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ABSTRACT

Generating novel and functional protein sequences is critical to a wide range of
applications in biology. Recent advancements in conditional diffusion models
have shown impressive empirical performance in protein generation tasks. How-
ever, reliable generations of protein remain an open research question in de novo
protein design, especially when it comes to conditional diffusion models. Consid-
ering the biological function of a protein is determined by multi-level structures,
we propose a novel multi-level conditional diffusion model that integrates both
sequence-based and structure-based information for efficient end-to-end protein
design guided by specified functions. By generating representations at different
levels simultaneously, our framework can effectively model the inherent hierar-
chical relations between different levels, resulting in an informative and discrimi-
native representation of the generated protein. We also propose a Protein-MMD,
a new reliable evaluation metric, to evaluate the quality of generated protein with
conditional diffusion models. Our new metric is able to capture both distributional
and functional similarities between real and generated protein sequences while
ensuring conditional consistency. We experiment with standard datasets and the
results on protein generation tasks demonstrate the efficacy of the proposed gen-
eration framework and evaluation metric.

1 INTRODUCTION

Designing proteins with specific biological functions is a fundamental yet formidable challenge in
biotechnology. It benefits wide-ranging applications from synthetic biology to drug discovery (Wat-
son et al., 2023; Bose et al., 2016; Huang et al., 2016; Feng et al., 2024; Huang et al., 2024b;b; Lin
et al., 2023). The challenge arises from the intricate interplay between protein sequence, structure,
and function, which has not yet been fully understood (Dill et al., 2008). Traditional methods, such
as directed evolution, rely on labor-intensive trial-and-error approaches involving random mutations
and selective pressures, making the process time-consuming and costly (Arnold, 1998). Recently,
generative models have emerged as promising tools for protein design, enabling the exploration
of vast sequence-structure-function landscapes (Anand & Achim, 2022; Fu et al., 2024; Dauparas
et al., 2022; Trippe et al., 2023). However, existing generative models—including those focused on
enzyme engineering, antibody creation, and therapeutic protein development—are typically task-
specific and require retraining for new design objectives (Fu et al., 2024; Dauparas et al., 2022).
These limitations impede their adaptability and scalability across different protein families.

While conditional generative models offer an end-to-end solution by directly linking the design
process to the guidance, these models have been applied to protein generation Komorowska et al.
(2024); Klarner et al. (2024); Gruver et al. (2023). In conditional protein generation tasks, main-
taining conditional consistency across diverse contexts and ensuring functional relevance are critical
(Trippe et al., 2022; Hu et al., 2024). Specifically, the generated proteins should fully adhere to the
specified functional constraints (Gretton et al., 2012). At the same time, achieving diversity and
novelty in generated proteins is essential for successful design. In the literature, structural novelty
can be assessed using Foldseek (van Kempen et al., 2022), which performs rapid protein structure
searches against databases like PDB (Berman et al., 2000) and AlphaFold (Jumper et al., 2021) to
ensure the generated proteins are novel compared to known structures. Diversity is measured using
TM-score (Zhang & Skolnick, 2005), which calculates structural variation between the generated
proteins themselves and between the generated and wild-type proteins (Hu et al., 2024).
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However, it is unknown how to assess the conditional consistency (Gretton et al., 2012) in de novo
protein design. Specifically, the fundamental problem of properly evaluating conditional consistency
is quantifying to what extent the generated protein adheres to the specified functional constraints.
Unlike computer vision, where metrics such as FID (Heusel et al., 2017) have become a standard
for assessing generated images, it is unclear whether such metrics are suitable for protein generation
tasks. In protein design, the generated output cannot be as easily visualized or assessed as in im-
ages, making the choice of evaluation metrics even more critical. Therefore, how to adapt metrics
like FID or Maximum Mean Discrepancy (Gretton et al., 2012) presents challenges. Furthermore,
existing methods for protein generation either generate the representation at a single level or ignore
hierarchical relations within different levels of protein representation (e.g., amino acid and atom).
Choosing the level of granularity at which capturing both the structural and functional nuances of
protein sequences introduces additional challenges, raising significant concerns about the reliability
of generated proteins in real-world applications. This difficulty highlights the need for a more ratio-
nal generative scheme, making the generated protein adhere to the specified functional constraints.

