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8 Proofs of Technical Analysis606

In this section, we provide formal proofs to our technical analysis in detail. For better legibility, we607
first recall the equations and results that we need for our proofs.608

∀ω ∈ Ω, max
π∈Π

ϕ(V (π)), (3)

where Ω is the set of valid preference weights sorted in descending order, V (π) = Eπ[
∑∞

t=0 γ
trt]609

is the expected discounted return, and ϕ(J) =
∑N

i=1 wiV(i) with V(1) ≤ · · · ≤ V(n).610

Lemma 8.1. For any MOMDP with linear preferences over objectives, the CCS contains an optimal611
policy for any linear combination of the objectives.612

Proof. Let S be the state space, A be the action space, and r : S × A → rN be the vector-valued613
reward function, where N is the number of objectives. Consider a linear preference vector ω ∈ Ω,614
where Ω = {ω ∈ rN :

∑N
i=1 wi = 1, wi ≥ 0}. For any policy π, the expected return under a615

preference ω is given by ω
(
Eπ

[∑∞
t=1 γ

t−1r(st, at) | s0 = s
] )

. Thus, the optimal policy π∗
ω for616

preference ω satisfies617

π∗
ω = argmax

π
ωTV π(s), ∀s ∈ S.

By the definition of the CCS, for any ω ∈ Ω, there exists a policy πCCS ∈ CCS such that618

ωTV πCCS(s) ≥ ωTV π(s), ∀π ∈ Π,∀s ∈ S.

To prove the proposition, let’s recall the Convex Hull Value Iteration (CHVI) algorithm (Barrett &619
Narayanan, 2008). Note that the CHVI algorithm iteratively updates the value function for each620
state by considering the convex hull of the achievable rewards via621

V (s) = max
a∈A

∑
s′∈S

P (s′ | s, a)CH (r(s, a) + γV (s′)) ,

where CH(·) denotes the convex hull operation. This update rule ensures that the value function622
V (s) lies within the convex hull of the achievable rewards and the CH(·) achievable value functions623
V π(s) | π ∈ Π forms the CCS. Therefore, for any linear preference vector ω, there must exist at624
least a policy πCSS such that625

ωTV πCCS(s) = max
π∈Π

ωTV π(s), ∀s ∈ S.

The resulting policies form the CSS, which are sufficient to cover all linear preferences ω ∈ Ω.626
Thus, for any linear combination of objectives, the optimal policy can be found within the CSS,627
confirming its sufficiency and optimality.628

While GGF introduces non-linear fairness objectives, its piecewise linearity and concavity allow629
representation as a maximum of linear functions, which ensures that solutions lie within the CCS.630
The following proposition establishes the sufficiency of the CCS in representing optimal policies for631
ϕGGF preference weights.632

Proposition 8.1. For any s ∈ S in an MOMDP and a piecewise-linear concave welfare function633
ϕGGF (e.g., GGF) that can be represented as, ϕGGF(V

π(s)) = minσ∈SN
{
ω⊤

σ V
π(s)

}
, there exists634

a policy π∗ ∈ CCS such that:635

ϕGGF(V
π∗
(s)) ≥ ϕGGF(V

π(s)) ∀π ∈ Π.
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Proof. Policies π∗ ∈ CCS satisfies636

∀ω, ∃π∗ ∈ CCS, ∀π ∈ Π : ω⊤V π∗
(s) ≥ ω⊤V π(s).

GGF can be represented as637

ϕGGF(V
π(s)) = min

σ∈SN

{
ω⊤

σ V
π(s)

}
.

and that the set SN consists of the vectors {ω1,ω2, ...,ωN !}. Therefore, for any policy π we can638
write639

ϕGGF(V
π(s)) = min

{
ω⊤

1 V
π(s),ω⊤

2 V
π(s), . . . ,ω⊤

N !V
π(s)

}
.

Given π∗ ∈ CCS, ∀π ∈ Π satisfies640

ω⊤
i V

π∗
(s) ≥ ω⊤

i V
π(s), for all i = 1, 2, ..., N !,

it immediately follows that641

min
1≤i≤N !

ω⊤
i V

π∗
(s) ≥ min

1≤i≤N !
ω⊤

i V
π(s).

