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APPENDIX

In this supplementary material, we provide more details about the preliminaries, related datasets,
baselines, additional experimental results, and further ethical discussions about how our method
could contribute to the community, described in detail as follows.

The code will be released at https://github.com/anonymous/DEFEND _ICLR _3874.

A PRELIMINARIES ON DIFFUSION MODELS

Diffusion Models have achieved remarkable success in image synthesis tasks (Ho et al., [2020;
Dhariwal & Nichol, |2021; Rombach et al.}|2022). The main idea of diffusion models is inspired by
the non-equilibrium thermodynamics proposed in (Sohl-Dickstein et al.,[20135)). Typically, diffusion
models define two Markov chains of diffusion steps that first slowly add Gaussian noise to clean
images, until disturbing them into isotropic Gaussian noise (termed diffusion or forward process);
then they learn to reverse the diffusion process to generate clean samples from the noise (termed
denoising or reverse process).

During the diffusion (or forward) process, a clean image sample X is gradually corrupted by adding

Gaussian noise in sequential stepst = 1,...,7T following a Markov chain process that can be defined
as follows:
« oy
a(xelxe—1) = N (%3 —xi1, (1= ——T)), (12)
Q-1 Q-1

in which x; is the noisy image at ¢-th time step, and «; is the predefined noise schedule, with T'
denotes the total steps. We can obtain x; from X, according to the properties of the Markov process
and Gaussian distribution, directly by:

q(xt|x0) = N (x5 /arxg, (1 — ap)I)). (13)

In the denoising (or reverse) process, the noisy image (or pure Gaussian distribution) is gradually
denoised to obtain a clean image that is also a Markov chain and could be defined as:

Po(xe—1|xt) = N(xe—1; po (X, 1), B (x4, 1)), (14)

where the pg(x¢—1|x¢) is parameterized by neural networks to approximate the underlying data
distribution ¢(x;_1|x;). During training, a neural network ey is optimized to predict the added noise,
given the noisy image x; and corresponding time step ¢, the optimization target is a sampling and
denoising process that can be defined as follows:

Lo(x0,t) = |le — eg(Vayxo + VI — aze, t)||%, (15)
where ¢ ~ N(0,I).

B MORE DETAILS ABOUT THE BASELINES

We present a brief description of state-of-the-art baselines for our comparisons in Sec. 4.1} Here,
for better comparison, we summarize more details of each method of detector type, modality,
and dependency, as shown in Tab. E and described below: 1) ResNet-50 (He et al.l 2016) with
binary cross-entropy loss is a widely-used backbone for including image classification. 2) Swin-
Transformer (Liu et al., [2021), a hierarchical transformer with shifted windows for downstream
vision tasks. We choose Swin-B/224 x224 as our baseline. 3) Patchforensics (Chai et al., 2020)
proposes a patch-wise classifier for detection at patch level. 4) F3Net (Qian et al.,|2020) proposes to
mine two complementary frequency-aware clues with a two-stream network. 5) DIRE (Wang et al.,
2023) introduces a reconstruction error between the original and diffusion-reconstructed image as
representation to train the classifier. 6) CNNDet (Wang et al., [2020) carefully designs pre- and post-
preprocessing and data augmentation to detect CNN-generated images. We choose Blur+JPEG (0.1)
setting as our baseline. 7) UniFD (Ojha et al., 2023) uses CLIP to extract only the image embeddings
with the nearest neighbor as the classification head. 8) NPR (Tan et al., 2024) explores the artifacts
left by up-sampling layers in GAN and diffusion models to serve as discriminative clues.

14


https://github.com/anonymous/DEFEND_ICLR_3874

Under review as a conference paper at ICLR 2025

Table 7: Details of all baselines and our proposed method.

Method Detector Type Modality Dependency
ResNet-50 (He et al.,|2016) Backbone Image training image
Swin-T (Liu et al.|[2021) Backbone Image training image
Patchfor (Chai et al.,2020) Deepfakes Image specific local patch patterns
F3Net (Qian et al., 2020) Deepfakes Frequency specific frequency patterns
DIRE (Wang et al.; 2023) Diffusion Models Image reconstruction model
CNNDet (Wang et al.,[2020) CNN generator Image CNN-based generator
UniFD (Ojha et al.,[2023) ~ CNN+Diffusion Models Image pretrained model & reference set
NPR (Tan et al., |2024) GAN-+Diffusion Models Image up-sampling operation
DEFEND (ours) Diffusion Models Frequency none

C MORE DETAILS ABOUT THE DATASETS

In this section, we describe more details about the training and testing diffusion datasets we used
for evaluation. As described in Section. [4.1] to evaluate our method and other baselines, we use
totally more than 25 different diffusion models with various settings from (Ojha et al., 2023; |Wang
et al.| 2023; Zhu et al., 2024) . For better comprehension and comparison, we categorize them
into different denoising conditions, training image sources, and resolutions, as listed in Tab. E (the
unconditional/conditional ADM are generated under different settings).