Motivated by the need to capture both the structural and functional nuances of protein sequences, we
propose a novel multi-level conditional generative diffusion model for protein design that integrates
both sequence-based (Lin et al., 2023) and structure-based (Wang et al., 2022a) hierarchical infor-
mation. Generation at multi-levels enables efficient end-to-end generation of proteins with specified
functions and modeling the inherent hierarchical relations between different representations, result-
ing in an informative and discriminative representation of the protein. Our model incorporates a
rigid-body 3D rotation-invariant preprocessing step combined with an autoregressive decoder to
maintain SE(3)-invariance, ensuring accurate modeling of protein structures in 3D space. To ad-
dress the challenges of evaluating the conditional consistency, we propose Protein-MMD, a metric
based on Maximum Mean Discrepancy (MMD), to better capture both distributional and functional
similarities between real and generated protein sequences, while ensuring conditional consistency.
We prove that our Protein-MMD provides a more accurate measure that reflects the given condition.
Experiments demonstrate that our proposed model outperforms existing approaches in generating
diverse, novel, and functionally relevant proteins.

Our main contributions are summarized as follows:

• We design a novel multi-level conditional generative diffusion model that integrates
sequence-based and structure-based information for efficient end-to-end protein design.
Our model incorporates a rigid-body 3D rotation-invariant preprocessing step to maintain
SE(3)-invariance, ensuring accurate modeling of protein structures in 3D space.

• We highlight the limitations of current evaluation metrics in protein generation tasks, par-
ticularly in conditional settings, and propose Protein-MMD, a novel metric to evaluate con-
ditional consistency for protein generation tasks by leveraging language models.

• We experiment with standard datasets to verify the effectiveness of the proposed model.
Our evaluation metric paves the way for reliable protein design with given conditions.

2 PRELIMINARY

2.1 DIFFUSION MODELS

Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020) are a class of generative mod-
els that learn to model data distributions by iteratively denoising data corrupted with Gaussian noise.
The forward diffusion process gradually adds noise to the data, transforming the complex data dis-
tribution into a tractable Gaussian distribution:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where x0 is the original data, xt is the data at timestep t, βt is the variance schedule, andN denotes
a Gaussian distribution. The reverse diffusion process aims to model the posterior q(xt−1 | xt),
which is approximated by a neural network ϵθ parameterized by θ:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)

where µθ and Σθ are functions of the current data xt and timestep t.
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The model is trained to minimize the variational bound on negative log-likelihood, which simplifies
to a mean squared error loss between the predicted noise and the true noise:

Lsimple = Ex0,ϵ,t

[
|ϵ− ϵθ(xt, t)|2

]
, (3)

where t is uniformly sampled from 1, . . . , T . Instead of using traditional U-Net architectures, recent
works Peebles & Xie (2023a) leverage Transformer to predict the noise in the latent space (Rombach
et al., 2022):

ϵθ(zt, t) = Transformer(zt, t; θ), (4)

where z is a latent representation of x and θ includes the parameters of the Transformer model.

2.2 FRÉCHET INCEPTION DISTANCE

Fréchet Inception Distance (FID) is commonly used in computer vision to measure the similarity
between real and generated data distributions (Heusel et al., 2017). It computes the Fréchet distance
between feature representations of real and generated samples, extracted from a pre-trained network,
such as Inception v3 (Szegedy et al., 2016). The FID between two distributions pr (real data) and pg
(generated data) is computed by modeling the features as multivariate Gaussian distributions with
means µr, µg and covariances Σr,Σg:

FID(pr, pg) = ∥µr − µg∥22 + Tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)
, (5)

where ∥ · ∥2 denotes the Euclidean distance, and Tr is the trace operator. FID provides a measure of
how close the real and generated data are, with lower FID values indicating high similarity.

3 METHODOLOGY

3.1 MULTI-LEVEL DIFFUSION

Motivated by the need to capture both the structural and functional nuances of protein sequences,
we propose a multi-level diffusion model to generate information about a protein at three levels:
the amino acid level, the backbone level, and the all-atom level. By constructing representations at
different levels, our framework effectively integrates the inherent hierarchical relations of proteins,
resulting in a more rational protein generative model. We remark that there are hierarchical relations
among different levels. To the best of our knowledge, this work is the first diffusion model to
generate information at three levels and leverage the hierarchical relation between different levels.

Amino Acid 
Level Encoding

Backbone 
Level Encoding

Atom Level 
Encoding

Conditional Diffusion Flow

Transformer 
Decoder

Transformer 
Decoder

Transformer 
Decoder

A A G B … A B

Amino Acid Sequence

Backbone rotations

Rotations in each residue

Protein Graph

Condition embeddingCondition

Figure 1: The architecture of the multi-level diffusion model

Figure 1 shows the architecture of our model. At each level, the information will be encoded with
its own set of embeddings and processed through a conditional diffusion flow where the condition
comes from a lower level. With decoders, the sequence, backbone rotations, and residue rotations
will be combined to indicate the complete information of a generated protein.