Thus, we conclude that,642

∀π ∈ Π, ∃π∗ ∈ CCS, ϕGGF(V
π∗
(s)) ≥ ϕGGF(V

π(s)).

643

Fairness of Non-Stationary Policies. In fair MORL, learning non-stationary policies can be par-644
ticularly beneficial, as they leverage historical information to make more informed decisions and645
adapt over time (see Section 4).646

Proposition 8.2. Let the reward r be nonnegative, and ΠS and ΠNS be the sets of stationary and647
non-stationary policies, respectively. For any s ∈ S in an MOMDP and a given ϕGGF, there exists a648
non-stationary policy πNS ∈ ΠNS that achieves a higher welfare score than any stationary policy649
πS ∈ ΠS , i.e.,650

∃πNS ∈ ΠNS : ϕGGF(V
πNS(s)) ≥ max

πS∈ΠS
ϕGGF(V

πS(s))

Proof. Let the state value function be defined by:651

V (s) = E
[
Gt

∣∣∣ st = s
]

where the return Gt is given by:652

Gt =

∞∑
k=0

γk rt+k+1.

Suppose an episode begins at time t and terminates at time Tend. For any intermediate time T with653
t ≤ T < Tend, we can decompose the return into two parts:654

Gt = rt+1 + γrt+2 + · · ·+ γT−t−1rT︸ ︷︷ ︸
G

(1)
t

+ γT−t (rT+1 + γrT+2 + . . . )︸ ︷︷ ︸
G

(2)
t

.

With above decomposition, We define value function as two parts:655

Early-period value function: V1(s) = E
[
G

(1)
t

∣∣∣ st = s
]
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656

Late-period value function: V2(s) = E
[
G

(2)
t

∣∣∣ sT = s
]

so that657

V (s) = V1(s) + γT−tV2(s)

At time T , stationary policy πS selects action solely based on late period value function V2(s), while658
non-stationary policy has access to both early V1(s) and late period value function V2(s) and can659
condition its action selection on the combined information given by two value functions.660
Under a stationary policy, The total value can be presented as:661

V πS (s) = V1(s) + γT−t argmax
V2(s)

{ϕGGF[V2(s)]}

In contrast, under a non-stationary policy the total value is given by662

V πNS (s) = argmax
V1(s),V2(s)

{ϕGGF[V1(s) + γT−tV2(s)]}

therefore:663

∃πNS ∈ ΠNS : ϕGGF(V
πNS(s)) ≥ max

πS∈ΠS
ϕGGF(V

πS(s))

This completes the proof.664

Optimality of Stochastic Policies for Fairness Unlike the single-objective scenario, in MORL, a665
deterministic policy may not be optimal. A fairer solution can often be achieved through random-666
ization.667

Proposition 8.3. Let ΠST be the set of stochastic policies and ΠD be the set of deterministic policies.668
For an MOMDP M and a concave welfare function such as ϕGGF, there exists a stochastic policy669
πST ∈ ΠST such that:670

ϕGGF(V
πST) ≥ max

πD∈ΠD
ϕGGF(V

πD).

Proof. The key idea here is that a stochastic policy can represent a convex combination of determin-671
istic policies for any concave welfare function ϕGGF Busa-Fekete et al. (2017). Hence, stochastic672
policies can achieve outcomes in the objective space that are unattainable by deterministic policies.673
Specifically, for ϕGGF, a deterministic policy πD yields a fixed utility vector V πD while a stochastic674
policy πST can yield a distribution over utility vectors. Thanks to concavity of ϕGGF, which makes675
our problem in 2 convex optimization and Jensen’s inequality (Jensen, 1967), we obtain676

ϕGGF (Eτ∼π[V
πst ]) ≥ Eτ∼π [ϕGGF(V

πst)] . (4)

Since ϕGGF is a piecewise linear concave function, there exists a stochastic policy πst that is a convex677
combination of deterministic policies such that678

Eτ∼π[ϕ(V
πst)] ≥ max

πd∈ΠD
ϕ(V πd). (5)

By combining (4) and (5), we can obtain679

ϕ(Eτ∼π[V
πst ]) ≥ Eτ∼π[ϕ(V

πst)] ≥ max
πd∈ΠD

ϕ(ϕπd)].

