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B QUANTITATIVE ANALYSIS IN CLASS MAPPING ERRORS

Assessing VLMs’ zero-shot capabilities with close-set vocabularies highlights language ambiguities.
In this work, we rely on off-the-shelf sentence embeddings for the class mapping. To quantify
errors introduced by mapping model outputs to close-set class labels, we conducted an additional
experiment: We sampled 100 raw outputs from LLaVA-1.5 in ADE. A human (one of the authors)
evaluated whether the mapping from raw output to class labels, using sentence embeddings, was
correct. Table[5 Evaluating open-vocabulary models cheaply and automatically remains an open
question. Even human evaluators found 10% of the data difficult to map correctly. We have tried to
ensure fair comparisons between approaches by maintaining consistent mapping.

Options Counts
The mapping is correct. 77

The mapping is incorrect and I can provide the correct one. 13

The mapping is incorrect, but it is hard to find a good one from the close set class labels. 10
Total 100

Table 5: Human studies in quantifying the error in class mapping.

C PERFORMANCE-COST TRADEOFF

Despite the advances in VLMs’ semantic grounding through self-correction, the identified self-
correction trades compute for performance. Fig. [ shows the GPT-40 performance-cost tradeoff in
ADE20k.

Performance-cost curve

-»— VLM feedback (ours)

*— Intrinsic self-correction

Performance (Acc.)

Figure 4: Cost-performance tradeoff of GPT-40 in ADE20k
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D PROMPT TEMPLATES

We show the full prompt templates

. To producing base semantic grounding predictions in Fig[3]
. To enhance previous semantic grounding predictions by taking binary feedback in Fig. [6]

1
2
3. To enhance previous semantic grounding predictions by taking class label feedback in Fig.[7]
4. To produce VLM binary feedback in Fig. 8]

5

. For the GPT-4V and GPT-40 experiments, we provide the class names by appending ‘You
must answer by selecting from the following names: [COCO or ADE20k Vocabulary]’ in
the promp as shown in Fig. |§|and Fig.

User: You are tasked with visual semantic grounding. Your
goal is to determine the class names for objects within a
provided image. Each object in the image is identified by
a unique ID and its location is defined by a precise
bounding box, formatted as: \id{id} \box{[x1l, yl, x2,
y21}, where coordinates specify the box corners. The
inferred class name for each object is denoted as
\class{class name}. Here are the objects: \id{2}
\box{[0.1, 0.2, 0.13, 0.43]}

t your final answer by filling in the placeholder(s) in the
following string at the beginning: "\id{2} \box{[0.1,
0.2, 0.13, 0.43]} \class{your answer here}"

(S A A A

Figure 5: Prompt template to produce the base predictions. The text in red represents variables.

E EXAMPLE DIALOGUE

In Fig.[TT] we demonstrate the iterative interactions between a VLM agent and the Verifier. In Fig.[T2]
we show the effectiveness of VLM binary verification in GPT—4V

F DATASET DETAILS

We use ADE20k and COCO panoptic segmentation dataset to evaluate the semantic grounding
performance in VLMs. We adopt SoM split provided in the prior work |Yang et al.|(2023a)’} ADE20k
is a large-scale dataset with fine-grained segmentation labels. We adopt the variant with 150 classes,
commonly referred to as ADE20k-150. COCO panoptic segmentation is a standard dataset to evaluate
visual grounding. There are 133 fine-grained classes in total, composed of 80 thing classes and 53
stuff classes. Consistent with prior works, SoM (Yang et al.| [2023a), we use the same subset of 100
images for ADE20k and COCO for our analysis. There are 100 images and 488 segmentation masks
in ADE20k SoM split and 101 and 628 segmentation masks in COCO SoM split.

