
Under review as a conference paper at ICLR 2023

A DATA AUGMENTATION MODEL

The data augmentation model conditionally generates augmented data, i.e. x̂ = F✓(z,Xi = xi;G�).
To allow conditioning on any variable during the generation stage, we assume a directed acyclic
graph (DAG). This means that variables are generated sequentially, following topological order ⇡G� ,
which can be described through a SEM (Pearl, 2009):

x̂i = fi(N̂ (i), zi)

In contrast to the synthetic data model, the generation of each variable is conditioned on the predicted
value of its parents. 4 Each variable is transformed through a specific embedding function h

(0)
i =

f✓i(x̂i) 8 i 2 [d], where h
(0)
i 2 Rd0 and we implement f✓i using a one layer MLP. This is followed

by one round of message passing, where the embedding update function is implemented using a
single-layer MLP. We aggregate parent embeddings using the mean, equivalent to taking a weighted
average:

m
(1)
j = �

(1)
✓ (·) = h

(0)
j

h
(1)
N (i) = �

(1)(·) = mean
⇣
{Gj,im

(1)
j , 8 j 2 N (i)}

⌘

x̂i = �
(1)
✓ (·) = tanh

⇣
W

(1)
u ⇥ h

(1)
N (i)

⌘

The output after message passing is taken to be the prediction of the current variable x̂i. This model
is trained using the GAN adversarial loss (eq. (5)). Additionally, we use the continuous DAG penalty
introduced in (Zheng et al., 2018) to force a DAG to be recovered:

max
F✓

min
D

E[logD(F✓(Z;G�)) + log(1�D(X))]
| {z }

GANLoss

+�(tr(exp(G� �G�))� d)
| {z }

Regularisation

(5)

To generate augmented data, we randomly sample a subset of the variables, and for each of which, we
sample a conditioning value uniformly from the support of that variable, a ⇠ U (min(Xi),max(Xi)).
We then generate augmented data by conditioning chosen variables on sampled values, x̂ ⇠
p(X|Xi = a) = F✓(z,Xi = a;G�) (Pearl, 2009). We note that this conditional generation
corresponds to sampling out-of-distribution, as we are sampling from a different distribution that is
defined on the same support as the training.

B IMPLEMENTATION DETAILS

B.1 MODELS AND EVALUATION

Models. All models are implemented in PyTorch (Paszke et al., 2017). The likelihood term is
computed using Cross Entropy or MSE Loss for categorical and continuous variables, respectively.
We use d0 = 3 for all experiments and d1 2 {32, 64, 128} depending on the complexity of the data.
Hyperparameters include batch size 2 {64, 128, 256}, learning rate 2 {1e�3, 1e�2}, and are chosen
through cross-validation. The data is split 60-20-20 into train, validation and test sets and reported
results are averaged over 10 runs. Training is performed using the Adam (Kingma & Ba, 2014). All
experiments are run on an NVIDIA Tesla K40C GPU, taking less than an hour to complete.

For the synthetic data model, we consider regularization penalty � 2 {1e�3, 1e�2, 1e�1}. For data
augmentation, we gradually increase the value of � as optimization proceeds, so that non-DAGs are
heavily penalized (similar to (Zheng et al., 2018)). A specific schedule is employed to increase �:
in each stage of the schedule, the objective is optimized with fixed values of � for t steps, before �

is updated, �0 ↵ ⇤ �, and the process repeats. We consider starting values �0 2 {10, 100, 1000},
↵ = 10 and t = 1000. The topological ordering of the nodes is obtained by running a topological sort
on the adjacency matrix. All models are trained for a maximum of 5000 epochs, with early stopping
if no improvements on the validation set for 100 epochs.

Evaluation. We partition the observed dataset D into a training set Dtrain and a test set Dtest, and
train generative models on Dtrain. Using the trained models, we generate a synthetic data set Dsyn,

4N (i) = Pa(i), the neighborhood is strictly the set of parent variables due to the DAG.

