by:

• A set of agents [N] = {1, 2, . . . , N}.

• A “Nature” player denoted as “agent” 0. For convenience, we define N := [N] ∪ {0}. The
Nature agent is responsible for describing the random, stochastic, or luck-based elements of
the game, as described below.

• A set Ã of action sequences. An action sequence is a tuple ~a = (a1, a2, . . . , ak) where each
element indicates an action taken by an agent. In infinite games, action sequences need not
be finite. The set Ã indicates all possible sequences of actions that may be taken in the game
(i.e., “histories” of players’ moves or agents’ actions). It satisfies the following properties:

– The empty sequence is in the set: ∅ ∈ Ã.

– If (a1, . . . , ak) ∈ Ã, then for l < k we also have (a1, . . . , al) ∈ Ã.

18

– In infinite games, if an infinite sequence (a1, a2, . . .) satisfies the property that for all
k, (a1, a2, . . . , ak) ∈ Ã, then (a1, a2, . . .) ∈ Ã.

For a finite sequence ~a = (a1, . . . , ak), denote by (~a, a) the sequence (a1, . . . , ak, a).
Then the set of actions available in the next turn following a sequence ~a is given by
A(~a) := {a | (~a, a) ∈ Ã} (for convenience, we define A(~a) = ∅ if ~a is infinite). We say a
sequence of actions ~a is terminal if it is either infinite or if it is a maximal finite sequence,
i.e. ~a is terminal if and only if A(~a) = ∅. We denote the set of terminal sequences by
T := {~a | A(~a) = ∅}.

• A function τ : (Ã \ T)→ N , which specifies the agent whose turn it is to act next after a
given sequence of actions. Note that this is not stochastic, but random player order can be
captured by inserting a Nature turn.

• A probability distribution P (~a, ·) for Nature’s actions. It is defined only for action sequences
for which Nature acts next, i.e. sequences ~a ∈ Ã for which τ(~a) = 0. Specifically, P (~a, a)
is the probability that Nature takes action a after the sequence of actions ~a has occurred.

• For each agent i ∈ [N], a partition Hi of the sequences of actions Ãi := {~a | τ(~a) = i}.
The partition Hi is called the information partition of agent i, and elements of Hi are called
information sets. For convenience, define H :=

⋃
i∈[N]Hi. The information sets must obey

the additional property that for any information set h ∈ H and any two action sequences
~a,~a′ ∈ H , we have τ(~a) = τ(~a′) and A(~a) = A(~a′).

• For each agent i ∈ [N], a reward function Ri : T → R.

C.3 Agent Environment Cycle Games

As mentioned in Section 5, the stochastic nature of the state transitions is modeled as an “environment”
agent, which does not take an action but rather transitions randomly from the current state to a new
state according to some given probability distribution. With the stochasticity of state transitions
separated out as a distinct “environment” agent, we can then model the transitions of the actual
agents deterministically. To this end, each (non-environment) agent i has a deterministic transition
function Ti which depends only on the current state and the action taken, while the environment
has a stochastic transition function P which transitions to a new state randomly depending on the
current state (it may depend on the actions taken previously by the agents, since the current state is
determined by these actions).
Definition 3. An Agent-Environment Cycle Game (AEC Game) is a tuple
〈S, s0, N, (Ai)i∈[N], (Ti)i∈[N], P, (Ri)i∈[N], (Ri)i∈[N], , (Ωi)i∈[N], , (Oi)i∈[N], , ν〉, where:

• S is the set of possible states.

• s0 is the initial state.

• N is the number of agents. The agents are numbered 1 through N . There is also an
additional “environment” agent, denoted as agent 0. We denote the set of agents along with
the environment by N := [N] ∪ {0}.

• Ai is the set of possible actions for agent i. For convenience, we further define A0 = {∅}
(i.e., a single “null action” for environment steps) and A :=

⋃
i∈N Ai.

• Ti : S ×Ai → S is the transition function for agents. State transitions for agent actions are
deterministic.

• P : S × S → [0, 1] is the transition function for the environment. State transitions for
environment steps are stochastic: P (s, s′) is the probability that the environment transitions
into state s′ from state s.

• Ri ⊆ R is the set of possible rewards for agent i. We assume this is finite.

