A  Proofs

A.1 Proof of Thm. 1

Assume n is even (this is without loss of generality as argued in the beginning of the proof of Thm. 1
in Safran and Shamir [2020]). Recall the function F' defined in Eq. (1) by

1 i )\ Arna)(
F(x) = ngi(X) = §x§+ a3
i=1

2 2

where for each 7,

A 2 /\max 2 %.1'2 ZS
fi(x) = fi(z1,22) = g1t 5T T "Gy i

It is readily seen that the above functions satisfy Assumption 1. Assume we initialize at

G
X = (93071,.%072) = <)\ 5 O) 5

which also satisfies Assumption 1 since ||V F(xg)|| = G. On these functions, we have that during
any single epoch, we perform n iterations of the form

INIERSIN]

Tnew,1 = (]- - 77)\)9:old,l y Tpew,2 = (1 - 77)\max)xold,2 + %Ui 5
where 0y, ...,0,-1 are a random permutation of 7 1’s and § —1’s. Repeatedly applying this

inequality, we get that after n iterations, the relationship between the first and last iterates in the
epoch satisfy
7’]G n—1
xt+1,1 - (1 - nA)nxt,l 5 Jf't+1,2 - (1 - nAmax)nxt,Q + 7 Z Uz(l - n)\max)n_l—l .
i=0
Repeating this across k epochs, we obtain the following relation between the initialization point and
what we obtain after k epochs:

G1-(1- )\max k2 n—i—
zia = (1) 201 L s = (1A a0 25 1_((1 - ))n D i1 Ama)"
max

i=0
Noting that F'(x) = 327 + 222222 and E[o;] = 0, we get that
A A n2G2\ 1— (1 = nAma)™\ >
EIF = Z(1=pX 2nk .2 max 1— )\max 2nk .2 max max »
[ (Xk)] 2( n ) $0,1+ 9 ( n ) m0,2+ 8 1— (1 . n)\max)n /8 M Amax
where
n—1 2 n—1 2
ﬁn,n,kmax = E (Z 0'1(1 — )\maxﬁ)n21> =E <Z 0_1(1 - >\max77y> (3)
i=0 i=0
(using the fact that oy, ..., 0,1 are exchangeable random variables). According to Lemma 1 in
Safran and Shamir [2020], for some numerical constant ¢ > 0,
1
BrmAmax = € min {1 + ) ”3(/\max77)2} . “)
/ maxn
We now perform a case analysis based on the value of 7:
« Ifp < 5L, then
Azg Azg 1) Mgy (1) Az 4
E[F > L1 —pA)2k > 0L = > L2 = oL
[Fer)] 2 —=(1 =14 2( nk> 2(4) 32
Substituting 291 = G/, the above is lower bounded by
GQ
321
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o Ifn > /\nk aswell as n < 5

— (assuming this range exists, namely when & > Apax /A), then by

Bernoulli’s inequality we have (1 — DAmax)” > 1 — 1 Amax > 0, as well as (1 — A pax)™F <
(1 —nA\)™ < (1 —1/nk)™ < exp(—1), implying that

212 2 22 2
17°G* Amax 1 —exp(—1) N°G* Amax (1 — exp(—1))
[ (Xk)] = 8 (1 _ (1 _ nnAmax) B 31 Amax S(nn)\max)2 ﬁ M Amax

> c-min{l +

max —

Plugging in Eq. (4), and noting that ) < y——-, it is easily verified that 3, ,
1/NAmaxs 72 (MAmax) 2} = en®n?A2 . ThlS 1mphes that the displayed equation above is at least

/772G Amax 03 2)\2

s P X = PG A
max

for some constant ¢’. Since 1 > ﬁ, this is at least

2 2
C/ nG )\max o CIG >\max

A2n2k2 A2nk?

nk\ 2
e If n > ﬁ as well as n > ﬁ, then noting that (%) =

N2
(Zf;ol ((1— n)\,llax)"Y) > ((1- nAmaX)0)2 = 1 (recall that n is even), we have

EW@@]2Q—§—fm%MM.
3(NAmax)? > 1/0Amax as well as n® (nAmax)? >

\%

1. Using this and Eq. (4), the above is at least

22 202 1 2
cn G )\max & G )\max ) _ C77G (77)\max + 1) )

1
i 1 -~ 3 )\max 2 > {1
8 mm{ o (NAma) } = 16 ( L 16

log(nk)
TL

Since n > this is at least < 1 which entails

max 1
= 16)\% ()\nk +1). Since we assume

nk > ’\max , we can further lower bound it (without losing much) by £+ An z-

Combining the cases, we get that regardless of how we choose 7, for some numerical constant ¢’ > 0,
it holds that

G2 G2\ G2 Amase/A
E F > i . . ~ max — !/ L. . 1 max .
[Few)] 2 e mm{mk’ Ank? } “ Wk mm{ Tk }

A.2 Proof of Thm. 2

As in the proof of Thm. 1, we will assume w.l.o.g. that n is even. Recall the function F' defined in
Eq. (2) by

1 n )\ >\max )\max
F(x) = ﬁZfi(X) = 555?* 9 5 + 1 a3,

where for each 1,

A To + m“"‘l‘ + :L’ 1< 2
. 2 max 2 2 3 3 = 3

i(X) = filx1,29,23) = —x] + + .
fl( ) Z( Lo 3) 271 2 2 { g 2—%:33 z>LQl

Consider the initialization point

G
X0 = («'130,1,170,27900,3) = (A , 0, O> .