15

Under review as a conference paper at ICLR 2023

which has the same number of samples as Dtest. We then evaluate the aforementioned desiderata on
(Dtest,Dsyn). To evaluate diversity, we employ the three-dimensional metric, ↵-precision, �-recall,
and authenticity, which assesses whether the samples are realistic, diverse enough to cover the
variability in real data, and generalization performance respectively (Alaa et al., 2021). Each metric
evaluates a different aspect of synthetic data diversity, and we average the three metrics to obtain a
holistic score. Fidelity is evaluated by training post-hoc classifiers to distinguish samples from the
original and generated datasets. Specifically, we train a two-layer MLP, XGB classifier and GMM
classifier and average the classification AUROC. To evaluate utility, we report average performance
achieved by three downstream prediction models (linear model, two-layer MLP, and XGB model)
train on the Dsyn and evaluated on Dtest. We report the change in AUROC of models trained on
Dsyn and those trained on Dtrain.

B.2 SYNTHETIC DATA BENCHMARKS

In this subsection, we provide further details on the benchmarks we compare against: including
Bayesian networks (BN) (Pearl, 2011), GAN-based (Xu et al., 2019), TableGAN (Park et al., 2018)
and VAE-based (Xu et al., 2019; Patki et al., 2016) and a normalizing flow NFLOW (Rezende &
Mohamed, 2015). Additionally, we also consider data augmentation methods: Gaussian noise
InNoise (Krizhevsky et al., 2012); MixUp (Zhang et al., 2018) and SwapNoise (Jahrer, 2019).

BN (Pearl, 2011). We train BN in two stages, where the first stage learns the network structure and
the second stage performs learning based on the returned DAG. For structure learning, we consider
constraint-based PC algorithm (Spirtes & Glymour, 1991), Hill-Climb algorithm (Heckerman et al.,
1995) and Max-Min Hill-Climb (Tsamardinos et al., 2006). Once a DAG is returned, the conditional
probabilities are learned through maximum likelihood estimation, where continuous variables are
assumed to come from a linear Gaussian conditional probability distribution (CPD) and discrete
variables from a discrete CPD.

CTGAN (Xu et al., 2019), TableGAN (Park et al., 2018). For CTGAN, we use an MLP with
two ReLU-activated hidden layers to implement the generator. The number of units in each layer,
2 {128, 256} depending on the complexity of the data. Similarly, we employ an MLP with two
ReLU-activated hidden layers to implement the discriminator, where the number of hidden units
2 {128, 256}. The hyperparameters are tuned according to the recommended settings in (Patki et al.,
2016). TableGAN is implemented using a Deep Convolution GAN with recommended settings in
(Park et al., 2018), where the generator has three deconvolutional layers, and the discriminator has
three convolutional layers.

TVAE (Patki et al., 2016). The VAE-based model is implemented with an encoder with two ReLU-
activated layers, where the number of units in each layer of the encoder 2 {128, 256}, depending
on complexity. The decoder similarly has two hidden layers with dimensionality 2 {128, 256}. We
use a dh dimensional latent space that is normally distributed and a standard normal prior, where
dh 2 {32, 64}.

NFLOW (Rezende & Mohamed, 2015). We implement the normalizing flows using the rational-
quadratic transform introduced in (Durkan et al., 2019). Specifically, it is implemented using an
MLP with 2, 128-dimensional hidden layers and permutation operations. A standard normal base
distribution is employed, and the flow is run with 500 steps.

B.3 DATA AUGMENTATION BENCHMARKS

InNoise (Krizhevsky et al., 2012), MixUp (Zhang et al., 2018), SwapNoise (Jahrer, 2019).