• Ri : S ×N ×A× S ×Ri → [0, 1] is the reward function for agent i. Ri ⊆ R denotes the
set of all possible rewards for agent i (which we assume to be finite).

19

Ri is the reward function for agent i. The set of all possible rewards for each agent is
assumed to be finite, which we denote Ri ⊆ R. It is stochastic: Ri(s, j, a, s

′, r) is the
probability of agent i receiving reward r when agent j takes action a while in state s, and
the game transitions to state s′. We also defineR :=

⋃
i∈[N]Ri.

• Ωi is the set of possible observations for agent i.

• Oi : S × Ωi → [0, 1] is the observation function for agent i. Oi(s, ω) is the probability of
agent i observing ω while in state s.

• ν : S ×N ×A×N → [0, 1] is the next agent function. This means that ν(s, i, a, j) is the
probability that agent j will be the next agent permitted to act given that agent i has just
taken action a in state s. This should attribute a non-zero probability only when a ∈ Ai.

In this definition, the game starts in state s0 and the environment agent acts first. Having the
environment agent act first allows the first actual agent to act to be determined randomly if desired
(choosing the first agent deterministically can be done easily by having the environment simply do
nothing in this first step). The game then evolves in “turns” where in each turn an agent i receives
an observation ωi ∈ Ωi (any given observation ω is seen with probability Oi(s, ω)) and, based on
this observation, chooses an action ai ∈ Ai. The game then transitions from the current state s to a
new state s′ according to the transition function. If i ∈ [N], the state transition is deterministically
Ti(s, ai). If i = 0, the new state is stochastic, so state s′ occurs with probability P (s, s′). Then,
a new agent i′ is determined according to the “next agent” function, so that i′ is next to act with
probability ν(s, i, ai, i

′). The observation ωi that is received is random, occurring with probability
Oi(s, ωi). Note that we can allow for the state to transition randomly in response to an agent’s
action by simply inserting an “environment step” immediately following an agent’s action, by setting
ν(s, i, ai, 0) = 1 and allowing the following environment step to transition the state randomly. At
every step, every agent j receives the partial reward r′ with probability Rj(s, i, ai, s

′, r′).

D Omitted Proofs

D.1 POSGs are Equivalent to AEC Games

The inclusion of the stochastic ν (next-agent) function in the definition of AEC games allows for
capturing many turn-based games with complex turn orders (consider Uno, for instance, where
players may be skipped or the order reversed). It is not immediately obvious that this allows for
representing games in which agents act simultaneously. However, we show here that in fact AEC
games can be used to theoretically model games with simultaneous actions.

To see this, imagine simulating a POSG by way of a “black box” which takes the actions of all agents
simultaneously, and then — one by one — feeds them to a purpose-built AEC game whose states
are designed to “encode” each agent’s action, “queueing” them up over the course of N steps (one
for each agent). Once all of the actions have been fed to the AEC game, a single environment step
resolves these “queued up” actions all at once. If we design the AEC game in the right way, this
total of N + 1 steps (N for queueing the actions, and one for the environment to resolve the joint
action) produces an outcome that is identical to the result of a single step in the original POSG. This
is formalized below.
Theorem 1. For every POSG, there is an equivalent AEC Game.

Proof of Theorem 1. Let G = 〈S, N, {Ai}, P, {Ri}, {Ωi}, {Oi}〉 be a POSG. To prove this, it will
be necessary to show precisely what is meant by “equivalent.” We will construct a new AEC Game
GAEC in such a way that for every N + 1 steps of GAEC the probability distribution over possible
states is identical to the state distribution for G after a single step, the distributions over observations
received by each agent is identical in G and in GAEC, and the reward obtained by each agent is the
same.

We define GAEC as follows:

GAEC = 〈S ′, N, {Ai}, {Ti}, P ′, {R′i}, {Ωi}, {O′i}, ν〉

where

20

• S ′ = S × A1 × A2 × · · · × AN . That is, an element of S ′ is a tuple (s, a1, a2, . . . , aN)
where s ∈ S and for each i ∈ [N], ai ∈ Ai.

• Ti((s, a1, a2, . . . , ai, . . . , aN), a′i) = (s, a1, a2, . . . , a
′
i, . . . , aN).

