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ABSTRACT

Hypergraphs are widely employed to represent complex higher-order relations
in real-world applications. Most hypergraph learning research focuses on node-
level or edge-level tasks. A practically relevant but more challenging task, edge-
dependent node classification (ENC), is only recently proposed. In ENC, a node
can have different labels across different hyperedges, which requires the modeling
of node-edge pairs instead of single nodes or hyperedges. Existing solutions for
this task are based on message passing and model interactions in within-edge and
within-node structures as multi-input single-output functions. This brings three
limitations: (1) non-adaptive representation size, (2) non-adaptive messages, and
(3) insufficient direct interactions among nodes or edges. To tackle these limi-
tations, we propose CoNHD, a new ENC solution that models both within-edge
and within-node interactions as multi-input multi-output functions. Specifically,
we represent these interactions as a hypergraph diffusion process on node-edge
co-representations. We further develop a neural implementation for this diffu-
sion process, which can adapt to a specific ENC dataset. Extensive experiments
demonstrate the effectiveness and efficiency of the proposed CoNHD method.

1 INTRODUCTION

Real-world applications often involve intricate higher-order relations that cannot be represented by
traditional graphs with pairwise connections (Milo et al., 2002} [Battiston et al., 2020; Lambiotte
et al., |2019; |Zhang et al., 2023). Hypergraphs, where an edge can connect more than two nodes,
provide a flexible structure to represent these relations (Bergel, |1984; Brettol 2013} |Gao et al., |2020;
Antelmi et al.} 2023). Many hypergraph learning methods are proposed to obtain effective node or
edge representations (Liu et al., [2024} [Wang et al., |2024; Jo et al.,|2021). These methods, however,
are insufficient for predicting labels related to node-edge pairs. To initiate the development of effec-
tive solutions for such scenarios, (Choe et al.[(2023) propose a new problem namely edge-dependent
node classification (ENC), where a node can have different labels across different edges. Address-
ing this problem requires modeling the node features unique to each edge, which is more complex
than other tasks and requires considering the hypergraph structure. The ENC task has valuable
real-world applications, such as predicting the score of a player in different matches for the game
industry (Choe et al.,[2023)) or determining the role of a protein in various pathways (Kanehisa et al.,
2024). Moreover, the predicted labels from ENC can also serve as additional features for improv-
ing performance on downstream tasks (Choe et al., [2023)), including ranking aggregation (Chitra &
Raphael| 2019)), node clustering (Hayashi et al., 2020)), product-return prediction (Li et al. |2018),
and anomaly detection (Lee et al.,|2022). Despite its significant practical value, the ENC task still
remains under-explored.

To address hypergraph-related problems (Kim et al 2024} [Saxena et al., 2024} [Yan et al. [2024),
including the ENC problem (Choe et al.,2023), message passing-based hypergraph neural networks
(HGNNs) have become a standard solution (Huang & Yang 2021} [Chien et al., 2022} |Arya et al.,
2024). Since message passing has various meanings in literature (Gilmer et al., [2017; [Kim et al.,
2024)), to avoid confusion, in this paper, message passing refers specifically to the HGNN archi-
tecture illustrated in Fig. [I(a), which employs a two-stage aggregation process. The first stage ag-
gregates messages from nodes to update the edge representation, while the second stage aggregates
messages from edges to update the node representation. The edge and node representations are then
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Flgure 1: Different HGNN architectures. (a,b) The (edge- dependent) message passing framework
aggregates (edge-dependent) messages from neighboring nodes to update the edge representation
and then from neighboring edges back to update the node representation. (c) Our proposed CoNHD
learns a co-representation for each node-edge pair based on diffusion, rather than separate node and
edge representations. We define two multi-input multi-output functions ¢ and ¢ as the neural im-
plementation of the diffusion operators, which model the within-edge and within-node interactions
without aggregation and output diverse diffusion information for different node-edge pairs. The
within-edge and within-node diffusion information is then used to update the co-representations.

concatenated and used to predict edge-dependent node labels (Choe et al., [2023). Message passing
is simple and intuitive, but does it yield the most effective solution?

To study the characteristics of message passing, we analyze its input-output relations. The two
aggregation stages in message passing essentially model interactions in two key types of local struc-
tures: within-edge structures (different nodes within the same edge) and within-node structures
(different edges within the same node). Here we treat nodes and edges in a hypergraph as symmet-
ric concepts using hypergraph duality (Scheinerman & Ullmanl [2013). In the original hypergraph,
nodes are contained within a hyperedge, while in the dual hypergraph, edges (dual nodes) can be
similarly viewed as being contained within a node (dual edge). Message passing models interactions
in the within-edge and within-node structures as multi-input single-output aggregation functions,
which brings three limitations:

* Non-adaptive representation size. When modeling within-node structures, messages from nu-
merous edges are aggregated to a fixed-size node representation vector. This can cause potential
information loss for large-degree nodes, which have more neighboring edges and should have
larger representation size (Aponte et al.l [2022). Since low-degree nodes do not require large
representation size, simply increasing the embedding dimension for all nodes is not an effective
solution as it not only leads to excessive computational and memory costs, but also introduces
challenges like overfitting and optimization difficulties (Luo et all [2021; |Goodfellow et al.,
2016). Analogously, when modeling within-edge structures, the same problem exists.

» Non-adaptive messages. Since the aggregation process mixes information from different edges
to a single node representation and cannot represent specific information for each edge, the node
can only pass the same message to the different edges it is part of. However, different edges
may focus on different properties of the node and should receive different adaptive messages.
Some methods, as shown in Fig. [T[b), attempt to extract edge-dependent information from a
single node representation to solve this problem (Aponte et al.,2022; Wang et al., 2023a; |Choe
et al.| 2023). This extraction process requires the model to learn how to recover edge-dependent
information from a mixed node representation in each convolution layer, which increases the
learning difficulty and may fail to fully recover edge-dependent information.

* Insufficient direct interactions among nodes or edges. When modeling within-edge struc-
tures, it is crucial to consider direct interactions among nodes to update node representations,
rather than solely interactions from nodes to the edge. Similarly, in within-node structures,
direct interactions among edges should be considered. These direct nodes-to-nodes and edges-
to-edges interactions, which require multiple outputs for different elements, have been shown to
benefit hypergraph learning (Pei et al., 2024) and are particularly critical for the ENC task.
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Apart from the above three limitations, most message passing-based methods also suffer from the
common oversmoothing issue in HGNNs (Wang et al., 2023a; Yan et al., 2024)), which hinders the
utilization of long-range information and limits the model performance.

To tackle the oversmoothing issue, some diffusion-inspired GNNs and HGNNs are proposed, which
demonstrate strong potential for constructing deep models (Wang et al., |2023a; |Chamberlain et al.,
2021} Thorpe et al., 2022} |Gravina et al., [2023)). Hypergraph diffusion methods (Liu et al., 2021}
Fountoulakis et al., 2021} [Veldt et al., |2023) model the information diffusion process from nodes
to neighboring nodes in the same hyperedge. These methods, without edge representations, are
insufficient for solving the ENC problem. Moreover, the neural implementation of traditional hy-
pergraph diffusion (Wang et al. |2023a)) is still following the two-stage message passing framework
and suffers from the above three limitations.

To make hypergraph diffusion applicable to the ENC problem, we first extend the concept of hy-
pergraph diffusion by using node-edge co-representations. We show that this diffusion process can
model interactions in both within-edge and within-node structures as multi-input multi-output equiv-
ariant functions, which can address the three limitations of existing message passing-based ENC so-
lutions. We further propose a neural implementation named Co-representation Neural Hypergraph
Diffusion (CoNHD), which can learn suitable diffusion dynamics from a specific ENC dataset in-
stead of relying on handcrafted regularization functions.

Our main contributions are summarized as follows:

1. We define co-representation hypergraph diffusion, a new concept that generalizes hyper-
graph diffusion using node-edge co-representations, which addresses the three major limita-
tions of existing message passing-based ENC solutions.

2. We propose CoNHD, a neural implementation for the co-representation hypergraph diffusion
process, which in a natural way leads to a novel and effective HGNN architecture that can
effectively learn suitable diffusion dynamics from data.

3. We conduct extensive experiments to validate the effectiveness and efficiency of CoNHD. The
results demonstrate that CoONHD achieves the best performance on ten ENC datasets without
sacrificing efficiency.

2 RELATED WORK

Hypergraph Neural Networks. Inspired by the success of graph neural networks (GNNs) (Kipf &
Welling| [2017; [Wu et al.| 2020} 2022), hypergraph neural networks (HGNNs) have been proposed
for modeling complex higher-order relations (Kim et al., [2024; |Duta et al., 2023). HyperGNN
(Feng et al., 2019} |Gao et al., 2022) and HCHA (Bai et al 2021) define hypergraph convolution
based on the clique expansion graph. HyperGCN (Yadati et al., 2019) reduces the clique expansion
graph into an incomplete graph with mediators. To directly utilize higher-order structures, HNHN
(Dong et al., [2020) and HyperSAGE (Arya et al.l 2020; [2024) model the convolution layer as a
two-stage message passing process, where messages are first aggregated from nodes to edges and
then back to nodes. UniGNN (Huang & Yang, 2021) and AllSet (Chien et al., 2022) show that
most existing HGNNSs can be represented in this two-stage message passing framework. HDS¢%¢
improves message passing by modeling it as an ODE-based dynamic system (Yan et al., [2024).
Recent research explores edge-dependent message passing, where edge-dependent node messages
are extracted before feeding them into the aggregation process (Aponte et al.| [2022; Wang et al.,
2023aj | Telyatnikov et al.,|2023)). LEGCN (Yang et al.}2022)) and MultiSetMixer (Telyatnikov et al.,
2023) can generate multiple representations for a single node. However, both model interactions
as an aggregation function, which produces the same output for different elements. This limitation
leads to significantly reduced performance compared to our multi-output design, as demonstrated in
our ablation experiments (Section[5.3)). Further discussion of the weaknesses of these two methods
compared to our method can be found in Appendix [F| While most existing methods focus on node-
level or edge-level tasks (Liu et al.l 2024} |Benko et al., [2024; |Chen et al., |2023; Behrouz et al.,
2023)), the ENC problem remains less explored. (Choe et al.| (2023)) are the first to explore the ENC
problem and propose WHATSsNet, a solution based on edge-dependent message passing. Different
from our method, WHATsNet employs an aggregation after the equivariant operator to produce a
single node or edge representation, which still follows the single-output design. Message passing
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has become the dominant framework for HGNN research, but it cannot effectively address the ENC
problem as it suffers from the three limitations discussed in the introduction.

(Hyper)graph Diffusion. (Hyper)graph diffusion (Gleich & Mahoney, 2015} [Chamberlain et al.,
2021)) models the diffusion information as the gradients derived from minimizing a regularized tar-
get function, which regularizes the node representations within the same edge. This ensures that
the learned node representations converge to the solution of the optimization target instead of an
oversmoothed solution (Yang et al., [2021}; Thorpe et al.,[2022). The technique was first introduced
to achieve local and global consistency on graphs (Zhu et al.l 2003; Zhou et al., [2003)), and was
then generalized to hypergraphs (Zhou et al.| [2007; |Antelmi et al., 2023)). [ Zhou et al.| (2007) pro-
pose a regularization function by reducing the higher-order structure in a hypergraph using clique
expansion. To directly utilize the higher-order structures, |Hein et al.|(2013)) propose a regularization
function based on the total variation of the hypergraph. Other regularization functions are designed
to improve parallelization ability and introduce non-linearity (Jegelka et al.l 2013} Tudisco et al.,
2021bza; |Liu et al., [2021). To efficiently calculate the diffusion process when using complex reg-
ularization functions, some advanced optimization techniques have been investigated (Zhang et al.,
2017;|L1 et al.| |2020). Recently, some works explore the neural implementation of (hyper)graph dif-
fusion processes (Chamberlain et al., 2021} |Li et al., 2022} Thorpe et al.,|2022} |Gravina et al., 2023;
Wang et al.| [2023a;b), which demonstrate strong robustness against the oversmoothing issue. While
hypergraph diffusion methods have shown effectiveness in various tasks like ranking, motif cluster-
ing, and signal processing (Li & Milenkovic| 2017} [Takai et al., 2020; [Zhang et al., [2019; |Schaub
et al.| 2021)), they are all restricted to node representations and cannot address the ENC problem.

