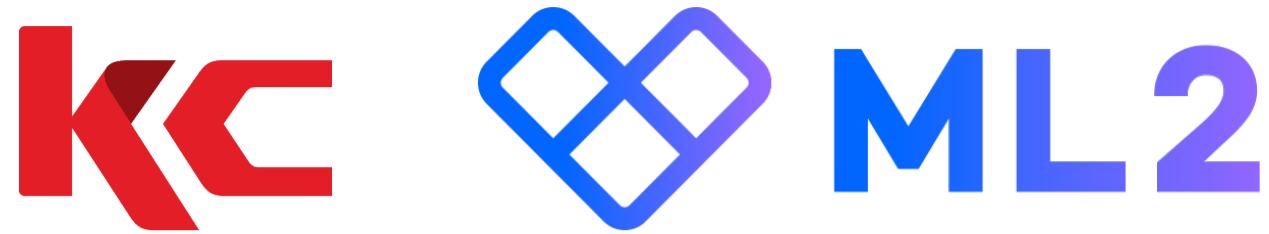


Group Convolutional Self-Attention for Roto-Translation Equivariance in ViTs

Sheir A. Zaheer, Alexander C. Holston, Chan Y. Park
KC Machine Learning Lab, Seoul, Rep. of Korea



Roto-translation equivariant self-attention, w/o position encoding, using convolutional patch embedding and convolutional self-attention.

- G-CSA eliminates the need for relative position encoding
 - by preserving positional information like in CNNs
 - while retaining transformers' global context capture
- ViTs with G-CSA show superior performance to RPE-based approaches with significantly fewer parameters

