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A PROOF OF LEMMA 2

Lemma 2. Let G be the space of smooth invertable functions with smooth inverse (i.e., a diffeo-
morphism) that map Z to X , and h : Z −→ Z is a smooth invertable function. Then, any function
g ∈ G can be represented as g = g∗ ◦ h, where g∗ : Z −→ X is the ground-truth disentangled
generative model in the function space G. Formally, we have g ∼h g

∗,∀g ∈ G and the model g is
∼h-identifiable.

Proof. By definition, g : Z −→ X and g∗ ◦ h : Z −→ X are equal if their domain and codomain are
the same and g(z) = g∗(h(z)) for any z ∈ Z . For g ∈ G and g∗ ◦ h, their domain and codomain
are defined to be the same. Then, we let h to be a permutation function, which is invertable, that
satisfies g(z) = g∗(h(z)),∀z ∈ Z . First, we choose a z ∈ Z and let x = g(z). Then, we can
construct h(z) = z∗ such that g∗(z∗) = g∗(h(z)) = x. We can apply this procedure to every
z ∈ Z . This is because we assume the mapping between Z and X are bijective, which means there
is no conflict. As we assume h to be smooth, which is not implicitly satisfied by the permutation
function, we show the smooth assumption holds by showing the limit of h exists everywhere on Z:

lim
∆z−→0

h(z + ∆z)− h(z)

∆z
= lim

∆z−→0

g∗
−1

(g(z + ∆z))− g∗−1

(g(z))

∆z

= g∗
−1
′

(g(z))× g
′
(z)

(5)

As we know that both g and g∗
−1

are smooth, their composition, g∗
−1 ◦ g, are also smooth. Thus,

the limit above exist for any z ∈ Z . By definition, h is a smooth function. Thus, we can always find
a smooth invertable permutation function h for any g ∈ G such that g = g∗ ◦h,∀g ∈ G. As the valid
output x for g and g∗ ◦h identical, we have g ∼h g

∗ by definition. As the equivalence relation holds
between any g ∈ G and g∗ that admits the same marginal distribution, g is ∼h-identifiable.

B PROOF OF THEOREM 3

Theorem 3. Let p(z) denote the unconventional mixture prior. We useM to denote the manifold
where the ground-truth latent variable z lies on. Let k ∈ {1, 2, ..., N} be the index of generative
mechanisms M . We assume each zMk

lies onMMk
and zS lies onMS . We let ẑ = h(z) which

lies on M̂. g∗ is the ground-truth disentangled model. Then, if there exists an smooth invertable
function h : Z −→ Z such that g = g∗ ◦ h maps Z to X , we have h maps eachMMk

to disjoint
sub-manifold M̂Mk

and mapsMS to M̂S , which is disjoint from all M̂Mk
.

Proof. By the definition of unconventional mixture prior, we have: if ẑMi
6= 0, ẑMj

= 0 for all
j 6= i. We name this condition as the structure constraint. As we know that h : Z −→ Z and
g∗ : Z −→ X , we haveM = M̂ because the valid inputs for g∗ and g = g∗ ◦ h are identical. The
structure constraint is enforced on bothM and M̂. If h entangles M̂Mi

and M̂Mj
for any i 6= j,

which means the change in one ground-truth zMk
will be reflected in two ẑMi

and ẑMj
where i 6= j.

There exist a z such that h(z)Mi
= ẑMi

6= 0 and h(z)Mj
= ẑMi

6= 0 holds simultaneously. For
example, we can let [zMi

, zMj
] = [1.0, 0.0, 0.0, 0.0] and construct [ẑMi

, ẑMj
] = h([zMi

, zMj
]) =

[0.7, 0.0, 0.5, 0.0]. We can also let [zMi
, zMj

] = [1.0, 1.0, 0.0, 0.0] and construct [ẑMi
, ẑMj

] =
h([zMi

, zMj
]) = [0.0, 1.0, 1.0, 0.0]. The existence of such ẑ violates the structure constraint. Thus,

h need to map eachMMk
to disjoint M̂Mk

to make the structure constraint hold.