In this paper, we extend hypergraph diffusion using node-edge co-representations and propose a
neural implementation. Most related to our work is ED-HNN (Wang et al.| 2023a), which is de-
signed to approximate any traditional hypergraph diffusion process. However, ED-HNN is based
on message passing, which still models interactions in within-edge and within-node structures as
multi-input single-output aggregation functions and suffers from the three limitations discussed in
the introduction. Our method is the first that models both within-edge and within-node interactions
as multi-input multi-output functions, which effectively tackles these limitations and demonstrates
significant improvements in our experiments.

3 PRELIMINARIES

Notations. Let G = (V,£) denote a hypergraph, where ¥V = {v;,vs,...,v,} represents a set of
n nodes, and £ = {ey, ea,..., e, } represents a set of m hyperedges. Each edge e; € £ is a non-
empty subset of V and can contain an arbitrary number of nodes. £, = {e € E|v € e} represents
the set of edges that contain node v, and d,, = |&,| and d. = |e| are the degrees of node v and edge
e, respectively. We use vf and e to respectively denote the i-th node in edge e and the j-th edge in

& X0 = [:EE,?), ce :c,(fi)]T is the initial node feature matrix.

Message Passing-based HGNNs. Message passing (Huang & Yang|, 2021} |Chien et al.| 2022) has
become a standard framework for most HGNNs, which models the interactions in within-edge and
within-node structures as two multi-input single-output aggregation functions fy_,¢ and fg_,:

20D =, (X 20, (1)
D =fe p(Z{TD; 1), )
(Y = foap (@D 20 2. 3)

Here :ch) and sz) are the node and edge representations in the (t)-th iteration. acq(,o) is the initial

node features, and z.(go) is typically initialized by a zero vector or the average of the feature vectors

of the nodes in this edge. X é” denotes the representations of nodes contained in edge e, i.e.,

x® = [wi?, . ,m%) ]T. Similarly, Z() = [zit,f)7 . ,zi%) }T

denotes the representations of
edges containing node v. fqip, represents the optional skip connection of the original features,
which can help mitigate the oversmoothing issue (Huang & Yang, [2021). fy_¢ and fe_,) take
multiple representations from neighboring nodes or edges as inputs, and output a single edge or
node representation. These two single-output aggregation functions lead to the three limitations

indicated in the introduction.
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Hypergraph Diffusion. Hypergraph diffusion learns node representations X = (@, , ..., @y, | T
where x,, € R?, by minimizing a hypergraph-regularized target function (Tudisco et al., 2021a;
Prokopchik et al., 2022). For brevity, we use X, = [a:,,ef, s Ty ] T to denote the representa-
tions of nodes contained in the edge e. The target function is the weighted summation of some
non-structural and structural regularization functions. The non-structural regularization function
is independent of the hypergraph structure, which is typically defined as a squared loss function

based on the node attribute vector a,, (composed of initial node features wa’) (Takai et al., 2020)
or observed node labels (Tudisco et al.,[2021a))). The structural regularization functions incorporate
the hypergraph structure and apply regularization to multiple node representations within the same
hyperedge. Many structural regularization functions are designed by heuristics (Zhou et al., 2007}
Hein et al., 2013} Hayhoe et al., 2023} [Tudisco et al., 2021b). For instance, the clique expansion
(CE) regularization functions (Zhou et al., 2007), defined as Qcg(X.) = > lzy — |3,

encourages the representations of all nodes in an edge to become similar.

v,uce

Definition 1 (Node-Representation Hypergraph Diffusion). Given a non-structural regularization
function R, (-;a,) : RY — R and a structural regularization function Q.(-) : R%*4 — R, the
node-representation hypergraph diffusion learns representations by solving the following optimiza-
tion problem

X — argmin{ZRv(mv;av) +AZQ€(XE)}. 4)

X =) ecE

Here Q.(-) is also referred to as the edge regularization function. X denotes the matrix of all
learned node representations, which can be used for predicting the node labels.

4 METHODOLOGY

Our goal is to provide a new HGNN framework that views the within-edge and within-node interac-
tions from a multi-input multi-output perspective, which can address the three limitations discussed
in the introduction. To achieve this goal, we need to:

(1) Redefine the inputs and outputs. Existing message passing-based HGNNS treat the single edge
or node representation as the output for the within-edge or within-node interactions, respectively. A
new kind of representations is needed to disentangle the single output to multiple outputs.

(2) Redefine the interaction process. An expressive enough and learnable function is needed to
model the interactions from inputs to outputs, while considering the symmetry in hypergraph data.

In Section 4.1} we introduce co-representations into hypergraph diffusion to meet requirement (1).
We further show that this extension naturally satisfies part of requirement (2) by preserving the
permutation equivariance in hypergraphs. In Section[#.2] we present a learnable neural implemen-
tation of the diffusion process. We carefully design the architecture to ensure both requirements are
satisfied, leading to the novel HGNN framework demonstrated in Fig. [T](c).

4.1 CO-REPRESENTATION HYPERGRAPH DIFFUSION

In this section, we extend the current hypergraph diffusion concept using co-representations of node-
edge pairs. This extension not only enables the application of hypergraph diffusion in addressing
the ENC problem, but also disentangles the mixed node/edge representations into fine grained co-
representations to address the three limitations discussed in the introduction. Let us first formally
introduce the ENC problem.

Problem 1 (Edge-Dependent Node Classification (ENC) (Choe et al., 2023)). Given (1) a hyper-
graph G = (V, &), (2) observed edge-dependent node labels y,, . for &' C £ (Vv € e,Ve € &),

and (3) an initial node feature matrix X ©) the ENC problem is to predict the unobserved edge-
dependent node labels y,, . for E\ ' (Vv € e,Ve € E\ E').

In ENC, the label y, . is associated with both the node v and the edge e. We extend hypergraph
diffusion to learn a co-representation h, . € R? for each node-edge pair (v,e). We name this
co-representation hypergraph diffusion. Let H = [..., Ry, .. ] denote the collection of all co-
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representation vectors. We use H, = [hvi’ew..,hvsc,e]T and H, = [hyc,.. .,hmzv]T to
represent the co-representations associated with an edge e or a node v, respectively.

Definition 2 (Co-Representation Hypergraph Diffusion). Given a non-structural regularization
function Ry e(;au.e) @ RY — R, structural regularization functions Q.(-) : R*d — R
and Q,(-) : R¥%*d 5 R, the co-representation hypergraph diffusion learns node-edge co-
representations by solving the following optimization problem

o = arg}}lnin {Z Z Rue(hye;@ye) + )\ZQe(He) —|—’yz QU(HU)} . (®)]

vEV e€&, ec& veV
Here R, e(-; @y ) is independent of the hypergraph structure, where a, . can be any related at-
tributes of the node-edge pair (v, e) (e.g., node features, edge features, or observed edge-dependent
node labels). Q.(-) and §,(-) are referred to as the edge and node regularization functions, re-
spectively. They apply regularization to co-representations associated with the same node or edge,
which can be implemented as the structural regularization functions designed for traditional node-
representation hypergraph diffusion (Zhou et al.,[2007; Hein et al., 2013} [Hayhoe et al., 2023)).

Depending on whether the regularization functions are differentiable, we can solve Eq. [5|using one
of two standard optimization methods: gradient descent (GD) or alternating direction method of
multipliers (ADMM) (Boyd et al.| 2011). When the regularization functions are differentiable, we

initialize hgjol = @y, and then solve it using GD with a step size a:
hq(;t,jz_l) = h1()t,)e - a(vnv,e(hq(;t,)e; ay.e) + /\[VQe(Hgt))]v + ’Y[VQU(HSJt)”e)a (6)

where V is the gradient operator. [-],, and [-]. represent the gradient vector associated with node v
and edge e, respectively. For example, [VQ(H))], represents the gradient w.r.t. hgf)e

When the regularization functions are not all differentiable, we can apply ADMM with the proximity
term prox,q , ,(+) to find the optimal solution (see Appendix for the details).

Similar to traditional hypergraph diffusion, we refer to VQ(-) and prox,q_,,(-) in the GD or
ADMM method as edge diffusion operators, which model interactions in within-edge structures and
generate information that should “diffuse” to each node-edge pair. V(2,(-) and prox.q_ ,,() are
referred to as node diffusion operators.

The edges and nodes are inherently unordered, hence in designing structural regularization functions
it is important to ensure the outputs are consistent regardless of the input ordering. We say a function
g: R4 RY is permutation invariant, if for any action 7 from the row permutation group S,
the relation g(7 - I) = g(I) holds for any input matrix I € R"*<. Similarly, function g : R"*¢ —
R"*" is permutation equivariant, if for any 7 € S,,, the relation g(x - I) = =« - g(I) holds for
all I € R"*9, In traditional hypergraph diffusion, the diffusion operators derived from invariant
regularization functions have been proven to be permutation equivariant (Wang et al., 2023al).
Proposition 1 (Wang et al.|(20234a)). With permutation invariant structural regularization functions,
the diffusion operators are permutation equivariant.

Since the edge and node regularization functions are defined as structural regularization functions in
traditional hypergraph diffusion, Proposition [I]applies to both the edge and node diffusion operators
in our co-representation hypergraph diffusion as well. This critical property shows that our co-
representation hypergraph diffusion process models the complex interactions in within-edge and
within-node structures as multi-input multi-output equivariant functions, while ensuring the outputs
commute according to the input ordering.

Next, we state the relation between the proposed co-representation hypergraph diffusion and the
node-representation hypergraph diffusion.

Proposition 2. The traditional node-representation hypergraph diffusion is a special case of the
co-representation hypergraph diffusion, while the opposite is not true.

We leave all the proofs to Appendix [B] Node-representation hypergraph diffusion is equivalent to
imposing a strict constraint that all the co-representations associated with the same node must be
identical, resulting in a single unified node representation. We relax this constraint by incorporating
node regularization functions into the optimization objective, allowing multiple co-representations
associated with the same node to differ while still being constrained by certain regularization terms.
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4.2 NEURAL IMPLEMENTATION

Traditional hypergraph diffusion relies on handcrafting structural regularization functions, which re-
quires good insights in the dataset. In this section, we propose Co-representation Neural Hypergraph
Diffusion (CoNHD), which is a neural implementation of the diffusion process and can easily adapt
to a specific dataset. This implementation leads to the novel HGNN architecture illustrated in

Fig.[Ic).

We provide a GD-based implementation of our model architecture following the update rules in
Eq. @ The (¢ + 1)-th layer can be represented as:

GD-based: MU = g(HY), M) = o(H), (7)
D = (R miEY mi Y ), ®)
Here MV = [mf}?,e, o ,mfjg )T and M) = [m;(7t6)¥’ e ,m;(fe)s ] are the within-edge and

within-node diffusion information generated using the neural diffusion operators ¢ and ¢, which
can be implemented by any permutation equivariant network. ¢ (-) is implemented as a linear layer,

which collects diffusion information and updates the co-representations. hfffi is the initial feature
vector, which corresponds to the non-structural regularization term in Eq.[5] We provide the ADMM-
based implementation in Appendix [J}

According to Proposition[I] ¢ and ¢ should satisfy the permutation equivariance property. Previous
research only models the composition of within-edge and within-node interactions as an equivari-
ant function, while each interaction is still an invariant aggregation function (Wang et al., [2023a)).
Although WHATsNet (Choe et al., 2023) utilizes the equivariant module in both interactions, the
multiple outputs serve only as an intermediate results, with an aggregation module applied at the
end. As a result, the composition is still an invariant aggregation function and only a single node
or edge representation is updated in this process. In contrast, our method removes the unnecessary
aggregation process and is the first to model interactions in both within-edge and within-node struc-
tures as two distinct equivariant functions, which output different information to update multiple
co-representations. Our ablation experiments in Section [5.3]|show the effectiveness of this design.

We explore two popular equivariant neural networks, UNB (Segol & Lipman| [2020; |Wang et al.|
2023al) and ISAB (Chien et al., [2022), for the implementation of the diffusion operators ¢ and .
The details can be found in Appendix [C| Apart from these two equivariant networks explored in our
experiments, it is worth noting that our proposed CoNHD is a general HGNN architecture, where
the neural diffusion operators can be implemented as any other equivariant network.