Amino Acid Level Representation: As the 3D conformation dictates biochemical interactions
(Huang et al., 2016; Dill et al., 2008), we first represent a protein’s structure as a graph Ga =
(Va, Ea), where Va is the set of nodes corresponding to residues (amino acids), and Ea is the set
of edges representing interactions between two residues if their Euclidean distance in 3D space is
below a certain threshold, indicating potential interactions between them. At the amino acid level,
each node vi ∈ Va corresponds to an amino acid and is represented by a vector vi = (ϕi;hi), where
ϕi ∈ R3 denotes the spatial coordinates of the amino acid’s Cα atom in three-dimensional space,
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and hi abstracts biochemical or structural properties. Each edge is represented as an embedding of
the sequential distance Zhang et al. (2023).

Backbone Level Representation: An amino acid consists of backbone atoms and side chain atoms.
Similarly, we use backbone atom (C, N , Cα) coordinates as the feature of in node of the backbone
Vb. We follow Zhang et al. (2023) to compute three Euler angles τ1i,j , τ2i,j , τ3i,j between two back-
bone atoms i and j. The angles will be integrated with the sequential distance as the edge feature.
Backbone-level representation derives finer-grained protein information. With the three angles, the
orientation between any two backbone planes can be determined to capture the backbone structures.

Atom Level Representation: Atom-level representation considers all atoms in the protein and
provides the most fine-grained information. There are several methods to treat an atom as a node in
the representation Hermosilla et al. (2021); Jing et al. (2021). Side chain torsion angles are important
properties of protein structures Jumper et al. (2021). In this paper, we also consider geometric
representation at the atom level by incorporating the first four torsion angles: χ1

i , χ2
i , χ3

i , and χ4
i .

With the complete geometric representation at the atom level, the diffusion model can capture 3D
information about all atoms in a protein and distinguish any two distinct protein structures in nature.

Encoding: We adopt a graph neural networks model Wang et al. (2022b) to encode the representing
at different levels by leveraging the message-passing mechanism. In many models dealing with the
spatial positions of amino acids, SE(3)-equivariance is often leveraged to ensure the invariance of
operations such as translation and rotation Bose et al. (2016); Yim et al. (2023). We also introduce
a novel method to ensure SE(3)-invariance by transforming each amino acid’s coordinates ϕ. This
step is crucial for facilitating the subsequent autoregressive decoding.

Given a protein chain, we first translate the coordinates such that the position of the first amino acid
is moved to the origin, i.e., (0, 0, 0). Then, we apply a rotation matrix to align the position of the
second amino acid onto the positive x-axis:

R1 = I + sin(θ)K + (1− cos(θ))K2, (6)
where θ is the rotation angle between a node v and the x-axis, and K is the skew-symmetric matrix
derived from the cross-product of v and the unit vector along the x-axis. The third amino acid is
rotated around the x-axis to place it in the positive xy-plane:

R2 =

(
1 0 0
0 cos(ψ) − sin(ψ)
0 sin(ψ) cos(ψ)

)
, (7)

where ψ is the angle that brings the third amino acid into the xy-plane. This process is iteratively
applied to all amino acids in the protein chain.

The decoder at each level is an autoregressive Transformer (Vaswani, 2017) model that reconstructs
the protein at each respective level. The autoregressive decoder can then use these transformed
embeddings to reconstruct the information of a protein. At the sequence level, the decoder predicts
the next amino acid token in the sequence. At the backbone level and the atom level, the decoder
predicts geometric features (e.g., bond angles and distances) in an autoregressive fashion of each
amino acid in the protein chain. Our method facilitates the use of SE(3)-invariant embeddings
within an autoregressive framework. The decoder’s autoregressive nature allows it to progressively
predict amino acid positions by leveraging the SE(3)-invariant representation.

Proof of SE(3)- invariance of the Transformation
Let {ϕi}ni=1 be the original coordinates of the amino acids in the protein chain. Consider an arbi-
trary rotation R ∈ SO(3) and translation Γ ∈ R3 applied to the protein, resulting in transformed
coordinates:

ϕ′
i = Rϕi + Γ. (8)

Our goal is to show that after applying the transformation method to both {ϕi} and {ϕ′
i}, the

resulting representations are identical.