Every region r; in ADE20k and COCO panoptic segmentation dataset is represented with segmentation
mask. We convert them to a more compact representation, i.e. bounding box, and feed them to the
VLMs in the text prompt

https://github.com/microsoft/SoM/tree/main/benchmark#
open-vocab-segmentation-on-coco

“GPT-4V predictions with simplified prompts as of Mar 22, 2024: https://imgur.com/a/nbK3jIlb

*https://github.com/microsoft/SoM/tree/main/benchmark#dataset
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User: You are tasked with visual semantic grounding. Your
goal is to determine the class names for objects within a
provided image and leverage the insights from expert
analyses. The expert analyses offer detailed information
on the inferred class names for each object in the
provided image. Each object in the image is identified by
a unique ID and its location is defined by a precise
bounding box, formatted as: \id{id} \box{[x1l, y1, x2,
y2]}, where coordinates specify the box corners. The
inferred class name for each object is denoted as
\class{class name}. I have labeled each object with its
ID and overlaid its segmentation mask on the image to
clarify the correspondences.

i

rerroroorprold

One expert analyses on the provided image are shown below:

* Analysis 1

Object (s) with inferred class names: \id{2} \box{[0.1, 0.2,
— 0.13, 0.431} \class{wall}

Expert's decision(s) on class names: The inferred class

— name(s) for {incorrect obj id} are incorrect. The

«s idinferred class name(s) for \id{2} are not "wall".
Expert's suggestion: Adjust the class names for objects with
— IDs \id{2}

Examine the image and the expert analyses to determine the
— true class name of the object(s): \id{2} \box{[0.1, 0.2,
0.13, 0.43]}. Put your final answer by filling in the
placeholder(s) in the following string at the beginning:
"\id{2} \box{[0.1, 0.2, 0.13, 0.43]} \class{your answer
here}"

reoed

Figure 6: Prompt template to improve semantic grounding predictions by taking Binary Feedback.
The text in red represents variables.

G IMPLEMENTATION DETAILS

Every experiment throughout this paper is run over three seeds and we report the average scores
except for experiments with proprietary VLMs. All the experiments are run in a single-node machine
with two A40 GPUs. In the experiments with binary or class label feedback, we only ask VLMs to
correct those that are incorrect based on the feedback. Therefore, if the feedback is noisy, e.g. VLM
binary verification, VLMs can possibly decrease the performances. See Fig. [T for example.

Open-source VLMs. We adopt LLaVA-1.5 13b (from https://huggingface.co/
llava-hf/llava—-1.5-13b-hf), ViP-LLaVA 13b (from https://huggingface.co/
llava-hf/vip-llava-13b-hf), and CogVLM (from https://huggingface.co/
THUDM/CogVLM). When perform the VLM forward pass o; = VLM(x,1;,q), we set the tem-
perature to 0.9, top_p to 0.8, max_new_tokens to 1024, and draw five samples per forward pass. We
take the majority vote responses as the final answers o;.

GPT-4V. As suggested in prior work (Yang et al., [2023a;b), GPT-4V exhibits better grounding
ability when the objects are specified by visual prompts rather than text prompts. Therefore, we
adopt GPT-4V & SoM to obtain the base predictions, where we overlay object masks and numeric
identifiers on the images. Furthermore, when using VLMs to produce feedback, we apply SoM to
specify each object. Finally, since GPT-4V has a longer context window compared to open-source
VLMs, we include the class list in the prompt to encourage better alignment between the responses
and the ground truth. All GPT-4V experiments are done over the OpenAl API and we follow
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User: You are tasked with visual semantic grounding. Your
goal is to determine the class names for objects within a
provided image and leverage the insights from expert
analyses. The expert analyses offer detailed information
on the inferred class names for each object in the
provided image. Each object in the image is identified by
a unique ID and its location is defined by a precise
bounding box, formatted as: \id{id} \box{[x1l, y1, x2,
y2]}, where coordinates specify the box corners. The
inferred class name for each object is denoted as
\class{class name}. I have labeled each object with its
ID and overlaid its segmentation mask on the image to
clarify the correspondences.

i

rerroroorprold

One expert analyses on the provided image are shown below:

* Analysis 1

Object (s) with inferred class names: \id{2} \box{[0.1, 0.2,
— 0.13, 0.431} \class{wall}

Expert's decision(s) on class names: The inferred class

— name (s) for \id{2} are incorrect. The inferred class

< name (s) for \i1d{2} are not "wall".

Expert's suggestion: Adjust the class names for objects with
— IDs \id{2} to \class{rail}.

Examine the image and the expert analyses to determine the
— true class name of the object(s): \id{2} \box{[0.1, 0.2,
0.13, 0.43]}. Put your final answer by filling in the
placeholder(s) in the following string at the beginning:
"\id{2} \box{[0.1, 0.2, 0.13, 0.43]} \class{your answer
here}"

reoed

Figure 7: Prompt template to improve semantic grounding predictions by taking Class Label Feedback.
The text in red represents variables.