To demonstrate the expressiveness of CONHD, we compare it with the message passing framework
defined in Eq.E]-E} which can cover most existing HGNNs (Huang & Yang|,[2021;|Chien et al.|[2022]).
Since the message passing framework can only generate separate representations for nodes and
edges, following (Choe et al., [2023), we regard the concatenation of node and edge representations
as the final embeddings, which can be used to predict edge-dependent node labels.

Proposition 3. With the same embedding dimension, CONHD is expressive enough to represent the
message passing framework, while the opposite is not true.

Proposition [3]demonstrates that CONHD is more expressive than all methods following the message
passing framework. Notably, despite the increased expressiveness, the complexity of CoNHD is still
linear to the number of node-edge pairs, i.e., ) | ¢ de, Which is the same as message passing-based
methods. We provide theoretical complexity analysis in Appendix [D.1]

5 EXPERIMENTS

In this section, we present experiments to evaluate the effectiveness and efficiency of the proposed
CoNHD method for predicting edge-dependent node labels, as well as to assess the impact of the
critical multi-output design. Additional experiments are provided in Appendix [I} where we further
validate the performance on other tasks including downstream tasks and the traditional node classi-
fication task, examine its capacity to mitigate the oversmoothing issue in constructing deep models,
and explore the benefits of the direct interactions among nodes and edges.
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Table 1: Performance of edge-dependent node classification. Bold numbers represent the best
results, while underlined numbers indicate the second-best. “O.0.M.” means “out of memory”.
Shaded cells indicate that our method significantly outperforms the best baseline (p-value < 0.05,
based on the Wilcoxon signed-rank test). “A.R.” denotes the average ranking among all datasets.

Method Email-Enron Email-Eu Stack-Biology Stack-Physics Coauth-DBLP AR of
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 | Micro-F1
GraphSAGE 0.775 0005 0.714 £0007 0.658 0001 0.564 +0005 0.689 +0010 0.598 +0014 0.660 0011 0.523 £0018 0.474 0002 0.401 + 0008 123
GAT 0.736 £ 0056 0.611 +£0.103 0.618 0002 0.580 £0.02¢ 0.692 +0015 0.628 0010 0.725 £0.024 0.636 +£0043 0.575 £ 0005 0.558 + 0.007 8.6
ADGN 0.790 £ 0001 0.723 +0001  0.667 +0001 0.622 0006 0.714 £0002 0.651 +0.001 0.686 +0.014 0.537 +0019 0.505 0006 0.440 + 0.020 9.1
HyperGNN 0.725 0004 0.674 £0003 0.633 £0.001 0.533 0008 0.689 0002 0.624 £0007 0.686 0004 0.630 £0002 0.540 0004 0.519 +0.002 10.5
HNHN 0.738 £0.028 0.637 £0023 0.643 £0004 0.552 £0014 0.640 £0005 0.592 £0006 0.506 +£0.053 0.422 +0043 0.486 +0004 0.478 + 0.008 115
HCHA 0.666 + 0010 0.464 +0002 0.620 +0000 0.497 0001 0.589 +0007 0.465 +0060 0.622 0003 0.481 +0007 0.451 +0007 0.334 +0.048 15.9
HAT 0.817 0001 0.753 0004 0.669 +0001 0.638 £0.002 0.661 +£0005 0.606 +0005 0.708 +£0.005 0.643 +£0009 0.503 +0004 0.483 + 0.006 8.0
UniGCNIT 0.734 £ 0010 0.656 £0010 0.630 £0.005 0.565 0013 0.610 0004 0.433 £0007 0.671 £0022 0.492 £o0016 0.497 £0003 0.476 +0.002 14.4
AllSet 0.796 + 0014 0.719 £0020 0.666 +0005 0.624 0021 0.571 +0054 0.446 +0081 0.728 £0.039 0.646 +0046 0.495 +0038 0.487 + 0.040 9.4
HDS% 0.805 + 0001 0.740 +0006 0.651 +0000 0.577 0005 0.708 +0001 0.643 +0004 0.737 £0.001 0.635 +0008 0.558 +0.001 0.550 + 0.002 1.6
LEGCN 0.783 0001 0.728 £0007 0.639 0001 0.535 0004 0.668 0002 0.572 £0006 0.701 £0003 0.575 £0018 0.499 +0.003 0.490 +0.002 7.6
MultiSetMixer 0.818 0001 0.755 £0005 0.670 £0.001 0.636 £0005 0.709 0001 0.643 £0003 0.754 0001 0.679 £0004 0.559 +0.001 0.554 +0.001 6.2
HNN 0.763 0003 0.679 0007  O.0.M. 0.0.M. 0.618 +0015 0.568 +0013 0.683 £0.005 0.617 +0005 0.488 +0006 0.482 + 0.006 132
ED-HNN 0.778 0001 0.713 +0004 0.648 £ 0001 0.558 £0.004 0.688 +0005 0.506 +0002 0.726 £0.002 0.617 0006 0.514 +0016 0.484 +0.024 9.6
WHATSsNet 0.826 + 0001 0.761 +0003 0.671 £0000 0.645 0003 0.742 +0002 0.685 +0003 0.770 £0.003 0.707 +0004 0.604 +0.003 0.592 + 0.004 53
CoNHD (UNB) (ours) 0.905 +0001 0.858 +0.004 0.708 +0001 0.689 +0.001 0.748 +0003 0.694 +0.005 0.776 +0001 0.712 +0.005 0.620 +0.002 0.604 + 0.002 1.9
CoNHD (ISAB) (ours) 0.911 +0.001 0.871 +0.002 0.709 +0.001 0.690 +0.002 0.749 +0.002 0.695 +0.004 0.777 0001 0.710 0004 0.619 +0002 0.604 -+ 0.003 1.1
Method ?oautthMiner _CorafOutsider PBLP*Outsider Ci_teseerfOutsider P}AbmedfOutsider AR. of
Micro-F1 Macro-F1 Micro-Fl1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-Fl1 Macro-F1 | Macro-Fl1
GraphSAGE 0.441 0013 0.398 £0012 0.520 £0009 0.518 £0007 0.490 0029 0.427 +0083 0.704 £0005 0.704 £0005 0.677 +0.003 0.663 +0.002 125
GAT 0.623 0006 0.608 +0009 0.531 £0009 0.521 0008 0.563 +0003 0.548 +0003 0.704 0011 0.702 0011 0.677 +0003 0.670 + 0.002 83
ADGN 0.452 £0009 0.415 £0014 0.533 £0.007 0.524 £0005 0.559 0005 0.548 £0001 0.706 0008 0.705 £0008 0.669 +0.003 0.667 +0.002 9.6
HyperGNN 0.566 0002 0.551 +£0004 0.532 £0015 0.528 £0.013 0.571 +£0005 0.566 +0.005 0.696 +0.006 0.696 +0006 0.658 +0003 0.654 + 0.002 9.9
HNHN 0.520 0002 0.514 +0002 0.539 £0016 0.535 £ 0015 0.581 £0001 0.580 +0.001 0.694 +£0.017 0.693 +0016 0.674 0004 0.670 + 0.004 11.0
HCHA 0.468 £0.020 0.447 £0040 0.505 £0009 0.445 £ 0058 0.542 £0007 0.509 £0018 0.622 £0.038 0.620 £0037 0.655 £ 0002 0.648 + 0.002 159
HAT 0.543 £ 0002 0.533 +0003 0.548 £0015 0.544 £0017 0.588 +0002 0.586 +0002 0.691 0018 0.690 +0019 0.676 +0003 0.673 + 0.003 6.9
UniGCNIT 0.520 0001 0.507 0001 0.519 £0.019 0.509 0023 0.540 +0004 0.537 £0006 0.674 £0.018 0.671 +£0023 0.621 £0.004 0.617 + 0.006 142
AllSet 0.577 0005 0.570 0002 0.523 £0.018 0.502 £ 0016 0.585 +0008 0.515 £0013 0.686 0010 0.681 £0009 0.679 +0.006 0.660 + 0.010 10.7
HDS% 0.561 +0.003 0.552 +0003 0.537 £0009 0.529 0010 0.554 +0004 0.548 +0002 0.703 £0.008 0.703 +0008 0.669 + 0004 0.664 + 0.005 74
LEGCN 0.520 0002 0.511 +0003 0.698 +0008 0.689 +0.008 0.676 +0016 0.675 +0016 0.733 £0015 0.731 +0016 0.703 +0002 0.698 + 0.002 7.7
MultiSetMixer 0.593 0005 0.585 £0005 0.542 +0013 0.538 0011 0.561 £0004 0.552 £0003 0.706 £0.007 0.705 £0007 0.668 +0.001 0.666 + 0.001 5.8
HNN 0.543 £ 0002 0.533 £0002 0.522 £0008 0.354 £0.008 0.527 0006 0.409 £0083 0.527 £0.028 0.436 £0094 0.673 +0006 0.668 + 0.006 12.8
ED-HNN 0.503 0006 0.479 +000s 0.532 0011 0.511 £0014 0.599 +0002 0.559 £0013 0.709 £0.007 0.709 +0007 0.668 +0.008 0.656 + 0.009 11.6
‘WHATSsNet 0.632 0004 0.625 £0006 0.526 +0.014 0.519 0014 0.587 0004 0.582 +0008 0.711 £0010 0.710 £0009 0.677 +0.004 0.670 +0.004 5.0

CoNHD (UNB) (ours) 0.646 +0003 0.640 +0.004 0.769 0028 0.767 +0.028 0.884 £o0011 0.883 0011 0.827 £0013 0.826 +0.013 0.896 +0003 0.895 = 0.003 1.8
CoNHD (ISAB) (ours) 0.650 +0.003 0.646 +0.004 0.800 +0.019 0.797 +0.020 0.903 +£0.002 0.902 +0.002 0.828 +0.010 0.826 +0.010 0.899 +0.004 0.898 -+ 0.004 1.1

5.1 EFFECTIVENESS AND EFFICIENCY ON THE ENC TASK

Datasets. We conduct experiments on ten ENC datasets, with detailed descriptions and statis-
tics provided in Appendix @ These datasets include all six datasets in (Choe et al., [2023)),
which are Email (Email-Enron and Email-Eu), StackOverflow (Stack-Biology and
Stack-Physics), and Co-authorship networks (Coauth-DBLP and Coauth-AMiner). No-
tably, Email-Enron and Email-Eu have relatively large node degrees, while Email-Enron
has relatively large edge degrees as well. Additionally, as real-world hypergraph structures typi-
cally contain noise (Cai et al.| [2022), to examine the model performance on such scenarios, four
newly introduced datasets (Cora—-Outsider, DBLP-Outsider, Citeseer—-Outsider, and
Pubmed-Out sider) are derived by transforming the outsider identification problem (Zhang et al.,
2020) into the ENC problem. In these datasets, we randomly replace half of the nodes in each edge
with other nodes, and the task is to predict whether each node belongs to the corresponding edge.

Baselines. We compare our GD-based CoNHD model to ten baseline HGNN methods. For CoNHD,
we compare two variants with different neural diffusion operator implementations, UNB (Eq. [A3)
and ISAB (Eq.[Ad). The HGNN baselines include seven models following the traditional message
passing framework (HyperGNN (Feng et al.,|2019), HNHN (Dong et al.} 2020), HCHA (Bai et al.,
2021), HAT (Hwang et al.,2021)), UniGCNII (Huang & Yang}[2021)), AllSet (Chien et al.,[2022)), and
HDS°? (Yan et al.l 2024)) and five models that utilize edge-dependent node information (LEGCN
(Yang et al., [2022), MultiSetMixer (Telyatnikov et al., 2023), HNN (Aponte et al.,|2022), ED-HNN
(Wang et al.| 2023a), and WHATSsNet (Choe et al. |2023))Since a hypergraph can also be viewed
as a bipartite graph with ENC labels on the new edges, we add three traditional GNN methods
(GraphSAGE (Hamilton et al., [2017), GAT (Velickovi¢ et al., 2018), and a graph diffusion-based
method ADGN (Gravina et al.,[2023))) as our baselines.

Effectiveness. As shown in Table |l CoNHD consistently achieves the best performance across all
datasets in terms of both Micro-F1 and Macro-F1 metrics. Notably, CONHD shows very significant
improvements on the Email-Enron and Email-FEu datasets. As indicated before, the main
difference between these two datasets and the others is that they have relatively large-degree nodes
or edges. All the baseline methods based on single node or edge representations can easily cause
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potential information loss for large degree nodes or edges in the aggregation process. In contrast,
the number of co-representations in CoONHD is adaptive to the node and edge degrees.