Proof : For any transformation T in SO(3) and any vector v ∈ R3, we have:
T (v) = Rv. (9)

Since rotations preserve vector norms, we can express T (v) in terms of the norm of v and its unit
vector v′ = v/∥v∥:

T (v) = ∥v∥Rv′ = ∥v∥T (v′). (10)
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This implies that the effect of T on v can be decomposed into scaling by ∥v∥ and transforming its
direction via rotation and translation. To simplify the expression and subsequent calculations, we
denote all vectors ϕi as unit vectors (i.e., their norms are equal to 1).

Step 1: Translation to Origin Compute the relative positions with respect to the first amino acid:

ξi = ϕi − ϕ1, (11)

ξ′i = ϕ′
i − ϕ′

1 = (Rϕi + Γ)− (Rϕ1 + Γ) = R(ϕi − ϕ1) = Rξi. (12)

Thus, we have ξ′i = Rξi.

Step 2: Rotation to Align Second Amino Acid Along Positive x-Axis: since ∥ξ2∥ = ∥ξ′2∥ = 1, we
have:

R1ξ2 = ex, (13)

R′
1ξ

′
2 = ex, (14)

where ex = [1, 0, 0]⊤. Since ξ′2 = Rξ2, we have:

R′
1Rξ2 = ex. (15)

Let R′
1 = R1R

−1, then:
R′

1ϕ
′
i = R1R

−1Rϕi = R1ϕi. (16)
Step 3: Rotation Around x-Axis to Place Third Amino Acid in xy-Plane. Find rotation matrices R2

and R′
2 (rotations around the x-axis) such that:

R2R1ϕ3 ∈ span{ex, ey}, (17)

R′
2R

′
1ϕ

′
3 ∈ span{ex, ey}. (18)

Since R′
1d

′
3 = R1d3, we have:

R′
2R1ϕ3 = R2R1ϕ3. (19)

Thus, R′
2 = R2. After applying the sequence of transformations, the final coordinates are:

ϕ̃i = R2R1ϕi, (20)

ϕ̃′
i = R′

2R
′
1d

′
i = R2R1ϕi = ϕ̃i. (21)

Thus, ϕ̃′
i = ϕ̃i, proving that the transformed coordinates are invariant under any initial rotation R

and translation Γ. This confirms that the method achieves SE(3)-invariance.

Hierarchical Diffusion with Conditional Flow: To achieve control over the conditional generation
of proteins at multiple levels, we employ a novel hierarchical diffusion model with a conditional flow
mechanism. This design enables fine-grained manipulation of protein structure generation under
specific conditions, such as targeted functional attributes. The diffusion process is split into three
distinct levels: all-atom, backbone, and amino acid (sequence). Conditional information is injected
from a lower level to ensure conditional consistency throughout the generation process.

Diffusion model

Condition

Diffusion model Diffusion model

Conditional
Layer

Linear
Layer

Conditional
Layer

Linear
Layer

Add Add

Conditional
Layer

Linear
Layer

Add

Conditional Flow
All-atom level Backbone level Sequence level

Zero vector

Conditional Flow

Figure 2: Hierarchical diffusion model

Our conditional flow mechanism fa-
cilitates the transfer of information
from lower levels (atom) to higher
levels (backbone and amino acid)
during the generation process. Af-
ter denoising at each level, the la-
tent representation is passed upward
through a linear projection. Fig-
ure 2 shows the conditional flow (red
lines). Specifically, for each level, the
conditional flow integrates the latent
vector from the lower level through a projection operation, which aligns the latent vector of the
lower level to the higher level’s embedding space via a learned linear transformation. This ensures
that the structural information from the previous level is preserved and effectively conditions the
next level’s generation. The input at the atom level starts as a zero vector z0t = 0 ∈ RL×d. At the
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higher levels, the latent vector from the previous level, after removing noise, is linearly projected
and combined with the current level’s conditional embedding and time step embedding to ensure
that the generative process is guided by both the condition and the structural information from the
lower levels. The update at level i is given by:

zit = ϵi(zit−1; z
i−1
t W i, c, γt), (22)

where zit ∈ RL×d is the latent vector at level i and time step t, zi−1
t is the latent vector from

the previous level, W i ∈ Rd×d is a learned linear projection matrix, c represents the conditional
embedding (e.g., the protein’s functional target), and γt is the time step embedding. Denote ϵi as the
diffusion model at level i, which predicts the noise added during the forward process.

