
A Proofs

A.1 Proof of Thm. 1

Assume n is even (this is without loss of generality as argued in the beginning of the proof of Thm. 1
in Safran and Shamir [2020]). Recall the function F defined in Eq. (1) by

F (x) =
1

n

n∑
i=1

fi(x) =
λ

2
x2
1 +

λmax

2
x2
2 ,

where for each i,

fi(x) = fi(x1, x2) :=
λ

2
x2
1 +

λmax

2
x2
2 +

{
G
2 x2 i ≤ n

2

−G
2 x2 i > n

2

.

It is readily seen that the above functions satisfy Assumption 1. Assume we initialize at

x0 = (x0,1, x0,2) =

(
G

λ
, 0

)
,

which also satisfies Assumption 1 since ∥∇F (x0)∥ = G. On these functions, we have that during
any single epoch, we perform n iterations of the form

xnew,1 = (1− ηλ)xold,1 , xnew,2 = (1− ηλmax)xold,2 +
ηG

2
σi ,

where σ0, . . . , σn−1 are a random permutation of n
2 1’s and n

2 −1’s. Repeatedly applying this
inequality, we get that after n iterations, the relationship between the first and last iterates in the
epoch satisfy

xt+1,1 = (1− ηλ)nxt,1 , xt+1,2 = (1− ηλmax)
nxt,2 +

ηG

2

n−1∑
i=0

σi(1− ηλmax)
n−i−1 .

Repeating this across k epochs, we obtain the following relation between the initialization point and
what we obtain after k epochs:

xk,1 = (1−ηλ)nkx0,1 , xk,2 = (1−ηλmax)
nkx0,2+

ηG

2
·1− (1− ηλmax)

nk

1− (1− ηλmax)n

n−1∑
i=0

σi(1−ηλmax)
n−i−1 .

Noting that F (x) = λ
2x

2
1 +

λmax

2 x2
2 and E[σi] = 0, we get that

E[F (xk)] =
λ

2
(1−ηλ)2nkx2

0,1+
λmax

2
(1−ηλmax)

2nkx2
0,2+

η2G2λmax

8

(
1− (1− ηλmax)

nk

1− (1− ηλmax)n

)2

βn,η,λmax
,

where

βn,η,λmax
:= E

(n−1∑
i=0

σi(1− λmaxη)
n−i−1

)2
 = E

(n−1∑
i=0

σi(1− λmaxη)
i

)2
 (3)

(using the fact that σ0, . . . , σn−1 are exchangeable random variables). According to Lemma 1 in
Safran and Shamir [2020], for some numerical constant c > 0,

βn,η,λmax
≥ c ·min

{
1 +

1

λmaxη
, n3(λmaxη)

2

}
. (4)

We now perform a case analysis based on the value of η:

• If η ≤ 1
λnk , then

E[F (xk)] ≥
λx2

0,1

2
(1− ηλ)2nk ≥

λx2
0,1

2

(
1− 1

nk

)2nk

≥
λx2

0,1

2

(
1

4

)2

=
λx2

0,1

32
.

Substituting x0,1 = G/λ, the above is lower bounded by

G2

32λ
.
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• If η > 1
λnk as well as η < 1

λmaxn
(assuming this range exists, namely when k > λmax/λ), then by

Bernoulli’s inequality we have (1 − ηλmax)
n ≥ 1 − nηλmax > 0, as well as (1 − ηλmax)

nk ≤
(1− ηλ)nk ≤ (1− 1/nk)nk ≤ exp(−1), implying that

E[F (xk)] ≥
η2G2λmax

8

(
1− exp(−1)

1− (1− nηλmax)

)2

βn,η,λmax
=

η2G2λmax(1− exp(−1))2

8(nηλmax)2
·βn,η,λmax

.

Plugging in Eq. (4), and noting that η < 1
λmaxn

, it is easily verified that βn,η,λmax
≥ c ·min{1 +

1/ηλmax, n
3(ηλmax)

2} = cn3η2λ2
max. This implies that the displayed equation above is at least

c′
η2G2λmax

(nηλmax)2
· n3η2λ2

max = c′η2nG2λmax ,

for some constant c′. Since η > 1
λnk , this is at least

c′
nG2λmax

λ2n2k2
= c′

G2λmax

λ2nk2
.

• If η > 1
λnk as well as η ≥ 1

λmaxn
, then noting that

(
1−(1−ηλmax)

nk

1−(1−ηλmax)n

)2
=(∑k−1

i=0 ((1− ηλmax)
n)

i
)2

≥
(
(1− ηλmax)

0
)2

= 1 (recall that n is even), we have

E[F (xk)] ≥ η2G2λmax

8
βn,η,λmax

.

By the assumption that η ≥ 1
λmaxn

, we have that n3(ηλmax)
2 ≥ 1/ηλmax as well as n3(ηλmax)

2 ≥
1. Using this and Eq. (4), the above is at least

cη2G2λmax

8
min

{
1 +

1

ηλmax
, n3(ηλmax)

2

}
≥ cη2G2λmax

16
·
(
1 +

1

ηλmax

)
=

cηG2

16
(ηλmax + 1) .

Since η ≥ 1
λnk , this is at least cG2

16λnk

(
λmax

λnk + 1
)
. Since we assume log(nk)L

λnk ≤ 1 which entails
nk ≥ λmax

λ , we can further lower bound it (without losing much) by cG2

16λnk .

Combining the cases, we get that regardless of how we choose η, for some numerical constant c′′ > 0,
it holds that

E[F (xk)] ≥ c′′ ·min

{
G2

λnk
,
G2λmax

λ2nk2

}
= c′′ · G2

λnk
·min

{
1 ,

λmax/λ

k

}
.

A.2 Proof of Thm. 2

As in the proof of Thm. 1, we will assume w.l.o.g. that n is even. Recall the function F defined in
Eq. (2) by

F (x) =
1

n

n∑
i=1

fi(x) =
λ

2
x2
1 +

λmax

2
x2
2 +

λmax

4
x2
3 ,

where for each i,

fi(x) = fi(x1, x2, x3) :=
λ

2
x2
1 +

λmax

2
x2
2 +

{
G
2 x2 +

λmax

2 x2
3 +

G
2 x3 i ≤ n

2

−G
2 x2 − G

2 x3 i > n
2

.

Consider the initialization point

x0 = (x0,1, x0,2, x0,3) =

(
G

λ
, 0 , 0

)
.

Note that the above functions satisfy ∥∇fi(x
∗)∥ = G/

√
2 ≤ G for all i ∈ [n], and that ∥∇F (x0)∥ =

G, therefore Assumption 1 is satisfied. Our proof will analyze the convergence of random reshuffling
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SGD under the assumption that η belongs to some interval in a partition of the positive real line. For
each such interval in the partition, we will take the worst lower bound (i.e. the largest lower bound)
along each dimension, where our final lower bound will be the minimum among the bounds derived
on each interval.