Note that the above functions satisfy |V f;(x*)|| = G/+/2 < G forall i € [n], and that |V F(x)|| =
G, therefore Assumption 1 is satisfied. Our proof will analyze the convergence of random reshuffling
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SGD under the assumption that 1 belongs to some interval in a partition of the positive real line. For
each such interval in the partition, we will take the worst lower bound (i.e. the largest lower bound)
along each dimension, where our final lower bound will be the minimum among the bounds derived
on each interval.

We begin with deriving an expression for xy, the iterate after performing % epochs. In a single epoch,
after n iterations, the relationship between the first and last iterates in the epoch satisfy

Tep11 = (L—nA)" 21,

n—1
Ter12 = (1 —nAmax)™ - Tr2 + g Z;(l —20;)(1 - T]Amax)niiil ’
n—1 ZiG n—1 n-1
zrons = [[0 o) - 2es+ 75310200 [] 1 =mhamoy), )
=0 i=0 =it
where 0y, ..., 0,1 are a random permutation of 5 1’s and 4 0’s. Squaring and taking expectation

on both sides, using the fact that E[1 — 20;] = 0 and that x; is independent of the permutation
sampled at epoch ¢ + 1, we have

E [x%Jrl,l] = (1- 71)\)2n$§,1 )
772G2

E ['rt2+1,2j| = (1 - 77)\1113)()2?1'2;?,2 + T/@n;n;)\max ’

Y

n—1 n—1 n—1
E[2},3] > E [H(l - n)\maxai)Q] E [275] + nGE [ Y (1 =20;) [] (1= nAmaxoy) | Elzs3]
i=0 i=0 j=i+1

(6)
where 3, 5 ... is defined in Eq. (3). Unfolding the recursions above for the first two dimensions,
we get that after k& epochs

2nk
Elz3:] = (1=n))" a3, ,

)

172G2 1— (1 . n)\maX)an

nk
E [Ii 2] = (1= DAmax)” 13(2),2 + 1 1= (1 = P 2" B Amax -

)

Recalling that F/(x) = 327 + 2maxg3 4 dmaxg2 > 252 4 Amaxy2 and combining with the above,
we get

A 2nk 2 )\max 2nk 2 )\max’r]QGZ 1-— (1 - n)\maX)an
E [F(Xk>] Z 5 (1 - n)\) 330,1 + T(l_n)\max) " "130’2 + 8 : 1— (1 _ 7]>\max)2n 6”7777/\111ax .
(7

We now move to a case analysis based on the value of 7:

* If n < 1z, we focus on the first dimension. Recall that zg; = % and compute

2
A 2 2 A 2 2 2
> 1’20,1 <1) _ Arg, G S G

A 2 A 2 2nk
BIFa)] > St -t > 22 (1o )

4

32 32\ T 32\nk

* If ) > 57 aswellas ) < x—— (assuming this range exists, namely when k > Ay /A), we focus

on the second and third dimensions, each resulting in a different dependence on n, k. Starting with
the second dimension, we have by Bernoulli’s inequality that (1 — DAmayx)?” > 1 — 209 Amax > 0,
as well as (1 — NAmax) 2™ < (1 —nA)?"k < (1 — 1/nk)*"* < exp(—2), implying that

?G*Apax 1 —exp(—2)
8 1— (1 —2nnAmax)

By B 12G?* Apax (1 — exp(—2))
N, Amax

E|F > B .
[Fxe)] 2 TR,
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Plugging in Eq. (4), and noting that ) < y——, it is easily verified that 3, ,, x,,.,. > ¢- min{1 +
1/MAmax; 72 (M Amax )2+ = en3n? A2 . This implies that the displayed equation above is at least

max-*

2G2\
l max 3242 3,222
C nnAmaX : AI‘Ila,)( = C ’r] n G AIIla)(?
for some constant ¢’. Since n > )\nk, this is at least
n2G2)\2 242
G )‘max _ C G )‘max
A3n3k3 T A\3nk3

Moving to the third dimension, we assume w.l.0.g. that k > n (since otherwise the previous bound
will be larger than the one to follow). Using Propositions 1 and 2 and Lemma 2 on Eq. (6) (recall
that 2o 3 = 0 by our assumption), we have

2 3,2 t
N Amaxn 2 1°G* Amaxn N Amaxn
1- =22 ) E e I (e
( 2 ) sl + g 2

32 t
17°G* Amnaxn NAmax?
(1 =nAmaxn) E [a:fz))] + s (1 — (1 -y ) > .

Unfolding the recursion above yields

v

E [1’?+1,3]

Y

3G2)\ k—1 A t
E [wiﬁ] > (1 _ 77)\maxn)k $(2),3 + n 12;13.)(” Z (1 . nAmaxn)k7t71 <1 _ (1 _ n r;ax'ﬂ)
t=0
302 k-1 t
77 G /\maxn o k—t—1 _ . 77)\maxn
Gt 57 (1 haen) (1 (1 M=) )

t=|k/2]

k-1

3G? Anax? L P Lk/2]
T 2 () 1(“ (-5t ) e
t=|k/2]

where we note that the above sum is not empty since we assume k£ > n > 2. We now have

max I_k/QJ Amax 1
_max v/ 7] < — < —— < 0.
exp ( 3V < exp 3 < exp 3 < 0.9,

where the first inequality is due to (1 —x/y)¥ < exp(—z) for all z, y > 0 and the second inequality
is by the assumption 17 > 1. The above entails

IN

Lk/2]
- (1 _ ”An;m”) > 0.1, ©)
which by plugging into Eq. (8) yields
3G Amax
2 > n max _ k—t—1
E [xk,?)] = 1280 Z (1 77>\maxn)
t=|k/2)
B PG Apaxn 1 — (1 — 77)\111&,(71)’“%’“/2J
- 1280 77)\maxn