Algorithm 1 Training Diffusion Models with Conditional Flow

1: while epoch < epochs do
2: Sample a random timestep t
3: for all levels i ∈ {1, 2, 3} in parallel do
4: if i = 1 then
5: Initialize zero vector z0t
6: else
7: Initialize zi−1

0 from ground truth data
8: end if
9: Sample noise vectors

10: Diffuse latent vectors to get zi−1
t and zit−1

11: Update latent vector:
12: zit ← ϵi(zit−1; z

i−1
t W i, c, γt)

13: Compute loss at ith level
14: Update model parameters
15: end for
16: epoch+ = 1
17: end while

Training with Teacher Forcing: To enable efficient parallel training, we use the teacher forcing
method during training. In this setup, for each level, the input zi−1

0 to the conditional flow is the
ground truth data from the previous level, rather than the model’s own generated output. This allows
us to decouple the training of the three levels, enabling them to be trained independently and in
parallel. The training process for the diffusion model at each level follows the typical DDPM frame-
work but with the conditional flow incorporated to introduce additional control over the generative
process. The training procedure is outlined in Algorithm 1.

3.2 EVALUATION OF CONDITIONAL CONSISTENCY

Evaluating the quality and consistency of protein generation models requires a well-defined frame-
work, particularly in the context of conditional generation. In this section, we define the theoreti-
cal basis for assessing conditional consistency in multi-class generation tasks and propose a novel
framework to assess the suitability of different evaluation metrics.

Denote {C1, C2, . . . , CK} as a set of target classes, where each class Ck corresponds to an inde-
pendent and mutually exclusive category (e.g., different protein functions or classes). Let x repre-
sent a data sample, and d(x, Ck) is a conditional consistency metric that measures the consistency
between a sample x and the target class Ck. Given a model exhibiting strong conditional consis-
tency, it should generate samples such that as we progress through a sequence of generated samples
{xi|i = 0, 1, 2, · · · ,∞} ordered by increasing quality, the consistency distance between each sam-
ple and samples in Ck should decrease. Mathematically, a good evaluation metric d satisfies:

lim
i→∞

d(xi, Ck)→ 0. (23)

It implies that as the sample quality improves, the consistency to the correct target class decreases
asymptotically towards zero. We can further derive the following theorem.

Theorem: ∃N ∈ N+,∀i > N, d(xi, Ck) < min
j ̸=k

d(xi, Cj) where Cj is any other class.

Proof : see Appendix A.1.
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Distance
EvaluationMetric

Class 1

Class 2Class 3

Figure 3: Consistency in the latent space

Given that test samples exhibit strong conditional
consistency, the theorem suggests that if we measure
d(·) between test samples and all target classes, the
majority will be classified into the correct target class
Ck. However, relying solely on spatial distance may
be too rigid for general evaluation, especially in con-
ditional settings. In Figure 3, the green points rep-
resent generated samples, and darker shades indicate
better sample quality. A well-defined metric should
indicate that the green points are closer to their cor-
rect target class (i.e., Class 2) rather than the blue or
pink classes.

Besides the accuracy (which class the generated be-
longs to), Mean Reciprocal Rank (MRR) and Nor-
malized Mean Rank (NMR) are widely used to assess
how well the evaluation metric ranks generated samples based on their correct target classes. Specif-
ically:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
,NMR =

1

|Q|

|Q|∑
i=1

ranki − 1

N − 1
. (24)

where Q is the set of test queries, and ranki is the rank of the correct target class for the i-th test
query. These metrics, in combination with accuracy, provide a more comprehensive evaluation
framework for assessing conditional consistency evaluation metrics in generative models.

In this paper, we propose Protein-MMD, a new evaluation metrics that calculate the Maximum Mean
Discrepancy (MMD) based on protein embeddings. Specifically, both real and generated protein se-
quences are encoded using the ESM2 language model (Lin et al., 2023), which provides biologically
informed embeddings. In the embedding space, Protein-MMD captures both distributional and func-
tional similarities between real and generated proteins more effectively, aligning with the goals of
de novo protein design:

Protein-MMD(pr, pg) =

∥∥∥∥∥∥ 1n
n∑

i=1

φ(xi)−
1

m

m∑
j=1

φ(yj)

∥∥∥∥∥∥
2

H

, (25)

whereφ(·) denotes the embeddings extracted from the language model. These embeddings represent
both sequence and functional information, making them particularly well-suited for comparing real
and generated protein distributions.

Table 1: Evaluation on the EC dataset.