For InNoise, we add zero-centered Gaussian noise " ⇠ N(0,�2) to the inputs, where we consider
� 2 {0.01, 0.1, 1}. For SwapNoise, we randomly swap 10% of elements between two inputs.
MixUp is implemented by randomly combining two samples x̂ = �x

0 + (1� �)x00, where x
0
, x

00 ⇠
Dtrain and � ⇠ Beta(0.2, 0.2).

DAFS (DeVries & Taylor, 2017). We train an autoencoder, where the encoder and decoder are both
implemented as MLPs with two ReLU-activated hidden layers. We take the feature vector at the
output of the encoder ci and randomly apply one of three possible operations (1) add Gaussian noise
" ⇠ (0,�2), (2) interpolation �(cj � ci) + ci, or (3) extrapolation �(ci � cj) + ci where � = 0.5 as

16

Under review as a conference paper at ICLR 2023

Table 4: Experimental datasets. Description of experimental datasets.

Dataset Description
Number of

instances

Number of

features

Adult (Kohavi et al., 1996) Census data 48842 15
Breast (Street et al., 1993) Breast cancer 569 32
Covertype (Blackard & Dean, 1999) Forest cover 581012 54
Credit (Hofmann, 1994) Credit risk 1000 20
ECOLI (Schäfer & Strimmer, 2005) Functional genomics 2000 46
MAGIC-IRRI (Scutari et al., 2014) Plant genetics 2000 64
Red (Cortez et al., 2009) Wine quality 1599 12
White (Cortez et al., 2009) Wine quality 4898 12
Mice (Higuera et al., 2015) Protein expression 1080 82
Musk (Dua & Graff, 2017) Musk molecules 6598 168

suggested by the authors. Augmented samples x0 are then obtained by passing the altered feature
vector through the decoder.

B.4 DATASETS

We use 10 datasets in total, including 8 UCI datasets (Dua & Graff, 2017),5 specifically Adult,
Breast, Covertype, Credit, White, Red, Mice, Musk and 2 Bayesian Network repository
datasets (Koller & Friedman, 2009),6 specifically ECOLI and MAGIC-IRRI. A summary of the
datasets, including dataset description, the dimensionality, and number of samples, is presented in
Table 4.

B.5 PRIOR KNOWLEDGE

The use of an explicit graph to guide generation allows for a variety of prior knowledge to be
incorporated through the adjacency matrix. Here, we describe a few options of incorporating domain
expertise:

• Sparsity. The learned graph can be sparse such that variables only depend on a small subset of
other variables. Mathematically, R(G�) = ||G�||p, where || · ||p denotes the Lp matrix norm.

• Dependence. Partial knowledge about the dependencies between features can be encoded through
a graph prior G0, i.e., R(G�) = ||G� �G0||p.

• Graph types. Graphs of specific types can be learned. For example, if an undirected graph is
assumed, we can employ a symmetric prior ||G� � G

T
� ||p. Alternatively, we can use the DAG

penalty (Zheng et al., 2018) to encourage learning a directed, acyclic graph (DAG), R(G�) =
tr(exp(G� �G�)�D), where tr(·) is the matrix trace and D is the number of variables.

• Connectivity. Encourage different patterns of connectivity through penalty on degree of each
variable ||D� �D0||p, where D 2 Rd is the degree of each variable.

C ADDITIONAL EXPERIMENTS

In this section, we provide additional results to comprehensively evaluate our proposed methods,
specifically:

1. Additional datasets: §C.1 evaluates synthetic data performance on 4 additional datasets.
2. Visualizations:§C.2 visualizes t-SNE projections on original and synthetic datasets to qualitatively

investigate quality and examines learned adjacency matrices.
3. Sensitivity: §C.3 investigates performance sensitivities according to data size and feature counts.
4. Data augmentation: §C.4 describes the best model performance after data augmentation.

.

5https://archive.ics.uci.edu/ml/datasets.php
6https://www.bnlearn.com/bnrepository/

17

Under review as a conference paper at ICLR 2023

Table 5: Diversity, fidelity, and utility of synthetic data. Bold indicates the best performance.