Additionally, if h entanglesMS andMMi for any valid i, there exist two cases: 1) h mapsMS

to M̂S and M̂Mi or 2) h maps MMi to M̂S and M̂Mi . For the first case, there exist a j 6= i
such that zMi = 0 and zMj 6= 0 but h(z)Mi = ẑMi 6= 0 and h(z)Mj = ẑMj 6= 0. This is
because zMS

is independent from all the zMk
and can push ẑMi to arbitrary value when zMi is

fixed. Thus, the structure constraint is violated. For the second case, we can apply the proof of the
first case in the opposite direction using the assumption that h is smooth and invertable. we can find
a ẑMs

such that h−1(ẑ)Mi
= zMi

6= 0. In the meanwhile, we can again find a ẑMj
which makes
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h−1(ẑ)Mj
= zMj

6= 0. This contradicts the structure constraint. Thus, h needs to mapMMS
to

M̂MS
, which is disjoint from all the M̂Mk

, to keep the structure constraint hold.

Furthermore, if h entangles multiple mechanisms, we can find two mechanisms among the entangled
mechanisms to show that h violates the structure constraint.

C IMPLEMENTATION DETAILS

Network Architecture We develop the architectures base on ClusterGAN (Mukherjee et al.,
2019). We report the network architectures for 1x28x28, 3x32x32, and 3x64x64 images in Ta-
ble 6, 7, and 8, respectively. We use the same generator/decoder and encoder (with modified output
layer) for VAEs. For the colored dataset like SVHN, we use a separate encoder, which takes the
gray-scale image is input and predicts ẑC and ẑM . Such configuration would avoid clustering by
color.

Tuning Hyper-parameters For the ICM model, we use the same hyper-parameters as the Clus-
terGAN (Mukherjee et al., 2019) except for βC and βr, which are set to 30 and 0.05, respectively,
on MNIST and FashionMNIST. We train our ICM model for 200 epochs, which is sufficient for
MNIST and FashionMNIST datasets. For each β-VAE and Ada-GVAE model, we train the model
for 200 epochs with β = [1, 2, 4, 6, 16]. We train each generative model three times and report
the best result. We use Adam optimizer with learning rate = 0.001 and batch size = 64 across the
experiments. We set (β1, β2) = (0.5, 0.9) for ICM and set (β1, β2) = (0.9, 0.999) for VAEs. We
train the VAEs with dimension [10, 20, 30, 50]. We find the VAEs with 20 dimensions have the best
robustness when β is optimal. For the ICM model, we set the dimension of each ICM-conditioned
subspace to 1 and 2 on MNIST and FashionMNIST, respectively. We set the dimension of the shared
subspace to 4 and 5 on MNIST and FashionMNIST, respectively. Additionally, we apply the histor-
ically averaging (Salimans et al., 2016) with image buffer size = 50×batch size as the CycleGAN
(Zhu et al., 2017) does.

D MORE EXPERIMENTAL RESULTS

D.1 INTERVENTIONAL ROBUSTNESS AND LATENT SPACE TRAVERSAL

MNIST We visualize the shared mechanism subspace traversal in Figure 5.

FashionMNIST We visualize the traversal for each generative mechanism subspace and the
shared mechanism subspace in Figure 6.

SVHN We visualize the traversal for the generative mechanism subspaces and two dimensions in
the shared mechanisms subspace in Figure 7. We note that the digits in SVHN do not have as many
intra-class variations as the MNIST. The possible reason is that the house numbers are produced
with the same template. Interestingly, the ICM model treat the contrast of the image as cause for the
generative mechanism.

CIFAR10 We visualize the traversal for the generative mechanism subspaces and one dimension
in the shared mechanism subspace in Figure 8. The traversal may not show meaningful images
on CIFAR10. A possible reason is that the data samples of CIFAR10 do not lie on a continuous
manifold. Another possible reason is that the data are not sampled in such a way that we can observe
continuous variations from them. Despite such an issue, we can still tell the type of variations from
the traversal.