22 Lk/2] 22
>7]G. 1 1_77>\rnax" >77G 7
— 1280 2 — 12800
where the last inequality is a second application of Eq. (9). We now conclude with the assumption
n> /\nk to get
Gz)\max

= N2z

where ¢ = 51200
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o Ifn >

Eq. (7). Noting that % = Ei:o (1 = nAmax)? ) > (1 — nAmax)® = 1, we have

2G2/\m- N
EIFGa)] 2 T By -
By the assumption that 77 > s——, we have that n® (N Amax)? > 1/ Amax as well as 1% (P Amax)? >

1. Using this and Eq. (4), the above is at least

2 212 2
cn G* M pax . 3 9 cn*G* Amax 1 canG
1 )\max Z A1 = )\max 1).
8 mm{ " D | (MArma) 16 * N Amax T 1)
Since 77 > /\nk, this is at least 16)\% ( e 4 1) Since we assume % < 1 which entails

2
nk > “j\“ , we can further lower bound it (without losing much) by %

A.3 Proof of Thm. 3

Before we prove the theorem, we will first state the following result which handles the one-
dimensional case.

Theorem 5. Suppose F(x) = $x* and fi(z) = %a® — bx, where a = + 37" | a; satisfy
Assumption 2, and fix the step size n = %. Then for any 6 € (0,1), with probability at least

1 — d over the choice of the permutation o, single shuffling SGD satisfies

2 —
F(z1) < c¢-log? <86) log? (nk) - /\Gk min{l, a]/:\} ,

where ¢ > 0 is a universal constant. Moreover, this also entails

E[F(z)] < @()\Cjc~min{1, ‘_l]/j}) ,

where the O hides a universal constant and factors logarithmic in n, k, a, A and their inverses.

Before we prove the above theorem, we shall first explain why it implies Thm. 3. Since the matrices
Ay, ..., A, commute, then they are simultaneously diagonalizable (e.g., Horn and Johnson [2013,
Thm. 1.3.21]). Thus, there exists a matrix P such that P~1 A; P is diagonal for all i € [n]. Moreover,
since A; are all symmetric, we may choose such P which is also orthogonal. By Appendix C, we
may transform our problem to another quadratic formulation having the same sub-optimality rate and
where Assumption 2 is preserved. Following the above reasoning, we may assume w.l.o.g. that A; is
diagonal for all 7 € [n].

For some j € [d] and ¢ € [k], let a; and x; ; denote the j-th diagonal value of A and j-th coordinate
of x; (the iterate after the ¢-th epoch), respectively. We now explain why we may assume that b = 0.
As assumed in Safran and Shamir [2020], mapping fi(x) — fi(x — A~'b) for all i € [n] simply
translates our problem so that x* = 0. By mapping x( accordingly, we have that Assumption 2
is preserved, thus we may assume b = 0 w.l.o.g. which entails ||4;x* — b;|| = ||b;|| < G for all
i€ [n].

Since we have now reduced our optimization problem to the form ﬂ(x) = %XTA,'X — b, x for
diagonal A;, we have that the partial derivatives w.r.t. each coordinate are independent of one another,

thus we may apply Thm. 5 to each coordinate separately. Letting F;(x) = %aj:ﬁ, we compute

BlF(a)] = B |gxl x| - ZE (50)

Recall that xg = (21,0, - ., Z4,0)- The condition || VF(x¢)| < G implies that Z?Zl aix? < G2,
and since A < a; < Apax forall j € [d], we get ||xo]| < %, which in particular implies z; o < %
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for all j € [d]. We now use Thm. 5 applied to each dimension separately and conclude that

E[F(xe)] = f:@(f:k-min{l, aff}) < @(/\C:;C-min{l, Amj:”}) ,

j=1

whereby the O notation hides a linear term in d which absorbs the sum over the coordinates. O

Proof of Thm. 5. The beginning of the proof is based on deriving a closed-form expression for the
iterate at the k-th epoch, x. To this end, we shall use the same derivation as in Safran and Shamir
[2020], given here for completeness. First, for a selected permutation o; : [n] — [n] we have that the
gradient update at iteration j in epoch ¢ is given by

Tnew = (1 _naai(j)) Told +77b0'i(j) :

Repeatedly applying the above relation, we have that at the end of each epoch the relation between
the iterates x; and x; is given by

Te+l = H( 77a(7r+1(J) $t+ﬂzbm+1(1> H na”t+1(i)) :

Jj=1 i=j+1
Letting
H — N, ]) H 1-— naj
j=1 j=1
and .
> boiy [T (0 =na0,)
i=j+1
this can be rewritten equivalently as
Ti41 = Sl‘t + 77th+1 . (10)
Iteratively applying the above, we have after k£ epochs that
" 1 k — Sk
= s* S1x, = 8 Xo . 11
Tk To+M ; To+n- -5 (11)

Having derived a closed-form expression for x;, we now turn to make a more careful analysis
of the upper bound, improving upon the result of Safran and Shamir [2020]. Note that by our
assumptions, 1 > 1 —na; > 1 —nL > 0forall j, hence S € [0,1]. As a result, using the fact that
(r+s)? < 2(r? + s%), we have

1- 5%\ G2 1-5%\°
@2 o -qg2,2 2 x2)| < af¢2. 2 X2
2xk_a<5 x0—|—77(1_s> U) _a(S )\2—|—77(1_S) e

l

F(xy)

aG? an?
< g2k L A xe2 12
< 2 + 1—g5z2 o (12)
whereby 22 < %2 is due to Assumption 2, which entails |azg| < G and thus |zg| < % < % We
now have
g2k _ ﬁ(l— a)?* < (1-na)? = (1- alog(nk) 2k
= P na; > n = Tk
—2alog(nk) 1 A
< =) = —_ < 13
= o ( ) k)2~ = a(nk)2’ (13)

where the first inequality is by the AM-GM inequality applied to 1 — nay,...,1 —na, > 0, and
the last inequality is due to (nk)? > 4 and the fact that ¥ < z/y for all x € [0,0.25] and y > 1.°