User: Does this cropped image contain "wall"? Answer yes or
— no.

Figure 8: Prompt template to derive VLM binary feedback. The text in red represents variables.

the exact same evaluation procedures described in Sec. [3.3] where we use the off-the-shelf text
embeddings (Huggingface)) to map the GPT-4V outputs o; to the nearest label from the class label list.

We follow the implementation provided in|Yang et al. (2023a', and set the system prompt as: - For
any marks mentioned in your answer, please highlight them with []. We follow Yang et al.| (2023a)
to set the alpha parameters in SoM as 0.2 and 0.4 in ADE20k and COCO, respectively. We use the
endpoint gpt-4-0125-preview.

GPT-40. Similar to GPT-4V, we empirically found that SoM prompts improve the base predictions in
the semantic grounding tasks in ADE20k. We, therefore, hypothesize that GPT-40 benefits by having
SoM prompts. We use the endpoint gpt-40-2024-05-13

*nttps://github.com/microsoft/SoM/blob/main/gptdv.py
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User: I have labeled a bright numeric ID at the center for
— each visual object in the image. Please enumerate their
— names. You must answer by selecting from the following
— names: [Class list]

Figure 9: Prompt template for GPT-4V and GPT-4o to produce the base predictions. Following prior
work (Yang et al.,[2023a), we include the full class list in the text prompt. The text in red represents
variables.

User: You are tasked with visual semantic grounding. Your
goal is to determine the class names for objects within a
provided image and leverage the insights from expert
analyses. The expert analyses offer detailed information
on the inferred class names for each object in the
provided image. Each object in the image is identified by
a unique ID and its location is defined by a precise
bounding box, formatted as: \id{id} \box{[x1l, y1l, x2,
y21}, where coordinates specify the box corners. The
inferred class name for each object is denoted as
\class{class name}. I have labeled each object with its
ID and overlaid its segmentation mask on the image to
clarify the correspondences.

]

I |

One expert analyses on the provided image are shown below:

* Analysis 1

Object (s) with inferred class names: \id{2} \box{[0.1, 0.2,
— 0.13, 0.43]} \class{wall}

Expert's decision(s) on class names: The inferred class

— name (s) for {incorrect obj id} are incorrect. The

— inferred class name(s) for \id{2} are not "wall".
Expert's suggestion: Adjust the class names for objects with
— IDs \id{2}

Examine the image and the expert analyses to determine the
— true class name of the object(s): \id{2} \box{[0.1, 0.2,
0.13, 0.43]}. Put your final answer by filling in the
placeholder(s) in the following string at the beginning:
"\id{2} \box{[0.1, 0.2, 0.13, 0.43]1} \class{your answer
here} "

rees

You must answer by selecting from the following names: [ADE
Class List]

I

Figure 10: Prompt template for GPT-4V to improve semantic grounding predictions by taking Binary
Feedback. Following prior work|Yang et al. (2023a), we include the full class list in the text prompt.
The text in red represents variables.

H ADDITIONAL RESULTS

H.1 FEEDBACK ACCURACY DOES NOT STRONGLY CORRELATE WITH SEMANTIC GROUNDING
WITH ITERATIVELY SELF-GENERATED FEEDBACK
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User: System: Does this cropped image feature
You are tasked with visual semantic grounding. Your goal is to determine the class names for objects within a provided or contain “toilet”? Answer yes or no.
image. Each object in the image is identified by a unique ID and its location is defined by a precise bounding box,
formatted as: \id{id} \box{[x1, y1, x2, y2]}, where coordinates specify the box corners. The inferred class name for each
object is denoted as \class{class name}. Here are the objects: \id{9} \box{[0.5, 0.333, 0.72, 0.653]}

Put your final answer by filling in the placeholder(s) in the following string at the beginning: "\id{9} \box{[0.5, 0.333, 0.72,
0.653]} \class{vour answer here}"

LLaVA-1.5: After examining the image, the final answer
is \id{9} \box{[0.5, 0.333, 0.72, 0.653]} \class{toilet}

[Feedback] =
Analysis 1
Object(s) with inferred class names: \id{9} \box({[0.5, 0.333, 0.72, 0.653]} \class{toilet}
Expert's decision(s) on class names: The inferred class name(s) for \id{9} are incorrect.
The inferred class name(s) for \id{9} are not "toilet", respectively.

