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APPENDIX

In this supplementary material, we provide more details about the preliminaries, related datasets,
baselines, additional experimental results, and further ethical discussions about how our method
could contribute to the community, described in detail as follows.

The code will be released at https://github.com/anonymous/DEFEND ICLR 3874.

A PRELIMINARIES ON DIFFUSION MODELS

Diffusion Models have achieved remarkable success in image synthesis tasks (Ho et al., 2020;
Dhariwal & Nichol, 2021; Rombach et al., 2022). The main idea of diffusion models is inspired by
the non-equilibrium thermodynamics proposed in (Sohl-Dickstein et al., 2015). Typically, diffusion
models define two Markov chains of diffusion steps that first slowly add Gaussian noise to clean
images, until disturbing them into isotropic Gaussian noise (termed diffusion or forward process);
then they learn to reverse the diffusion process to generate clean samples from the noise (termed
denoising or reverse process).

During the diffusion (or forward) process, a clean image sample x0 is gradually corrupted by adding
Gaussian noise in sequential steps t = 1, . . . , T following a Markov chain process that can be defined
as follows:

q(xt|xt�1) = N (xt;

r
↵t

↵t�1
xt�1, (1�

↵t

↵t�1
I)), (12)

in which xt is the noisy image at t-th time step, and ↵t is the predefined noise schedule, with T
denotes the total steps. We can obtain xt from x0, according to the properties of the Markov process
and Gaussian distribution, directly by:

q(xt|x0) = N (xt;
p
↵tx0, (1� ↵t)I)). (13)

In the denoising (or reverse) process, the noisy image (or pure Gaussian distribution) is gradually
denoised to obtain a clean image that is also a Markov chain and could be defined as:

p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)), (14)

where the p✓(xt�1|xt) is parameterized by neural networks to approximate the underlying data
distribution q(xt�1|xt). During training, a neural network ✏✓ is optimized to predict the added noise,
given the noisy image xt and corresponding time step t, the optimization target is a sampling and
denoising process that can be defined as follows:

L✓(x0, t) = k✏� ✏✓(
p
↵̄tx0 +

p
1� ↵̄t✏, t)k2, (15)

where ✏ ⇠ N (0, I).

B MORE DETAILS ABOUT THE BASELINES

We present a brief description of state-of-the-art baselines for our comparisons in Sec. 4.1. Here,
for better comparison, we summarize more details of each method of detector type, modality,
and dependency, as shown in Tab. 7 and described below: 1) ResNet-50 (He et al., 2016) with
binary cross-entropy loss is a widely-used backbone for including image classification. 2) Swin-
Transformer (Liu et al., 2021), a hierarchical transformer with shifted windows for downstream
vision tasks. We choose Swin-B/224⇥224 as our baseline. 3) Patchforensics (Chai et al., 2020)
proposes a patch-wise classifier for detection at patch level. 4) F3Net (Qian et al., 2020) proposes to
mine two complementary frequency-aware clues with a two-stream network. 5) DIRE (Wang et al.,
2023) introduces a reconstruction error between the original and diffusion-reconstructed image as
representation to train the classifier. 6) CNNDet (Wang et al., 2020) carefully designs pre- and post-
preprocessing and data augmentation to detect CNN-generated images. We choose Blur+JPEG (0.1)
setting as our baseline. 7) UniFD (Ojha et al., 2023) uses CLIP to extract only the image embeddings
with the nearest neighbor as the classification head. 8) NPR (Tan et al., 2024) explores the artifacts
left by up-sampling layers in GAN and diffusion models to serve as discriminative clues.
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Table 7: Details of all baselines and our proposed method.
Method Detector Type Modality Dependency
ResNet-50 (He et al., 2016) Backbone Image training image
Swin-T (Liu et al., 2021) Backbone Image training image

Patchfor (Chai et al., 2020) Deepfakes Image specific local patch patterns
F3Net (Qian et al., 2020) Deepfakes Frequency specific frequency patterns

DIRE (Wang et al., 2023) Diffusion Models Image reconstruction model

CNNDet (Wang et al., 2020) CNN generator Image CNN-based generator
UniFD (Ojha et al., 2023) CNN+Diffusion Models Image pretrained model & reference set
NPR (Tan et al., 2024) GAN+Diffusion Models Image up-sampling operation
DEFEND (ours) Diffusion Models Frequency none

C MORE DETAILS ABOUT THE DATASETS

In this section, we describe more details about the training and testing diffusion datasets we used
for evaluation. As described in Section. 4.1, to evaluate our method and other baselines, we use
totally more than 25 different diffusion models with various settings from (Ojha et al., 2023; Wang
et al., 2023; Zhu et al., 2024) . For better comprehension and comparison, we categorize them
into different denoising conditions, training image sources, and resolutions, as listed in Tab. 8 (the
unconditional/conditional ADM are generated under different settings).