%To see this, we first have that the inequality is trivial when y = 1. Assuming y > 1, z/y — ¥ intersects
the z axis iff z = 0 or z = y*/* =% which is at least exp(—1) > 0.25 for y > 1, and thus we can verify that
z¥ <z /yforall x € [0,exp(—1)] by establishing that x/y — z¥ is concave on (0, exp(—1)).
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Moreover,

H 1—naj) = exp Z log(1 —na;) | < exp| -7 Z aj | = exp(—nan). (14)
j=1 j=1 i
Plugging the two displayed equations above into Eq. (12), we get that

G? an’ 2
< . .
Pl = 5oz Y A eponan))? e

To continue, we will use the following key technical lemma, which we shall use to upper bound X2
with high probability (using «; := na; and 8; = b; /G for all 7):

15)

Lemma 1. Let ay, 31, ..., au, By be scalars such that for all i, «; € [0, 1],
0. Then for any § € (0,1), with probability at least 1 — §, we have

2

8n 1
E || (1-— 4 < c-log2 [ == ) -mind = . n3a?
Bo () (i) < c-log (§> mln{a , nCa }

1=7+1

| < 1dndZ?=1 Bi =

where & = 23" | «; and ¢ > 0 is a universal constant.

The proof appears in Subsection B.2. We note that we did not try to optimize the log factor.

Remark 6. This upper bound complements Lemma 1 from Safran and Shamir [2020], which analyzed
the same key quantity in the special case where ﬁl e {-1 +1} and a; = @ are the same for all i,
and showed (when & € [0,1]) a lower bound of ¢’ - min { , 3@2} for some universal constant
¢ > 0.7 This implies that our upper bound is tight up to constants and logarithmic factors.

We now consider two cases, depending on the value of nan:

* Case 1: nan < % By Lemma 1, with probability at least 1 — 6,
X2 < c-log?(8n/6) - G?n®(na)?

In addition,
1
exp(—nan) < 1— §an,
due to the assumption nan < 3 and the fact that exp(—z) < 1 — 1z forall z € [0,1/2]. Plugging
the two displayed equations above back into Eq. (15), we get that with probability at least 1 — 9,
G? L an?

Ank?  (nan/2)?

G? 2 2,2
= 5 +4c-log”(8n/d) - anG™n

F(z) < -c-log?(8n/6) - G*n®(na)?

A(nk)
. G? 9 _ o (log(nk) ?
= k) + 4c - log”(8n/d) - anG~ - ( ok
G? 9 5 aG?
= Ak + 4c - log®(8n/6) - log®(nk) - 2kt
aG?

2 2
< (L+4e-log>(8n/) -log’(nk)) - 55 .

where in the last step we used the fact that % <1< % Likewise, bounding X 3 in expectation
using Proposition 3 yields a bound of

~ [ aG?
E|[F(x <Ol ———= .
P < 0o )
"In Safran and Shamir [2020], the exact lower bound is ¢’ min {1 +
¢’min {1, n*a”} for some constant ¢’ > 0

=5 n3642}, which is equivalent to
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* Case 2: nan > % By Lemma 1, with probability at least 1 — 6,

2
X2 < clog (_871/(5) .
na
In addition, nan = w > 5. Plugging these back into Eq. (15), we get that
G? an’ G%log®(8n /6
oy < O an G?log? (8n/0)
ok T U—ew(—1/2)?  m
.G cG2log?(8n/0)
= Mnk)? T (1 exp(-1/2))2 7

G? N clog®(8n/d) - log(nk) -G

~ A(nk)? (1 —exp(—1/2))2  Ank

clog?(8n/d) - log(nk) Gf2
(et )

nk
Likewise, bounding X2 in expectation using Proposition 3 yields a bound of

IN

E[F(zx)] < O </\GT;€) .

To combine the two cases, we note that the condition nan < % is equivalent to a lofl(c"k) < % In that

log(nk 2
case, we have % < % . %, and thus

~ 2 ~ 2 2 2 -
log(nk)aG < min{log(nk)aG G } G min{log(nk)a 1}.

A2nk2 Nnk2 7 2xnk [ Ank e T2

In the opposite case where ‘“L(nk) > 3, it follows that < %, and therefore
G? P 2log(nk)aG?  G* _ G? [ 2log(nk)a )
Ank — A2nk? T Ank Ank Ak ’

Plugging these two inequalities into the bounds obtained in the two cases above and simplifying a bit,
the result follows.

A.4 Proof of Thm. 4

Similarly to the proof of Thm. 3, we first assume w.l.o.g. that A; is diagonal for all 7 € [n] and
that b = 0, implying a per-coordinate gradient bound of G (see the argument following Thm. 5 for
justification). Under the same reasoning, the proof then follows from the following theorem. O

Theorem 6. Suppose F(z) = %2? and f;(z) = %a* — bz, where a = L3 | a; satisfy

Assumption 2, and fix the step size n %. Then random reshuffling SGD satisfies

E[F(z)] < @(f’;-min{l, 0:1/2+a2k/32}> :

where the O hides a universal constant and factors logarithmic in n, k, a, A and their inverses.

Proof. Our analysis picks off from Safran and Shamir [2020, Eq. (22)]. However, for the sake of
completeness we shall include the derivation of Eq. (22) as was done in the above reference.