Metric Accuracy ↑ MRR ↑ NMR ↓
MMD 0.0687 0.3101 0.5506
Protein-FID 0.2988 0.4825 0.3920
Protein-MMD 0.5487 0.6629 0.2524

To validate the effectiveness of Protein-
MMD and other metrics, we apply the
evaluation metrics on the Enzyme Com-
mission (EC) dataset, which categorizes
proteins based on the reactions they cat-
alyze using EC numbers. We focus on
seven classes from the first EC number
category for our conditional generation
task. In Table 1, we compare three evaluation metrics: MMD (considering only sequence statistics
as presented in (Kucera et al., 2022)), Protein-FID (using ESM2 in place of Inception for protein
generation), and Protein-MMD. All metrics are used to compute the Accuracy, Mean Reciprocal
Rank (MRR), and Normalized Mean Rank (NMR) scores to evaluate how it performs in evaluating
the conditional consistency. As observed, Protein-MMD outperforms both MMD and Protein-FID
across all evaluation metrics. The higher accuracy and MRR scores indicate that Protein-MMD bet-
ter captures the conditional consistency of the proteins in the test set. The lower NMR score further
demonstrates that Protein-MMD ranks the correct target class higher in comparison to other metrics,
validating its effectiveness in conditional protein generation tasks. While Protein-MMD proves to be
the most effective metric according to our framework, we acknowledge the widespread use of FID
in generative modeling tasks. Therefore, we will continue to report Protein-FID results alongside
Protein-MMD in subsequent experiments.

7
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We compared our model against several baselines, each representing distinct approaches to protein
generation. ProteoGAN (Kucera et al., 2022) is a GAN-based method, while ESM2 (Lin et al.,
2023) and ProstT5 (Heinzinger et al., 2023) are Transformer-based language models specifically
designed for protein sequence modeling. ProteinMPNN (Dauparas et al., 2022) and LatentDiff
(Fu et al., 2024), on the other hand, are graph-based models, with LatentDiff also incorporating a
diffusion-based framework, specifically using a latent diffusion approach. For each model, we eval-
uate the performance using both diversity metrics (TM-score, RMSD, and Seq.ID) and conditional
consistency metrics (Protein-MMD and Protein-FID). Higher RMSD, lower TM-score, and lower
Seq.ID indicate higher diversity, while lower Protein-MMD and Protein-FID values signify higher
conditional consistency between the generated and real protein distributions.

To verify the effectiveness of our proposed multi-level conditional diffusion model, we conducted
comprehensive experiments on two standard datasets: the Enzyme Commission (EC) dataset and the
Gene Ontology (GO) dataset. The EC dataset categorizes proteins based on the biochemical reac-
tions they catalyze, while the GO dataset classifies proteins according to their associated biological
processes, cellular components, and molecular functions. These datasets provide a robust bench-
mark for assessing both the diversity and conditional consistency of generated protein sequences.

Our model leverages the esm2 t33 650M UR50D model from ESM2 (Lin et al., 2023) as the
amino acid-level encoder. To construct the Protein Variational Auto-encoder model, we set the
latent dimension to 384, and the decoder is composed of 8 Transformer (Vaswani, 2017) decoder
blocks, each equipped with an 8-head self-attention mechanism. The Protein Variational Auto-
encoder model is trained with a learning rate of 10−4, using a combination of mean squared error
(MSE) and cross-entropy as the loss functions. To regulate the latent vector distribution, we apply
a KL divergence loss with a weight of 10−5. We experimented with 128, 256, and 512 as the
maximum sequence lengths. For the diffusion model, we modify the DiT-B architecture from DiT
(Peebles & Xie, 2023b), which consists of 12 DiT blocks and uses a hidden size of 768. The DiT
model is trained from scratch with a learning rate of 10−4 and includes a weight decay of 10−5.

4.2 RESULTS AND ANALYSIS

Table 2 presents the results of our model and the baselines on two datasets. Our model achieves
the best performance in terms of most metrics on the EC dataset, indicating superior conditional
consistency and diversity in generating proteins that adhere closely to the specified enzyme classes.

On the EC dataset, our model (with sequence length 512) achieves the lowest Protein-MMD and
Protein-FID scores, demonstrating effective modeling of the distributional and functional similarities
between generated and real proteins. The RMSD and TM-score metrics indicate that our model
generates structurally diverse proteins, with the highest RMSD and among the 2nd-lowest TM-
scores, suggesting less topological similarity to templates. The sequence identity (Seq.ID) is also
low, indicating higher sequence diversity.

For the GO dataset, our model also performs competitively. However, in terms of conditional consis-
tency metrics (Protein-MMD and Protein-FID), our model ranks second, with ESM2 achieving the
best Protein-MMD score and ProteoGAN achieving the best Protein-FID score. This suggests that
while our model generates diverse protein structures on the GO dataset, it is slightly less effective in
capturing the functional annotations compared to the top-performing models.

