
Table 1: Summary of notation
x ∈ X ⊆ Rdx Design parameters (controlled by system

designer)
y ∈ Y ⊆ Rdy Exogenous parameters (not controlled by

designer)
ξ ∈ Ξ ⊆ Rdξ Behavior of a system (e.g. the simulation

trace)
S : X × Y 7→ ξ Simulator model of the system’s behavior

given design and exogenous parameters
J : Ξ 7→ R Cost function

Jr : X × Y 7→ R Risk-adjusted cost function
px,0(x), py,0(y) Prior probability distributions for design

and exogenous parameters

Summary of notation357

Table 1 provides a summary of notation used in this paper.358

Sampling algorithms359

Algorithm 1 relies on an MCMC subrouting for sampling from probability distributions given a non-360

normalized likelihood. Algorithms 2 and 3 provide examples of gradient-based (Metropolis-adjusted361

Langevin, or MALA) and gradient-free (random-walk Metropolis-Hastings, or RMH), respectively.362

Algorithm 2: Metropolis-adjusted Langevin algorithm (MALA, [16, 21])
Input: Initial x0, steps K, stepsize τ , density p(x).
Output: A sample drawn from p(x).

1 for i = 1, . . . ,K do
2 Sample η ∼ N (0, 2τI) ▷ Gaussian noise
3 xi+1 ← xi + τ∇ log p(xi) + η ▷ Propose next state

4 Paccept ← p(xi+1)e
−||xi−xi+1−τ∇ log p(xi+1)||2/(4τ)

p(xi)e
−||xi+1−xi−τ∇ log p(xi)||2/(4τ)

5 With probability 1−min(1, Paccept):
6 xi+1 ← xi ▷ Accept/reject proposal
7 return xK

Algorithm 3: Random-walk Metropolis-Hastings (RMH, [25])
Input: Initial x0, steps K, stepsize τ , density p(x).
Output: A sample drawn from p(x).

1 for i = 1, . . . ,K do
2 Sample η ∼ N (0, 2τI) ▷ Gaussian noise
3 xi+1 ← xi + η ▷ Propose next state

4 Paccept ← p(xi+1)e
−||xi−xi+1||2/(4τ)

p(xi)e
−||xi+1−xi||2/(4τ)

5 With probability 1−min(1, Paccept):
6 xi+1 ← xi ▷ Accept/reject proposal
7 return xK
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AC Power Flow Problem Definition363

The design parameters x = (Pg, |V |g, Pl, Ql) include the real power injection Pg and AC voltage364

amplitude |V |g at each generator in the network and the real and reactive power draws at each365

load Pl, Ql; all of these parameters are subject to minimum and maximum bounds that we model366

using a uniform prior distribution px,0. The exogenous parameters are the state yi ∈ R of each367

transmission line in the network; the admittance of each line is given by σ(yi)Yi,nom where σ is368

the sigmoid function and Yi,nom is the nominal admittance of the line. The prior distribution py,0369

is an independent Gaussian for each line with a mean chosen so that
∫ 0

−∞ pyi,0(yi)dyi is equal to370

the likelihood of any individual line failing (e.g. as specified by the manufacturer; we use 0.05 in371

our experiments). The simulator S solves the nonlinear AC power flow equations [26] to determine372

the state of the network, and the cost function combines the economic cost of generation cg (a373

quadratic function of Pg, Pl, Ql) with the total violation of constraints on generator capacities, load374

requirements, and voltage amplitudes:375

J =cg + v(Pg, Pg,min, Pg,max) + v(Qg, Qg,min, Qg,max) (4)
+ v(Pl, Pl,min, Pl,max) + v(Ql, Ql,min, Ql,max) (5)
+ v(|V |, |V |min, |V |max) (6)

where v(x, xmin, xmax) = L ([x− xmax]+ + [xmin − x]+), L is a penalty coefficient (L = 100 in376

our experiments), and [◦]+ = max(◦, 0) is a hinge loss.377

Efficient solutions to SCOPF are the subject of active research [27] and an ongoing competition run378

by the U.S. Department of Energy [28]. In addition to its potential economic and environmental379

impact [26], SCOPF is also a useful benchmark problem for 3 reasons: 1) it is highly non-convex,380

2) it has a large space of possible failures, and 3) it can be applied to networks of different sizes381

to test an algorithm’s scalability. We conduct our studies on one network with 14 nodes and 20382

transmission lines (32 design parameters and 20 exogenous parameters) and one with 57 nodes and383

80 lines (98 design parameters, 80 exogenous parameters)384

The simulator S solves the nonlinear AC power flow equations [5, 29] for the AC voltage ampli-385

tudes and phase angles (|V |, θ) and the net real and reactive power injections (P,Q) at each bus386