We begin with deriving an expression for xk, the iterate after performing k epochs. In a single epoch,
after n iterations, the relationship between the first and last iterates in the epoch satisfy

xt+1,1 = (1− ηλ)n · xt,1 ,

xt+1,2 = (1− ηλmax)
n · xt,2 +

ηG

2

n−1∑
i=0

(1− 2σi)(1− ηλmax)
n−i−1 ,

xt+1,3 =

n−1∏
i=0

(1− ηλmaxσi) · xt,3 +
ηG

2

n−1∑
i=0

(1− 2σi)

n−1∏
j=i+1

(1− ηλmaxσj) , (5)

where σ0, . . . , σn−1 are a random permutation of n
2 1’s and n

2 0’s. Squaring and taking expectation
on both sides, using the fact that E[1 − 2σi] = 0 and that xt is independent of the permutation
sampled at epoch t+ 1, we have

E
[
x2
t+1,1

]
= (1− ηλ)2nx2

t,1 ,

E
[
x2
t+1,2

]
= (1− ηλmax)

2nx2
t,2 +

η2G2

4
βn,η,λmax

,

E
[
x2
t+1,3

]
≥ E

[
n−1∏
i=0

(1− ηλmaxσi)
2

]
E
[
x2
t,3

]
+ ηGE

n−1∑
i=0

(1− 2σi)

n−1∏
j=i+1

(1− ηλmaxσj)

E [xt,3] ,

(6)

where βn,η,λmax
is defined in Eq. (3). Unfolding the recursions above for the first two dimensions,

we get that after k epochs

E
[
x2
k,1

]
= (1− ηλ)

2nk
x2
0,1 ,

E
[
x2
k,2

]
= (1− ηλmax)

2nkx2
0,2 +

η2G2

4
· 1− (1− ηλmax)

2nk

1− (1− ηλmax)2n
βn,η,λmax

.

Recalling that F (x) = λ
2x

2
1 +

λmax

2 x2
2 +

λmax

4 x2
3 ≥ λ

2x
2
1 +

λmax

2 x2
2 and combining with the above,

we get

E [F (xk)] ≥ λ

2
(1− ηλ)

2nk
x2
0,1 +

λmax

2
(1−ηλmax)

2nkx2
0,2 +

λmaxη
2G2

8
·1− (1− ηλmax)

2nk

1− (1− ηλmax)2n
βn,η,λmax

.

(7)
We now move to a case analysis based on the value of η:

• If η ≤ 1
λnk , we focus on the first dimension. Recall that x0,1 = G

λ and compute

E[F (xk)] ≥
λx2

0,1

2
(1− ηλ)2nk ≥

λx2
0,1

2

(
1− 1

nk

)2nk

≥
λx2

0,1

2

(
1

4

)2

=
λx2

0,1

32
=

G2

32λ
≥ G2

32λnk
.

• If η > 1
λnk as well as η < 1

λmaxn
(assuming this range exists, namely when k > λmax/λ), we focus

on the second and third dimensions, each resulting in a different dependence on n, k. Starting with
the second dimension, we have by Bernoulli’s inequality that (1− ηλmax)

2n ≥ 1− 2nηλmax > 0,
as well as (1− ηλmax)

2nk ≤ (1− ηλ)2nk ≤ (1− 1/nk)2nk ≤ exp(−2), implying that

E[F (xk)] ≥
η2G2λmax

8
· 1− exp(−2)

1− (1− 2nηλmax)
βn,η,λmax =

η2G2λmax(1− exp(−2))

16nηλmax
·βn,η,λmax .
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Plugging in Eq. (4), and noting that η < 1
λmaxn

, it is easily verified that βn,η,λmax ≥ c ·min{1 +
1/ηλmax, n

3(ηλmax)
2} = cn3η2λ2

max. This implies that the displayed equation above is at least

c′
η2G2λmax

nηλmax
· n3η2λ2

max = c′η3n2G2λ2
max ,

for some constant c′. Since η > 1
λnk , this is at least

c′
n2G2λ2

max

λ3n3k3
= c′

G2λ2
max

λ3nk3
.

Moving to the third dimension, we assume w.l.o.g. that k ≥ n (since otherwise the previous bound
will be larger than the one to follow). Using Propositions 1 and 2 and Lemma 2 on Eq. (6) (recall
that x0,3 = 0 by our assumption), we have

E
[
x2
t+1,3

]
≥
(
1− ηλmaxn

2

)2

E
[
x2
t,3

]
+

η3G2λmaxn

128

(
1−

(
1− ηλmaxn

2

)t
)

≥ (1− ηλmaxn)E
[
x2
t,3

]
+

η3G2λmaxn

128

(
1−

(
1− ηλmaxn

2

)t
)

.

Unfolding the recursion above yields

E
[
x2
k,3

]
≥ (1− ηλmaxn)

k
x2
0,3 +

η3G2λmaxn

128

k−1∑
t=0

(1− ηλmaxn)
k−t−1

(
1−

(
1− ηλmaxn

2

)t
)

≥ η3G2λmaxn

128

k−1∑
t=⌊k/2⌋

(1− ηλmaxn)
k−t−1

(
1−

(
1− ηλmaxn

2

)t
)

≥ η3G2λmaxn

128

k−1∑
t=⌊k/2⌋

(1− ηλmaxn)
k−t−1

(
1−

(
1− ηλmaxn

2

)⌊k/2⌋
)

, (8)

where we note that the above sum is not empty since we assume k ≥ n ≥ 2. We now have(
1− ηλmaxn

2

)⌊k/2⌋

=

(
1− ηλmaxn

2 · ⌊k/2⌋
· ⌊k/2⌋

)⌊k/2⌋

≤ exp

(
−ηλmaxn ⌊k/2⌋

2

)
≤ exp

(
−λmax ⌊k/2⌋

2λk

)
≤ exp

(
−λmax

8λ

)
≤ exp

(
−1

8

)
≤ 0.9 ,

where the first inequality is due to (1−x/y)y ≤ exp(−x) for all x, y > 0 and the second inequality
is by the assumption η ≥ 1

λnk . The above entails

1−
(
1− ηλmaxn

2

)⌊k/2⌋

≥ 0.1 , (9)

which by plugging into Eq. (8) yields

E
[
x2
k,3

]
≥ η3G2λmaxn

1280

k−1∑
t=⌊k/2⌋

(1− ηλmaxn)
k−t−1

=
η3G2λmaxn

1280
· 1− (1− ηλmaxn)

k−⌊k/2⌋

ηλmaxn

≥ η2G2

1280
·

(
1−

(
1− ηλmaxn

2

)⌊k/2⌋
)

≥ η2G2

12800
,

where the last inequality is a second application of Eq. (9). We now conclude with the assumption
η ≥ 1

λnk to get

E [F (x)] ≥ λmax

4
E
[
x2
k,3

]
≥ c

G2λmax

λ2n2k2
,

where c = 1
51200 .
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• If η > 1
λnk as well as η ≥ 1

λmaxn
, we focus on the remainder term of the second dimension in

Eq. (7). Noting that 1−(1−ηλmax)
2nk

1−(1−ηλmax)2n
=
∑k−1

i=0

(
(1− ηλmax)

2n
)i ≥ (1− ηλmax)

0 = 1, we have

E[F (xk)] ≥ η2G2λmax

8
βn,η,λmax .