Dataset Image Source Generative Model Denoising Condition ~ Resolution
ADM (Dhariwal & Nichol}[2021) Conditional 256 x 256
" Glide (Nichol etal.J2021y 256 x 256
Midjourney (Midjourney, 2023) 1024 x 1024
Genlmage ImageNet (Russakovsky et al.}2015)  SD-v1.4 (Rombach et al.,[2022) Text-to-Tmage 512 x 512
SD-v1.5 (Rombach et al.,[2022) 512 x 512
VQDM (Gu et al.,|2022) 256 x 256
Wukong (Wukong|[2022) 512 x 512
T T 77777 ADM (Dhariwal & Nicholl[2021) Conditional 256 x 256
UniformerDiffusion ImageNet (Russakovsky et al.|[2015) LD,M (R(.vmbach et al.,[2022) 256 % 256
Glide (Nichol et al.;2021) Text-to-Image 256 x 256
DALLE (Ramesh et al.}[2021) 256 x 256
T T T T T T T T T T ADM (Dhariwal & Nicholl 2021y T T T T T T T T T 256 x 256
DDPM (Ho et al.,[2020) Unconditional 256 x 256
iDDPM (Nichol & Dhariwal![2021) 256 x 256
PNDM (Liu et al.,[2022) 256 x 256
" SD-vl (Rombach etal,,2022) 512x 512
DiffusionForensics ~ LSUN (Yu et al.|2015) SD-v2 (Rombach et al.,[2022) 768 x 768
LDM (Rombach et al.,|2022) 256 x 256
VQDM (Gu et al.,|2022) Text-to-Image 256 x 256
IF (Saharia et al.}|2022) 256 x 256
DALLE?2 (Ramesh et al.||2022) 1024 x 1024
Midjourney (Midjourney, 2023} 1024 x 1024

Table 8: Details of the diffusion models for our evaluation (Wang et al.,|2023;|Ojha et al.|[2023;
Zhu et al.,2024)), including the training image source, denoising condition, and resolution.

Specifically, our training set includes 40,000 real and 40,000 fake images generated from ADM
when trained on ImageNet (Russakovsky et al.| [2015); and the test set of most generative model
includes 1,000 real and 1,000 fake images (except DALLE2 includes 500 and Midjourney from
DiffusionForensics includes 100 fake with an equal number of real images). The resolution of most
generated images is 256 x 256 (e.g., ADM, DDPM, PNDM eftc.). For the images with a higher
resolution (e.g., SD-v1, SD-v2, DALLE2, and Midjourney), the generated images are resized into
256 x 256 with bicubic interpolation. Note that the real images are from the corresponding training
set of each generative model, unless specifically stated. Moreover, we present examples from each
generative model for better comprehension in Fig.
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Figure 7: Examples from different diffusion models, including Genlmage (Zhu et al.| [2024),

UniformerDiffusion (Ojha et al.,[2023), and DiffusionForensics 2023).

D EXAMPLES UNDER PERTURBATIONS

In Section. 4.2} we evaluate the robustness of all baselines and our proposed method under three
different types of perturbations (Gaussian Noise, Gaussian Blur, and JPEG Compression). For each
perturbation, we employ three different severity levels. In this section, we present examples under
each perturbation and severity level in Fig. [§]for better comprehension.
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Figure 8: Examples under three different perturbations with three different severity levels,
including Gaussian Blur, Gaussian Noise, and JPEG compression.

E ADDITIONAL EXPERIMENTS

E.1 EFFECT OF DIFFERENT LINEAR DEGREES FOR KERNEL FUNCTION
To evaluate the effect of linear function on performance, we conduct ablation experiments by

employing linear function with different degrees, i.e., linear/quadratic/cubic functions. The results
are shown in Tab. El (the coefficients for three- and one-degree linear functions are: k(f) = —4f3 +
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3.2f% —0.16f +0.02 and k(f) = f — 0.04), from which we observe that both low- and high-degree
linear functions lead to slight performance drops. One explanation could be that both the too simple
and the complicated linear functions cannot fit the distributions properly, i.e., with underfitting for the
low degree functions and overfitting for the high-degree ones. The comparisons also demonstrate that,
to obtain the desired representation, a two- degree linear function is a suitable choice for restraining
and enhancing different frequency bands. Moreover, we also believe that if other functions can fit the
distribution properly, they can also be employed to obtain the enhanced representation and achieve
competitive performance.

Table 9: Ablation study on different linear degrees. We report the ACC/AP results on the Genlmage
dataset, from which we observe that both too simple and complex linear functions can lead to a slight
performance drop.

Kerqel Different Diffusion Models in Genlmage Total
function ADM Glide  Midjourney SD-vl4  SD-vl.5  VQDM  Wukong Avg.
E(f) = af® + bf2 +cf +d 100.0/100.0 99.90/100.0 99.95/100.0 99.90/99.99 99.80/99.99 99.85/100.0 99.40/99.99 99.83/100.0
k() =af +b 99.85/100.0 99.90/100.0 99.80/99.99 99.50/99.96 99.70/99.99 99.70/100.0 99.10/99.98 99.65/99.99
E(f) =af’>+bf +c 99.95/100.0 99.95/100.0 99.95/100.0 99.90/99.99 99.95/100.0 99.90/100.0 99.80/100.0 99.91/100.0

F ETHICAL DISCUSSIONS

With the development of current generative models, the competition between generation and detection
is always in progress. Prior diffusion detectors might suffer from the upcoming new diffusion models,
and the new diffusion models can promote the development of new detectors. Our method is based
on the general observation and analysis of the frequency difference between natural real images and
diffusion-generated images. To achieve general and robust detection, we further propose to enhance
the discriminative frequency bands and restrain the less discriminative ones. If the diffusion models
in the future completely improve or change the noising/denoising process, which could cause entirely
different frequency distributions of diffusion-generated images and should be difficult to achieve,
all methods based on frequency traces or other current diffusion-related characteristics might fail.
Nevertheless, we believe our method can still provide insight into the general and robust detection of
diffusion-generated images from the perspective of natural real image distribution.
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