• For s = (s, a1, a2, . . . , aN) and s′ = (s′, a1, a2, . . . , aN), we define P ′(s, s′) =
P (s, a1, a2, . . . , aN , s

′). If s and s′ are such that ai 6= a′i for any i ∈ [N], then
P ′(s, s′) = 0.

• For s = (s, a1, a2, . . . , aN), s′ = (s′, a1, a2, . . . , aN), and r = Ri(s, a1, a2, . . . , aN , s
′),

we let R′i(s, 0,∅, s′, r) = 1. We define R′i = 0 for all other cases.

• O′i(s, a1, a2, . . . , aN) = Oi(s)

• ν((s, a1, a2, . . . , aN), i, a′i, j) = 1 if j ≡ i+ 1 (mod N + 1) (and equals 0 otherwise).

The AEC game GAEC begins with agent 1. If the initial state of the POSG G was s0, then the initial
state of GAEC is (s0, ·, ·, . . . , ·), where all but the first element of the tuple are chosen arbitrarily.

Let Pt,s be the probability that the POSG G is in state s after t steps. For an action vector a =
(a1, . . . , aN) ∈ A1 × · · · × AN , let P ′t,s,a be the probability that GAEC is in state (s, a1, . . . , aN)
after t steps. Finally, let P ′t,s =

∑
a∈A1×···×AN

P ′t,s,a.

Trivially, P0,s = P ′0,s for all s ∈ S. Now, suppose that after t steps of G, Pt,s = P ′t(N+1),s for all
s ∈ S (our inductive hypothesis). For any joint action a = (a1, . . . , aN), the state distribution of G at
step t+ 1 if the joint action a is taken is given by Pt+1,s′ = Pt,s · P (s, a1, . . . , aN , s

′). Further, the
reward obtained by agent i for this joint action, if the new state is s′, is Ri(s, a1, . . . , aN , s

′). Let s =
(s, a1, . . . , aN) and s′ = (s′, a1, . . . , aN). Then, in GAEC, if the agents take actions a1, a2, . . . , aN
respectively on their turns, the state distribution of GAEC at step (t + 1)(N + 1) is given by
P ′(t+1)(N+1),s′ = P ′(t+1)(N+1),s′,a = P ′t(N+1),sP

′(s, s′). By the inductive hypothesis, P ′t(N+1),s =

Pt,s, and by the definition of P ′(s, s′) in GAEC, it is clear that P ′(s, s′) = P (s, a1, . . . , aN , s
′).

Thus, P ′(t+1)(N+1),s′ = Pt,sP (s, a1, . . . , aN , s
′) = Pt+1,s′ .

The above establishes a strict equivalence between the state distributions of G at step t and GAEC at
step t(N + 1) for any t. Between steps t(N + 1) + 1 and (t+ 1)(N + 1) of GAEC, each agent in
turn receives an observation and then chooses its action. Specifically, agent i acts at step t(N) + i
immediately after receiving an observation ωi with probability O′i(s, a1, . . . , aN) = Oi(s). Thus, the
marginal probability distribution (when conditioned on transitioning into state s) of the observation
received by agent i immediately after acting at time t in G is identical to the marginal distribution
of the observation received by i immediately before acting at time t(N + 1) + i in GAEC, i.e.
PrG,t(ωi = ω | st = s) = PrGAEC,t(N+1)+i(ωi = ω | st(N+1),0 = s).

The second part of the equivalence is observing that the reward received by an agent i in G after the
joint action a is taken is equivalent to the total reward received by agent i in GAEC across all steps
from t(N + 1) + 1 through (t + 1)(N + 1) when the agents take actions a1, . . . , aN respectively.
We can see that this is indeed the case, since the rewards received by agent i in GAEC from step
t(N + 1) + 1 through step (t+ 1)(N + 1) is 0 at every step but the environment step (t+ 1)(N + 1).
By definition of R′ in GAEC, R′i(s, 0,∅, s′, Ri(s, a1, . . . , aN , s

′)) = 1, so the total reward received
by any agent i in GAEC is Ri(s, a1, . . . , aN , s

′). This establishes the second part of our equivalence
(that the reward at step t(N + 1) in GAEC is identical to the reward at step t of G, if the actions are
the same).