Additionally, CoNHD achieves very significant improvements on the four outsider identification
datasets, while GNN methods and message passing-based methods fail to identify these outsiders.
This suggests that mixing information from these noise outsiders into a single edge representation
significantly degrades the performance of message passing-based methods. Our method, with the
co-representation design, can distinguish information from normal nodes and outsiders, thereby
achieving superior performance. While on some simple datasets with very low node and edge de-
grees (see Table[AT), such as Stack-Physics, the performance improvement is less pronounced
compared to other datasets. In these datasets, each hyperedge only contains a very limited num-
ber of nodes (about 2 on average, similar to normal graphs), which is relatively simple and cannot
fully demonstrate the ability of different HGNNs in modeling complex higher-order interactions.
Nevertheless, our method still consistently achieves the best performance on these datasets, and the
improvement is statistically significant with a p-value less than 0.05 in most cases.

The performanCe gap between the two neu- WHATSsNet (Top-1 degree node) CoNHD (Top-1 degree node)

ral diffusion operator implementations is mini- ’,
mal. While theoretically the UNB implementa- .y
tion can approximate any equivariant functions, &

the ISAB implementation overall demonstrates
better performance in our experiments. This
might be attributed to the practical effectiveness
of the self-attention mechanism.

accuracy: 0.191 accuracy: 0.961

Sender CCled
Figure 2: Visualization of embeddings in the
Email-Enron dataset using LDA. The embed-
dings learned by CoNHD exhibit clearer distinc-
tions based on the edge-dependent labels com-
pared to the embeddings learned by WHATsNet.

Receiver

To demonstrate whether the model can learn
separable embeddings for the same node, simi-
lar to (Choe et al.,|2023)), we use LDA to visual-
ize the embeddings associated with the largest-
degree node in the Email-Enron dataset. As
shown in Fig. 2l CoNHD can learn more sepa-
rable embeddings than WHATsNet. We show more examples in Appendix[L.4]

Efficiency. The performance and training time Email-Enron Email-Eu

on Emfailenron and E'maileu are illus- nNHD 1 } ~——[conwo (she)]
trated in Fig.[3] All experiments are conducted / PEEILLIC _

on a single NVIDIA A100 GPU. Only mod- §..| jsarossme | § N
els using mini-batch training are considered in 5.}~ == {/ TITT T I s W_EQ“:‘N‘;”
the comparison. Some methods are excluded .. ’ N

as their implementation is based on full-batch il Ao i ¥ | o]
training, which is impractical when handling Training Time Training Time

large real-world hypergraphs. The overall best
baseline, WHATSsNet, sacrifices efficiency to
improve performance. In contrast, our pro-
posed method, CoNHD, not only achieves the
best performance but also maintains high effi-

Figure 3: Comparison of the performance and
training time (minutes). CoNHD demonstrates
significant improvements in terms of Micro-F1
while maintaining good efficiency. The same con-
clusion holds for Marco-F1 (results not shown).

ciency. In each layer, CoNHD only incorpo-

rates direct neighbors of the node-edge pairs, which can reduce the computational costs compared
to message passing. Additionally, our method avoids the unnecessary extraction and aggregation
process in edge-dependent message passing methods, which not only increases the expressiveness
but also improves the efficiency. We provide more analysis in Appendix [D.2}

5.2 APPROXIMATION OF CO-REPRESENTATION HYPERGRAPH DIFFUSION PROCESSES

To validate whether CoNHD, as a neural implementation for co-representation hypergraph diffusion,
can effectively approximate the diffusion processes, we conduct experiments on semi-synthetic dif-
fusion datasets using common regularization functions.

Setup. We use the Senate (Fowler,[2006b) dataset with 1-dimensional feature initialization (Wang
et al.|2023a)). We perform the co-representation hypergraph diffusion process using three common
structural regularization functions: CE (Zhou et al., [2007), TV (Hein et al., [2013; [Hayhoe et al.,
2023), and LEC (Jegelka et al., 2013} Veldt et al., 2023). More details can be found in Appendix
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We compare both ADMM-based (Eq.[A8AT0) and GD-based (Eq. CoNHD model (with ISAB
operator) to two baseline methods, ED-HNN (Wang et al., [2023a) and WHATsNet (Choe et al.,
2023)). ED-HNN is a universal approximator for any node-representation hypergraph diffusion pro-
cess, while WHATsNet is the overall best baseline in the ENC experiments.

Results. The results in terms of Mean

Absolute Error (MAE) are reported in Taple 2: MAE(]) of approximating diffusion pro-

Table @l All methods demonstrate su- cesses with common regularization functions.
perior performance in approximating the
invariant operator derived from differen- Method | cE v LEC
tiable CE functions. Conversely, approx- ED-HNN 0.0132 00028 0.0394 £00011  0.2057 400004
N N ’ . WHATSsNet 0.0065 £0.0019  0.0380 +0.0007  0.2056 + 0.0014
imating the equivariant operators derived

f diff tiable fi f v d CoNHD (ADMM) | 0.0012 +0.0001  0.0293 +0.0000  0.0532 + 0.0031
rom non-dirrerentia e. unctions, an CoNHD (GD) 0.0011 +0.0003  0.0292 +0.0001  0.0561 =+ 0.0056
LEC, are more challenging. The proposed
method CoNHD can achieve the lowest MAE results compared to the baseline methods in all set-
tings. While the ADMM-based implementation is theoretically more suitable for approximating
non-differentiable regularization functions, it demonstrates minimal performance differences com-
pared to the GD-based implementation in practice.

5.3 ABLATION STUDY

One critical design choice in the proposed CoNHD method is the use of equivariant functions with-
out aggregation. Previous work (Choe et al., [2023) add aggregation after the equivariant functions
to generate a single node or edge representation, where the composition is still a single-output in-
variant function and leads to the three limitations discussed in the introduction. To investigate the
effectiveness of our design choice, we apply a mean aggregation to the outputs of our equivariant
functions. This reduces the diffusion operators to invariant single-output functions with the same
output for different node-edge pairs. We conduct experiments on Email-Enron and Email-Eu.

As shown in Table [3] CoNHD with Table 3: Effectiveness of the equivariance in two diffu-
two equivariant operators achieves sion operators ¢ and . v and X indicate whether the cor-
the highest performance, exhibiting responding operator is equivariant or invariant, respectively.
significant improvements compared Shaded cells indicate the variants with equivariance signif-
to the variant with two invariant op- icantly outperform the one with only invariant operators.

erators. Furthermore, variants with

just one equivariant operator still out- Method ‘ P ‘ M e o LB
perform the fully invariant model. X X | 0.827£0000 0769 £0004 0.673 £0000  0.645 +0.001
This suegests that equivariance bene- X /  0.876+0001 0.817 £0006  0.698 +0001  0.677 + 0.002
ggests, d e CoNHD (UNB) | /0,903 +0001 0.855£0004 0707 0000  0.688 = 0002

fits the modeling of both within-edge / /  0905:0001 08580004 0708 £0.001  0.689 = 0001
and within-node interactions. We X X | 082940001 0.765+0007 0.673£0001  0.647 £ 0002
. X v 0.878 + 0.001 0.823 £0.005  0.698 =+ 0.001 0.678 + 0.003

also notice that the perfor mance gap CoNHD (ISAB) v X 0910+0001 0.870£0003 0.707 £0.001  0.689 + 0.001

Vv

between the full equivariant model 0.911 £0.001  0.871 £0.002  0.709 £0.001  0.690 = 0.002

and the variant with only the equiv-
ariant within-edge operator ¢ is not significant. This might imply that within-edge interactions can
provide the majority of the information needed for predicting the ENC labels in these datasets.

6 CONCLUSION

In this paper, we develop CoNHD, a novel HGNN based on hypergraph diffusion. CoNHD ex-
plicitly models within-edge and within-node interactions among co-representations as multi-input
multi-output functions, which demonstrates three advantages: adaptive representation size, diverse
diffusion information, and sufficient direct interactions among nodes or edges (see Appendix [A] for
more details on how CoHND achieves this). Our experiments demonstrate: (1) CoNHD achieves
best performance on ten real-world ENC datasets without sacrificing efficiency. (2) CoNHD can
effectively approximate the co-representation hypergraph diffusion process with common regular-
ization functions. (3) Implementing interactions as multi-input multi-output equivariant functions
without aggregation is essential for performance improvements. In Appendix [l we further show that
CoNHD can achieve superior performance on downstream tasks and traditional node classification
tasks, and mitigate the oversmoothing issue when constructing deep models.

10
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A ADVANTAGES OF CONHD

Message passing models interactions in both within-edge and within-node structures as multi-input
single-output functions, leading to the three limitations as outlined in the introduction. In this sec-
tion, we highlight how the proposed CoNHD method addresses these limitations, offering the fol-
lowing three corresponding advantages:

» Adaptive representation size. In message passing, messages from numerous edges are ag-
gregated to a fixed-size node representation vector, which can cause potential information
loss for large-degree nodes. CoNHD addresses this limitation by introducing node-edge co-
representations, which avoids aggregating information to a single node or edge representa-
tion. For larger-degree nodes or edges, they are contained by more node-edge pairs and there-
fore are associated with more co-representations, while the lower-degree nodes have less co-
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representations. The number of co-representations adaptively scales with node or edge degrees,
which can prevent potential information loss for large-degree nodes.

* Diverse diffusion information. In message passing, since the aggregation process mixes in-
formation from different edges to a single node representation and cannot differentiate specific
information for each edge, the node can only pass the same message to different edges. In
CoNHD, a node can have multiple co-representations that related to each hyperedge, and thus
can generate diverse diffusion information in the interactions within different hyperedges. Ad-
ditionally, CoNHD reduces the unnecessary aggregation process and avoids mixing different
information into a single node or edge representations. The edge-dependent node information
is preserved in the co-representations at each convolution layer, which obviates the necessity of
extracting edge-dependent node information from a mixed node representation and reduces the
learning difficulty compared to those edge-dependent message passing methods.

 Sufficient direct interactions among nodes or edges. In message passing, the single-output
aggregation process is unable to capture direct nodes-to-nodes or edges-to-edges interactions, as
they require multiple outputs for different elements. In CONHD, the interactions in within-edge
and within-node structures are designed as multi-input multi-output functions among multiple
node-edge co-representations, which includes not only interactions between nodes and edges,
but also direct nodes-to-nodes and edges-to-edges interactions.

Previous efforts have attempted to address the limitations of non-adaptive messages and insufficient
interactions by extracting edge-dependent node messages (Aponte et al., [2022; Wang et al., [2023a;
Choe et al., 2023} [Telyatnikov et al.l 2023)) or introducing a three-stage message passing process
(Pei et al, [2024). However, these approaches each tackle only a specific limitation, leaving the
others unresolved and even introducing additional learning difficulties (like introducing an additional
extraction process). Moreover, none of the previous methods can solve the limitation of non-adaptive
representation size. After carefully analyzing the fundamental causes of these three limitations, we
identified that they all stem from the single-output design in message passing. CoNHD overcomes
these challenges through a multi-input multi-output design based on co-representations, offering a
unified and elegant HGNN architecture with the above three advantages.

B DERIVATIONS AND PROOFS

B.1 DERIVATION OF ADMM OPTIMIZATION PROCESS (EQUATION[ASHAT)

We use the ADMM method (Boyd et al., [2011)) to solve the optimization problem in Eq. E] with
non-differentiable functions. We first introduce an auxiliary variable A, for each edge e, and an
auxiliary variable B, for each node v. Then the problem in Eq. [5|can be formulated as:

min 7 Roelhueioe) +AY_ Qe(A) +7) Qu(Ba),

veV e€&, ecé veY
s.t. VBEEZAe:Hm
Yov cV: BU = HU-

Then the scaled form augmented Lagrangian function can be transformed as:

L,= Z Z Roye(hy,e;@e) + )\ZQe(Ae) + Z Q,(B,)

veV ek, ecé veY
£ L (1A~ Ho PF - PR

ec&
+ 32 (IB—H, + Q5 1Q,17) .

vey

where P, and Q,, are the scaled dual variables (with scaling factor %). Then we can use the primal-
dual algorithms in ADMM to find the optimal solutions (Boyd et al., [2011}).
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The primal steps can be calculated as follows:

AU . — argmin L,

e

A 1
=argmin —Q.(A.) + = || Ac — Hét) + Pg)H%
A. P 2

=prox,q_,,(H" — P") Ve €€,

Bg)t"'l) :=argmin L,
B,

1
—argmin 2Q,(B,) + =||B, — HY + Q%
B, P 2

:prox'yﬁv/p(HE)t) - Qg)t))a Vv € Vv

hfjjl) :=argmin L,
’ hoe
— inR. . 4 1AW _p® g2
=argmn v,e(h‘v’evav’e)"' 2||hv,e [Ag lo = [P lull
hy,e

p
+ 2l — (B - [QU)IB

o1
= ar;glvrfln %Rv,e(hv,e; ay.e)

S (AL, + (PO, + (BYYL + QV).)