Disentangled Datasets The disentangled datasets, such as 3DShapes, assume the latent explana-
tory factors are independent of each other. Such an assumption is not compatible with our uncon-
ventional mixture prior. In the experiment, we find our method may treat the entangled height and
shape as cause for the generative mechanisms. We tried to create a dataset that correlates one type
of variation (e.g. floor hue) with one shape. However, such a configuration will make the data too
small to use.
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Table 6: Generator, Discriminator, and Encoder Architectures for 1× 28× 28 Inputs

Generator Discriminator Encoder

Input: Rdim(z) Input: R1×28×28 Input: R1×28×28

FC 1024 BN ReLU 4×4 conv, 64 LReLU, stride 2 4×4 conv, 64 LReLU, stride 2
FC 128×7×7 BN ReLU 4×4 conv, 128 LReLU, stride 2 4×4 conv, 128 LReLU, stride 2
4×4 upconv, stride 2, 64 BN ReLU FC 1024 LReLU FC 1024 LReLU
4×4 upconv, stride 2, 1 Sigmoid FC 1 FC dim(z)

Table 7: Generator, Discriminator, and Encoder Architectures for 3× 32× 32 Inputs

Generator Discriminator Encoder

Input: Rdim(z) Input: R3×32×32 Input: R3×32×32

FC 1024 BN ReLU 4×4 conv, 64 LReLU, stride 2 4×4 conv, 64 LReLU, stride 2
FC 128×8×8 BN ReLU 4×4 conv, 128 LReLU, stride 2 4×4 conv, 128 LReLU, stride 2
4×4 upconv, stride 2, 64 BN ReLU FC 1024 LReLU FC 1024 LReLU
4×4 upconv, stride 2, 3 Sigmoid FC 1 FC dim(z)

Table 8: Generator, Discriminator, and Encoder Architectures for 3× 64× 64 Inputs

Generator Discriminator Encoder

Input: Rdim(z) Input: R3×64×64 Input: R3×64×64

FC 1024 BN ReLU 4×4 conv, 64 LReLU, stride 2 4×4 conv, 64 LReLU, stride 2
FC 128×8×8 BN ReLU 4×4 conv, 64 LReLU, stride 2 4×4 conv, 64 LReLU, stride 2
4×4 upconv, stride 2, 64 BN ReLU 4×4 conv, 128 LReLU, stride 2 4×4 conv, 128 LReLU, stride 2
4×4 upconv, stride 2, 64 BN ReLU FC 1024 LReLU FC 1024 LReLU
4×4 upconv, stride 2, 3 Sigmoid FC 1 FC dim(z)

Table 9: Shift Distance Needed for 20% Relative Accuracy Drop under covariant Shift

MODEL MNIST (T) MNIST (W&R) MNIST (R) FASHIONMNIST (D&W)

ICM 2.0 1.2 0.8 0.7
VAE 1.2 0.7 0.7 0.4
β-VAE 1.7 0.8 0.7 0.5
ADA-GVAE 1.6 0.9 0.7 0.5

D.2 ROBUSTNESS UNDER COVARIANT SHIFT

We report the accuracy change of all the evaluated models under covariant shift on MNIST, Fash-
ionMNIST and SVHN in Figures 9, 10, 11, 12, 13. We report the shift distance needed for 20% and
40% relative accuracy drop in Tables 9 and 10, respectively. On SVHN dataset, our ICM model is
slightly worse than a few other methods even if the covariant shift is small. However, as the shift
distance increases, our method starts to narrow the gap. The possible reason is that our encoder takes
the output of the generator as the input. On a complex dataset, the generator may not approximate
the data distribution perfectly. Thus, if we use the test data as the input, some of the input may
become out-of-distribution for the encoder. This is why there seemingly exist negative offsets of the
lines in Figure 13(b). Despite the issue, these results still suggest that our ICM model is more robust
against the covariant shift before the test sets shift too far away.
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Table 10: Shift Distance Needed for 40% Relative Accuracy Drop under covariant Shift