Continuing from Eq. (10), we square and take expectation on both sides to obtain

E [m?_H] = E [(Sxt + nXUHl)Q} — S2E[xf] + 2nSE [a:thtH] + 7721}3 [X2 ] .

Ot41
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Since in random reshuffling the random component at iteration ¢t + 1, X, , |,
iterate at iteration ¢, x, and by plugging ¢ = k into Eq. (11), the above equals

is independent of the

Ot41

E (22, = S°E[2?] + 2pSE 2] E [X,,,,] + n°E [X? }

t
Stag + n Z StﬁiXm

i=1

= S?E[z?] + 27SE E[X,,,.] + n°E [XQ }

Tt41

t
= S?E[23) + 205" 2o [X,,,, ] + 207 STE (X, E [X,,,,] +7°E [XQ }

Ot41
i=1
t
= S*E7] + S 2R [X,,] 4+ 207 Y SR (X, )? +°E [X2] ,
i=1
where the last equality is due to X, being i.i.d. for all 7. Recursively applying the above relation and
taking absolute value, we obtain

k=1 k—1 k—j—1 k—1
E[s}] = S%ad+20mE (X, Y S5 4+ 2PE (X, 2 5% 3 S4PE[X2] Y5V
J=0 7=0 =1 j=0

Having derived the bound appearing in Safran and Shamir [2020, Eq. 22], we now turn to improve
their result by refining the upper bound as follows. We have that the above implies

) ok kl _ Sk 0 5 k—1 Y 1— Sk—j—l 9 9
E [LU]J =S8 xO +277on [XUI]S 1_-8 +277 E[Xﬁl] SJZOS 7 1-§ +1n E [XUI]
1 o, 1
< S 2 4 onxoE [X,,] SF—— + 2°E (X, 2. BIX2] ——
_S +’f]],‘0 [ ]Sl—S+n [ ]JZOS S+n [01}1_5
< S%Fxd 4 2naoE [ X ]S’“LHUQE [X,,]? 7*5 n’E [X2 ] 1
- 0 0 o 1-85 (1-29)2 1-5
1 1 1
< §%22 4 o [Xy, ] S —— + 20°E[X,, P ———— + ?E [ X2 ] —— .
<SS + nxo [ ]S].—S+ n [ 0'1] (1_5)2—1_77 [ 01]1_5«
Using the fact that (r + s)? < 2(r? + s?) for r = S*zg and s = nE [X2 ] /(1 — S), we have
1 1
E 2 < 9 2k 2E 2E X2 ]
Erd 5%k 42 4 3R [ X, ] 7(1_5)24—7] [ 01]71_5

Next, we use the assumption x3 < & (Whlch follows from Assumption 2, since it entails |azg| < G
and thus |zo| < € < &), along w1th Equations (13) and (14) to upper bound the above by

26” 31°E [Xo,)” n’E [X7,]
ain2k? = (1 —exp(—nan))?2 1 —exp(—nan)

(16)

We now consider two cases, depending on the value of nan, using Proposition 3 by letting o; = na;
and 8; = b, /G:

* Case 1: nan < < . We have that Eq. (16) is upper bounded by

2G? 12G?n*n2a? 8 G?*n*n3a?
_ + ¢olog? e Ee——
an?k (1 — exp(—nan))? na) 1—exp(—nan)
2G2 2 92 8 2 3
<
< R + 48G*n* + 2¢o log (nna) Gn°n
R 2 2 2- ~ 2 2

ain?k? = A2n2k2  A\3nk3 A2n2k2 - M3nk3
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where we used the inequality exp(—x) < 1 — 2/2 which holds for all z € [0, 1/2], and the fact
that { > 1. Using the definition of F' we get

a ~( G%a G?a?

* Case 2: nan > % In this case we have that Eq. (16) is upper bounded by

2G* 21 2( /o= 2 3G*n? 21. 2 2-2 G*n?
a2z T erloe ( 2a- 8n ) na(l — exp(—1/2))2 T 3108 (Bn"a) na(l — exp(—1/2))

~ G? G*n ~ G? G? ~( G?
< - < _ —_— < .
=0 (a)\n%? T3 ) =0 (&)\n2k2 * d)\nk) =0 (d)mk)

Using the definition of F’ we get

BlFe] = B < O( o)

q

To combine the two cases, we note that the condition nan < % is equivalent to 2 lofl(cnk) <

case we have

5. In that
log(nk)aG?  log®(nk)a*G? G? G? G?
+ < + < =,
AZn2k2? Adnk3 ~ 2xnk  4Ank T Ank

implying
log(nk)aG?  log®(nk)a*G? . [log(nk)aG?® log®(nk)a*G?* G?
< N
MNpzkz T ek S U\ Tk T ke b
2 — 2 _9
G - {1’ log(nk)a N log”(nk)a }

Ank nk A\2):2

In the opposite case where ‘ﬂ%,(ﬁ"k) > %, it follows that 1 < %Ek(nk), and therefore

G* _ 4a’ log?(nk)G? _ dalog(nk)G? N 4@ log® (nk)G?
Ank — Adnk3 - A2n2k? Adnk3
G? log(nk)a  log*(nk)a?
4— -minq1l
Ank mm{ Tk T2
Plugging these two inequalities into the bounds obtained in the two cases above and absorbing
logarithmic terms into the big O notation, the result follows. O