Table 2: Results on EC and GO datasets
EC Dataset GO Dataset

Diversity Conditional Consistency Diversity Conditional Consistency
TM-score↓ RMSD↑ Seq.ID↓ Protein-MMD↓ Protein-FID↓ TM-score↓ RMSD↑ Seq.ID↓ Protein-MMD↓ Protein-FID↓

ProteGAN 0.26 5.35 6.71 13.99 260.31 0.23 5.96 6.33 10.89 256.31
ESM2 0.29 4.25 6.57 13.35 238.46 0.22 7.33 6.39 11.86 290.31
ProstT5 0.28 4.25 6.61 13.76 248.32 0.26 6.81 6.73 11.93 292.58
ProteinMPNN 0.24 4.24 67.43 22.31 587.72 0.14 7.10 77.96 15.94 410.43
LatentDiff 0.37 2.73 7.67 13.43 256.75 0.31 4.26 7.37 12.66 346.40
Ours(128) 0.24 4.7 7.56 13.74 250.2 —–
Ours(256) 0.27 4.40 6.88 13.67 248.31 —–
Ours(512) 0.25 5.39 6.79 13.28 237.46 0.26 6.09 7.13 11.67 284.65

The best performance for each metric is indicated in bold, while the second-best performance is underlined.
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Case Study. To further demonstrate the superiority of our model on the GO dataset, particularly
regarding conditional consistency, we conducted a fine-grained case study comparing our method
with ProteoGAN. While our model leads on the EC dataset, it ranks second to ProteoGAN on the GO
dataset in terms of conditional consistency metrics. We utilized an in-silico evaluation to perform
a fine-grained analysis of the generated protein sequences. By employing a trained ESM-MLP
classifier on the GO dataset, we assessed each generated protein’s adherence to the specified GO
terms using the Intersection over Union (IoU) (Rezatofighi et al., 2019; Gao et al., 2023b) metric.

Table 3: Comparison with ProteoGAN

Method IoUmean↑ IoUmax↑
ProteoGAN 0.2181 0.4706
Ours (512) 0.2088 0.5833

As shown in Table 3, our method exhibits a lower
average IoUmean compared to ProteoGAN, aligning
with earlier results in Table 2. However, it achieves a
higher IoUmax, indicating a greater potential for gen-
erating high-quality samples that closely match the
desired GO annotations. Figure 4 illustrates the dis-
tribution of IoU scores. While ProteoGAN’s sam-
ples are concentrated around medium quality, our
method generates a broader range of samples, including those with higher IoU scores. This sug-
gests that our model, despite a lower average performance, is more capable of producing proteins
with superior conditional consistency.

We also present visualizations of conditionally generated proteins by our method (Ours) and other
baselines on the EC dataset, see Appendix A.2 for details.

Ours ProteoGAN
A B

Figure 4: A shows the two highest generated protein results of Ours and ProteoGAN in terms of IoU
indicator. B shows the statistical frequency histogram.

4.3 IMPACT OF MAXIMUM SEQUENCE LENGTH ON CONDITIONAL CONSISTENCY
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Figure 5: Effect of maximum length of se-
quence on Protein-MMD

In previous studies on protein de novo design, ex-
isting works usually employ a maximum sequence
length of 128 (Fu et al., 2024). However, through our
experiments, we observed that for conditional genera-
tion tasks, shorter sequence lengths fail to fully lever-
age the conditional information, which in turn results
in lower conditional consistency metrics. To address
this, we constructed models with three different maxi-
mum sequence lengths: 128, 256, and 512, and inves-
tigated the impact of maximum length on the model’s
ability to maintain conditional consistency.

As shown in Figure 5, we observe a positive corre-
lation between the Protein-MMD metric, which re-
flects conditional consistency, and the proportion of
training data samples exceeding the current maximum sequence length. This indicates that longer
sequences help the model better incorporate condition information during generation. Moreover, the
results in Table 2 for our method with different lengths reveal that the maximum sequence length
does not influence the model’s performance on diversity metrics, which are independent of the qual-
ity of condition-guided generation. These findings underscore the importance of maximum sequence
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length in enhancing conditional consistency, offering valuable insights for the design of future pro-
tein conditional generation models.