One way to think of this construction is that the actions are still resolved simultaneously via the
environment step (which is responsible for the stochastic state transition and the production of
rewards); we simply break down the production of the joint action into smaller units whereby each
agent chooses and “locks in” their actions one step at a time. A toy example to see this equivalence is
to imagine a multiplayer card game in which each player has a hand of cards and each turn consists of
all players choosing one card from their hand which is revealed simultaneously with all other players.
An equivalent game has each player in sequence choosing a card and placing it face down on their
turn, followed by a final action (the “environment step” in which all players simultaneously reveal
their selected card.

21

At first, it may appear as though the AEC game is in fact more powerful than the POSG, since
in addition to being able to handle simultaneous-action games as shown above, it can represent
sequential games, including sequential games with complex and dynamic turn orders such as Uno
(another aspect of our AEC definition that seems more general than in POSGs is the fact that
the reward function in an AEC game is stochastic, allowing rewards to be randomly determined).
However, it turns out that a POSG can be used to model a sequential Handling the stochastic rewards
and stochastic next-agent function is non-obvious and is omitted here due to space constraints; the
construction and proof can be found in Appendix D.1.

We next show how to convert an AEC game to a POSG for the case of deterministic rewards.

Definition 4. An AEC Game

G = 〈S, N, {Ai}, {Ti}, P, {Ri}, {Ωi}, {Oi}, ν〉

is said to have deterministic rewards if for all i, j ∈ N , all a ∈ Aj , and all s, s′ ∈ S, there exists a
R∗i (s, j, a, s′) such that Ri(s, j, a, s

′, r) = 1 for r = R∗i (s, j, a, s′) (and 0 for all other r).

Notice that an AEC Game with deterministic rewards may still depend on the new state s′ which can
itself be stochastic in the case of the environment (j = 0).

Theorem 2. Every AEC Game with deterministic rewards has an equivalent POSG.

Proof. Suppose we have an AEC game

G = 〈S, N, {Ai}, {Ti}, P, {Ri}, {Ωi}, {Oi}, ν〉

with deterministic rewards. We define GPOSG = 〈S ′, N, {Ai}, P ′, {R′i}, {Ωi}, {Oi}〉 as follows.

• S ′ = S ×N

• P ′((s, i), a1, . . . , aN , (s
′, i′)) = ν(s, i, ai, s

′, i′) · Pr(s′ | s, i, ai), where

Pr(s′ | s, i, ai) =

1 if i > 0, T (s, ai) = s′

P (s, s′) if i = 0

0 o/w

• R′i((s, j), a, (s
′, j′)) = R∗i (s, j, a, s′)

In this construction, the new state in the POSG encodes information about which agent is meant to
act. State transitions in the POSG therefore encode both the state transition of the original AEC game
and the transition for determining the next agent to act. In each step, the state transition depends only
on the agent who’s turn it is to act (which is included as part of the state).

This construction adapts POSGs to be strictly turn-based so that it is able to represent AEC Games.

We now present the full proof.

Theorem 3. Every AEC Game has an equivalent POSG.

Proof. Suppose we have an AEC game G = 〈S, N, {Ai}, {Ti}, P, {Ri}, {Ωi}, {Oi}, ν〉, andR is
the (finite) set of all possible rewards. We define GPOSG = 〈S ′, N, {Ai}, P ′, {R′i}, {Ωi}, {Oi}〉 as
follows.

The state set is S ′ = S ×N ×RN . An element of S ′ is a tuple (s, i, r), where r = (r1, r2, . . . , rN)
is a vector of rewards for each agent.

The transition function is given by

P ′((s, i, r), a1, a2, . . . , aN , (s
′, i′, r′)) =

ν(s, i, ai, s
′, i′) Pr(s′ | s, i, ai)

∏
j∈[N]

Rj(s, i, ai, s
′, r′i)

22

where

Pr(s′ | s, i, ai) =

1 if i > 0 and T (s, ai) = s′

P (s, s′) if i = 0

0 o/w

The reward function is given by R′i((s, j, r), a, (s′, j′, r′)) = r′i

23

	Additional Case Study Information
	Race Conditions in Sequential Social Dilemma Games
	Reward Defects in Pursuit

	Default Environments
	Butterfly Baselines

	Formal Definitions
	Partially Observable Stochastic Games
	Extensive Form Games
	Agent Environment Cycle Games

	Omitted Proofs
	POSGs are Equivalent to AEC Games