B Technical Lemmas

B.1 Proofs of Propositions

1
Amaxn

Proposition 1. Suppose og, ...,0,_1 is a random permutation of 5 0’s and 5 1’s and n <
Then

n—1 n—1 n—1
1
E (Hu — n)\maxai)> d1=20) [ O —mhmaxoy) || < - T At

=0 =0 Jj=i+1

Proof. Starting with the first multiplicand, we have from Lemma 2 that it is lower bounded by 0.5
deterministically, as it does not depend on the permutation sampled, thus we can take it outside the
expectation. At this point, the statement in the proposition reduces to showing that

n—1 n—1 1
E Z(l - 201) H (1 - 77>\max0'j) S - gn)\maxn )
1=0 Jj=i+1
which follows immediately from Lemma 4. O
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Proposition 2. Suppose oo, . ..,0,_1 is a random permutation of 5 0’s and 5 1’s and n <
Let

AmaxT

n—1 n—1 n—1
nG
2 = [T =hmaxod) 2o+ 2D (1=200) T (1= hmaxcr)

i=0 i=0 j=i+1

Efzy] < — % (1 - (1 _ nAI;aXnY) |

Proof. Taking expectation on both sides, using the fact that the iterate at the ¢-th epoch, z; is
independent of the permutation sampled at epoch ¢ 4 1, we have

where o = 0. Then

n—1 n—1

gE 2(1 — 20}) H (1 = NAmax0;)

i=0 j=i+1

n—1

H (]- - n)\maxoi)

=0

Elzi11] = Efz]E

Recall that g = 0. Using Lemmas 2 and 4, we have by a simple inductive argument that E [z;] < 0
for all ¢, and therefore

Amax 2 AmaxnG
E[2i1] < (1 - ’72”) E [z,] — L omax

Unfolding the above recursion, we have

k 2 k—1 )
NAmaxT N7° AmaxnG N AmaxT

i=0
; nA n k
o mank S m'}xn L PAmanG 1T (1* ER )
B P B 16 0.50Amaxn
_ 77G 1 1 n)\maxn g
= S 5 .
O]
Proposition 3. Let a1, (1, ..., an, By be scalars such that for all i, «; € [0,1], |5;] < 1 and
S Bi =0. Then
2na na < %
> 3
Zﬁa H aa(i)) S { log(\/ﬁ~8n2) _ 1
i=j+1 a—7F ~ >3
d 2( 8) . p3a2 1
co - log” (==) - n°a na < 3
E ﬁo 1—0&01‘) = og? 7?2(1&2 )
Z (lejll () {031g(i ) na > L

where & = % Z?:l «; and c1, co, c3 > 0 are universal constants.

Proof. The first part of the proof focuses on bounding the first term in absolute value for the case
1 < n3@&2. Tt is a minor refinement of Lemma 8 in Safran and Shamir [2020]. Define

= Boyy [] (1= ao@) - (17)

i=j+1
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Assuming na < 1 we have from Safran and Shamir [2020, Equations (31),(32)] that

Ba(j) > ITewan| (18)

m=1 G41<i1 . yim <n distinet =1

n—j

and

Bo () > 11w

G4+1<i1, ... im <n distinct I=1

_ |
_ ('fl n'm). Z Z - Z gy Oy - o2 Ol " _1 m Z Bthrl

t1€n] t2€n]\{t1}  tme€MR\{t1,....tm-1} tm1€{t1,...;tm}
-1
1 n
= *n_m m E atlatQ...atm E 6tm+1.
1<t1<...<tm<n tm+1€{t1,..,tm}

Using Maclaurin’s inequality and the assumption 3; < 1 for all j, the above is upper bounded in
absolute value by

m =~
n—m
Plugging this in Eq. (17) yields
n—j m n—1 m
E|Y;]| < -1)m A" < o'
s X foon e < X
= 1— (an)"!

< anflo*/” = a———— < 2a,
= 1—-an

where the third inequality is due to n > 2 and the last inequality is by the assumption na
we plug the above in Eq. (18) to obtain

IN
N|—=

. Lastly,

Zﬁg H —a,)|| < 2na. (19)

i=j+1

> ( that

. _ 1 1
Assuming na > 3, T

2
n

Z Ba H — Os(3) )

_J-l,-l

IN

1
c-log? (\/264 . 8n2) -min{a , n3a2}

IN

¢ - log? (\/ﬁ : 8n2) : (20)

Compute using the law of total expectation and the square root of the above equation, using the
fact that the square root of the above quantity is deterministically upper bounded by n due to the
assumptions 5; < land o; <1

Zb’a(g H (1 — o))

i=j7+1

Qi =

o ) 3 (1 )

1 c1 log (v2a - 8n?
< ~7+10g(\/26¢~8n2)~£§ ! g( — ),

V2a Va Va
for some constant ¢; > 0. Combining the above with Eq. (19) completes the first part of the
proposition. Moving to the second assuming na < 1, we have again from Lemma 1 with probability

at least 1 — na? > 0 that

2

n 8 . 1 7
Zﬁ" @ I O=aw@) | < e log? (m) 'mln{& ; n3a2} .

i=j+1
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From the law of total expectation, the above, and the fact that the quantity above is deterministically
upper bounded by n? due to the assumptions 3; < 1 and a; < 1, we have

2
8 1
n?-na’+c- log2 <> - min { , n3a2} (1 — ndQ)
na a

E Zﬂom IT 0 -acq)
i=j+1
8 8
n3a? + ¢ log? (m) -na? = ¢y - log? (nd) -nda?
2D

for some constant c; > 0. Likewise, assuming no > %, we have from Lemma 1 with probability at
least 1 — —— >0

IA

IN

2
Z/BU(J H (1 —as@s) < c-log? (8n2@2> - min {; 7 n3a2} .
i=j+1

From the law of total expectation, the above, and the fact that the quantity above is deterministically
upper bounded by n? due to the assumptions 3; < 1 and ov; < 1, we have

2

= 1 1 1
E ZB"J) H 1—ag(i)) < n?. nT—i—c 1og ( 2a 2)-min{d,n3a2}-(1—n2&>

i=j+1
1 1 log” (8n%a?
§j+c-1og2(8n25¢2)-j:cg- g (77104)7
o o o
for some constant c3 > 0. Combining the above with Eq. (21) completes the proof of the proposition.