4.4 ABLATION STUDY

Table 4: Ablation Study

Method Protein-MMD↓ Protein-FID↓
All 13.50 241.82
Removed backbone level 13.73 249.14
Removed all-atom level 13.94 251.83
Removed both 14.06 255.15

To investigate the contribution
of each of the three levels(amino
acid, backbone, all-atom), we
conducted an ablation study ex-
periment. Specifically, the vari-
ant of our model removes ei-
ther a specific level (the back-
bone or all-atom) or both two
levels. Then we examine the
performance of the conditional consistency metrics. Note that we can not remove the amino acid
level because the amino acid is required for evaluation. The ablation study is conducted on the EC
dataset. As shown in Table 4, if we remove any level (i.e., backbone and all-atom level) or both two
levels, the performance will drop. It verifies the necessity of our multi-level conditional diffusion.

5 RELATED WORKS

De novo protein design methods are dedicated to identify novel proteins with the desired structure
and function properties (Watson et al., 2023; Huang et al., 2016; Frey et al., 2024; Mao et al., 2024;
Komorowska et al., 2024; Gao et al., 2024). Recent advancements in machine learning have enabled
a generative model to accelerate key steps in the discovery of novel molecular structures and drug
design (Gao et al., 2023a; Lu et al., 2022; Pei et al., 2023; Liu et al., 2022). A prior step of generate
models to the representation of proteins (Zhang et al., 2023; Zhou et al., 2023; Gong et al., 2024;
Zhao et al., 2024; Liu et al., 2023; Somnath et al., 2021; Jamasb et al., 2024).

The majority of representation learning for protein is to represent a protein as a sequence of amino
acids (Chen et al., 2023; Moreta et al., 2022; Lee et al., 2024; Fan et al., 2023). Considering the
spatial information is important to the property of a protein, many works resort to a graph model for
a comprehensive presentation with the structure information (Ingraham et al., 2019; Huang et al.,
2024a). In general, each node on the graph is an amino acid and the edge is decided by the distance
between two nodes Aykent & Xia (2022); Xia & Ku (2021); Hladis et al. (2023). Despite the power
of graph models, the relation information in a 3-dimensional space captures the multi-level structure
such as the angle between two edges. A line of research works explore the protein structure in 3D
space Hermosilla et al. (2021); Huang et al. (2024b); Wang et al. (2023); Zhong et al. (2020); Peng
et al. (2022); Liu et al. (2022); Huang et al. (2024a). Recently, large language models (LLMs) have
also been introduced to model the sequence Meier et al. (2021); Lin et al. (2023); Hu et al. (2022);
Su et al. (2024) inspired by the success of natural language processing.

Capitalizing on the power of generative models such as Generative Adversarial Networks (GANs)
and diffusion models, deep generative modeling has shown its potential for fast generation of new
and viable protein structures. Anand & Huang (2018) has applied GANs to the task of generat-
ing protein structures by encoding protein structures in terms of pairwise distances on the protein
backbone. Diffusion models have emerged as a powerful tool for graph-structured diffusion pro-
cesses Klarner et al. (2024). FrameDiff has been proposed for monomer backbone generation and it
can generate designable monomers up to 500 amino acids Yim et al. (2023). NOS is another diffu-
sion model that generates protein sequences with high likelihood by taking many alternating steps
in the continuous latent space of the model Gruver et al. (2023).

6 CONCLUSIONS

In this paper, we introduce a novel multi-level conditional generative diffusion model that integrates
sequence-based and structure-based information for efficient end-to-end protein design. Our model
incorporates a 3D rotation-invariant preprocessing step to maintain SE(3)-invariance. To address the
limitation of existing evaluation metrics, we propose a novel metric to evaluate conditional consis-
tency for protein generation tasks by leveraging language models, which we hope to catalyze the
research progress on protein generation.
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A APPENDIX

A.1 PROTEIN-MMD

Theorem: ∃N ∈ N+,∀i > N, d(xi, Ck) < min
j ̸=k

d(xi, Cj) where Cj is any other class.

Proof : Assume that there exists a class Cj(j ̸= k) such that d(xi, Cj) ≤ d(xi, Ci) for i > N .
Since Ck is defined as the correct target class and the quality of the generated sample improves
with i → ∞, the consistency d(xin, C

k) should approach zero. If d(xi, Cj) ≤ d(xi, Ci), we have
lim
n→∞

d(xi, Cj) = 0. It contradicts the assumption that Ck is the correct class for the generated data.
Therefore, the assumption is false.

A.2 VISUALIZATION OF GENERATED RESULTS
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Figure 6: Protein Visualization Comparison on EC Dataset (Ours vs. ProteinMPNN, ProteoGAN,
and ESM2)
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