By the assumption that η ≥ 1
λmaxn

, we have that n3(ηλmax)
2 ≥ 1/ηλmax as well as n3(ηλmax)

2 ≥
1. Using this and Eq. (4), the above is at least

cη2G2λmax

8
min

{
1 +

1

ηλmax
, n3(ηλmax)

2

}
≥ cη2G2λmax

16
·
(
1 +

1

ηλmax

)
=

cηG2

16
(ηλmax + 1) .

Since η ≥ 1
λnk , this is at least cG2

16λnk

(
λmax

λnk + 1
)
. Since we assume log(nk)L

λnk ≤ 1 which entails
nk ≥ λmax

λ , we can further lower bound it (without losing much) by cG2

16λnk .

A.3 Proof of Thm. 3

Before we prove the theorem, we will first state the following result which handles the one-
dimensional case.
Theorem 5. Suppose F (x) := ā

2x
2 and fi(x) = ai

2 x
2 − bix, where ā = 1

n

∑n
i=1 ai satisfy

Assumption 2, and fix the step size η = log(nk)
λnk . Then for any δ ∈ (0, 1), with probability at least

1− δ over the choice of the permutation σ, single shuffling SGD satisfies

F (xk) ≤ c · log2
(
8n

δ

)
· log2(nk) · G2

λnk
·min

{
1 ,

ā/λ

k

}
,

where c > 0 is a universal constant. Moreover, this also entails

E [F (xk)] ≤ Õ
(

G2

λnk
·min

{
1 ,

ā/λ

k

})
,

where the Õ hides a universal constant and factors logarithmic in n, k, ā, λ and their inverses.

Before we prove the above theorem, we shall first explain why it implies Thm. 3. Since the matrices
A1, . . . , An commute, then they are simultaneously diagonalizable (e.g., Horn and Johnson [2013,
Thm. 1.3.21]). Thus, there exists a matrix P such that P−1AiP is diagonal for all i ∈ [n]. Moreover,
since Ai are all symmetric, we may choose such P which is also orthogonal. By Appendix C, we
may transform our problem to another quadratic formulation having the same sub-optimality rate and
where Assumption 2 is preserved. Following the above reasoning, we may assume w.l.o.g. that Ai is
diagonal for all i ∈ [n].

For some j ∈ [d] and t ∈ [k], let aj and xj,t denote the j-th diagonal value of A and j-th coordinate
of xt (the iterate after the t-th epoch), respectively. We now explain why we may assume that b = 0.
As assumed in Safran and Shamir [2020], mapping fi(x) 7→ f̃i(x − A−1b) for all i ∈ [n] simply
translates our problem so that x∗ = 0. By mapping x0 accordingly, we have that Assumption 2
is preserved, thus we may assume b = 0 w.l.o.g. which entails ∥Aix

∗ − bi∥ = ∥bi∥ ≤ G for all
i ∈ [n].

Since we have now reduced our optimization problem to the form f̃i(x) = 1
2x

⊤Aix − b⊤
i x for

diagonal Ai, we have that the partial derivatives w.r.t. each coordinate are independent of one another,
thus we may apply Thm. 5 to each coordinate separately. Letting Fj(x) =

1
2ajx

2, we compute

E [F (xk)] = E
[
1

2
x⊤
k Axk

]
=

d∑
j=1

E [Fj(xj,k)] .

Recall that x0 = (x1,0, . . . , xd,0). The condition ∥∇F (x0)∥ ≤ G implies that
∑d

j=1 a
2
jx

2
j,0 ≤ G2,

and since λ ≤ aj ≤ λmax for all j ∈ [d], we get ∥x0∥ ≤ G
λ , which in particular implies xj,0 ≤ G

λ
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for all j ∈ [d]. We now use Thm. 5 applied to each dimension separately and conclude that

E [F (xk)] =

d∑
j=1

Õ
(

G2

λnk
·min

{
1 ,

aj/λ

k

})
≤ Õ

(
G2

λnk
·min

{
1 ,

λmax/λ

k

})
,

whereby the Õ notation hides a linear term in d which absorbs the sum over the coordinates.

Proof of Thm. 5. The beginning of the proof is based on deriving a closed-form expression for the
iterate at the k-th epoch, xk. To this end, we shall use the same derivation as in Safran and Shamir
[2020], given here for completeness. First, for a selected permutation σi : [n] → [n] we have that the
gradient update at iteration j in epoch i is given by

xnew =
(
1− ηaσi(j)

)
xold + ηbσi(j) .

Repeatedly applying the above relation, we have that at the end of each epoch the relation between
the iterates xt and xt+1 is given by

xt+1 =

n∏
j=1

(
1− ηaσt+1(j)

)
xt + η

n∑
j=1

bσt+1(j)

n∏
i=j+1

(
1− ηaσt+1(i)

)
.

Letting

S :=

n∏
j=1

(
1− ηaσi(j)

)
=

n∏
j=1

(1− ηaj)

and

Xσt
:=

n∑
j=1

bσt(j)

n∏
i=j+1

(
1− ηaσt(i)

)
,

this can be rewritten equivalently as

xt+1 = Sxt + ηXσt+1
. (10)

Iteratively applying the above, we have after k epochs that

xk = Skx0 + η

k∑
i=1

Si−1Xσ = Skx0 + η · 1− Sk

1− S
Xσ . (11)

Having derived a closed-form expression for xk, we now turn to make a more careful analysis
of the upper bound, improving upon the result of Safran and Shamir [2020]. Note that by our
assumptions, 1 ≥ 1− ηaj ≥ 1− ηL ≥ 0 for all j, hence S ∈ [0, 1]. As a result, using the fact that
(r + s)2 ≤ 2(r2 + s2), we have

F (xk) =
ā

2
x2
k ≤ ā

(
S2kx2

0 + η2
(
1− Sk

1− S

)2

X2
σ

)
≤ ā

(
S2k · G

2

λ2
+ η2

(
1− Sk

1− S

)2

X2
σ

)

≤ S2k · āG
2

λ2
+

āη2

(1− S)2
·X2

σ , (12)

whereby x2
0 ≤ G2

λ2 is due to Assumption 2, which entails |āx0| ≤ G and thus |x0| ≤ G
ā ≤ G

λ . We
now have

S2k =

n∏
j=1

(1− ηaj)
2k ≤ (1− ηā)2nk =

(
1− ā log(nk)

λnk

)2nk

≤ exp

(
−2ā log(nk)

λ

)
=

1

(nk)2ā/λ
≤ λ

ā(nk)2
, (13)

where the first inequality is by the AM-GM inequality applied to 1 − ηa1, . . . , 1 − ηan > 0, and
the last inequality is due to (nk)2 ≥ 4 and the fact that xy ≤ x/y for all x ∈ [0, 0.25] and y ≥ 1.6

6To see this, we first have that the inequality is trivial when y = 1. Assuming y > 1, x/y − xy intersects
the x axis iff x = 0 or x = y1/(1−y) which is at least exp(−1) ≥ 0.25 for y > 1, and thus we can verify that
xy ≤ x/y for all x ∈ [0, exp(−1)] by establishing that x/y − xy is concave on (0, exp(−1)).
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Moreover,

S =

n∏
j=1

(1−ηaj) = exp

 n∑
j=1

log(1− ηaj)

 ≤ exp

−η

n∑
j=1

aj

 = exp(−ηān) . (14)

Plugging the two displayed equations above into Eq. (12), we get that

F (xk) ≤ G2

λ(nk)2
+

āη2

(1− exp(−ηān))2
·X2

σ . (15)

To continue, we will use the following key technical lemma, which we shall use to upper bound X2
σ

with high probability (using αi := ηai and βi = bi/G for all i):

Lemma 1. Let α1, β1, . . . , αn, βn be scalars such that for all i, αi ∈ [0, 1], |βi| ≤ 1 and
∑n

i=1 βi =
0. Then for any δ ∈ (0, 1), with probability at least 1− δ, we have n∑

j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

2

≤ c · log2
(
8n

δ

)
·min

{
1

ᾱ
, n3ᾱ2

}
where ᾱ = 1

n

∑n
i=1 αi and c > 0 is a universal constant.

