702 APPENDIX

In this supplementary material, we provide more details about the preliminaries, related datasets, baselines, additional experimental results, and further ethical discussions about how our method could contribute to the community, described in detail as follows.

The code will be released at https://github.com/anonymous/DEFEND_ICLR_3874

708 709 710

711

722

723

727 728

732

737 738

741

742 743

704

705

706

707

A PRELIMINARIES ON DIFFUSION MODELS

Diffusion Models have achieved remarkable success in image synthesis tasks (Ho et al., 2020;
Dhariwal & Nichol, 2021; Rombach et al., 2022). The main idea of diffusion models is inspired by
the non-equilibrium thermodynamics proposed in (Sohl-Dickstein et al., 2015). Typically, diffusion
models define two Markov chains of diffusion steps that first slowly add Gaussian noise to clean
images, until disturbing them into isotropic Gaussian noise (termed diffusion or forward process);
then they learn to reverse the diffusion process to generate clean samples from the noise (termed denoising or reverse process).

719 During the diffusion (or forward) process, a clean image sample x_0 is gradually corrupted by adding 720 Gaussian noise in sequential steps t = 1, ..., T following a Markov chain process that can be defined 721 as follows:

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{\frac{\alpha_t}{\alpha_{t-1}}} \mathbf{x}_{t-1}, (1 - \frac{\alpha_t}{\alpha_{t-1}} \mathbf{I})),$$
(12)

in which \mathbf{x}_t is the noisy image at *t*-th time step, and α_t is the predefined noise schedule, with *T* denotes the total steps. We can obtain \mathbf{x}_t from \mathbf{x}_0 , according to the properties of the Markov process and Gaussian distribution, directly by:

$$q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\alpha_t} \mathbf{x}_0, (1 - \alpha_t) \mathbf{I})).$$
(13)

In the denoising (or reverse) process, the noisy image (or pure Gaussian distribution) is gradually
 denoised to obtain a clean image that is also a Markov chain and could be defined as:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t)),$$
(14)

where the $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ is parameterized by neural networks to approximate the underlying data distribution $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$. During training, a neural network ϵ_{θ} is optimized to predict the added noise, given the noisy image \mathbf{x}_t and corresponding time step t, the optimization target is a sampling and denoising process that can be defined as follows:

$$L_{\theta}(\mathbf{x}_{0},t) = \|\epsilon - \epsilon_{\theta}(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}}\epsilon, t)\|^{2},$$
(15)

739 740

where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

B MORE DETAILS ABOUT THE BASELINES

We present a brief description of state-of-the-art baselines for our comparisons in Sec. 4.1. Here, 744 for better comparison, we summarize more details of each method of detector type, modality, 745 and dependency, as shown in Tab. 7 and described below: 1) ResNet-50 (He et al., 2016) with 746 binary cross-entropy loss is a widely-used backbone for including image classification. 2) Swin-747 Transformer (Liu et al., 2021), a hierarchical transformer with shifted windows for downstream 748 vision tasks. We choose Swin-B/224 \times 224 as our baseline. 3) Patchforensics (Chai et al., 2020) 749 proposes a patch-wise classifier for detection at patch level. 4) F3Net (Qian et al., 2020) proposes to 750 mine two complementary frequency-aware clues with a two-stream network. 5) DIRE (Wang et al., 751 (2023) introduces a reconstruction error between the original and diffusion-reconstructed image as 752 representation to train the classifier. 6) CNNDet (Wang et al., 2020) carefully designs pre- and postpreprocessing and data augmentation to detect CNN-generated images. We choose Blur+JPEG (0.1) 753 setting as our baseline. 7) UniFD (Oiha et al., 2023) uses CLIP to extract only the image embeddings 754 with the nearest neighbor as the classification head. 8) NPR (Tan et al., 2024) explores the artifacts 755 left by up-sampling layers in GAN and diffusion models to serve as discriminative clues.

757	Table 7: Details of all baselines and our proposed method.							
758	Method	Detector Type	Modality	Dependency				
759	ResNet-50 (He et al., 2016)	Backbone	Image	training image				
760	Swin-T (Liu et al., 2021)	Backbone	Image	training image				
761	Patchfor (Chai et al., 2020)	Deepfakes	Image	specific local patch patterns				
762	F3Net (Qian et al., 2020)	Deepfakes	Frequency	specific frequency patterns				
763 764	DIRE (Wang et al., 2023)	Diffusion Models	Image	reconstruction model				
765	CNNDet (Wang et al., 2020)	CNN generator	Image	CNN-based generator				
766	UniFD (Ojha et al., 2023)	CNN+Diffusion Models	Image	pretrained model & reference set				
767	NPR (Tan et al., 2024)	GAN+Diffusion Models	Image	up-sampling operation				
768	DEFEND (ours)	Diffusion Models	Frequency	none				

769 770

771 772 773

774

775

776

777

778 779

799

800

801

756

C MORE DETAILS ABOUT THE DATASETS

In this section, we describe more details about the training and testing diffusion datasets we used for evaluation. As described in Section. 4.1 to evaluate our method and other baselines, we use totally more than 25 different diffusion models with various settings from (Ojha et al.) 2023; [Wang et al., 2023] Zhu et al., 2024). For better comprehension and comparison, we categorize them into different denoising conditions, training image sources, and resolutions, as listed in Tab. 8 (the unconditional/conditional ADM are generated under different settings).