Expert's suggestion: Adjust the class names for objects with IDs \id{9}.

[Start a new conversation, and clear the history]

User:

You are tasked with visual semantic grounding. Your goal is to determine the class names for objects within a provided

image and leverage the insights from expert analyses. The expert analyses offer detailed information on the inferred System: Does this cropped image feature
class names for each object in the provided image. ... or contain “tub”? Answer yes or no.

One expert analyses on the provided image are shown below: [Feedback]

Examine the image and the expert analyses to determine the true class name of the object(s): \id{9}. Put your final
answer by filling in the placeholder(s) in the following string at the beginning: "\id{9} \box{[0.5, 0.333, 0.72, 0.653]}
\class{your_answer_here}"

LLaVA-1.5: After examining the image and the expert analyses, the final answer is id{9} \box{

LLaVA-1.5: [0.5, 0.333, 0.72, 0.653]} \class{tub}. The Verifier:
object is a white bathtub. No, the cropped image does not feature tub.

[Feedback] =
Analysis 1
Object(s) with inferred class names: \id{9} \box{[0.5, 0.333, 0.72, 0.653]} \class{tub}
Expert's decision(s) on class names: The inferred class name(s) for \id{9} are incorrect.
The inferred class name(s) for \id{9} are not “tub", respectively.

Expert's suggestion: Adjust the class names for objects with IDs \id{9}.

Input Image

[Start a new conversation, and clear the history]

User:
You are tasked with visual semantic grounding. Your goal is to determine... [Feedback]

Examine the image and the expert analyses to determine the true class name of the object(s): \id{9}. Put your final
answer by filling in the placeholder(s) in the following string at the beginning: "\id{9} \box{[0.5, 0.333, 0.72, 0.653]}
\class{your_answer_here}"

LLaVA-1.5: After examinina the imace and the expert analvses. the final answer is id{9} \box{

Q.LaVA-LS: 0.5, 0.333, 0.72, 0.653]} \class{Sink}. J

Figure 11: Example dialogue of using iterative binary self-feedback to improve semantic
grounding in VLMs. Initially, the user queries the semantic class of an object within a bounding
box. At the first attempt, the VLM responds without feedback. To refine accuracy, we use the verifier
(the same VLM) to answer a yes/no question for binary self-feedback. Incorporating this feedback,
we prompt the VLM again, leading to a refined prediction. The VLM’s initial guess evolves from
‘toilet’ to ‘bathtub’, and ultimately to ‘sink’ — the correct classification.

Visual prompt LLaVA-1.5 ViP-LLaVA  CogVLM

Intrinsic Self-Correction N/A 47.03 47.13 59.5
Visual marks 55.5 65.2 52.3

VLM Binary Verification Rol crop 64.1 57.6 57
Visual marks + Rol crop 62.1 67.2 529

Table 6: Accuracy of the VLMs binary feedback Accreednack- We find that intrinsic self-correction
often improves accuracy in VLMs with lower base prediction performance due to imbalanced oracle
binary feedback.

In the main paper, we measure feedback in F; score. Another intuitive evaluation metric is feedback
accuracy, denoted as AcCgeegpack and we show the results in Table E We find that VLM binary
verification with a higher Accgeegvack does not necessary lead to a higher grounding accuracy in
the iterative setup in Sec. @ On average, we find that Accpeegpack achieve an 0.11 Spearman rank
correlation coefficient with grounding accuracy at t = 3 as compared to 0.72
achieved by F. We conclude that F is a better evaluation metric for measure feedback quality in
this work.
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Verifier: Predictions of

@ Incorrect objects 2, 3, 4, 5arewrong X

Correct VLM rp

Ground truths Initial predictions Revised predictions
1. Wall-other-merged 1. Knife 1. Knife

2. Knife 2. Pizza 2. Knife

3. Table-merged 3. Cake 3. Sandwich

4. Sandwich 4. Cake 4. Sandwich

5. Sandwich 5. Cake 5. Sandwich

Figure 12: Enhancing semantic grounding in VLMs with self-generated feedback. We use
GPT-4V as the VLM here. From the left to the center figure, GPT-4V takes the SoM-prompted
image Yang et al.| (2023a) as input and struggles to predicts the class names of each object. From the
center to the right figure, GPT-4V takes the same SoM-prompted image and the additional feedback
from the verifier and successfully correct the class names of three out of five objects. The verifier
is another GPT-4V that operates on an altered input image and may produce noisy feedback, e.g.,
misclassify object 1 as correct.