Dataset ECOLI MAGIC-IRRI Red White Mice Musk

Diversity

(the higher
the better)

BN 0.57 ± 0.06 0.67 ± 0.04 0.64 ± 0.05 0.63 ± 0.07 0.63 ± 0.02 0.60 ± 0.06
CTGAN 0.38 ± 0.06 0.33 ± 0.10 0.45 ± 0.08 0.51 ± 0.03 0.42 ± 0.02 0.51 ± 0.05
TableGAN 0.38 ± 0.08 0.33 ± 0.07 0.46 ± 0.08 0.53 ± 0.02 0.41 ± 0.04 0.56 ± 0.03
TVAE 0.45 ± 0.09 0.61 ± 0.02 0.59 ± 0.05 0.61 ± 0.03 0.57 ± 0.03 0.58 ± 0.05
NFLOW 0.56 ± 0.08 0.62 ± 0.07 0.59 ± 0.04 0.63 ± 0.03 0.54 ± 0.06 0.62 ± 0.08

GOGGLE 0.57 ± 0.05 0.63 ± 0.09 0.69 ± 0.07 0.67 ± 0.05 0.63 ± 0.04 0.65 ± 0.04

Fidelity

(the lower
the better)

BN 0.39 ± 0.07 0.40 ± 0.03 0.56 ± 0.07 0.58 ± 0.01 0.61 ± 0.04 0.83 ± 0.03
CTGAN 0.74 ± 0.09 0.73 ± 0.07 0.77 ± 0.09 0.79 ± 0.04 0.72 ± 0.02 0.78 ± 0.06
TableGAN 0.74 ± 0.02 0.73 ± 0.06 0.77 ± 0.05 0.82 ± 0.07 0.85 ± 0.02 0.77 ± 0.05
TVAE 0.74 ± 0.02 0.69 ± 0.05 0.67 ± 0.07 0.63 ± 0.05 0.73 ± 0.01 0.79 ± 0.02
NFLOW 0.70 ± 0.03 0.70 ± 0.08 0.67 ± 0.04 0.73 ± 0.05 0.77 ± 0.05 0.80 ± 0.03

GOGGLE 0.60 ± 0.03 0.69 ± 0.09 0.55 ± 0.03 0.65 ± 0.06 0.60 ± 0.03 0.73 ± 0.05

Utility

(the higher
the better)

BN 0.01 ± 0.00 0.05 ± 0.00 0.00 ± 0.00 �0.15±0.05 0.00 ± 0.00 �0.18±0.04
CTGAN �0.20±0.03 �0.13±0.01 0.02 ± 0.00 �0.08±0.00 �0.10±0.02 �0.13±0.05
TableGAN �0.18±0.06 �0.10±0.05 0.02 ± 0.00 �0.14±0.02 �0.19±0.03 �0.13±0.04
TVAE �0.06±0.01 0.00 ± 0.00 �0.07±0.01 �0.02±0.00 �0.07±0.03 �0.06 ± 0.02
NFLOW �0.05±0.01 �0.02±0.00 0.01 ± 0.00 �0.15±0.05 �0.04±0.01 �0.16±0.04

GOGGLE �0.02±0.00 0.01 ± 0.00 0.02 ± 0.00 �0.01 ± 0.00 0.00 ± 0.01 �0.12±0.02

(a) BN (b) CTGAN (c) TableGAN (d) TVAE (e) NFLOW (f) GOGGLE

Figure 4: t-SNE projection on Breast dataset.

C.1 ADDITIONAL RESULTS

We assess the quality of synthetic dataset using the same desiderata introduced in §5.1, namely
diversity, fidelity, and utility. We use six additional datasets, ECOLI, MAGIC-IRRI, Red, White,
Mice, and Musk. The results are reported in Table 5.