This completes the proof.680

The optimality of stochastic policies implies that restricting the search for fair solutions to deter-681
ministic policies is insufficient. Stochastic policies offer a broader range of solutions and may better682
capture the trade-offs among multiple objectives, enhancing the overall fairness of the policy.683
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9 Fairness684

In a fair single-policy setting, where the goal is to learn a single policy treating all users equally,685
three fairness principles, efficiency, equity, and impartiality, are defined below.686

Definition 9.1. Efficiency states that among two feasible solutions, if one solution is (weakly or687
strictly) preferred by all users, then it should be preferred to the other one, e.g., u ≻ u′ ⇒ ϕ(u) >688
ϕ(u′), where ϕ(u) is the scalar utility function that specifies the value of a solution.689

Intuitively, the efficiency property specifies that given all else equal, one prefers to increase a user’s690
utility. In the MORL setting, the efficiency property simply means Pareto dominance. More specifi-691
cally, a solution is considered efficient if it is not dominated by any other solution for all objectives.692

Next, we discuss the significance of the equity property, which is a stronger property than efficiency693
and is often associated with distributive justice, as it refers to the fair distribution of resources or op-694
portunities. This property ensures that a fair solution follows the Pigou-Dalton principle (Moulin,695
2004), which states the transferring of rewards from the more advantaged users to the less advan-696
taged users.697

Definition 9.2. A solution satisfies the Pigou-Dalton principle if for all u, u′ equal except for698
ui = u′

i + δ and uj = u′
j − δ where u′

i − u′
j > δ > 0, ϕ(u) > ϕ(u′).699

Finally, we discuss the impartiality property. This property is rooted in the principle of “equal700
treatment of equals”, which states that individuals sharing similar characteristics should be treated701
similarly.702

Definition 9.3. In a system, individuals with similar characteristics should be treated similarly,703
i.e., the solution should be independent of the order of its arguments ϕ(u) = ϕ(uσ), where σ is a704
permutation and uσ is the vector obtained from vector u permuted by σ.705

9.1 Welfare Function706

A welfare function, denoted as ϕ : RD → R, aggregates the utilities of all users (or objectives) and707
offers a metric of the overall desirability of a solution for the entire group, where ω represents the set708
of aggregation weights for all objectives. One well-established welfare function used in this paper is709
the generalized Gini welfare function. The generalized Gini welfare function constitutes a specific710
instance of the ordered weighted average (OWA)(Yager, 1988). It is a renowned welfare function711
employed in multi-objective optimization (Weng, 2019; Siddique et al., 2020; Zimmer et al., 2021;712
Do & Usunier, 2022; Yu et al., 2023a;b; Siddique et al., 2023), initially devised to quantify income713
distribution inequality in economics (Weymark, 1981). The generalized Gini welfare function is714
defined as follows:715

Gω(u) =

N∑
i=1

ωσ(i)u = wT
σu , (6)

where σ ∈ SN , which depends on ω, is the permutation that sorts the components of ω and ωσ =716
(ωσ(1), . . . , ωσ(N)). Equation (6) holds as the weights are rearranged based on the utility vector,717
assigning the largest weight to the smallest component of u, the second-largest weight to the second-718
smallest component of u, and so forth.719

The generalized Gini welfare function satisfies the three fairness properties. Due to the positive720
weights, it is monotonically related to Pareto dominance, fulfilling the efficiency property. More-721
over, the reordering of the components in the welfare function makes it symmetric with respect to its722
components, satisfying the impartiality property. Lastly, as the generalized Gini weights are positive723
and decreasing, it is Schur-concave, meeting the equity property.724

Among numerous welfare functions, the generalized Gini welfare function possesses several favor-725
able properties, namely, simplicity as it is a weighted sum in the Lorenz space (Chakravarty, 1990;726
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Perny et al., 2013), well-understood properties axiomatized by Weymark (1981), and generality.727
These favorable properties make it a suitable choice for addressing the challenge of finding fair so-728
lutions. Moreover, it is notably a concave function, which will make the solution to our problem729
easier.730

To emphasize the versatility of the generalized Gini welfare function, various special cases can be731
derived by adjusting its weights accordingly. These cases include:732