MODEL MNIST (T) MNIST (W&R) MNIST (R) FASHIONMNIST (D&W)

ICM 2.6 1.6 1.1 1.2
VAE 1.9 1.3 1.1 0.8
β-VAE 2.4 1.5 1.3 1.1
ADA-GVAE 2.2 1.5 1.2 1.0

Table 11: Accuracy of Downstream Classifiers under Noise Uniform(0, I)

MODEL MNIST (T) MNIST (W&R) MNIST (R) FASHIONMNIST (D&W)

ICM 61.72% ± 2.30% 33.14%± 4.65% 64.65% ± 2.30% 66.13% ± 1.29%
VAE 41.62%± 4.53% 34.66%± 3.20% 46.33%± 1.97% 19.32%± 2.13%
β-VAE 43.46%± 2.03% 37.30% ± 1.23% 45.78%± 3.41% 24.88%± 2.68%
ADA-GVAE 51.27%± 3.75% 34.58%± 3.37% 43.51%± 4.39% 18.43%± 2.26%

D.3 ROBUSTNESS UNDER NOISE

We show the robustness under Uniform(0, I) noise in Table 11. The result is slightly better com-
pared to the Gaussian noise experiment as Section 5.3 shows. For the FashionMNIST (D&W)
dataset, the advantage of our method goes beyond our expectations.
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(a) MNIST: Stroke Thickness (T) (b) MNIST: Width&Rotation (W&R)

(c) MNIST: Rotation (R) (d) FashionMNIST: Darkness&Width
(D&W)

(e) SVHN: Background Color

Figure 4: Covariate Used in the Covariate Shift Experiment
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(a) Shared Mechanism Subspace, Dimen-
sion #0

(b) Shared Mechanism Subspace, Dimen-
sion #1

(c) Shared Mechanism Subspace, Dimen-
sion #2

(d) Shared Mechanism Subspace, Dimen-
sion #3

Figure 5: Shared Mechanism Subspace Traversal of ICM model on MNIST
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(a) Generative Mechanisms Subspaces (b) Shared Mechanism Subspace, Dimen-
sion #0

(c) Shared Mechanism Subspace, Dimen-
sion #1

(d) Shared Mechanism Subspace, Dimen-
sion #2

(e) Shared Mechanism Subspace, Dimen-
sion #3

(f) Shared Mechanism Subspace, Dimen-
sion #4

Figure 6: Latent Space Traversal of ICM model on FashionMNIST
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(a) Generative Mechanisms Sub-
spaces

(b) Shared Mechanism Subspace,
Dim #0

(c) Shared Mechanism Subspace,
Dim #1

Figure 7: Latent Space Traversal of ICM model on SVHN

(a) Generative Mechanisms Subspaces (b) Shared Mechanism Subspace, Dim #0

Figure 8: Latent Space Traversal of ICM model on CIFAR10

(a) Accuracy under covariant Shift (b) Accuracy Difference between ICM and Others

Figure 9: Covariate Shift (Stroke Thickness) on MNIST
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(a) Accuracy under covariant Shift (b) Accuracy Difference between ICM and Others

Figure 10: Covariate Shift (Width&Rotation) Experiment on MNIST

(a) Accuracy under covariant Shift (b) Accuracy Difference between ICM and Others

Figure 11: Covariate Shift (Rotation) Experiment on MNIST

(a) Accuracy under covariant Shift (b) Accuracy Difference between ICM and Others

Figure 12: Covariate Shift (Darkness&Width) Experiment on FashionMNIST
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(a) Accuracy under covariant Shift (b) Accuracy Difference between ICM and Others

Figure 13: Covariate Shift (Background Color) Experiment on SVHN
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