We note that BN achieves the best performance on ECOLI and MAGIC-IRRI, which is reasonable as
those datasets are generated according to a known Bayesian network, and BN models have a natural
advantage. On those two datasets, GOGGLE is able to consistently outperform other deep generative
models. On Red and White, GOGGLE achieves superior performance against other benchmarks.
On the contrary, BN, our closest competitor, achieve worse performance as the underlying DAG
assumptions become too restrictive. Additionally, we highlight that models trained on synthetic data
generated by GOGGLE consistently achieves similar performance to those trained on real datasets,
indicating strong data utility

C.2 VISUALIZATION OF SYNTHETIC DATA RESULTS

In Figures 4 to 7, we observe that synthetic data generated by GOGGLE exhibit markedly better
overlap with the original dataset than other benchmarks using t-SNE for visualization. We note
that the GAN-based models, specifically CTGAN and TableGAN exhibit mode collapse behaviour
and the TVAE and NFLOW can fail to match the underlying distribution (on ECOLI and Breast,
respectively). Additionally, we plot the adjacency matrix of trained models in Figure 8, where a
sparsity regularization term was applied to all models to encourage sparsely connected graphs.

We visualize the learned graphs on Credit and Breast in Figure 9. The Breast dataset (Dua
& Graff, 2017) contains numeric features extracted from images of a breast mass. We note that the
target variable (diagnosis of tumor) has a high degree of connectivity, and dependent on various
physical properties of the tumor, including mean perimeter and mean compactness. We similarly
observe informative variables identified in the Credit dataset (Dua & Graff, 2017) , where the
account balance depends on occupation, credit amount, and length of current employment.

18

Under review as a conference paper at ICLR 2023

(a) BN (b) CTGAN (c) TableGAN (d) TVAE (e) NFLOW (f) GOGGLE

Figure 5: t-SNE projection on Red dataset.

(a) BN (b) CTGAN (c) TableGAN (d) TVAE (e) NFLOW (f) GOGGLE

Figure 6: t-SNE projection on ECOLI dataset.

(a) BN (b) CTGAN (c) TableGAN (d) TVAE (e) NFLOW (f) GOGGLE

Figure 7: t-SNE projection on White dataset.

(a) Adults (b) Breast (c) Credit (d) ECOLI (e) MAGIC (f) White

Figure 8: Learned adjacency matrices.

(a) Credit (b) Breast

Figure 9: Learned graphs.

C.3 SENSITIVITY ANALYSIS

Lastly, we are interested in identifying settings where GOGGLE excel as a generative model. Specif-
ically, we are interested in understanding sensitivities of model performance with respect to the
effects of feature counts and number of samples in the dataset. We compare our model against the

19

Under review as a conference paper at ICLR 2023

Table 6: Data augmentation. AUROC on Dtest of models trained on augmented data. Bold indicates
the best performance.

Dataset Adult Breast Covertype Credit

Baseline 0.70 ± 0.09 0.96 ± 0.01 0.59 ± 0.13 0.65 ± 0.02
InNoise 0.68 ± 0.05 0.97 ± 0.01 0.61 ± 0.10 0.64 ± 0.03
MixUp 0.66 ± 0.08 0.90 ± 0.01 0.56 ± 0.09 0.65 ± 0.02

SwapNoise 0.65 ± 0.05 0.91 ± 0.01 0.58 ± 0.08 0.63 ± 0.01
FSAug 0.71 ± 0.06 0.96 ± 0.01 0.60 ± 0.13 0.67 ± 0.02