• Maxmin fairness: Setting ω1 = 1 and ωi = 0 for i = 2, · · · ,K corresponds to the maxmin733
notion of fairness (Rawls, 1971).734

• Regularized maxmin fairness: Assigning ω1 = 1 and ωi = ε for i = 2, · · · ,K aligns with the735
regularized maxmin notion of fairness.736

• Utilitarian approach: Setting ωi = 1/K represents the utilitarian approach.737
• Leximin fairness: If the ratio ωj/ωj+1 tends toward infinity, it corresponds to the leximin notion738

of fairness (Rawls, 1971; Kurokawa et al., 2015).739

10 Descriptions of Environments740

10.1 Species Conservation741

In the field of ecology, the challenge of conserving interdependent endangered species is paramount.742
The simulation environment focuses on the balance required in the conservation of two such species:743
the sea otter and the northern abalone, which are currently endangered. The predation relationship744
between these species, with sea otters feeding on abalones, presents a unique challenge that re-745
quires careful consideration of fairness and equity in conservation efforts. Based on the framework746
in (Chadès et al., 2012), we define the state space as the current population numbers of the sea otters747
and northern abalones. The action space consists of: introducing sea otters, enforcing antipoach-748
ing measures, controlling sea otter populations, implementing a combination of half-antipoaching749
and half-controlled sea otters, or taking no action. Each action carries significant ecological conse-750
quences; for instance, while the reintroduction of sea otters is essential for maintaining the abalone751
population, it must be carefully managed to prevent the abalone’s extinction. Conversely, overlook-752
ing other management actions could lead to the demise of either species. The transition function753
employed in our model accounts for population dynamics, including external threats such as poach-754
ing and oil spills. Since our objective is to optimize the population densities of both species, we755
define the reward function as the densities of both species, i.e., N = 2.756

10.2 Resource Gathering757

In this scenario of resource gathering, we consider a 5× 5 grid world domain inspired from (Barrett758
& Narayanan, 2008). This domain presents a unique challenge centered around the acquisition of759
three types of resources: gold, gems, and stones, thereby establishing a multi-objective framework760
with K = 3. The autonomous agent is positioned within this grid world, and resources are dis-761
tributed randomly across various locations. As a resource is collected by the agent, it is immediately762
regenerated at a new random location within the grid, ensuring a perpetual availability of resources.763
In this problem, the state is characterized by the agent’s current location on the grid and a cumula-764
tive count of each type of resource collected over the course of the agent’s trajectory. The agent can765
navigate the grid through actions aligned with the four cardinal directions: up, down, left, and right,766
facilitating movement across the grid. To add complexity to the resource management challenge,767
resources are assigned differing values, reflecting their relative importance. Specifically, gold and768
gems are attributed a value of 1, underscoring their significance, whereas stones are considered less769
valuable, with a value of 0.4. This valuation leads to an intentionally uneven distribution of resources770
within the grid, comprising two stones, one gold, and one gem. This configuration is designed to771
simulate a scenario where the agent must not only maximize the collection of resources but also772
achieve a balanced acquisition across the different types of resources. The overarching objective773
for the agent in this environment is dual: to maximize the total value of resources collected while774
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ensuring an equitable collection across the various resource types. Achieving this balance is crucial775
for optimizing the agent’s resource-gathering strategy, enhancing its overall utility and adaptability776
within the dynamic grid world. This nuanced approach to resource management in a simulated en-777
vironment offers insights into the complexities of resource distribution and acquisition strategies,778
contributing to the broader discourse on multi-objective optimization in dynamic settings.779