The proof appears in Subsection B.2. We note that we did not try to optimize the log factor.

Remark 6. This upper bound complements Lemma 1 from Safran and Shamir [2020], which analyzed
the same key quantity in the special case where βi ∈ {−1,+1} and αi = ᾱ are the same for all i,
and showed (when ᾱ ∈ [0, 1]) a lower bound of c′ ·min

{
1
ᾱ , n3ᾱ2

}
for some universal constant

c′ > 0.7 This implies that our upper bound is tight up to constants and logarithmic factors.

We now consider two cases, depending on the value of ηān:

• Case 1: ηān ≤ 1
2 . By Lemma 1, with probability at least 1− δ,

X2
σ ≤ c · log2(8n/δ) ·G2n3(ηā)2 .

In addition,

exp(−ηān) ≤ 1− 1

2
ηān ,

due to the assumption ηān ≤ 1
2 and the fact that exp(−z) ≤ 1− 1

2z for all z ∈ [0, 1/2]. Plugging
the two displayed equations above back into Eq. (15), we get that with probability at least 1− δ,

F (xk) ≤ G2

λnk2
+

āη2

(ηān/2)2
· c · log2(8n/δ) ·G2n3(ηā)2

=
G2

λ(nk)2
+ 4c · log2(8n/δ) · ānG2η2

=
G2

λ(nk)2
+ 4c · log2(8n/δ) · ānG2 ·

(
log(nk)

λnk

)2

=
G2

λ(nk)2
+ 4c · log2(8n/δ) · log2(nk) · āG2

λ2nk2

≤
(
1 + 4c · log2(8n/δ) · log2(nk)

)
· āG2

λ2nk2
,

where in the last step we used the fact that 1
n ≤ 1 ≤ ā

λ . Likewise, bounding X2
σ in expectation

using Proposition 3 yields a bound of

E [F (xk)] ≤ Õ
(

āG2

λ2nk2

)
.

7In Safran and Shamir [2020], the exact lower bound is c′ min
{
1 + 1

ᾱ
, n3ᾱ2

}
, which is equivalent to

c′′ min
{

1
ᾱ
, n3ᾱ2

}
for some constant c′′ > 0

18



• Case 2: ηān > 1
2 . By Lemma 1, with probability at least 1− δ,

X2
σ ≤ c log2(8n/δ)

ηā
.

In addition, ηān = log(nk)ā
λk > 1

2 . Plugging these back into Eq. (15), we get that

F (xk) ≤ G2

λ(nk)2
+

āη2

(1− exp(−1/2))2
· cG

2 log2(8n/δ)

ηā

≤ G2

λ(nk)2
+

cG2 log2(8n/δ)

(1− exp(−1/2))2
· η

=
G2

λ(nk)2
+

c log2(8n/δ) · log(nk)
(1− exp(−1/2))2

· G2

λnk

≤
(
1 +

c log2(8n/δ) · log(nk)
(1− exp(−1/2))2

)
· G2

λnk
.

Likewise, bounding X2
σ in expectation using Proposition 3 yields a bound of

E [F (xk)] ≤ Õ
(

G2

λnk

)
.

To combine the two cases, we note that the condition ηān ≤ 1
2 is equivalent to ā log(nk)

λk ≤ 1
2 . In that

case, we have log(nk)āG2

λ2nk2 ≤ 1
2 · G2

λnk , and thus

log(nk)āG2

λ2nk2
≤ min

{
log(nk)āG2

λ2nk2
,

G2

2λnk

}
=

G2

λnk
·min

{
log(nk)ā

λk
,
1

2

}
.

In the opposite case where ā log(nk)
λk > 1

2 , it follows that G2

λnk < 2 log(nk)āG2

λ2nk2 , and therefore

G2

λnk
≤ min

{
2 log(nk)āG2

λ2nk2
,

G2

λnk

}
=

G2

λnk
·min

{
2 log(nk)ā

λk
, 1

}
.

Plugging these two inequalities into the bounds obtained in the two cases above and simplifying a bit,
the result follows.

A.4 Proof of Thm. 4

Similarly to the proof of Thm. 3, we first assume w.l.o.g. that Ai is diagonal for all i ∈ [n] and
that b = 0, implying a per-coordinate gradient bound of G (see the argument following Thm. 5 for
justification). Under the same reasoning, the proof then follows from the following theorem.

Theorem 6. Suppose F (x) := ā
2x

2 and fi(x) = ai

2 x
2 − bix, where ā = 1

n

∑n
i=1 ai satisfy

Assumption 2, and fix the step size η = log(nk)
λnk . Then random reshuffling SGD satisfies

E [F (xk)] ≤ Õ
(

G2

λnk
·min

{
1 ,

ā/λ

nk
+

ā2/λ2

k2

})
.

where the Õ hides a universal constant and factors logarithmic in n, k, ā, λ and their inverses.

Proof. Our analysis picks off from Safran and Shamir [2020, Eq. (22)]. However, for the sake of
completeness we shall include the derivation of Eq. (22) as was done in the above reference.

Continuing from Eq. (10), we square and take expectation on both sides to obtain

E
[
x2
t+1

]
= E

[(
Sxt + ηXσt+1

)2]
= S2E[x2

t ] + 2ηSE
[
xtXσt+1

]
+ η2E

[
X2

σt+1

]
.
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Since in random reshuffling the random component at iteration t+ 1, Xσt+1 , is independent of the
iterate at iteration t, xt, and by plugging t = k into Eq. (11), the above equals

E
[
x2
t+1

]
= S2E[x2

t ] + 2ηSE [xt]E
[
Xσt+1

]
+ η2E

[
X2

σt+1

]
= S2E[x2

t ] + 2ηSE

[
Stx0 + η

t∑
i=1

St−iXσi

]
E
[
Xσt+1

]
+ η2E

[
X2

σt+1

]
= S2E[x2

t ] + 2ηSt+1x0E
[
Xσt+1

]
+ 2η2

t∑
i=1

St−i+1E [Xσi
]E
[
Xσt+1

]
+ η2E

[
X2

σt+1

]
= S2E[x2

t ] + 2ηSt+1x0E [Xσ1
] + 2η2

t∑
i=1

St−i+1E [Xσ1
]
2
+ η2E

[
X2

σ1

]
,

where the last equality is due to Xσi being i.i.d. for all i. Recursively applying the above relation and
taking absolute value, we obtain

E
[
x2
k

]
= S2kx2

0+2ηx0E [Xσ1
]

k−1∑
j=0

Sk+j+2η2E [Xσ1
]
2
k−1∑
j=0

S2j

k−j−1∑
i=1

Si+η2E
[
X2

σ1

] k−1∑
j=0

S2j .