H.2 QUALITATIVE RESULTS
We share additional qualitative results on ADE20k and COCO in Fig.[I3, Fig.[14, Fig.[I5. We also
note that most of the failure cases occur when 1) the VLMs keep their own predictions even though

the feedback refers them as incorrect predictions or 2) when the self-generated feedback is incorrect,
as shown in Fig. [T
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Input Image

Ground truths

t=0 (base predictions)

Initial predictions

1. Person 1. Person
2. Ceiling 2. Window
3. Computer 3. Monitor
4. Window 4. Desk
5. Monitor 5. Desk

Revised predictions

Revised predictions

1. Trash can 1. Trash can
Intrinsic 2. Window 2. Window
Self-Correction 3. Monitor 3. Monitor
4. Desk 4. Monitor
5. Desk 5. Monitor

Revised predictions

1. Person 1. Person

VLM Binary 2. Window 2. Window
Verification (Ours) 3. Monitor 3. Monitor
4. Window 4. Window

5 TV 5. Monitor

Revised predictions

Revised predictions

1. Person 1. Person
Noise-Fi 2. Window 2. Window
olse-rree 3. Monitor 3. Monitor
4. Runway 4. Runway
5. Monitor 5. Monitor

Figure 13: LLaVA-1.5 qualitative results in ADE20k. We visualize the predictions of LLaVA-1.5 at
time steps from O to 2. Intrinsic self-correction fails to identify which predictions are correct/incorrect,
while VLM binary verification and Noise-free feedback provide explicit signal on each region, leading
to a better chance of correction. Fromt = 0 to t = 1, we find that VLM might produce different
results (object 4) even when receiving the same feedback (VLM binary verification and Noise-free).
As explained in Appendix [G, in the VLMs forward pass, we draw multiple sequences and take the
majority vote as the final responses. For the sake of visualization, we put a bright ID on each object
and highlight the incorrect predictions in red and the correct predictions in green.
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Input Image Ground truths t=0 (base predictions) Initial predictions
1. Painting 1. Painting
2. Painting 2. Painting
3. Floor 3. Floor
4. Painting 4. Painting
5. Painting 5. Painting
6. Painting 6. Sculpture
7. Painting 7. Sculpture
8. Ceiling 8. Ceiling
9. Wall 9. Floor
10. Window 10. Door

t=1 Revised predictions Rewsed predictions
Painting Painting
2. Painting 2 Sculpture
3. Floor 3. Floor
inai 4. Painting 4. Painting
Intrinsic 5. Sculpture 5. Sculpture
Self-Correction 6. Sculpture 6. Painting
7. Painting 7. Painting
8. Ceiling 8. Ceiling
9. Painting 9. Sculpture
10. Door 10. Window

Rewsed predictions

Rewsed predictions

Painting Painting
2 Painting 2 Painting
3. Floor 3. Floor
VLM Binary 4.  Painting 4. Painting
o . 5. Painting 5. Painting
Verification (ours) 6.  Sculpture 6. Painting
7. Painting 7. Painting
8. Ceiling 8. Ceiling
9. Floor 9. Floor
10. Window 10. Window

Rewsed predictions

Rewsed predictions

Painting Painting
2 Painting 2 Painting
3. Floor 3. Floor
4. Painting 4. Painting
. 5. Painting 5. Painting
Noise-Free 6. Painting 6. Painting
7. Painting 7. Painting
8. Ceiling 8. Ceiling
9. Floor 9. Floor
10. Window 10. Window