(the behavior ξ is the concatenation of these values). We follow the 2-step method described in [29]387

where we first solve for the voltage and voltage angles at all buses by solving a system of nonlinear388

equations and then compute the reactive power injection from each generator and the power injec-389

tion from the slack bus (representing the connection to the rest of the grid). The cost function J is a390

combination of the generation cost implied by Pg and a hinge loss penalty for violating constraints391

on acceptable voltages at each bus or exceeding the power generation limits of any generator, as392

specified in Eq. 6. The data for each test case (minimum and maximum voltage and power limits,393

demand characteristics, generator costs, etc.) are loaded from the data files included in the MAT-394

POWER software [30].395

This experiment can be run with the solve scacopf.py script in the396

experiments/power systems directory.397

Search-Evasion Problem Definition398

This problem includes nseek seeker robots and nhide hider robots. Each robot is modeled using399

single-integrator dynamics and tracks a pre-planned trajectory using a proportional controller with400

saturation at a maximum speed chosen to match that of the Robotarium platform [24]. The trajectory401

xi(t) for each robot is represented as a Bezier curve with 5 control points xi,j ,402

xi(t) =

4∑
j=0

Ç
4

j

å
(1− t)4−jtjxi,j

The design parameters are the 2D position of the control points for the trajectories of the seeker403

robots, while the exogenous parameters are the control points for the hider robots. The prior dis-404
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tribution for each set of parameters is uniform over the width and height of the Robotarium arena405

(3.2m× 2m).406

We simulate the behavior of the robots tracking these trajectories for 100 s with a discrete time step407

of 0.1 s (including the effects of velocity saturation that are observed on the physical platform), and408

the cost function is409

J =

nhide∑
i=1

Å fimin
t=t0,...,tn

Å fimin
j=1,...,nseek

∥∥phide,i(t)− pseek,j(t)
∥∥− r

ãã
where r is the sensing range of the seekers (0.5m for the nseek = 2 case and 0.25m for the nseek =410

3 case); fimin(◦) = − 1
b logsumexp(−b ◦) is a smooth relaxation of the element-wise minimum411

function where b controls the degree of smoothing (b = 100 in our experiments); t0, . . . , tn are412

the discrete time steps of the simulation; and phide,i(t) and pseek,j(t) are the (x, y) position of the413

i-th hider and j-th seeker robot at time t, respectively. In plain language, this cost is equal to the414

sum of the minimum distance observed between each hider and the closest seeker over the course of415

the simulation, adjusted for each seeker’s search radius.416

This experiment can be run with the solve hide and seek.py script in the417

experiments/hide and seek directory.418

Formation Control Problem Definition419

This problem includes n drones modeled using double-integrator dynamics, each tracking a pre-420

planned path using a proportional-derivative controller. The path for each drone is represented as a421

Bezier, as in the pursuit-evasion problem.422

The design parameters are the 2D position of the control points for the trajectories, while the ex-423

ogenous parameters include the parameters of a wind field and connection strengths between each424

pair of drones. The wind field is modeled using a 3-layer fully-connected neural network with tanh425

saturation at a maximum speed that induces 0.5N of drag force on each drone.426

We simulate the behavior of the robots tracking these trajectories for 30 s with a discrete time step427

of 0.05 s, and the cost function is428

J = 10||COMT − COMgoal||+max
t

1

λ2(qt) + 10−2

where COM indicates the center of mass of the formation and λ2(qt) is the second eigenvalue of the429

Laplacian of the drone network in configuration qt. The Laplacian L = D − A is defined in terms430

of the adjacency matrix A = {aij}, where aij = sijσ
(
20(R2 − d2ij)

)
, dij is the distance between431

drones i and j, R is the communication radius, and sij is the connection strength (an exogenous432

parameter) between the two drones. The degree matrix D is a diagonal matrix where each entry is433

the sum of the corresponding row of A.434

This experiment can be run with the solve.py script in the experiments/formation2d directory.435

Hyperparameters436

Table 2 includes the hyperparameters used for each environment.437
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Table 2: Hyperparameters used for each environment.
Environment nx ny τ K M Quench rounds
Formation (5 agents) 5 5 10−3 50 5 5
Formation (10 agents) 5 5 10−3 50 5 5
Search-evasion (6 seekers, 10 hiders) 10 10 10−2 100 10 25
Search-evasion (12 seekers, 20 hiders) 10 10 10−2 100 10 25
Power grid (14-bus) 10 10 10−6 for x 100 10 10

10−2 for y
Power grid (57-bus) 10 10 10−6 for x 100 10 10

10−2 for y
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