1
—proxXz, (... /2,)(5([Agt+1>]v + [P, + [BEHY], + [Qgt>]e)), Ve € &,, Vv € V.

.
2

hv,e -

The dual steps can be calculated as follows:
PO .= PO A HE v,
QY= QY + BV — H{™, vwe V.

v

By defining UV = AWFD 4 p® apd Zz(HD = B 4 QW the update process can be
simplified as follows:

Ung) =proxme/p(2H§t) - Uﬁt)) + Uét) - Hgt)7 Ve € g’
Z{Y =prox,q, ,,(2HY = Z) + Z) — HY, Vo € V),
1

hq(,t,:l) ZPPOXRU,S(.;%C)/Q,;(5([Uét+1)]u + [Z£t+1)]e)>, Vee &, Vv e V.

B.2 PROOF OF PROPOSITION(]

Proposition 1 (Wang et al.|(2023a)). With permutation invariant structural regularization functions,
the diffusion operators are permutation equivariant.

Proof. Proved in Proposition 2 in (Wang et al.| 2023a). O

B.3 PROOF OF PROPOSITION[Z]

Proposition 2. The traditional node-representation hypergraph diffusion is a special case of the
co-representation hypergraph diffusion, while the opposite is not true.

Proof. We first rewrite the node-representation hypergraph diffusion defined in Eq.[das a constraint
optimization problem, then show that it is a special case of co-representation hypergraph diffusion
defined in Eq.[3
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For each v € V, we introduce a set of new variables {h, ¢,|e; € &,}, satisfying h, ., = x,, and
hye, = hye; forany e;, e; € &,. Then the objective function in Eq.ﬂbecomes:

ZRv(x11§av)+/\ZQe(Xe):ZZ R (Ty; ay +/\ZQ

veEVY ec& veEV e€é, ec&
=3 Y S Ruba) A Y Qu(H
veVeeSv ec&

The original problem in Eq. ] can be reformulated as a constraint optimization problem:

argmln Z Z R ue§av)+>\ZQe(H)

veV e€k, ect (A1)
st. Vv eV, Veje; €&t hye, = Ry,
where the optimal solutions satisfy h;, , = ;.
We now show that this constraint optimization is a special case of co-representation hypergraph
diffusion. We can set Ry c(-;ay¢) = d%R (:;ay), and use the CE regularization functions (Zhou
et al., 2007) for the node regularization functions in Eq I ie, Qep(Hy) =3, e, €€, 1hye; —
ho.e,||5. Then Eq. Ican be reformulated as follows:

argmlnz > R hoei@y) + A Qe(He) +7 > Qor(H,). (A2)

veV eek, ec& veY

The node regularization term in [A2] is exactly the exterior penalty function (Yeniay| 2005) for the
given equality constraints in Eq.[A1] Thus when v — oo, Eq.[AZ]yields the same optimal solutions

as Eq.

To show that the opposite is not true, we only need to consider the cases that the co-representations
according to the same node are not identical. As the node-representation hypergraph diffusion only
have one representation for each node, it cannot represent the multiple co-representations in the
co-representation hypergraph diffusion. O

B.4 PROOF OF PROPOSITION[3]

Proposition 3. With the same co-representation dimension, CONHD is expressive enough to repre-
sent the message passing framework, while the opposite is not true.

Proof. We prove the proposition using the GD-based implementation of CoNHD, which can be
easily extended to the ADMM-based implementation.

First, we prove that CoNHD is expressive enough to represent any model within the message passing

framework. We initialize the co-representations as h(o) [:cSP), zgo)]. For brevity, we assume

(0) € R and z(o) € R%. We will show that given h(%) = [ (t) 2! )] two layers of CoNHD are

expressive enough to generate h(Z(tH)) = [:B(tH) (Hl)] where :1:1(} ) and zg ) exactly correspond

to the node and edge representatlons in the ¢-th layer of the message passing framework defined in
Eq.[TH3]

When ¢ and ¢ are implemented by universal equivariant neural diffusion operators like UNB, they
are expressive enough to represent any equivariant mapping. With the same co-representation di-
mension, we can use one layer in CoNHD to represent the nodes-to-edge aggregation process in the
message passing framework. In this layer, we reduce ¢, ¢, and ¢ as follows:

MEHD =g(HP) = [0, 4. 14, - (Froe(XV:20)) ']
=[04, 4,14, - 2IVT],
MY =p(HP) = [04,,04,04, 4],

h’1(122+1) ¢([h512£)7 m(2t+1)a mg)(?et+1)a h’q()o,g]) = [wq()t)v zgtJrl)} )
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where 1,, represents a n-dimensional all one vector, which is used to construct a matrix with repeated
row elements. 0,,x,, represents a (m X n)-dimensional all zero matrix. In this layer, we use ¢ to
represent the aggregation process and ignore the output of (.

We use another layer to represent the edges-to-node aggregation process and the skip connection. In
this layer, we reduce ¢, ¢, and 7 as follows:

M‘(f(t“)) :¢(Hg2t+1)) — [odCX%,OdCX%],
M) —p(HHDY = (1, (feo(Z20D20)) T 0,
= [1dv . i£t+1)—r7 Odexg} ?

REIHD) ([RRHD RUHD) /1) R0

v,e v,e ’ v,e ’

= [fskip(mq(]t)7 j£t+1) s,3(0)), z(t+1)]

[+, 2],

In this layer, we use ¢ to represent the aggregation process and ignore the output of ¢. Besides, we

set the update function v to represent the skip connection part. The final output :cgtﬂ) and ng) are

the (¢ + 1)-th node and edge representation in the message passing framework. Therefore, CONHD
is expressive enough to represent any model within the message passing framework.

To show that the opposite is not true, we only need to construct a counter-example. Since ¢ is equiv-
ariant, it can generate different diffusion information mg,t)e for different node-edge pair (v, e). We
can simply set hffz2 = mgf)e in the update function v, which lead to different representation for each
node-edge pair (v, e¢). However, the message passing framework can only generate the same edge

representation for each edge, which constraints that the first % dimension of the co-representations

for different node-edge pairs are the same and cannot generate the same hgjt)e Therefore, any model
within the message passing framework cannot represent CoNHD. O

C IMPLEMENTATION OF THE DIFFUSION OPERATORS

We explore two popular equivariant network architectures, UNB (Segol & Lipman, 2020; Wang
et al., [2023a) and ISAB (Chien et al.| [2022), for the implementation of the diffusion operators ¢
and . Apart from these two equivariant networks explored in our experiments, it is worth noting
that our proposed CoNHD is a general HGNN architecture and can be combined with any other
equivariant neural network.

UNweighted Block (UNB). UNB is a widely investigated set-equivariant neural network (Zaheer
et al., 2017;|Q1 et al.l 2017 [Segol & Lipmanl, 2020; |Wang et al., 2023a). It first generates global
information by an unweighted pooling operation, and then concatenates it with each element to
generate the output for the corresponding element using a MLP. As it utilizes an unweighted pooling
to aggregate global set information, we refer to this implementation as UNweighted Block (UNB).
The UNB module can be represented as follows:

UNB: [UNB(H)); = MLP( [hZ 3 MLP(ﬁj)} ) . (A3)
ilj cH
Here H = [le, ce fan ]T € R™# %4 represents a matrix with ng co-representation vectors, which

can be replaced by H. or H, for the within-edge or within-node diffusion operators, respectively.
MLP(-) is a Multi-Layer Perceptron (MLP). This simple implementation can approximate any con-
tinuous permutation equivariant functions (Segol & Lipman, 2020; |Wang et al.| |2023a)), leading to
a universal approximator for our diffusion operators. Besides, its time complexity is linear to the
number of the input co-representations.

Induced Set Attention Block (ISAB). The static unweighted operation ignores the importance
of different elements, limiting its ability to capture interactions in practice (Lee et al., 2019; Kim!
et al., 2021} 2022). Therefore, we consider another implementation using the ISAB module in
Set Transformer (Lee et al., [2019), which is based on self-attention. The ISAB module can be
formulated as follows:
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ISAB: ISAB(H) = MAB(H,MAB(W' H)), (A4)
where MAB(Q, K)=LN(M + RFF(M)), M = LN(Q,MULTIHEAD(Q, K, K)),
MULTIHEAD(Q, K, V) = [O4,...,0,] - WY,
0; = w( QW (KW VW,

Here W/ , WO, WQ, wk , and WV are all trainable weights. LN(-) denotes the layer normal-
ization. RFF(-) is a row-wise feed-forward layer. MULTIHEAD(+) is the multihead attention mech-
anism and w is the softmax function. ISAB utilizes a fixed number of inducing points I € R¥*9 to
reduce the quadratic complexity in self attention to linear complexity (Lee et al.| 2019), which can
increase the efficiency when modeling hypergraphs with larger node and hyperedge degrees.

Some previous works also explore Set Transformer in their message passing-based HGNN imple-
mentations (Chien et al., 2022;|Choe et al., [2023). However, AllSet (Chien et al.,[2022)) employs the
invariant module instead of the equivariant ISAB module in Set Transformer, leading to a single-
output implementation. WHATsNet (Choe et al.l [2023) investigates the equivariant ISAB module
but with another aggregation module after the ISAB module, which still degrades to a single-output
implementation. In contrast, due to the introduced co-representations, CoNHD reduces the necessity
of generating single node or edge representations and therefore removes the uncessary aggregation
process. The implementation relies solely on the permutation equivariant module ISAB without
aggregation, which can be more expressive compared to AllSet and WHATSsNet, and can solve the
three limitations in these message passing-based methods.

D EFFICIENCY OF CONHD

In this section, we provide a theoretical analysis of the time and space complexity to evaluate the
computational and memory efficiency of our method. We then discuss the additional computational
efficiency advantages of our approach compared to message passing-based HGNNs under the same
mini-batch training setup.

D.1 COMPLEXITY ANALYSIS

Time Complexity. We discuss the time complexity of two GD-based implementations using UNB
or ISAB operators, while the ADMM-based implementations have similar results.

Both the UNB and ISAB operators have linear complexity with the number of the input co-
representations. For the UNB implementation, the first MLP and the sum pooling only calculate
once for all elements in the set, and the second MLP calculates in an element-wise manner. We
set the same hidden size as the co-representation size for MLPs. With co-representation dimen-
sion d, the overall complexity for the within-edge and within-node interactions in each layer is
O cce(ded®) + 3, ey (dud?)) = O(d*Y ¢ de). This equation follows from the fact that
the sum of node degrees is equal to the sum of edge degrees, i.e., > ., dy, = > ¢ de. The
ISAB implementation requires dot products between the input co-representations and k inducing
points. The overall complexity for the within-edge and within-node interactions in each layer is
O cce(dekd+(de+k)d*) + 3 oy (dokd+ (dy+k)d?)) = O(dk+d?) Y ce de+ Y ce kd*+
D vev kd?). When k is small (in our experiments, k& = 4), this complexity can be simplified as
O(d* Y ¢ de), which is consistent with the UNB implementation. For the update function, the

complexity is O(d? Y. d.). Therefore, the overall complexity of CONHD is O(Ld?* Y, .. de),
where L is the number of layers.

The overall time complexity is linear to the number of node-edge pairs in the input hypergraph,
i.e., Y .ce de, Which is the same as other HGNNs within the message passing framework (e.g., the
overall best baseline WHATsNet (Choe et al.|[2023) in the ENC experiments).