Having derived the bound appearing in Safran and Shamir [2020, Eq. 22], we now turn to improve
their result by refining the upper bound as follows. We have that the above implies

E
[
x2
k

]
= S2kx2

0 + 2ηx0E [Xσ1
]Sk 1− Sk

1− S
+ 2η2E [Xσ1

]
2
S

k−1∑
j=0

S2j · 1− Sk−j−1

1− S
+ η2E

[
X2

σ1

] 1− S2k

1− S

≤ S2kx2
0 + 2ηx0E [Xσ1 ]S

k 1

1− S
+ 2η2E [Xσ1 ]

2
k−1∑
j=0

S2j · 1

1− S
+ η2E

[
X2

σ1

] 1

1− S

≤ S2kx2
0 + 2ηx0E [Xσ1 ]S

k 1

1− S
+ 2η2E [Xσ1 ]

2 1− S2k

(1− S)2
+ η2E

[
X2

σ1

] 1

1− S

≤ S2kx2
0 + 2ηx0E [Xσ1 ]S

k 1

1− S
+ 2η2E [Xσ1 ]

2 1

(1− S)2
+ η2E

[
X2

σ1

] 1

1− S
.

Using the fact that (r + s)2 ≤ 2(r2 + s2) for r = Skx0 and s = ηE
[
X2

σ1

]
/(1− S), we have

E
[
x2
k

]
≤ 2S2kx2

0 + 3η2E [Xσ1
]
2 1

(1− S)2
+ η2E

[
X2

σ1

] 1

1− S
.

Next, we use the assumption x2
0 ≤ G2

λ2 (which follows from Assumption 2, since it entails |āx0| ≤ G

and thus |x0| ≤ G
ā ≤ G

λ ), along with Equations (13) and (14) to upper bound the above by

2G2

āλn2k2
+

3η2E [Xσ1
]
2

(1− exp(−ηān))2
+

η2E
[
X2

σ1

]
1− exp(−ηān)

. (16)

We now consider two cases, depending on the value of ηān, using Proposition 3 by letting αj = ηaj
and βj = bj/G:

• Case 1: ηān ≤ 1
2 . We have that Eq. (16) is upper bounded by

2G2

āλn2k2
+

12G2η4n2ā2

(1− exp(−ηān))2
+ c2 log

2

(
8

ηnā

)
· G2η4n3ā2

1− exp(−ηān)

≤ 2G2

āλn2k2
+ 48G2η2 + 2c2 log

2

(
8

ηnā

)
·G2η3n2ā

≤ Õ
(

G2

āλn2k2
+

G2

λ2n2k2
+

G2ā

λ3nk3

)
≤ Õ

(
G2

λ2n2k2
+

G2ā

λ3nk3

)
,
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where we used the inequality exp(−x) ≤ 1− x/2 which holds for all x ∈ [0, 1/2], and the fact
that ā

λ ≥ 1. Using the definition of F we get

E [F (xk)] =
ā

2
E
[
x2
k

]
≤ Õ

(
G2ā

λ2n2k2
+

G2ā2

λ3nk3

)
.

• Case 2: ηān > 1
2 . In this case we have that Eq. (16) is upper bounded by

2G2

āλn2k2
+ c21 log

2
(√

2ᾱ · 8n2
) 3G2η2

ηā(1− exp(−1/2))2
+ c23 log

2
(
8n2ᾱ2

)
· G2η2

ηā(1− exp(−1/2))

≤ Õ
(

G2

āλn2k2
+

G2η

ā

)
≤ Õ

(
G2

āλn2k2
+

G2

āλnk

)
≤ Õ

(
G2

āλnk

)
.

Using the definition of F we get

E [F (xk)] =
ā

2
E
[
x2
k

]
≤ Õ

(
G2

λnk

)
.

To combine the two cases, we note that the condition ηān ≤ 1
2 is equivalent to ā log(nk)

λk ≤ 1
2 . In that

case we have
log(nk)āG2

λ2n2k2
+

log2(nk)ā2G2

λ3nk3
≤ G2

2λnk
+

G2

4λnk
≤ G2

λnk
,

implying

log(nk)āG2

λ2n2k2
+

log2(nk)ā2G2

λ3nk3
≤ min

{
log(nk)āG2

λ2n2k2
+

log2(nk)ā2G2

λ3nk3
,

G2

λnk

}
=

G2

λnk
·min

{
1 ,

log(nk)ā

λnk
+

log2(nk)ā2

λ2k2

}
.

In the opposite case where ā log(nk)
λk > 1

2 , it follows that 1 < 2ā log(nk)
λk , and therefore

G2

λnk
≤ 4ā2 log2(nk)G2

λ3nk3
≤ 4ā log(nk)G2

λ2n2k2
+

4ā2 log2(nk)G2

λ3nk3

= 4
G2

λnk
·min

{
1 ,

log(nk)ā

λnk
+

log2(nk)ā2

λ2k2

}
.

Plugging these two inequalities into the bounds obtained in the two cases above and absorbing
logarithmic terms into the big Õ notation, the result follows.

B Technical Lemmas

B.1 Proofs of Propositions

Proposition 1. Suppose σ0, . . . , σn−1 is a random permutation of n
2 0’s and n

2 1’s and η ≤ 1
λmaxn

.
Then

E

(n−1∏
i=0

(1− ηλmaxσi)

)n−1∑
i=0

(1− 2σi)

n−1∏
j=i+1

(1− ηλmaxσj)

 ≤ − 1

16
ηλmaxn .

Proof. Starting with the first multiplicand, we have from Lemma 2 that it is lower bounded by 0.5
deterministically, as it does not depend on the permutation sampled, thus we can take it outside the
expectation. At this point, the statement in the proposition reduces to showing that

E

n−1∑
i=0

(1− 2σi)

n−1∏
j=i+1

(1− ηλmaxσj)

 ≤ − 1

8
ηλmaxn ,

which follows immediately from Lemma 4.

21



Proposition 2. Suppose σ0, . . . , σn−1 is a random permutation of n
2 0’s and n

2 1’s and η ≤ 1
λmaxn

.
Let

xt+1 =

n−1∏
i=0

(1− ηλmaxσi) · xt +
ηG

2

n−1∑
i=0

(1− 2σi)

n−1∏
j=i+1

(1− ηλmaxσj) ,

where x0 = 0. Then

E [xk] ≤ − ηG

8

(
1−

(
1− ηλmaxn

2

)k
)

.

Proof. Taking expectation on both sides, using the fact that the iterate at the t-th epoch, xt is
independent of the permutation sampled at epoch t+ 1, we have

E [xt+1] = E [xt]E

[
n−1∏
i=0

(1− ηλmaxσi)

]
+

ηG

2
E

n−1∑
i=0

(1− 2σi)

n−1∏
j=i+1

(1− ηλmaxσj)

 .