10.3 Multi-Product Web Advertising780

We now consider the multi-product web advertising (MWP) problem, where an online store of-781
fers N distinct types of products for sale and an intelligent agent makes strategic decisions at each782
timestep about which advertisement to display: a product-specific advertisement for one of the prod-783
ucts i ∈ [0, ..., N − 1], or a general advertisement that is not tailored to any specific product. The784
effectiveness of an advertisement is contingent upon its relevance to the customer’s recent web ac-785
tivity, with appropriate advertisements significantly increasing the likelihood of a purchase, whereas786
inappropriate ones may deter the customer altogether. The state space of this problem is defined by787
the number of products available in the store, augmented by the number of visits, purchases, and788
exits. A visit state indicates a customer’s interest in a particular product, a purchase state signifies789
the completion of a transaction, and an exit state occurs when a customer leaves the website without790
making a purchase. The action space is expanded to n+1 actions, where actions 0 through n corre-791
spond to displaying advertisements for specific products, and action n represents the option to show792
a general advertisement that does not target any specific product in the inventory. This additional793
action introduces an additional layer of complexity, as the agent must decide the optimal moment to794
transition between states. The reward function is designed such that the agent receives a reward of 1795
in the ith dimension of the reward vector if a product of type i is sold after the display of its adver-796
tisement. The primary objective of this problem is to maximize the aggregate returns from product797
sales while striving for an equitable distribution of sales across the different product types. This goal798
underscores the need for fair solutions that not only optimize overall profitability but also ensure a799
balanced representation of product sales, thereby addressing the dual challenges of efficiency and800
equity in this domain.801

11 Hyperparameters802

To ensure reproducibility, we have meticulously documented all hyperparameters across different803
environments in Tables 1,2,3, and 4. We utilize the well-known high-quality MORL baselines1 for804
implementing baseline algorithms. In these tables, we present the hyperparameters corresponding to805
Envelope, GPI, PCN, and our proposed algorithms in three distinct environments, namely, species806
conservation (SC), resource gathering (RC), and multi-web product advertising (MWP).807

1https://github.com/LucasAlegre/morl-baselines
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Table 1: Set of hyperparameters used for training Envelope.

Hyperparameter SC RC MWP

Discount factor (γ) 0.99 0.99 0.99
Learning rate (α) 0.0001 0.0005 0.005
Batch size 64 64 64
Hidden Layers 256 x 256 x 256 x 256 256 x 256 x 256 x 256 256 x 256 x 256 x 256
Buffer Size 50000 50000 50000
Initial Epsilon 1.0 1.0 1.0
Final Epsilon 0.05 0.05 0.05
Epsilon Decay Steps 50000 50000 50000
Learning Starts 100 100 100
Gradient Updates 1 1 5
Max Gradient Norm 1.0 1.0 1.0
Ω Distribution Gaussian Gaussian Gaussian
Tau 0.5 0.5 0.5

Table 2: Set of hyperparameters used for training our proposed methods.

Hyperparameter SC RC MWP

Discount factor (γ) 0.99 0.99 0.99
Learning rate (α) 0.0001 0.0005 0.005
Batch size 64 64 64
Hidden Layers 256 x 256 x 256 x 256 256 x 256 x 256 x 256 256 x 256 x 256 x 256
Buffer Size 50000 50000 50000
Initial Epsilon 1.0 1.0 1.0
Final Epsilon 0.05 0.05 0.05
Epsilon Decay Steps 50000 50000 50000
Learning Starts 100 100 100
Gradient Updates 1 1 5
Max Gradient Norm 1.0 1.0 1.0
Ω Distribution Gaussian Gaussian Gaussian
Tau 0.5 0.5 0.5

Table 3: Set of hyperparameters used for training GPI.

Hyperparameter SC RC MWP

Discount factor (γ) 0.99 0.99 0.99
Learning rate (α) 0.0001 0.0005 0.005
Batch size 128 128 256
Hidden Layers 256 x 256 x 256 x 256 256 x 256 x 256 x 256 256 x 256 x 256 x 256
Num Networks 2 2 2
Buffer Size 50000 50000 50000
Initial Epsilon 1.0 1.0 1.0
Final Epsilon 0.05 0.05 0.05
Epsilon Decay Steps 50000 50000 50000
Learning Starts 100 100 100
Gradient Updates 1 1 5
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Table 4: Set of hyperparameters used for training PCN.

Hyperparameter SC RC MWP

Discount factor (γ) 0.99 0.99 0.99
Learning rate (α) 0.0001 0.0001 0.0005
Batch size 128 256 128
Hidden Layers 64 x 64 64 x 64 64 x 64
Desired Return [1, 1] [200, 200, 200] [100, 100, 100, 100, 100]
Buffer Size 500000 500000 1000000
Max Horizon 5000 1000 1000
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