Dataset Image Source Generative Model Denoising Condition Resolution

GenImage ImageNet (Russakovsky et al., 2015)

ADM (Dhariwal & Nichol, 2021) Conditional 256 ⇥ 256
Glide (Nichol et al., 2021)

Text-to-Image

256 ⇥ 256
Midjourney (Midjourney, 2023) 1024 ⇥ 1024
SD-v1.4 (Rombach et al., 2022) 512 ⇥ 512
SD-v1.5 (Rombach et al., 2022) 512 ⇥ 512
VQDM (Gu et al., 2022) 256 ⇥ 256
Wukong (Wukong, 2022) 512 ⇥ 512

UniformerDiffusion ImageNet (Russakovsky et al., 2015)

ADM (Dhariwal & Nichol, 2021) Conditional 256 ⇥ 256
LDM (Rombach et al., 2022)

Text-to-Image
256 ⇥ 256

Glide (Nichol et al., 2021) 256 ⇥ 256
DALLE (Ramesh et al., 2021) 256 ⇥ 256

DiffusionForensics LSUN (Yu et al., 2015)

ADM (Dhariwal & Nichol, 2021)

Unconditional

256 ⇥ 256
DDPM (Ho et al., 2020) 256 ⇥ 256
iDDPM (Nichol & Dhariwal, 2021) 256 ⇥ 256
PNDM (Liu et al., 2022) 256 ⇥ 256
SD-v1 (Rombach et al., 2022)

Text-to-Image

512 ⇥ 512
SD-v2 (Rombach et al., 2022) 768 ⇥ 768
LDM (Rombach et al., 2022) 256 ⇥ 256
VQDM (Gu et al., 2022) 256 ⇥ 256
IF (Saharia et al., 2022) 256 ⇥ 256
DALLE2 (Ramesh et al., 2022) 1024 ⇥ 1024
Midjourney (Midjourney, 2023) 1024 ⇥ 1024

Table 8: Details of the diffusion models for our evaluation (Wang et al., 2023; Ojha et al., 2023;
Zhu et al., 2024), including the training image source, denoising condition, and resolution.

Specifically, our training set includes 40,000 real and 40,000 fake images generated from ADM
when trained on ImageNet (Russakovsky et al., 2015); and the test set of most generative model
includes 1,000 real and 1,000 fake images (except DALLE2 includes 500 and Midjourney from
DiffusionForensics includes 100 fake with an equal number of real images). The resolution of most
generated images is 256 ⇥ 256 (e.g., ADM, DDPM, PNDM etc.). For the images with a higher
resolution (e.g., SD-v1, SD-v2, DALLE2, and Midjourney), the generated images are resized into
256 ⇥ 256 with bicubic interpolation. Note that the real images are from the corresponding training
set of each generative model, unless specifically stated. Moreover, we present examples from each
generative model for better comprehension in Fig. 7.
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Figure 7: Examples from different diffusion models, including GenImage (Zhu et al., 2024),
UniformerDiffusion (Ojha et al., 2023), and DiffusionForensics (Wang et al., 2023).

D EXAMPLES UNDER PERTURBATIONS

In Section. 4.2, we evaluate the robustness of all baselines and our proposed method under three
different types of perturbations (Gaussian Noise, Gaussian Blur, and JPEG Compression). For each
perturbation, we employ three different severity levels. In this section, we present examples under
each perturbation and severity level in Fig. 8 for better comprehension.

Gaussian
Blur

! = # ! = $

! = %. %%' ! = %. %%( ! = %. %'

quality = 75 quality = 50 quality = 25

! = '

Gaussian
Noise

JPEG
Compression

Figure 8: Examples under three different perturbations with three different severity levels,
including Gaussian Blur, Gaussian Noise, and JPEG compression.

E ADDITIONAL EXPERIMENTS

E.1 EFFECT OF DIFFERENT LINEAR DEGREES FOR KERNEL FUNCTION

To evaluate the effect of linear function on performance, we conduct ablation experiments by
employing linear function with different degrees, i.e., linear/quadratic/cubic functions. The results
are shown in Tab. 9 (the coefficients for three- and one-degree linear functions are: k(f) = �4f3 +

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

3.2f2 � 0.16f + 0.02 and k(f) = f � 0.04), from which we observe that both low- and high-degree
linear functions lead to slight performance drops. One explanation could be that both the too simple
and the complicated linear functions cannot fit the distributions properly, i.e., with underfitting for the
low degree functions and overfitting for the high-degree ones. The comparisons also demonstrate that,
to obtain the desired representation, a two- degree linear function is a suitable choice for restraining
and enhancing different frequency bands. Moreover, we also believe that if other functions can fit the
distribution properly, they can also be employed to obtain the enhanced representation and achieve
competitive performance.

Table 9: Ablation study on different linear degrees. We report the ACC/AP results on the GenImage
dataset, from which we observe that both too simple and complex linear functions can lead to a slight
performance drop.

Kernel
function

Different Diffusion Models in GenImage Total

ADM Glide Midjourney SD-v1.4 SD-v1.5 VQDM Wukong Avg.

k(f) = af3 + bf2 + cf + d 100.0/100.0 99.90/100.0 99.95/100.0 99.90/99.99 99.80/99.99 99.85/100.0 99.40/99.99 99.83/100.0
k(f) = af + b 99.85/100.0 99.90/100.0 99.80/99.99 99.50/99.96 99.70/99.99 99.70/100.0 99.10/99.98 99.65/99.99

k(f) = af2 + bf + c 99.95/100.0 99.95/100.0 99.95/100.0 99.90/99.99 99.95/100.0 99.90/100.0 99.80/100.0 99.91/100.0

F ETHICAL DISCUSSIONS

With the development of current generative models, the competition between generation and detection
is always in progress. Prior diffusion detectors might suffer from the upcoming new diffusion models,
and the new diffusion models can promote the development of new detectors. Our method is based
on the general observation and analysis of the frequency difference between natural real images and
diffusion-generated images. To achieve general and robust detection, we further propose to enhance
the discriminative frequency bands and restrain the less discriminative ones. If the diffusion models
in the future completely improve or change the noising/denoising process, which could cause entirely
different frequency distributions of diffusion-generated images and should be difficult to achieve,
all methods based on frequency traces or other current diffusion-related characteristics might fail.
Nevertheless, we believe our method can still provide insight into the general and robust detection of
diffusion-generated images from the perspective of natural real image distribution.
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