Recall that x0 = 0. Using Lemmas 2 and 4, we have by a simple inductive argument that E [xt] ≤ 0
for all t, and therefore

E [xt+1] ≤
(
1− ηλmaxn

2

)
E [xt]−

η2λmaxnG

16
.

Unfolding the above recursion, we have

E [xk] ≤
(
1− ηλmaxn

2

)k

x0 −
η2λmaxnG

16

k−1∑
i=0

(
1− ηλmaxn

2

)i

= − η2λmaxnG

16

k−1∑
i=0

(
1− ηλmaxn

2

)i

= − η2λmaxnG

16
·
1−

(
1− ηλmaxn

2

)k
0.5ηλmaxn

= − ηG

8

(
1−

(
1− ηλmaxn

2

)k
)

.

Proposition 3. Let α1, β1, . . . , αn, βn be scalars such that for all i, αi ∈ [0, 1], |βi| ≤ 1 and∑n
i=1 βi = 0. Then

•

E

∣∣∣∣∣∣
n∑

j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

∣∣∣∣∣∣
 ≤

{
2nᾱ nᾱ ≤ 1

2

c1
log(

√
2ᾱ·8n2)√
ᾱ

nᾱ > 1
2

,

•

E


 n∑

j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

2
 ≤

{
c2 · log2

(
8
nᾱ

)
· n3ᾱ2 nᾱ ≤ 1

2

c3 ·
log2(8n2ᾱ2)

ᾱ nᾱ > 1
2

,

where ᾱ = 1
n

∑n
i=1 αi and c1, c2, c3 > 0 are universal constants.

Proof. The first part of the proof focuses on bounding the first term in absolute value for the case
1
ᾱ ≤ n3ᾱ2. It is a minor refinement of Lemma 8 in Safran and Shamir [2020]. Define

Yj := βσ(j)

n∏
i=j+1

(1− ασ(i)) . (17)
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Assuming nᾱ ≤ 1
2 , we have from Safran and Shamir [2020, Equations (31),(32)] that

E [Yj ] =

n−j∑
m=1

(−1)mE

βσ(j)

∑
j+1≤i1,...,im≤n distinct

m∏
l=1

ασ(il)

 , (18)

and

E

βσ(j)

∑
j+1≤i1,...,im≤n distinct

m∏
l=1

ασ(il)


= − (n−m)!

n!

∑
t1∈[n]

∑
t2∈[n]\{t1}

. . .
∑

tm∈[n]\{t1,...,tm−1}

αt1αt2 . . . αtm

1

n−m

∑
tm+1∈{t1,...,tm}

βtm+1

= − 1

n−m

(
n

m

)−1 ∑
1≤t1<...<tm≤n

αt1αt2 . . . αtm

∑
tm+1∈{t1,...,tm}

βtm+1
.

Using Maclaurin’s inequality and the assumption βj ≤ 1 for all j, the above is upper bounded in
absolute value by

m

n−m
ᾱm .

Plugging this in Eq. (17) yields

|E [Yj ]| ≤
n−j∑
m=1

∣∣∣∣(−1)m
m

n−m
ᾱm

∣∣∣∣ ≤
n−1∑
m=1

m

n−m
ᾱm

≤
n−1∑
m=1

nm−1ᾱm = ᾱ
1− (ᾱn)n−1

1− ᾱn
≤ 2ᾱ ,

where the third inequality is due to n ≥ 2 and the last inequality is by the assumption nᾱ ≤ 1
2 . Lastly,

we plug the above in Eq. (18) to obtain

E

∣∣∣∣∣∣
n∑

j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

∣∣∣∣∣∣
 ≤ 2nᾱ . (19)

Assuming nᾱ > 1
2 , we have from Lemma 1 with probability at least 1− 1

n
√
2ᾱ

> 0 that n∑
j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

2

≤ c · log2
(√

2ᾱ · 8n2
)
·min

{
1

ᾱ
, n3ᾱ2

}

≤ c · log2
(√

2ᾱ · 8n2
)
· 1
ᾱ

. (20)

Compute using the law of total expectation and the square root of the above equation, using the
fact that the square root of the above quantity is deterministically upper bounded by n due to the
assumptions βj ≤ 1 and αj ≤ 1

E

∣∣∣∣∣∣
n∑

j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

∣∣∣∣∣∣
 ≤ n · 1

n
√
2ᾱ

+
√
c · log

(√
2ᾱ · 8n2

)
· 1√

ᾱ

(
1− 1

n
√
2ᾱ

)

≤ · 1√
2ᾱ

+ log
(√

2ᾱ · 8n2
)
·
√
c√
ᾱ

≤
c1 log

(√
2ᾱ · 8n2

)
√
ᾱ

,

for some constant c1 > 0. Combining the above with Eq. (19) completes the first part of the
proposition. Moving to the second assuming nᾱ ≤ 1

2 , we have again from Lemma 1 with probability
at least 1− nᾱ2 > 0 that n∑

j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

2

≤ c · log2
(

8

nᾱ

)
·min

{
1

ᾱ
, n3ᾱ2

}
.

23



From the law of total expectation, the above, and the fact that the quantity above is deterministically
upper bounded by n2 due to the assumptions βj ≤ 1 and αj ≤ 1, we have

E


 n∑

j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

2
 ≤ n2 · nᾱ2 + c · log2

(
8

nᾱ

)
·min

{
1

ᾱ
, n3ᾱ2

}
·
(
1− nᾱ2

)
≤ n3ᾱ2 + c · log2

(
8

nᾱ

)
· n3ᾱ2 = c2 · log2

(
8

nᾱ

)
· n3ᾱ2 ,

(21)

for some constant c2 > 0. Likewise, assuming nᾱ > 1
2 , we have from Lemma 1 with probability at

least 1− 1
n2ᾱ > 0 n∑

j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

2

≤ c · log2
(
8n2ᾱ2

)
·min

{
1

ᾱ
, n3ᾱ2

}
.

From the law of total expectation, the above, and the fact that the quantity above is deterministically
upper bounded by n2 due to the assumptions βj ≤ 1 and αj ≤ 1, we have

E


 n∑

j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

2
 ≤ n2 · 1

n2ᾱ
+ c · log2

(
8n2ᾱ2

)
·min

{
1

ᾱ
, n3ᾱ2

}
·
(
1− 1

n2ᾱ

)

≤ 1

ᾱ
+ c · log2

(
8n2ᾱ2

)
· 1
ᾱ

= c3 ·
log2

(
8n2ᾱ2

)
ᾱ

,

for some constant c3 > 0. Combining the above with Eq. (21) completes the proof of the proposition.

B.2 Proof of Lemma 1

Proof. We will upper bound the expression
(∑n

j=1 βσ(j)

∏n
i=j+1(1− ασ(i)

)2
in two different

manners. Taking the minimum of the two will lead to the desired bound.