Space Complexity. To maintain consistency, we use the same notations as those used in the time
complexity analysis. Since the number of input co-representations in each layer of our model de-
pends on the number of node-hyperedge pairs, i.e., ) . ¢ de, the size of the inputs is O(d ) ¢ de).
For within-edge and within-node interactions, both UNB or ISAB implementation utilizes some
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(a) A hypergraph (b) Learning the representation for (vy, e1) () Learning the representation for
e e in the message passing framework : (v1,e1) in CONHD

z 99? ?9?
HRLLED © 666 666

Figure Al: Learning the representation for a node-edge pair in mini-batch training. (a) An
example hypergraph, where node v; and all edges have degree 3. We want to learn the representation
for node-edge pair (v1, e1). (b) In the message passing framework, each layer performs a two-stage
aggregation process: from nodes to edges and from edges back to nodes. This process involves all
nodes in the neighboring edges of node v;. Some nodes (e.g., v4, V5, Vg, and vy) are not direct
neighbors for the node-edge pair (v1,e1). (c) In contrast, CONHD focuses solely on the direct
neighbors in each layer, including neighboring edges of vy (i.e., e1, €3, and es) and neighboring
nodes of ey (i.e., v1, v2, and v3). This not only ensures the diffusion information is from the most
related neighbors, but also reduces the subgraph size in each layer and improves the efficiency.

€3

MLPs to perform feature transformation, where the size of each MLP is d x d. In UNB, two MLPs
are utilized, while in ISAB, six MLPs are required due to the implementation of self-attention.
Therefore, the total size of weights in UNB or ISAB should be O(d?). For the ISAB implementa-
tion, additional inducing points are required to reduce the complexity of self-attention, with a size
of O(kd). Similar to the case in time complexity analysis, when k is small (k = 4 in our experi-
ments), the size of these inducing points can be ignored compared to the weights The sizes of the
outputs for the within-edge and within-node interactions are both O(d " ¢ d.). In the final co-
representation update process, the input co-representations, initial features, and updated information
from within-edge and within-node interactions are concatenated to form a 4d-dimensional vector.
This is then passed through a linear layer to output the updated co-representations, where the weight
size is O(4d?). Therefore, the total space complexity of L layers after removing the constants is

O(L( +dY, o de) = O(Ld(d+ Y, cp de)).

The overall space complexity is linear to the number of node-edge pairs in the input hypergraph, i.e.,
> ece de. This is the same as those edge-dependent message passing-based methods, like the best
baseline WHATsNet (Choe et al., [2023)), which generates multiple edge-dependent node represen-
tations for each node in the calculation process.

D.2 EFFICIENCY ADVANTAGES IN MINI-BATCH TRAINING

Despite the same theoretical computational complexity, CONHD exhibits additional efficiency ad-
vantages in mini-batch training as shown in Section[5.1} Compared to full-batch training, mini-batch
training is a more common setting for training on large real-world hypergraphs, which can reduce
memory consumption. In mini-batch training, the overlapping of the subgraphs across different
batches introduces additional computational overhead compared to full-batch training. The compu-
tational load scales with the size of the neighboring subgraph, i.e., the number of neighboring edges
and nodes.

For convenience, we assume all the node degrees and edge degrees are equal to d,,. To calculate the
representation for each node-edge pair, in each layer, the message passing framework needs to cal-
culate the two-stage aggregation process V — £ and £ — V. This leads to a neighboring subgraph
containing d,, edges and d2 nodes. As shown in Fig. Hb) this process not only increases the com-
putational complexity but also includes nodes that are not direct neighbors for the target node-edge
pair, which may affect the learning results. In contrast, each layer of CONHD only contains direct
neighboring edges and nodes, as shown in Fig.[AT]c), resulting in a smaller subgraph with d,, edges
and d,, nodes. This can greatly improve the efficiency when handling complex hypergraphs with
large node and edge degrees.

Additionally, our method further improves efficiency by reducing the unnecessary extraction and ag-
gregation processes in edge-dependent message passing methods like WhatsNet (Choe et al.| [2023).
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Algorithm 1: CoNHD-GD for edge-dependent node classification.

Input : A hypergraph G = (V, £), an initial node feature matrix X (*) = [:cg,?), cey azS}l’]T.

Output: Predicted edge-dependent node labels 7, .
Initialize Vv € V,Ve € &, : h") = 2z,
for/=1,...,Ldo /

// within-edge interactions (Eq.[7).

Vee &: MY «— p(HIY);

// within-node interactions (Eq.[7).

YveV: M;(Z) — o(HY);

// co-representation updates (Eq. [8).
Yo e V,Ve €&, : hlY) « w([hi{gl),mi‘ﬁ)@,mﬁ,@, hfjoz}),

v,e

end
forveVec&, do

Predict edge-dependent node label j, . using co-representation hf)L()
end

Edge-dependent message passing first extract edge-dependent information from a single node rep-
resentation. This force the model learn to extract edge specific information from a single mixed
node representation, which increases the learning difficulty. However, this extracted information
is then aggregated back to a single node representation. Therefore, the model needs to repeat the
“extract-aggregate” process in each layer of the HGNNSs. In contrast, our method learns node-edge
co-representations directly without any aggregation, which do not need to aggregate to a single
node or edge representation and thus also reduce the unnecessary extraction process. Therefore, our
method can avoid this complex “extract-aggregate” process. This not only reduces the learning dif-
ficulty by keeping the edge-dependent information directly without the need of extraction, but also
further improves the efficiency of our method.

E ALGORITHMS OF CONHD

AlgorithmT]and 2] describe the forward propagation of the CONHD model for edge-dependent node
classification using GD-based and ADMM-based implementations, respectively. ¢ and ( are imple-
mented as UNB (Eq. or ISAB (Eq. in our experiments. Although the proposed CoNHD
model can accept any features related to the node-edge pairs, we initialize the co-representations
using only the node features to follow the setup of the original ENC problem (Choe et al.| [2023)).

To predict the final labels g, ., an MLP with the corresponding co-representation R as input is

v,e

utilized to output the logits for each class following previous work (Choe et al.,[2023)).

F DiSCUSSION ON OTHER HYPERGRAPH NEURAL NETWORKS

LEGCN (Yang et al., 2022) and MultiSetMixer (Telyatnikov et al.| [2023)) are two approaches that
do not follow the message passing framework defined in Eq. [I}{3|and can explicitly generate edge-
dependent node representations, which are similar to the concept of co-representations in the pro-
posed CoNHD model. Unfortunately, LEGCN transforms the hypergraph structure into a traditional
graph structure, which loses some higher-order group information. Instead, MultiSetMixer pre-
serves the hypergraph structure but still models it as a two-stage message passing process, where
messages from nodes are aggregated to a single edge representation and then back to nodes. Both
of these two methods model within-edge and within-node interactions as multi-input single-output
functions, which can only generate the same output for different node-edge pairs and therefore limits
their expressiveness.

LEGCN. LEGCN converts a hypergraph into a traditional graph using line expansion, and utilizes
graph convolution (Kipf & Welling| 2017) to learn representations of the new nodes on the expanded
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Algorithm 2: CoNHD-ADMM for edge-dependent node classification.

Input : A hypergraph G = (V, £), an initial node feature matrix X (*) = [:cg,?), cey azS}})] .

Output: Predicted edge-dependent node labels 7, .

Initialize Vo € V,Ve € &, : h(?) = 2, m{) = A%, m\{Y = n{°);
for(=1,...,Ldo

// within-edge interactions (Eq.[A8).

Vee&: MY — ¢2HY — My 4 MY — gD,
// within-node interactions (Eq.[A9).

YweV: MY «— p2H Y — M;f“)) + MY gD,
// co-representation updates (Eq.[AT0)

Yo € V,Ve € & : B « (im’ e,mif‘;,h(o D:

v,e

end
forveVec &, do

Predict edge-dependent node label j, . using co-representation hq()L()
end

graph. The (¢ 4 1)-th layer of LEGCN (without normalization) can be formulated as:

D = 3RO, ) = 3 B

v;€e ej€EE,
t+1 1 1 t
hSJj ) :o.()\métJr ) +7m;(t+ ))W( ),
where o(-) denotes the non-linear activation function. mét) and mgf) are the within-edge informa-
tion and the within-node information, respectively.

Compared to CoONHD, LEGCN exhibits three main limitations. (1) Lack of differentiation between
within-edge and within-node interactions. In a line expansion graph, the new vertices (node-edge
pairs) associated with the same edge or the same node are connected by homogeneous edges,
which overlooks the difference between these two kinds of relations. Although LEGCN utilizes
different scalar weights to balance within-edge or within-node messages, this is still not expressive
enough compared to two different neural diffusion operators in CONHD. (2) Non-adaptive messages.
LEGCN still follows the single-output setting which only generates one shared within-edge message

( ) and one shared within-node message mg,t) using sum pooling, instead of diverse messages for
dlfferent node-edge pairs. (3) High computational complexity. The motivation for LEGCN is to
reduce the hypergraph structure to a graph structure. This reduction loses the higher-order group
information and requires additional computation for different node-edge pairs. For example, the

learning for representations of node-edge pairs (v1,e1) and (v1,es) are calculated separately, al-
though they have the same within-node messages m;(fﬂ) which only needs to be computed once.
In contrast, our proposed CoNHD method generates all diffusion information within the same node

v1 together using the node diffusion operator with linear complexity.

MultiSetMixer. MultiSetMixer replaces each node representation in the message passing frame-
work with several edge-dependent node representations. However, it still follows the message pass-
ing framework and aggregates different node representations into a single edge representation. This
models the within-edge interactions as multi-input single-output functions. The (¢ + 1)-th layer of
MultiSetMixer can be formulated as:

1 1
D) —— N L MLP(LN(— Y AV
me de UZE:C vi,e + ( (de Uzee ’Ui,e))’
R =) 4 MLP(LN(R(!))) + m{+D).
MultiSetMixer also generates one shared within-edge message mét), which loses specific messages
for different node-edge pair. This formulation still suffers from the three main limitations of the
message passing framework. Besides, it does not incorporate within-node interactions, which cannot
model the relations among different representations associated with the same node.
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Table Al: Full statistics of all datasets.

Dataset Num. of Nodes Num. of Edges Avg.d, Avg.d. Med.d, Med d. Max.d, Max.d. Min d, Min.d.
Email-Enron 21,251 101,124 55.83 11.73 8 6 18,168 948 1 3
Email-Eu 986 209,508 549.54 2.59 233 2 8,659 59 1 2
2 .E Stack-Biology 15,490 26,823 3.63 2.10 1 2 1,318 12 1 1
-é‘ ‘:3 Stack-Physics 80,936 200,811 593 2.39 1 2 6,332 48 1 1
g% Coauth-DBLP 108,484 91,266 2.96 3.52 1 3 236 36 1 2
'i? 2 Coauth-AMiner 1,712,433 2,037,605 3.03 2.55 1 2 752 115 1 1
53| cora-outsider 1,904 1,905 7.87 7.87 7 6 32 43 1 4
= E DBLP-Outsider 34,106 40,240 9.76 8.27 9 6 51 202 1 4
Citeseer-Outsider 767 1,420 10.49 5.67 9 5 141 26 2 4
Pubmed-Outsider 3,450 14,075 3291 8.07 28 6 167 171 6 4
§ g Halo 5,507 31,028 34.75 6.17 20 7 505 12 1 2
g g H-Index/AMiner 187,297 115,196 2.09 3.39 1 3 191 66 1 2
£ DBLP 2,123 1,000 1.83 3.88 1 4 22 25 1 2
85 Etail 6,000 9,675 5.57 345 6 3 10 13 1 1
= Senate 282 315 19.18 17.17 15 19 63 31 1 4
k] House 1,290 340 9.18 34.83 7 40 44 81 1 2
23 Walmart 88,860 69,906 5.18 6.59 2 5 5,733 25 1 2
2 E Congress 1,718 83,105 426.25 8.81 273 6 3,964 25 1 2
5 Cora-CA 2,708 1,072 1.69 4.28 2 3 23 43 0 2
DBLP-CA 41,302 22,363 2.41 445 2 3 18 202 1 2

G ADDITIONAL DETAILS OF THE DATASETS

Table[AT|provides a comprehensive overview of the datasets used in our experiments.