O
B.2 Proof of Lemma 1

2
Proof. We will upper bound the expression (Z;‘L:1 Boy ITie (1= ag(i)) in two different
manners. Taking the minimum of the two will lead to the desired bound.

First, using summation by parts and the fact that Z _1Bs(j) = 0, we have that
n n—1 n n
Zﬁg H T—ao)|= D Boy =2 | II @—aww) = J] @ —a0w) Zﬂo(z
i=j+1 j=1 j=1 \i=j+2 i=j+1
n—1 n—1 J
= Z Ao (j+1) H 1 = Qg (i) Z /80'(1 < Z A (j+1) Z /60'(1')
Jj=1 1=j+2 j=1 i=1

By the Hoeffding-Serfling bound and a union bound, we have that with probability at least
1 — 4, it holds simultaneously for all j € {1,...,n} that | Y27, B,;)| < y/log(2n/0)j/2 <
v/log(2n/d)n/2. Plugging into the above, we get that with probability at least 1 — 4,

2 2
- log 2n )
ZBG’ () H 1 - aa(i)) < Zaa(]Jrl ( / )
1=j+1
2
< (na- W) = w .n3a? . (22)

2
We now turn to upper bound the expression (Z;’:l Ba(5) [T 1 (1- ag(i)> in a different manner.
To that end, define the index

Y S 1 @
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We first show that Zj By Tz i11(1 = ag()) is close to Z?:nfrﬂ Bo(j) H?:jﬂ(l — Qp())
(namely, where we sum only the last r terms). This is trivially true if » = n, so let us focus on the

6 loggn/é)—‘

case r < n, in which case r = [ . We begin by noting that

H(l — Qg(i)) = €xp (Z log(1 — O‘o(i))) < exp (- Z%(i)) :

i=1 i=1

Noting that £ " o2 < L 3" o, = @, and using Bernstein’s inequality (applied to sampling

without replacement, see for example Bardenet et al. [2015, Corollary 3.6]), we have that for any
r € {1,...,n}, with probability at least 1 — 4, it holds that

3log(1/0)

)

lzaa(i > a— 2alog(1/5)  log(n/d) > a
T T 2 T

where in the last inequality we used the fact /2zy < 3 + 2y for 2,y > 0. Plugging into the previous
displayed equation, we have that with probability at least 1 — 6,

- ra 1
_ V) < _= - )
H(l Qp(i)) < exp ( 5 + 3log (5)>

i=1

and plugging into the above, it follows that

a

Recalling that we assume r = [61%("/5)—‘ > 61°g("/5)

T

[T~ o) < exp(-3log(n) = -

i=1

Since ¢ is a permutation, the same upper bound holds with the same probability for Hl i1 (1-
@4 (;))- Thus, we have that with probability at least 1 — d,

Z/BD'(] H l_aa(i)) < Z ﬁag) H 1_aa(z +Z|ﬁag)| H 1_aaz)

i=j7+1 j=n—r+1 i=j5+1 i=j7+1

< Z Ba(g H 1 — Ozg(i)) + Z 1- H (1 — Oég(i))

j=n—r+1 i=j7+1 j=1 i=n—r+1
n n n—r 1

<1 Y Beiy I = aow) +Zl'$

j=n—r+1 i=j+1 j=1
1

< Z Ba(i) H )|+ — - (24)

j=n—r+1 i=j+1

We showed this assuming r < n, but the same overall inequality trivially also holds for = n (with
probability 1). Therefore, the inequality holds regardless of the value of 7 (as defined in Eq. (23)).

To further upper bound this, we note that every term 3, ;) []:_ j+1(1 = ag(;)) in the sum above

has magnitude at most 1. Applying Azuma’s inequality on the martingale difference sequence
ﬁa(j) H?:j+1(1 - aa(i)) -E I:ﬁcr(j) H?:j+1(1 - O‘J(i))‘o(j + 1)? cee 70’(77/)i| (indexed bYJ gOing
down from n to n — r + 1), we have that with probability at least 1 — ¢,

Yo By T O =aow) —E [Boyy T (1= 0@ ‘ o(j+1),...,0(n)
j=n—r+1 =741 i=j+1
P
< /2rlog <5> . (25)
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Furthermore, since o is a random permutation and %2?21 Bi = 0, the following holds with
probability at least 1 — ¢ simultaneously for all j € {1,...,n}, by the Hoeffding-Serfling bound and
a union bound:

: “ 1
E |Bo() H — ) ’a(]Jrl),...,a(n) = T] = aw) - - 3
i=j+1 i=j+1 ]ie{l,..A,n}\{o(j—i-l),...,a(n)}

1

< 7 Z Bi
i€{l,...,n}\{o(j+1),....0(n)}
log(2n/4)

ST

Combining the above together with Eq. (24) and Eq. (25) (using a union bound), we get overall that
with probability at least 1 — 34,

- 1 2 - log(2n/6
Zﬁg ) H (1—asn))| < ﬁ—i— 2r log (5) + Z #
=it j=n—r+1 J

Noting® that 3" jen—rt1 \/; < 24/2r, plugging into the above and simplifying a bit, we get that
with probability at least 1 — 34,

n

Zﬁa(a) H (1= aym)| < 5v/r-log(2n/d) .