First, using summation by parts and the fact that
∑n

j=1 βσ(j) = 0, we have that∣∣∣∣∣∣
n∑

j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

βσ(j) −
n−1∑
j=1

 n∏
i=j+2

(1− ασ(i))−
n∏

i=j+1

(1− ασ(i))

 j∑
i=1

βσ(i)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n−1∑
j=1

ασ(j+1)

n∏
i=j+2

(1− ασ(i))

j∑
i=1

βσ(i)

∣∣∣∣∣∣ ≤
n−1∑
j=1

ασ(j+1)

∣∣∣∣∣
j∑

i=1

βσ(i)

∣∣∣∣∣ .
By the Hoeffding-Serfling bound and a union bound, we have that with probability at least
1 − δ, it holds simultaneously for all j ∈ {1, . . . , n} that |

∑j
i=1 βσ(i)| ≤

√
log(2n/δ)j/2 ≤√

log(2n/δ)n/2. Plugging into the above, we get that with probability at least 1− δ, n∑
j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

2

≤

n−1∑
j=1

ασ(j+1)

√
log(2n/δ)n

2

2

≤

(
nᾱ ·

√
log(2n/δ)n

2

)2

=
log(2n/δ)

2
· n3ᾱ2 . (22)

We now turn to upper bound the expression
(∑n

j=1 βσ(j)

∏n
i=j+1(1− ασ(i)

)2
in a different manner.

To that end, define the index

r := min

{
n ,

⌈
6 log(n/δ)

ᾱ

⌉}
∈ {1, . . . , n} . (23)
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We first show that
∑n

j=1 βσ(j)

∏n
i=j+1(1− ασ(i)) is close to

∑n
j=n−r+1 βσ(j)

∏n
i=j+1(1− ασ(i))

(namely, where we sum only the last r terms). This is trivially true if r = n, so let us focus on the
case r < n, in which case r =

⌈
6 log(n/δ)

ᾱ

⌉
. We begin by noting that

r∏
i=1

(1− ασ(i)) = exp

(
r∑

i=1

log(1− ασ(i))

)
≤ exp

(
−

r∑
i=1

ασ(i)

)
.

Noting that 1
n

∑n
i=1 α

2
i ≤ 1

n

∑n
i=1 αi = ᾱ, and using Bernstein’s inequality (applied to sampling

without replacement, see for example Bardenet et al. [2015, Corollary 3.6]), we have that for any
r ∈ {1, . . . , n}, with probability at least 1− δ, it holds that

1

r

r∑
i=1

ασ(i) ≥ ᾱ−
√

2ᾱ log(1/δ)

r
− log(n/δ)

r
≥ ᾱ

2
− 3 log(1/δ)

r
,

where in the last inequality we used the fact
√
2xy ≤ x

2 +2y for x, y ≥ 0. Plugging into the previous
displayed equation, we have that with probability at least 1− δ,

r∏
i=1

(1− ασ(i)) ≤ exp

(
−rᾱ

2
+ 3 log

(
1

δ

))
.

Recalling that we assume r =
⌈
6 log(n/δ)

ᾱ

⌉
≥ 6 log(n/δ)

ᾱ and plugging into the above, it follows that

r∏
i=1

(1− ασ(i)) ≤ exp(−3 log(n)) =
1

n3
.

Since σ is a permutation, the same upper bound holds with the same probability for
∏n

i=n−r+1(1−
ασ(i)). Thus, we have that with probability at least 1− δ,∣∣∣∣∣∣

n∑
j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
n∑

j=n−r+1

βσ(j)

n∏
i=j+1

(1− ασ(i))

∣∣∣∣∣∣+
n−r∑
j=1

|βσ(j)|
n∏

i=j+1

(1− ασ(i))

≤

∣∣∣∣∣∣
n∑

j=n−r+1

βσ(j)

n∏
i=j+1

(1− ασ(i))

∣∣∣∣∣∣+
n−r∑
j=1

1 ·
n∏

i=n−r+1

(1− ασ(i))

≤

∣∣∣∣∣∣
n∑

j=n−r+1

βσ(j)

n∏
i=j+1

(1− ασ(i))

∣∣∣∣∣∣+
n−r∑
j=1

1 · 1

n3

≤

∣∣∣∣∣∣
n∑

j=n−r+1

βσ(j)

n∏
i=j+1

(1− ασ(i))

∣∣∣∣∣∣+ 1

n2
. (24)

We showed this assuming r < n, but the same overall inequality trivially also holds for r = n (with
probability 1). Therefore, the inequality holds regardless of the value of r (as defined in Eq. (23)).

To further upper bound this, we note that every term βσ(j)

∏n
i=j+1(1 − ασ(i)) in the sum above

has magnitude at most 1. Applying Azuma’s inequality on the martingale difference sequence
βσ(j)

∏n
i=j+1(1− ασ(i))− E

[
βσ(j)

∏n
i=j+1(1− ασ(i))

∣∣∣σ(j + 1), . . . , σ(n)
]

(indexed by j going
down from n to n− r + 1), we have that with probability at least 1− δ,∣∣∣∣∣∣

n∑
j=n−r+1

βσ(j)

n∏
i=j+1

(1− ασ(i))− E

βσ(j)

n∏
i=j+1

(1− ασ(i))
∣∣∣ σ(j + 1), . . . , σ(n)

∣∣∣∣∣∣
≤

√
2r log

(
2

δ

)
. (25)
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Furthermore, since σ is a random permutation and 1
n

∑n
i=1 βi = 0, the following holds with

probability at least 1− δ simultaneously for all j ∈ {1, . . . , n}, by the Hoeffding-Serfling bound and
a union bound:∣∣∣∣∣∣E
βσ(j)

n∏
i=j+1

(1− ασ(i))
∣∣∣ σ(j + 1), . . . , σ(n)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∏

i=j+1

(1− ασ(i)) ·
1

j

∑
i∈{1,...,n}\{σ(j+1),...,σ(n)}

βi

∣∣∣∣∣∣
≤

∣∣∣∣∣∣1j
∑

i∈{1,...,n}\{σ(j+1),...,σ(n)}

βi

∣∣∣∣∣∣
≤

√
log(2n/δ)

2j
.

Combining the above together with Eq. (24) and Eq. (25) (using a union bound), we get overall that
with probability at least 1− 3δ,∣∣∣∣∣∣

n∑
j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

∣∣∣∣∣∣ ≤ 1

n2
+

√
2r log

(
2

δ

)
+

n∑
j=n−r+1

√
log(2n/δ)

2j
.

Noting8 that
∑n

j=n−r+1

√
1
j ≤ 2

√
2r, plugging into the above and simplifying a bit, we get that

with probability at least 1− 3δ,∣∣∣∣∣∣
n∑

j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

∣∣∣∣∣∣ ≤ 5
√
r · log(2n/δ) .

Squaring both sides, plugging in the definition of r and further simplifying a bit, we get that with
probability at least 1− 3δ, n∑

j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

2

≤ c′ log2
(
2n

δ

)
·min

{
n,

1

ᾱ

}
for some universal constant c′ > 1. Combining this with Eq. (22) using a union bound, we have that
with probability at least 1− 4δ, n∑

j=1

βσ(j)

n∏
i=j+1

(1− ασ(i))

2

≤ c′ · log2
(
2n

δ

)
·min

{
n,

1

ᾱ
, n3ᾱ2

}
.