Figure 14: ViP-LLaVA qualitative results in ADE20k. We visualize the predictions of ViP-
LLaVA at time steps from O to 2. Intrinsic self-correction fails to identify which predictions are
correct/incorrect, while VLM binary verification and Noise-free feedback provide explicit signal
on each region, leading to a better chance of correction. Note that we draw multiple samples in the
VLM forward pass, therefore, leading to slightly different results even when the image and query
are the same (See Appendix [G). For the sake of visualization, we put a bright ID on each object and
highlight the incorrect predictions in red and the correct predictions in green.
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1350
1351
1352
1353
1354
1355
1356
1357 Input Image t=0 (base predictions)
1358 1 -
1359 Ground truths 1 Initial predictions
1. Pizza 1. Sandwich
1360 2. Pizza 2. Pizza
1361 3. Pizza 3. Pizza
1362 | 4. Pizza 4. Pizza
5. Table-merged 5. Pizza
1
0 6. Pizza 6. Pizza
1364 7. Pizza 7. Sandwich
1365 8. Fork 8. Pizza
1366 9. Food-other-merged 9. Pizza
1367
1368
1369
1370 .. Revised predictions Revised predictions
1. Pizza 1. Pizza
1371 2. Pizza 2. Pizza
L 3. Pizza 3. Pizza
1372 Intrinsic 4. Sandwich 4. Pizza
1373 Self-Correction 5. Pizza 5. Pizza
6. Pizza 6. Pizza
1374 7. Pizza 7. Pizza
8. Pizza 8. Pizza
1375 9. Pizza 9. Pizza
1376
1377
1378 Revised predictions .. Revised predictions
1379 1. Pizza 1. Pizza
1380 2. Pizza 2. Pizza
. 3. Pizza 3. Pizza
1381 VLM Binary 4. Pizza 4. Pizza
Verification (Ours) 5. Pizza 5. Pizza
1382 6. Pizza 6. Pizza
7. Pizza 7. Pizza
1383 8. Food-other-merged 8. Food-other-merged
1384 9. Pizza 9. Pizza
1385
1386 :
1387 . Revised predictions Revised predictions
1. Pizza 1. Pizza
1388 2. Pizza 2. Pizza
1389 3. Pizza 3. Pizza
. 4. Pizza 4. Pizza
1390 Noise-Free 5. Pizza 5. Pizza
6. Pizza 6. Pizza
1391 7. Pizza 7. Pizza
8. Food-other-merged 8. Food-other-merged
1392 9. Pizza 9. Pizza
1393
1394
1995 Figure 15: CogVLM qualitative results in COCO. We visualize the predictions of CogVLM at time
1396

steps from 0 to 2. For the sake of visualization, we put a bright ID on each object and highlight the

1397 incorrect predictions in red and the correct predictions in green.
1398

1399
1400
1401
1402
1403
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Input Image t=0 (base predictions)
= |

Ground truths Initial predictions
1. Table-merged 1. Dining table

2. Wine glass 2. Wind glass

3. Light 3. Light

. 4. Laptop 4. Laptop

5. Wall-other-merged 5. Light

6. Paper-merged 6. Cell phone

Revised predictions Revised predictions

1. Laptop 1. Laptop
Intrinsic 2. Wine glass 2. Wine glass
Self-Correction 3. Light 3. Light
4. Laptop 4. Laptop
5. Light 5. Light
6. Cell phone 6. Cell phone

Revised predictions Revised predictions

. 1. Table-merged 1. Cabinet-merged
VLM Binary 2. Wine glass 2. Wine glass
Verification (Ours) 3. Light 3. Light
4. Laptop 4. Laptop
5. Light 5. Light
6. Laptop 6. Laptop

Revised predictions Revised predictions

1. Laptop 1. Laptop

2. Wine glass 2. Wine glass
Noise-Free 3. Light 3. Light

4. Laptop 4. Laptop

5. Laptop 5. Laptop

6. Laptop 6. Keyboard

Figure 16: [Failure case study] LLaVA-1.5 qualitative results in COCO. All three approaches
cannot fix the errors in the initial predictions. For VLM binary verification, from t = 1 to t = 2, the
predictions changes from correct (table-merged) to incorrect (cabinet-merged) since the VLM verifier
is not perfect and, therefore, providing misleading feedback. Even with the noise-free feedback,
LLaVA-1.5 struggle to adjust the predictions. For the sake of visualization, we put a bright ID on
each object and highlight the incorrect predictions in red and the correct predictions in green.
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