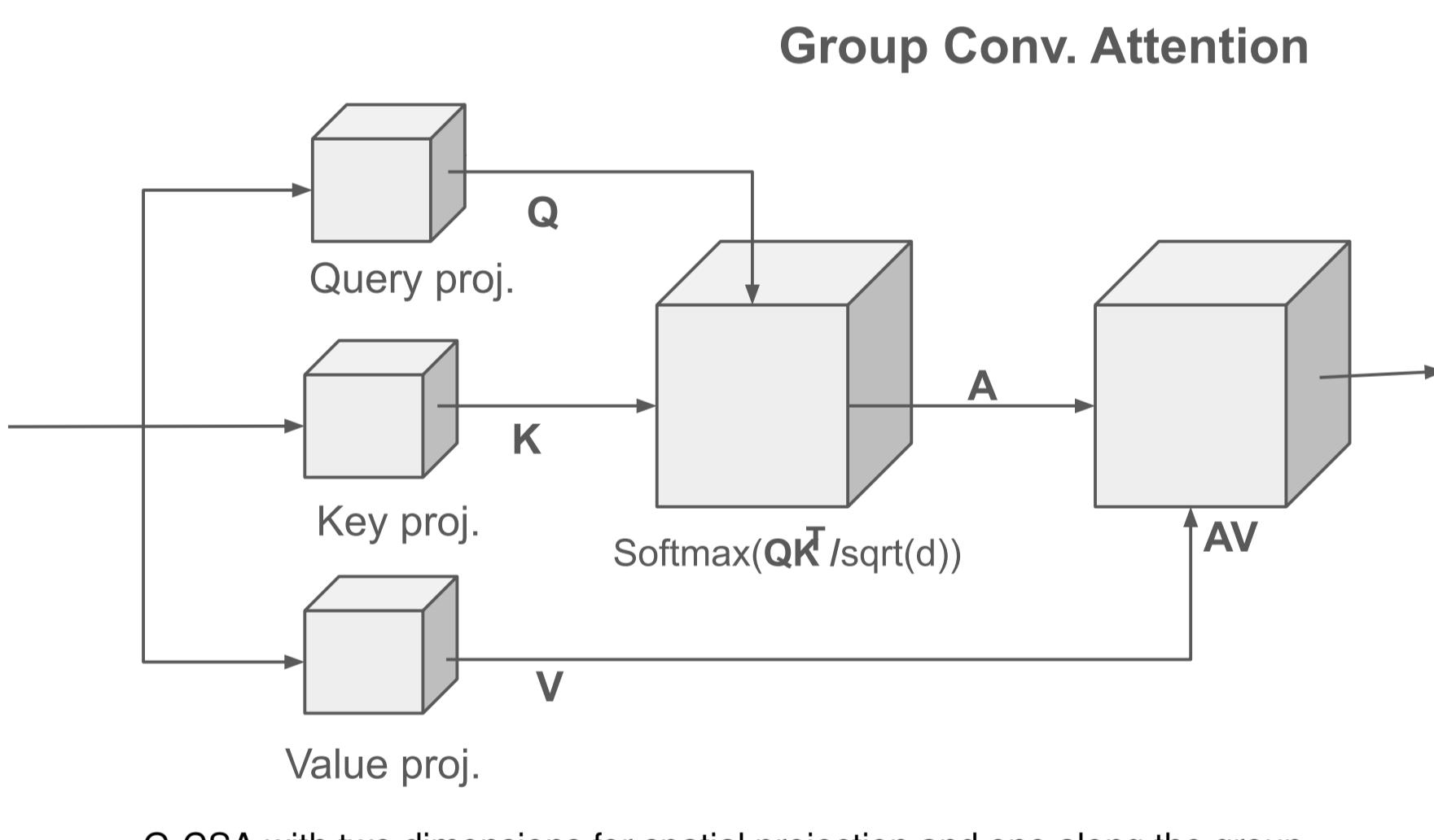
Lifting Layer

The lifting layer takes an input signal $f : \mathbb{R}^2 \rightarrow \mathbb{R}^C$ (e.g., an image with C channels) and lifts it to a spatial location associated with multiple transformations under group G . We define the lifting over position x and the discrete orientations θ associated with the discrete rotation group, \mathbb{Z}_N :

$$F(x, g) = [f * k](x, g) = \sum_C \sum_{x' \in \mathbb{Z}^2} f(x') k_C(g^{-1}(x' - x)), \quad (1)$$

Group Convolutional Self-Attention

G-CSA exploits the inherent discrete translation equivariance of convolutions and doesn't need RPE.



The *query*, *key*, and *value* mappings in this lifted space are computed using:

$$\begin{aligned} Q(x, g) &= W_Q * F(x, g), \quad K(x, g) = W_K * F(x, g), \\ V(x, g) &= W_V * F(x, g), \end{aligned} \quad (2)$$

where F represents the feature at position x and transformations g .

To implement G-CSA, we modify typical self-attention by incorporating group structure:

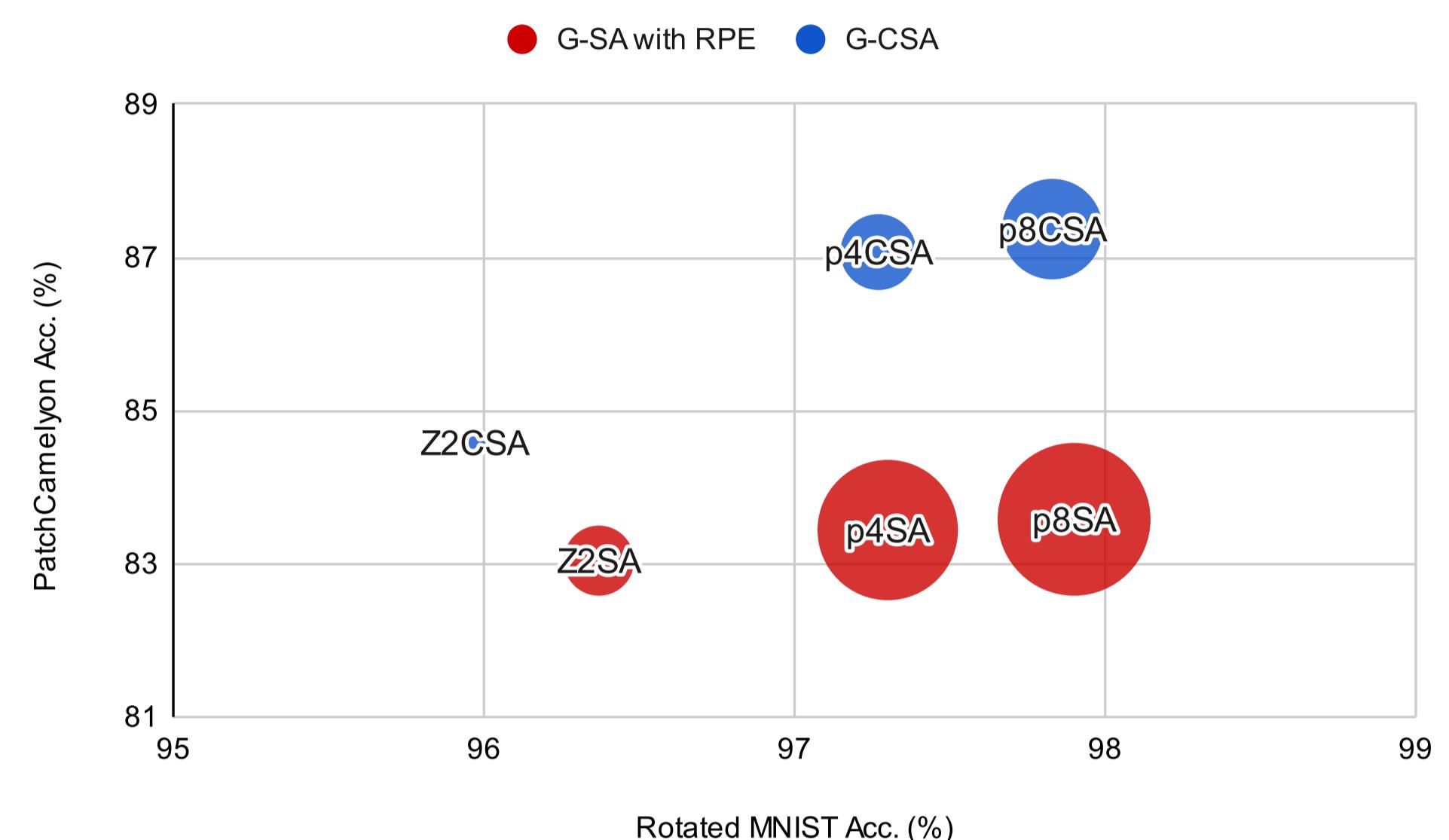
$$G\text{-CSA}(x, g) = \sum_{y \in \mathcal{N}(x)} \sum_{h \in G} A(x, g; y, h) V(y, h) \quad (3)$$

The attention weights A are calculated as:

$$A(x, g; y, h) = \frac{\exp\left(\frac{\langle Q(x, g), K(y, h) \rangle}{\sqrt{d}}\right)}{\sum_{y', h'} \exp\left(\frac{\langle Q(x, g), K(y', h') \rangle}{\sqrt{d}}\right)} \quad (4)$$

This ensures that attention operates over both spatial and group dimensions while preserving translation equivariance via convolution.