G.1 DATASETS FOR EDGE-DEPENDENT NODE CLASSIFICATION

We use ten real-world edge-dependent node classification datasets. Six of them are from (Choe et al.,
2023)), which are Email Email—Enro and Email-Eu (Paranjape et al.l|[2017)), StackOver-
flow (Stack—-Biologyf|and Stack—Physicsm), and Co-authorship networks (Coaut h—-DBLP
(Swati et al., [2017) and CoautthMinerEl). In Email-Enron and Email-Eu, nodes repre-
sent individuals, and emails act as edges connecting them. The edge-dependent node labels de-
note the role of a user within an email (sender, receiver, or CC’ed). In Stack-Biology and
Stack-Physics, nodes represent users while posts on Stack Overflow are hyperedges. The edge-
dependent node label indicates the role of a user within a post (questioner, chosen answerer, or other
answerer). In Coauth-DBLP and Coauth—-AMiner, publications serve as hyperedges connect-
ing authors (nodes) in these datasets. The edge-dependent node label represents the order of an
author within a publication (first, last, or others).

Four newly introduced ENC datasets are derived by transforming the outsider identification problem
(Zhang et al.,|2020) into the ENC problem. We generate these datasets using Cora—-CA, DBLP-CA,
Citeseer, and Pubmed, which are four hypergraph datasets with original features in (Wang et al.,
2023a). For each dataset, we first removed hyperedges with a degree less than or equal to 3. Then,
for each remaining hyperedge, we randomly replaced half of the nodes with other nodes (outsiders)
and generated five new hyperedges by different replacements. The labels indicate whether each node
belongs to the corresponding hyperedge or is an outsider.

G.2 DATASETS FOR DOWNSTREAM TASKS

For downstream tasks, we utilize all four datasets from (Choe et al., 2023). Halo is a game dataset
where the edge-dependent node labels represent the scores of each player (node) in each match
(hyperedge). It includes global rankings of all players, which serve as ground truth labels for the
ranking aggregation task. H-Index and AMiner are derived from the same hypergraph dataset
but are used for different downstream tasks. In these datasets, the edge-dependent node labels cor-
respond to the order of co-authorship for each author (node) in each paper (hyperedge). The dataset

https://www.cs.cmu.edu/~enron/
Zhttps://archive.org/download/stackexchange
*https://www.aminer.org/aminernetwork
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includes H-Index information for each author, which can be used for ranking aggregation, and also
contains venue information for each paper, which serves as ground truth for the clustering task.
DBLP is another co-authorship network with venue information for each paper, also used for the
clustering task. Etail is a synthetic online shopping basket dataset, where the edge-dependent
node labels indicate the count of each product in each basket. The product return information can
be used as ground truth for the product return prediction task.

G.3 DATASETS FOR TRADITIONAL NODE CLASSIFICATION

For the traditional node classification task, we use six real-world datasets from (Wang et al., 2023a)).
In Senate (Fowler, 2006b), nodes represent individual US Senators, while each edge connects the
sponsor and co-sponsors of a bill introduced in the Senate. The node labels are the political party
affiliation of each person. In House (Chodrow et al.,|2021), nodes represent US House of Represen-
tatives and edges represent the groups of members of the same committee. The node labels are the
political party of the representatives. In Walmart (Amburg et al.| 2020), nodes represent products
being purchased, while the edges connect the products that are purchased together. The node labels
are the product categories. In Congress (Fowler, |2006a), nodes represent US Congress persons
and edges represent the sponsor and co-sponsors of legislative bills. Cora—CAE] and DBLP—CAE] are
two co-authorship datasets. In these two datasets, each node represents each paper and each edge
represents the papers co-authored by the same author. The node labels are the category of the papers.

G.4 DATASETS FOR APPROXIMATING CO-REPRESENTATION HYPERGRAPH DIFFUSION

For the diffusion operator approximation experiment, we generated semi-synthetic diffusion data
using the Senate (Fowler, 2006b) dataset with the same initial features X () as the experiments in
(Wang et al.| 2023a)). Although our proposed CoNHD model can accept any input features related
to the node-edge pairs, we only utilize initial node features to fit the input of most HGNNs. Fol-
lowing (Wang et al.,|2023al), we sampled one-dimensional node feature by the Gaussion distribution
N (u, o), where y = 0 and o uniformly sampled from [1, 10]. We initialized the features of node-
edges using the node features, i.e., H ) — {:cg,o)h) € V,e € &,}. We then generated the labels
H® by performing two steps of the co-representation hypergraph diffusion process. We consider
three different diffusion operators: CE (Zhou et al2007), TV (p = 2) (Hein et al., 2013)), and LEC
(p = 2) (Jegelka et al., |2013). We applied gradient descent for the differential diffusion operator
CE, and ADMM for the non-differential diffusion operators TV and LEC. We set equal weights for
the node and edge regularization functions, i.e., A = v = 1. We chose « and p to make the variance
ratio Var(H®) /Var(H)) in a similar scale. Specifically, we set the step size & = 0.06 for CE
in gradient descent, and set the scale factor p = 0.07 for TV and p = 0.5 for LEC in the ADMM
optimization process. To avoid the node features exposed in the training process, we generated 100
pairs (H O " (2)) using the same hypergraph structure, where 20 pairs are for the validation set
and 20 pairs are for the test set.

H IMPLEMENTATION DETAILS

To ensure a fair comparison, we follow the experimental setup for edge-dependent node classifica-
tion in (Choe et al., [2023). All models are tuned using grid search. Specifically, the learning rate is
chosen from {0.0001,0.001} and the number of layers is chosen from {1, 2}. The batch size is set
from {256,512} for the Coauth-AMiner dataset due to the large node number, while for other
datasets the batch size is chosen from {64, 128}. To maintain consistent computational cost across
methods, we fix the embedding dimension for node and edge representations in baseline methods,
and co-representations in the proposed CoNHD method, to 128. The dropout rate is set to 0.7. We
run the models for 100 epochs with early stopping. For the implementation of the ISAB operator,
we set the number of inducing points to 4 as WHATSsNet, and use 2 attention layers. During training,
we sample 40 neighboring edges of a node, while we do not sample neighboring nodes of an edge
since the final label is related to all nodes in an edge. HCHA (Bai et al., [2021) and HNN (Aponte

*https://people.cs.umass.edu/~mccallum/data.html
>https://www.aminer.cn/citation
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et al.,[2022)) are run in full-batch training with more epochs as in (Choe et al., 2023)). As different
diffusion steps utilize the same diffusion operators in hypergraph diffusion, we share the weights in
different layers of the proposed CoNHD model. We employ the same relative positional encoding
as in the experiments of WHATsNet (Choe et al.| |2023), which has shown effectiveness in predict-
ing edge-dependent node labels. For traditional GNN methods, we transform the hypergraph into a
bipartite graph, where the new nodes represent the nodes and hyperedges in the original hypergraph.
The edge-dependent node labels are predicted using the learned features of the new edges in the
bipartite graph.

For the diffusion operator approximation experiment, we use the Senate (Fowler, 2006b) dataset
with 1-dimensional feature initialization (Wang et al.,[2023al). As shown in Proposition@ the node-
representation hypergraph diffusion in (Wang et al.,[2023a)) is a special case of the co-representation
hypergraph diffusion. Here we conduct experiments using the more general co-representation hy-
pergraph diffusion processes. Although our proposed CoNHD model can accept any input features
related to the node-edge pairs, we only utilize initial node features to fit the input of other baseline
HGNN:S. To generate the labels, we perform the co-representation hypergraph diffusion process us-
ing three common structural regularization functions: CE (Zhou et al., 2007)), TV (Hein et al.} 2013
Hayhoe et al., [2023)), and LEC (Jegelka et al., [2013} |Veldt et al., 2023)). Most hyperparameters fol-
low the same setting as the ENC experiment. To ensure the expressive power of all models, we use
a relatively large embedding dimension 256. The number of layers is fixed to 2, which is consistent
with the steps of the diffusion process for generating the labels.

We conduct all experiments on a single NVIDIA A100 GPU with 40GB of GPU memory. To ensure
statistically significant results, we repeat each experiment with 5 different random seeds and report
the mean performance along with the standard deviation.

I SUPPLEMENTARY EXPERIMENTAL RESULTS

1.1 APPLICATION TO DOWNSTREAM TASKS

The ENC task has been shown to be beneficial for many downstream applications (Choe et al.,[2023)).
In this experiment, we investigate whether the edge-dependent labels predicted by our CoONHD
method can enhance performance on these downstream tasks.

Setup. We follow (Choe et al., 2023)) and conduct experiments on three specific tasks: Rank-
ing Aggregation (Halo, H-Index), Clustering (DBLP, AMiner), and Product Return Prediction
(Etail). For these downstream tasks, the ENC labels are first predicted and then used as supple-
mentary input to enhance performance of other algorithms. It is important to note that the extent
of improvement relies not only on the performance of the models in the ENC task, but also on the
relevance between the downstream task and the ENC task. Therefore, the performance of the down-
stream task can demonstrate the practical usefulness of the ENC task, but does not directly reflect
the performance of the models. We present the dataset statistics in Table [AT]and provide a detailed
description in Appendix[G.2]

For Ranking Aggregation, the predicted edge-dependent node labels are used as edge-dependent
weights, which are input into a random-walk-based method (Chitra & Raphael, [2019) to predict
the global ranking results. For Clustering, the hypergraph clustering algorithm RDC-Spec (Hayashi
et al.,2020) is employed to predict the clustering results of all publications, with the edge-dependent
node labels serving as weights for each author (node) in each paper (hyperedge). For Product Return
Prediction, the HyperGo algorithm (Li et al., 2018)) is used to predict the product return probability
based on the counts of each product in each basket (edge-dependent node labels).

Results. We present the ENC prediction results on the downstream datasets in Table [A2] and the
performance on downstream tasks in Table Similar to the results in the main ENC experiments
in Section [5.1] Table[A2] demonstrates that our method consistently achieves superior performance
on ENC tasks across all datasets.

Table shows that incorporating predicted edge-dependent node labels as additional information
improves downstream task performance compared to cases where these labels are not used. Fur-
thermore, compared to the best baseline WHATsNet, our method delivers better downstream per-
formance across all three tasks. This improvement can be attributed to the higher performance of
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Table A2: Performance of edge-dependent node classification on downstream datasets.

Method Halo H-Index/AMiner DBLP Etail
ctho Micro-F1 ~ Macro-F1 ~ Micro-F1 ~ Macro-F1 ~ Micro-F1 ~ Macro-F1 ~ Micro-F1 ~ Macro-F1
WHATsNet |0.377 0002 0.352 0006 0.631 +0.027 0.561 £0.044 0.625 £0.092 0.553 £0.128 0.622 +0.004 0.461 +0.007

0.396 +0.003 0.381 +0.007 0.661 +0.027 0.605 + 0.040 0.768 + 0.094 0.740 +0.127 0.751 + 0.008 0.696 -+ 0.008

CoNHD (ours)

Table A3: Performance on Downstream Tasks.

(a) Ranking Aggregation (Acc.?) (b) Clustering (NMIT) (c) Product Return (F17)
Method Halo H-Index Method DBLP AMiner Method Etail
RW w/o Labels 0.532  0.654 RDC-Spec w/o Labels 0.163  0.338 HyperGO w/o Labels 0.718
RW w/ WHATsNet  0.714  0.693 RDC-Spec w/ WHATsNet  0.184  0.352 HyperGO w/ WHATsNet  0.723
RW w/ CoNHD 0.723  0.695 RDC-Spec w/ CoNHD 0.196 0.354 HyperGO w/ CoNHD 0.733

RW w/ GroundTruth 0.711  0.675 RDC-Spec w/ GroundTruth 0.221  0.359 HyperGO w/ GroundTruth  0.738

our method on the ENC prediction tasks, leading to higher quality predicted edge-dependent node
labels. Interestingly, in the ranking aggregation task, the downstream performance using predicted
labels even surpasses that achieved using the ground truth labels. This suggests that the ground
truth labels may contain some noise, while the predicted labels better capture the underlying smooth
structure of the label space and further can enhance the downstream task performance.

1.2 TRADITIONAL NODE CLASSIFICATION TASK

While our method is specifically designed for learning co-representations and is naturally suited
for the ENC task, it can also be extended to address other tasks. In this experiment, we explore
the potential of our proposed CoNHD on the traditional node classification task, which the most
common task in existing hypergraph learning research.

Setup. We conduct experiments on both synthetic and real-world datasets. The synthetic datasets
are generated with varying levels of controlled heterophily, following the synthetic strategy in (Wang
et al.,2023a). For real-world datasets, we utilize six datasets from (Wang et al.,2023a). The dataset
statistics are presented in Table[AT] It is important to note that some of the datasets in (Wang et al.|
2023al) contain a significant proportion of isolated nodes (up to 80 percent), which are not connected
to any other nodes in the hypergraph. This means that performance on these datasets is largely
dominated by these isolated nodes, making them less effective for evaluating the true capability of a
hypergraph learning algorithm. Consequently, we focus on the six datasets with a higher proportion
of connected nodes.