Finally, noting that min
{
n, 1

ᾱ , n
3ᾱ2
}
= min

{
1
ᾱ , n

3ᾱ2
}

, and letting δ′ := 4δ, we get that with
probability at least 1− δ′, the expression above is at most c3 log2(8n/δ′)min

{
1
ᾱ , n

3ᾱ2
}

as required.

B.3 Remaining Technical Proofs

Lemma 2. Suppose σ0, . . . , σn−1 is a permutation of n
2 0’s and n

2 1’s, and that η ≤ 1
λmaxn

. Then

n−1∏
i=0

(1− ηλmaxσi) ≥ 1− ηλmaxn

2
≥ 1

2
.

Proof. The proof follows immediately from Bernoulli’s inequality and the assumption η ≤ 1
λmaxn

.

8To see this, note that if r ≥ n/2, then
∑n

j=n−r+1

√
1
j
≤

∑n
j=1

√
1
j
≤ 2

√
n ≤ 2

√
2r, and if r < n/2,

then
∑n

j=n−r+1

√
1
j
≤ r√

n−r+1
≤ r√

n−n/2+1
≤ r√

n/2
≤ r√

r
=

√
r.
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Lemma 3. Suppose σ0, . . . , σn−1 is a random permutation of n
2 0’s and n

2 1’s. Then for all
m ∈ {1, . . . , n− 1}

Eσ

[
(1− 2σ0)

m∏
i=1

σi

]
=

1

2

(
n/2− 1

m− 1

)(
n− 1

m

)−1

.

Proof. Compute

E

[
(1− 2σ0)

m∏
i=1

σi

]
=

1

2
E

[
m∏
i=1

σi

∣∣∣σ0 = 0

]
− 1

2
E

[
m∏
i=1

σi

∣∣∣σ0 = 1

]

=
1

2
Pr
[
σ1 = . . . = σm = 1

∣∣∣σ0 = 0
]
− 1

2
Pr
[
σ1 = . . . = σm = 1

∣∣∣σ0 = 1
]

=
1

2

(
n/2 · (n/2− 1) · . . . · (n/2−m+ 1)

(n− 1) · (n− 2) · . . . · · · (n−m)

)
− 1

2

(
(n/2− 1) · (n/2− 2) · . . . · (n/2−m)

(n− 1) · (n− 2) · . . . · (n−m)

)
=

1

2

(
(n/2− 1) · (n/2− 2) · . . . · (n/2−m+ 1)

(n− 1) · (n− 2) · . . . · (n−m)

)
m

=
1

2
· (n/2− 1)!

(n/2−m)!
· (n−m− 1)!

(n− 1)!
m

=
1

2

(
n/2− 1

m− 1

)(
n− 1

m

)−1

.

Lemma 4. Suppose σ0, . . . , σn−1 is a random permutation of n
2 0’s and n

2 1’s and η ≤ 1
λmaxn

. Then

E

n−1∑
i=0

(1− 2σi)

n−1∏
j=i+1

(1− ηλmaxσj)

 ≤ − 1

8
ηλmaxn .

Proof. Denote Yi := (1− 2σi)
(∏n−1

j=i+1 (1− ηλmaxσj)
)

, we expand Yi to obtain

E [Yi] = E [1− 2σi] +

n−i∑
m=1

(−ηλmax)
mE

 ∑
i+1≤i1,...,im≤n−1 distinct

(1− 2σi)

(
m∏
l=1

σil

)
=

n−i−1∑
m=1

(−ηλmax)
m

(
n− i− 1

m

)
E

[
(1− 2σ0)

m∏
l=1

σl

]

=
1

2

n−i−1∑
m=1

(−ηλmax)
m

(
n− i− 1

m

)(
n/2− 1

m− 1

)(
n− 1

m

)−1

,

where the last equality is by Lemma 3. Denote the m-th summand by am, we bound the quotient of
two subsequent terms in the above sum by using the assumption η ≤ 1

λmaxn
, so we get for any m ≥ 1∣∣∣∣am+1

am

∣∣∣∣ ≤ ηλmax
(n− 2m)(n−m− i− 1)

2m(n−m− 1)
≤ 1

2
ηλmaxn ≤ 1

2
,

thus the above sum which alternates signs and begins with a negative term is upper bounded by

1

2
(a1 + a2) ≤ 1

4
a1 = − 1

4
ηλmax

n− i− 1

n− 1
,

27



where we conclude with

E

n−1∑
i=0

(1− 2σi)

n−1∏
j=i+1

(1− ηλmaxσj)

 =

n−1∑
i=0

E [Yi] ≤ − 1

4
ηλmax

n−1∑
i=0

n− i− 1

n− 1

= − 1

8
ηλmax

n(n− 1)

n− 1
= − 1

8
ηλmaxn .

C Equivalence of Optimization Under Conjugate Transformations

Suppose we are given an orthogonal matrix O, an initialization point x0 ∈ Rd and an optimiza-
tion problem F (x) := 1

2x
⊤Ax − b⊤x = 1

n

∑n
i=1 fi(x) where fi(x) = 1

2x
⊤Aix − b⊤

i x. De-
fine the O-conjugate optimization problem as F̃ (x) := 1

2x
⊤Ãx − b̃⊤x = 1

n

∑n
i=1 f̃i(x) where

f̃i(x) =
1
2x

⊤Ãix− b̃⊤
i x, initialized from x̃0, whereby Ãi, b̃i, x̃0 are defined using the following

transformations:
Ãi := OAO⊤ , b̃i := Obi , x̃0 := Ox0 .

In this appendix, we show that the O-conjugate optimization problem is equivalent in terms of the
sub-optimality rate of without-replacement SGD. More formally, we have the following theorem:

Theorem 7. Suppose we have F , F̃ and O as above. Let xt and x̃t denote the iterate after performing
t steps of without-replacement SGD. Then

x̃t = Oxt .

And in particular, we have that
F̃ (x̃t) = F (xt) .

Moreover, if F satisfies Assumption 2 then so does F̃ .

Proof. Using induction, the base case is immediate from the definition of x̃0, and we have

F̃ (x̃0) =
1

2
x⊤
0 O

⊤OAO⊤Ox0 − b⊤O⊤Ox0 = F (x0) .

For the induction step, assume the theorem is true for t. We will show it also holds for t+1. Compute
for all i ∈ [n]

∇xf̃i(x) = ∇x

(
1

2
x⊤OAiO

⊤x− (Obi)
⊤x

)
= OAiO

⊤x−Obi .

Suppose the next function to be processed in iteration t+1 is fi, the update rule of without-replacement
SGD therefore satisfies

x̃t+1 = x̃t−η∇xfi(x̃t) = Oxt−ηOAiO
⊤Oxt+ηObi = O (xt − η(Aixt − bi)) = Oxt+1 .

Plugging the above in F̃ we obtain

F̃ (x̃t+1) =
1

2
x⊤
t+1O

⊤OAO⊤Oxt+1 − b⊤
i O

⊤Oxt+1 = F (xt+1) .

Lastly, it is readily seen that if F satisfies Assumption 2 then so does F̃ since orthogonal matrices are
isometries.

28