=741

Squaring both sides, plugging in the definition of r and further simplifying a bit, we get that with
probability at least 1 — 36,

- i 2n 1
Zﬁg H (1—asw)) < log? (5) - min {n, a}
1=j5+1

for some universal constant ¢’ > 1. Combining this with Eq. (22) using a union bound, we have that
with probability at least 1 — 44,

2

ZB"O) H (1= as@) < ¢ - log? (;) - min {” 3’ n3a2}

i=j7+1

Finally, noting that min {n, £, n*a?} = min {1, n3a?}, and letting &' := 44, we get that with

probability at least 1 — &', the expression above is at most c3 log®(8n/6’) min {1 L. n3a?} as required.

B.3 Remaining Technical Proofs

Lemma 2. Suppose og, . ..,0,_1 is a permutation of 0’s and %
n—1
Ame 1
H(l _n)‘maxai) Z 1- 1 n;a.xn Z 5 .
i=0

Proof. The proof follows immediately from Bernoulli’s inequality and the assumption 7 <

8To see this, note that if 7 > n/2, then >°7 T+1[ > 1\[<2f<2\/2r and if r < n/2,

then 3 jmn- H‘1\/:_ e S \/n n/2+1 - W S H=V
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Lemma 3. Suppose oy, ...,0,1 is a random permutation of 5 0’s and 5 1’s. Then for all

me{l,...,n—1}
[1_200 Hoz] _ <n/2—11) (nn—11>_1.

—715 lHaz 00_11

—am—l‘ao—O} —§Pr{ :...:szl‘o():l]
n/271) o(n/2m+1)>
—1)-(n=2)-....--(n—m)

(n/2—1 (n/2—2)-. (n/?—m))
m=1)-n=2)-...-(n—m)

&=
q

Proof. Compute

E [(1 — 20¢) Hail =

=
l—l
=
Q

N~ N~ N

[\3“_;/\ '-U
/—\/\\'—‘

1 n/2—1)-(n/2-=2)-...-(n/2—m+1) m
2 (n—1)- (n72)~...~(nfm)
_ 1 (m2-1) (n—m—l)!m
2 (n/2—-m)! (n—1)!
_1(n/2-1\(n—-1\""
2\ m-1 m ’
O
Lemma 4. Suppose oy, .. ., 0,1 is a random permutation of 5 0’s and 3 1’s and n < pw— Then
n—1 n—1 1
E Z(l - 201) H (1 - n)‘maxaj) < - gn)‘maxn .
=0 Jj=i+1

Proof. Denote Y; := (1 — 20;) (H;Z;H (1- T})\maXO'j)> , we expand Y; to obtain

E[Yi]

n—i m
1—20’1 + Z mdx Z 1 _201 <H0u>
m=1

i+1<iy,..., im <n—1 distinct
n—i—1
m
(_n)‘max) < )E

(1 — 20‘0) ﬁO’l‘|
=1

> )™ (n —7;— 1) (nn/12_11> (n; 1) —1’

where the last equality is by Lemma 3. Denote the m-th summand by a,,, we bound the quotient of
two subsequent terms in the above sum by using the assumption n < ﬁ so we get for any m > 1

M |

Am+1
am

(n—=2m)(n—m—i—1) < lnAmaxn < 1,
2m(n —m —1) 2

I 77>\rnax

[\)

thus the above sum which alternates signs and begins with a negative term is upper bounded by

n—i1—1

1
5(01 +az) < —ay = **T]Amaxﬁa

4 4
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where we conclude with

n—1 n—1 n—1 n—1 .
1 n—i—1
E Z(l — 20;) H (1 = NAmaxoj)| = Z]E ;] < — in)\max Z 1
i=0 j=i+1 i=0 =0
n(n—1) 1
= -3 )\max = -3 )\max .
" n—1 877 "

C Equivalence of Optimization Under Conjugate Transformations

Suppose we are given an orthogonal matrix O, an initialization point x, € R? and an optimiza-
tion problem F(x) := ix"Ax —b'x = L Y% | f;(x) where f;(x) = ix"A4;x — b/ x. De-
fine the O-conjugate optimization problem as F'(x) = %XTAX -b'x = N fi(x) where
f,(x) = %XT/LX — BZT X, initialized from x(, whereby A;, B,;, X are defined using the following

transformations: ~ ~
A; = OAOT, b; = Ob;, %o = Oxg.

In this appendix, we show that the O-conjugate optimization problem is equivalent in terms of the
sub-optimality rate of without-replacement SGD. More formally, we have the following theorem:

Theorem 7. Suppose we have F, F and O as above. Let x, and %, denote the iterate after performing
t steps of without-replacement SGD. Then

)Nit = OXt .

And in particular, we have that ~
F()N(t) = F(Xt) .

Moreover, if F satisfies Assumption 2 then so does F.

Proof. Using induction, the base case is immediate from the definition of Xy, and we have
1

F(%) = §XJOTOAOTOXO ~b'0T0xy = F(x0).

For the induction step, assume the theorem is true for ¢. We will show it also holds for ¢ + 1. Compute
for all i € [n]

= 1
Vifi(x) = Vi (QXTOAZ'OTX— (Obi)Tx> = 0A;0"x - Ob;.
Suppose the next function to be processed in iteration t+1 is f;, the update rule of without-replacement
SGD therefore satisfies
i1 = % —nVsfi(X) = Ox,—nOA;0 T Ox4+1n0b; = O (x; — n(Aixs —b;)) = Oxyp1 .

Plugging the above in F we obtain

~ 1
F(Xt+1) = §X:+1OTOAOTOX,5+1 - bIOTOXt+1 = F(Xt+1) .

Lastly, it is readily seen that if " satisfies Assumption 2 then so does F since orthogonal matrices are
isometries. O
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