Performance and Complexity Comparison



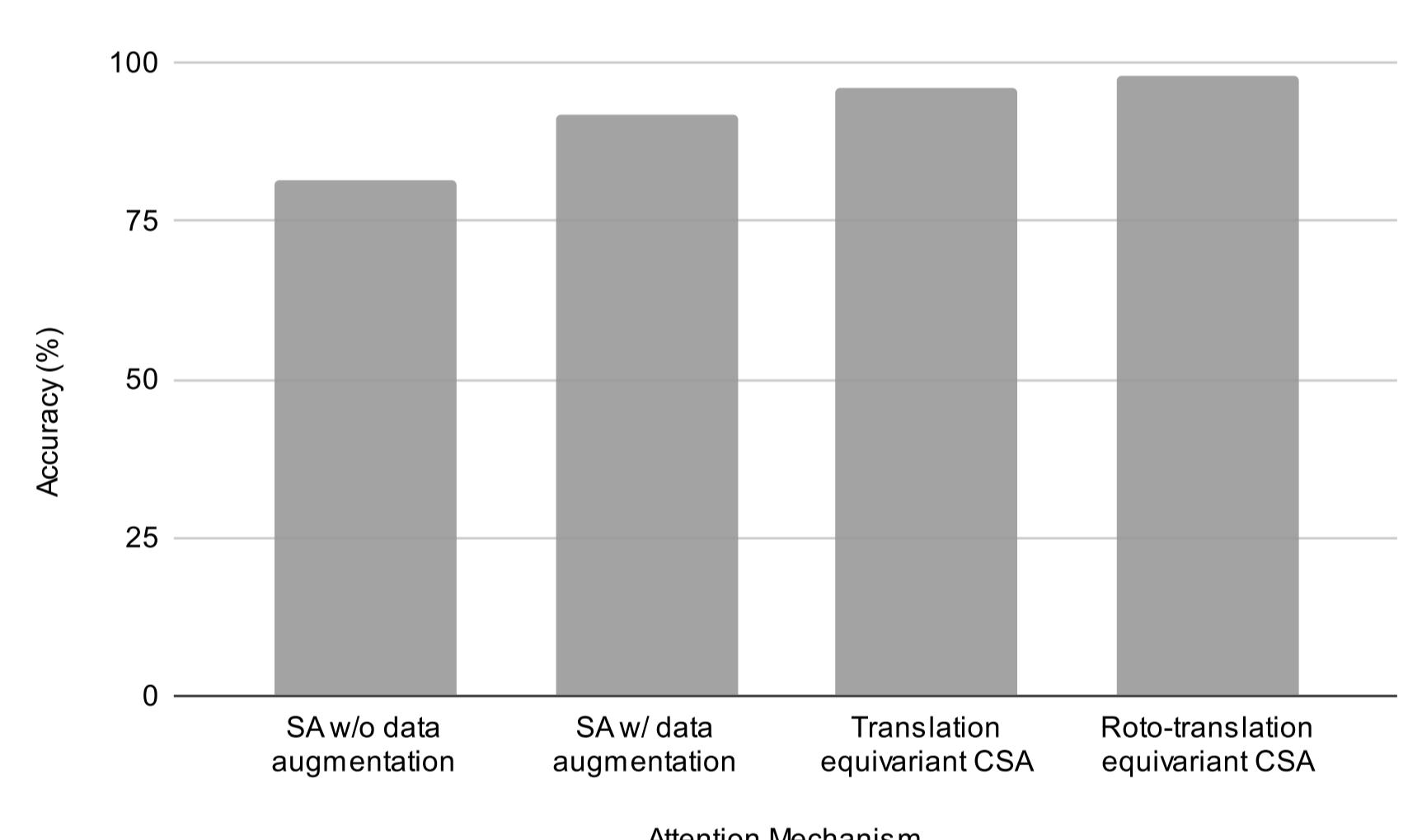
Accuracy comparison of on Rotated MNIST and PatchCamelyon. Sizes of the bubbles are proportional to model complexity (FLOPs)

Average inference runtime[†]

- 91 ms for G-CSA
- 144 ms for G-SA with RPE.

[†]RTX3090 GPU, batch of 32 '96 × 96' images

Equivariance vs Augmentation



Future Work

- Benchmarking against roto-translation equivariant CNNs.
- Extending G-CSA from discrete $SE(2, N)$ -equivariance to full $E(2)$ -equivariance.
- Scaling to larger ViTs for larger datasets, e.g. Imagenet.
- Application to downstream tasks like object detection and image segmentation.

References

Alexey Dosovitskiy et al. (2021) "An image is worth 16x16 words: Transformers for image recognition at scale." International Conference on Learning Representations

Taco Cohen, Max Welling (2016), "Group equivariant convolutional networks." *International conference on machine learning*

David W. Romero, Jean-Baptiste Cordonnier (2021), "Group Equivariant Stand-Alone Self-Attention For Vision." *International Conference on Learning Representations*

Haiping Wu et al. (2021), "Cvt: Introducing convolutions to vision transformers." *IEEE/CVF international conference on computer vision*