Results. Table [A4] presents the accuracy results on the synthetic heterophily datasets. All methods
perform better performance in homophily scenarios with lower levels of heterophily, while perfor-
mance declines as the heterophily level increases. Overall, our method consistently achieves the
best performance across all cases. This can be attributed to the separate co-representations in our
method, which prevent mixing of heterophic information among neighbouring nodes.

Table reports the accuracy results on real-world datasets. Our method achieves the best perfor-
mance on most of the datasets, while on the remaining two datasets, it still delivers highly competi-
tive accuracy compared to the best baselines. Although our method is specifically designed for ENC,
these results demonstrate its general applicability and potential beyond the ENC task. Additionally,
in the experiments, we simply aggregate co-representations according to the same node using the
mean function to generate node representations. More effective aggregation strategies can be further
explored in the future research.

1.3 PERFORMANCE OF CONSTRUCTING DEEP HGNNSs

Oversmoothing is a well-known challenge in constructing deep HGNNs (Wang et al., 2023a; |Yan
et al., |2024), which hinders the utilization of long-range information and limits the model perfor-
mance. To examine whether our method can alleviate the oversmoothing issue, we conduct experi-
ments on the ENC task using HGNNs with different number of layers.
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Table A4: Accuracy of node classification on synthetic heterophily datasets.

heterophily level
1 2 3 4 5 6 7

AllSet 95.58 £ 086 91.96 +092 8721 +1.02 81.73 +183 76.06 +1.78 69.08 +142 64.66 +2.69
ED-HNN 96.14 045 9234 +048 87.88 059 83.01 087 77.70+£093 72.69 138 70.09 +1.93
WHATsNet 9722 +035 93454062 89.33 070 84.02+092 7820+142 7278 +170 70.59 +1.62
CoNHD (ours) | 98.21 +023 9510 +034 90.75 £039 8497 +to79 7851 +071 7390 +132 7113 +170

Method

Table AS5: Accuracy of node classification on real-world datasets.

Method ‘ Senate House Walmart Congress Cora-CA DBLP-CA

AllSet 51.83 £522 69.33 +£220 6546 +025 92.16 +105 83.63 +£147 91.53 +023
ED-HNN 64.79 £5.14 7245 £228 6691 +041  95.00 099 83.97 +155 91.90 +0.19
WHATsNet 6493 £499 71.89 +308 67.53 +057 91.72 +063 82.57 £139 91.15 + o025
CoNHD (ours) | 68.73 +574 7220 +157 68.68 +057 9488 +112 84.00 £1.09 91.99 +0.19

Setup. A series of models with varying depths, rang- e
ing from 1 to 64, are trained and evaluated on the 51 ,.'
Citeseer-Outsider dataset. We compare CoNHD os0 77
with WHATsNet, the overall best-performing baseline for o5
the ENC task. We also include EDHNN and HDS°% in g PG —— N
our comparison, which are two recent HGNNs that have §§

o . 0.65 4
been shown to mitigate the oversmoothing problem. e
Results. As shown in Fig. [AD] the performance of . et
WHATsNet drops sharply when the depth exceeds 4 lay- o WhatsNet - o
ers. In contrast, the performance of EDHNN and HDS®% 1 > i 8 )

Number of Layers
Figure A2: Performance of HGNNs
with varying numbers of layers on
the Citeseer—-Outsider dataset.
CoNHD achieves the best performance
across all settings.

remains stable as the number of layers increases, but they
do not demonstrate significant gains with deeper architec-
tures. Our proposed CoNHD method, in contrast, contin-
ues to improve the performance as the number of layers
increases, and the performance converges after 16 layers.
This suggests that CONHD benefits from deeper archi-
tectures, effectively leveraging long-range information to
enhance performance. Both EDHNN and CoNHD are based on hypergraph diffusion, which has
demonstrated potential in addressing the oversmoothing issue (Wang et al., 2023a; |(Chamberlain
et al.,|2021)). Additionally, CoONHD further introduces co-representations, allowing the same node to
have distinct representations when interacting within different hyperedges. This approach ensures
that diffused information remains diverse, preventing the learned representations from becoming
uniform, thereby helping to mitigate the oversmoothing issue.

1.4 MORE VISUALIZATIONS OF THE LEARNED EMBEDDINGS

We visualize the learned embeddings of node-edge pairs on the Email-Enron dataset using LDA.
As the same node can have different labels in different edges, we choose the three largest-degree
nodes and present the node-edge embeddings associated with each of them. For the small-degree
nodes, as these nodes are incident in fewer hyperedges, we visualize the node-edge embeddings
of the total 300 smallest-degree nodes. As shown in Fig.[A3] CoNHD can learn more separable
embeddings compared to the best baseline method WHATsNet on large-degree nodes. For the small-
degree nodes, the embeddings from both methods can show clear distinction based on the edge-
dependent node labels. CoNHD implements the interactions as multi-input multi-output functions,
which can preserve specific information for each node-edge pair and avoid potential information
loss. This leads to significant performance improvements on the ENC task, especially for complex
hypergraphs with large-degree nodes and edges.

1.5 ABLATION EXPERIMENTS ON THE DIRECT INTERACTIONS

Traditional message passing-based HGNNs only model the interactions between nodes and edges,
neglecting direct interactions among nodes and among edges. [Pei et al.[(2024) empirically demon-
strate that incorporating such direct interactions can enhance the performance of HGNNs on the
traditional node classification task. However, the impact of direct interactions on the ENC task re-
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WHATSsNet ( Top-1 degree node) WHATSsNet ( Top-2 degree node) WHATSsNet ( Top-3 degree node) WHATSsNet (300 smallest-degree nodes)

.

accuracy: 0.337 accuracy: 0.267 accuracy: 0.377 accuracy: 1.000

CoNHD (Top-1 degree node) CoNHD (Top-2 degree node) CoNHD ( Top-3 degree node) CoNHD (300 smallest-degree nodes)

$o

FR)

° X ] .
accuracy: 0.961 aceuraey: 0.962 accurady: 0.859 accuracy: 0.963
Sender Receiver CCled

Figure A3: More visualizations of embeddings in the Email-Enron dataset using LDA.
WHATSsNet fails to learn separable embedding for node-edge pairs associated with large-degree
nodes, while the embeddings learned by CoNHD exhibit clearer distinctions. For small-degree
nodes, both methods can learn separable embeddings for node-edge pairs.

Table A6: Effectiveness of the direct interactions among nodes and among edges. ”D.1.” denotes
“Direct Interactions”.

Email-Enron Email-Eu Cora-Outsider
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

CoNHD w/o D.I. | 0.897 +0.001 0.848 +0.003 0.707 +0.001 0.688 +0.002 0.749 +0.010 0.745 +0.010
CoNHD w/ D.I. |0.911 +0.001 0.871 +0.002 0.709 +0.001 0.690 + 0.002 0.800 + 0.019 0.797 + 0.020

Method

DBLP-Outsider Citeseer-Outsider Pubmed-Outsider
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

CoNHD w/o D.I. ‘ 0.828 £0.008 0.825 +0.009 0.813 +0.018 0.810 +0.018 0.863 +0.004 0.861 + 0.004

Method

CoNHD w/ D.I. |0.903 +0.002 0.902 + 0.002 0.828 +0.010 0.826 +0.010 0.899 + 0.004 0.898 + 0.004

mains unexplored. In this section, we conduct experiments to evaluate the performance differences
of our method on the ENC task with and without these direct interactions among nodes and edges.

Setup. In our proposed method, the interactions among co-representations naturally encompass
not only interactions between nodes and edges but also direct interactions among nodes and
among edges. To isolate the effects of direct interactions among nodes and edges, we treat each
co-representation ") as the concatenation of the node part a:q(,t)e and the edge part zq(f,)e, i.e.,

v,e
hgf)e = [mg)e, sz)e] Notably, unlike the separate node and edge representations in message passing-
based HGNNS, the node part xﬁfl and the edge part sz)e here remain specific to each node-edge
pair. Consequently, each node and edge still maintains multiple representations that adapt to their
respective degrees. This ensures that the advantages of adaptive representation size and adaptive dif-
fusion of information are preserved in the modified variant. The only difference lies in the reduction

of direct interactions among nodes and among edges.

In this experiment, we adopt the better-performing ISAB implementation of our proposed CoNHD
method. Two ¢ functions and two ¢ functions are utilized to independently generate within-edge

and within-node information for the two parts. The generated information from the node part is used

to update the edge part zﬁjl), while the generated information from the edge part is employed to

update the node part. We conduct experiments on six ENC datasets with relatively large node de-
grees, while most of them also have relatively large edge degrees. These datasets might incorporate
more higher-order interactions, making them well-suited to study the performance differences with
and without direct interactions.

Results. As shown in Table[A6] our proposed CoONHD model, which incorporates direct interactions
among nodes and edges, outperforms the variant without these interactions. This highlights the ef-
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fectiveness of direct interactions in the ENC task. The degree of improvement varies across datasets.
For simpler datasets with relatively low edge degrees, such as Email—-Eu, the performance gains
are less pronounced compared to those observed on more complex datasets. These simpler datasets
contain fewer higher-order interactions, limiting the ability to fully demonstrate the benefits of direct
interactions. This observation further supports that our method achieves greater improvements on
complex datasets with large node and edge degrees, aligning with the conclusion drawn from our
main experiments.

J DIFFUSION WITH NON-DIFFERENTIABLE REGULARIZATION FUNCTIONS

Optimization with ADMM method. When the regularization functions are not all differentiable
(e.g., the total variation (TV) regularization functions (Hein et al.} 2013};[Hayhoe et al.} [2023) or the
Lovasz extension cardinality-based (LEC) regularization functions (Jegelka et al.L|2013;|Veldt et al.,
[2023)), we can apply ADMM to find the optimal solution. We first introduce auxiliary variables

U, and Z, for each edge and node, respectively. The variables are initialized as h(o) = Ay,
U§0> =H 20), and Z 1(}0) =H 1(,0), and then iteratively updated as follows:

UMD =prox,q_,(2HY ~UY) +UY — HY, (A5)
ZH) —prox.q ,,(2H — 20) + 20 — HY), (A6)
AT =proxg, (.a, e)/zp( (WD), +(25)) ). (A

Here prox, (I) := argming, (9(I') + 3[|I' — I||%) is the proximity operator
of a function g, in which ||-||% denotes the Frobenius norm. The proximity operator of a lower semi-
continuous convex function is 1-Lipschitz continuous (Parikh et al.l 2014), enabling its approxima-
tion by neural networks. p is the scaling factor in the ADMM method. We leave the derivation of

Eq. to Appendix [B.1}
Neural Implementation. We provide a variant of our CoNHD model following the update rules of
the ADMM optimization in Eq. he (¢ + 1)-th layer can be represented as:

ADMM-based: MUY =g 2H® — MOy 4+ MO — gD, (A8)
M;(H'l) — cp(QH,(Jt) _ M'(t)) + M;(t) _ I.L(Jt)7 (A9)
R{TY = y([m{ ), m(F) R, (A10)

Here we use the same notations as the GD-based implementation in Section M, 0 —
[m(t) m(t) 74]T and M’ = [m oo m/(t)d | are the within-edge and within-node diffu-

vy,er 1)9“" . v,e
sion mformatlon generated using the neural diffusion operators ¢ and , which can be implemented
by any permutation equivariant network. v(+) is implemented as a linear layer, which collects diffu-
sion information and updates the co-representations.

Due to the dependency on historical auxiliary variables, the ADMM-based implementation needs
to preserve the historical diffusion information M g‘) and M ;(t) from the last step. This results
in higher memory consumption compared to the GD-based implementation, as also discussed in
Appendix C of (Wang et al] 2023a). In Section [5.2] we compare the empirical performance of
the ADMM-based and GD-based implementations in approximating operators derived from differ-
entiable and non-differentiable regularization functions. While the ADMM-based implementation
shows slightly better performance for the non-differentiable case, the performance gap between the
two implementations is minimal. Consequently, we adopt the simpler GD-based implementation for
the majority of our experiments.
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