Dataset	Image Source	Generative Model	Denoising Condition	Resolution
		ADM (Dhariwal & Nichol, 2021)	Conditional	256×256
GenImage	ImageNet (Russakovsky et al.) 2015)	Glide (Nichol et al., 2021)		256×256
		Midjourney (Midjourney, 2023)	Text-to-Image	1024×1024
		SD-v1.4 (Rombach et al., 2022)		512×512
		SD-v1.5 (Rombach et al., 2022)		512×512
		Wukong (Wukong 2022)		230×230 512 × 512
		ADM (Dhariwal & Nichol, 2021)	Conditional	-256×256
UniformerDiffusion	ImageNet (Russakovsky et al., 2015)	LDM (Rombach et al., 2022)		$\overline{256 \times 256}$
		Glide (Nichol et al., 2021)	Text-to-Image	256 imes 256
		DALLE (Ramesh et al., 2021)		256×256
		ADM (Dhariwal & Nichol, 2021)		256×256
DiffusionForensics	LSUN (Yu et al., 2015)	DDPM (Ho et al., 2020)	Unconditional	256×256
		PNDM (Lin et al. 2022)		256×256
		SD-v1 (Rombach et al. 2022)		-512×512
		SD-v2 (Rombach et al., 2022)		768×768
		LDM (Rombach et al., 2022)		256×256
		VQDM (Gu et al., 2022)	Text-to-Image	256×256
		IF (Saharia et al., 2022)		256 imes 256
		DALLE2 (Ramesh et al., 2022)		1024×1024
		Midjourney (Midjourney, 2023)		1024×1024

Table 8: **Details of the diffusion models for our evaluation** (Wang et al., 2023; Ojha et al., 2023; Zhu et al., 2024), including the training image source, denoising condition, and resolution.

802 Specifically, our training set includes 40,000 real and 40,000 fake images generated from ADM 803 when trained on ImageNet (Russakovsky et al., 2015); and the test set of most generative model 804 includes 1,000 real and 1,000 fake images (except DALLE2 includes 500 and Midjourney from 805 DiffusionForensics includes 100 fake with an equal number of real images). The resolution of most generated images is 256×256 (e.g., ADM, DDPM, PNDM etc.). For the images with a higher 806 resolution (e.g., SD-v1, SD-v2, DALLE2, and Midjourney), the generated images are resized into 807 256×256 with bicubic interpolation. Note that the real images are from the corresponding training 808 set of each generative model, unless specifically stated. Moreover, we present examples from each 809 generative model for better comprehension in Fig. 7

Figure 7: Examples from different diffusion models, including GenImage (Zhu et al., 2024), UniformerDiffusion (Ojha et al., 2023), and DiffusionForensics (Wang et al., 2023).

D EXAMPLES UNDER PERTURBATIONS

In Section. 4.2, we evaluate the robustness of all baselines and our proposed method under three different types of perturbations (Gaussian Noise, Gaussian Blur, and JPEG Compression). For each perturbation, we employ three different severity levels. In this section, we present examples under each perturbation and severity level in Fig. 8 for better comprehension.

including Gaussian Blur, Gaussian Noise, and JPEG compression.

E ADDITIONAL EXPERIMENTS

E.1 EFFECT OF DIFFERENT LINEAR DEGREES FOR KERNEL FUNCTION

To evaluate the effect of linear function on performance, we conduct ablation experiments by employing linear function with different degrees, *i.e.*, linear/quadratic/cubic functions. The results are shown in Tab. 9 (the coefficients for three- and one-degree linear functions are: $k(f) = -4f^3 +$ Table 9: **Ablation study on different linear degrees.** We report the ACC/AP results on the GenImage dataset, from which we observe that both too simple and complex linear functions can lead to a slight performance drop.

Kernel	Different Diffusion Models in GenImage					Total		
function	ADM	Glide	Midjourney	SD-v1.4	SD-v1.5	VQDM	Wukong	Avg.
$\overline{k(f) = af^3 + bf^2 + cf + d}$ k(f) = af + b	100.0/100.0 99.85/100.0	99.90/100.0 99.90/100.0	99.95/100.0 99.80/99.99	99.90/99.99 99.50/99.96	99.80/99.99 99.70/99.99	99.85/100.0 99.70/100.0	99.40/99.99 99.10/99.98	99.83/100.0 99.65/99.99
$k(f) = af^2 + bf + c$	99.95/100.0	99.95/100.0	99.95/100.0	99.90/99.99	99.95/100.0	99.90/100.0	99.80/100.0	99.91/100.0

F ETHICAL DISCUSSIONS

With the development of current generative models, the competition between generation and detection is always in progress. Prior diffusion detectors might suffer from the upcoming new diffusion models, and the new diffusion models can promote the development of new detectors. Our method is based on the general observation and analysis of the frequency difference between natural real images and diffusion-generated images. To achieve general and robust detection, we further propose to enhance the discriminative frequency bands and restrain the less discriminative ones. If the diffusion models in the future completely improve or change the noising/denoising process, which could cause entirely different frequency distributions of diffusion-generated images and should be difficult to achieve, all methods based on frequency traces or other current diffusion-related characteristics might fail. Nevertheless, we believe our method can still provide insight into the general and robust detection of diffusion-generated images from the perspective of natural real image distribution.