GOGGLE-SD 0.70 ± 0.05 0.97 ± 0.01 0.60 ± 0.10 0.66 ± 0.01
GOGGLE 0.72 ± 0.03 0.98 ± 0.00 0.62 ± 0.10 0.67 ± 0.02

Red
Whit

e
Adul

t
Cred

it
Brea

st
ECOLI

Cove
rty

pe

MAGIC-IR
RI

0.4

0.6

0.8

Red
Whit

e
Adul

t
Cred

it
Brea

st
ECOLI

Cove
rty

pe

MAGIC-IR
RI

0.4

0.6

0.8

Red
Whit

e
Adul

t
Cred

it
Brea

st
ECOLI

Cove
rty

pe

MAGIC-IR
RI

�0.4

�0.2

0.0

BN CTGAN TABLEGAN TVAE NFLOW GOGGLE

(a) Feature Count

Brea
st
Cred

it Red
ECOLI

MAGIC-IR
RI
Whit

e
Adul

t

Cove
rty

pe

0.4

0.6

0.8

Brea
st
Cred

it Red
ECOLI

MAGIC-IR
RI
Whit

e
Adul

t

Cove
rty

pe

0.4

0.6

0.8

Brea
st
Cred

it Red
ECOLI

MAGIC-IR
RI
Whit

e
Adul

t

Cove
rty

pe

�0.4

�0.2

0.0

BN CTGAN TABLEGAN TVAE NFLOW GOGGLE

(b) Number of Samples

Figure 10: Sensitivity analysis. Evaluating synthetic data based on (left) diversity (the higher, the
better), (middle) fidelity (the lower, the better), and (right) utility (the higher, the better). Datasets
are sorted according to (a) increasing feature counts, and (b) increasing number of samples.

benchmarks in Figure 10. Here, the datasets are shown on the x-axis and are sorted in order of
increasing feature count, and increasing number of samples (see Table 4 for more on datasets). We
note that the advantage of GOGGLE is more noticeable when there are less number of samples (i.e.,
on Breast, Credit and Red). In the regime with larger number of samples, all models exhibit
similar performance, although GOGGLE still achieves performance improvements. Furthermore,
models achieve similar performance when the number of features is low. However, when the number
of features increases, the performance of GAN-based models deteriorate. This is interesting, and a
potential logical explanation is that they are overfitting to the training data.

C.4 EVALUATION OF AUGMENTED DATA

We compare popular tabular data augmentation methods by inspecting downstream model perfor-
mance. Specifically, we generate augmented data Daug from Dtrain (and has the same number of
samples), train predictive models on the combined Dcomb = {Dtrain,Daug}, and evaluate perfor-
mance on Dtest. We train four downstream prediction models, including linear model, two-layer
MLP, RF classifier, and XGB model and report the averaged performance achieved by the four models.
We perform data augmentation on GOGGLE by randomly selecting variables to condition on and
sampling uniformly from the marginal support of the variable. In Table 6, we observe that augmented
data generated by GOGGLE leads to improved generalization performance across all datasets.

20

Under review as a conference paper at ICLR 2023

D CONNECTION TO PROBABILISTIC STRUCTURE DISCOVERY

There are several parallels between our work and probabilistic graph discovery, which aims to
recover the true probabilistic graphical model (PGM) underlying observed data (Zhou, 2011; Drton
& Maathuis, 2017). We propose a generative model for tabular data that learns and leverages an
underlying graph to improve the performance of data synthesis. Importantly, our model does not
recover the true PGM from data if the data is indeed generated by a PGM (i.e. it does not perform
PGM structural discovery). Additionally, the message passing computation is not an instance of
or an approximation to a probabilistic inference routine. Specifically, we take advantage of the
sparse and compact representations of graphical models to learn better generative models, incorporate
prior knowledge, and perform conditional generation. We do so by incorporating a graph as explicit
structure into the generative process. We summarize the key distinctions between our work and the
probabilistic structure learning literature.

The graph learned in GOGGLE encodes conditional dependence structure between variables (global
Markov property), in the same sense that PGMs reflect allowed conditional dependencies. The key
distinction between our approach and probabilistic structural learners is that we only require an
approximate structure. In contrast, structural learners aim to recover unique graphs that are close to
the true DGP. This learned graph is used to answer probabilistic inference queries, e.g. P (Y |X = x),
which requires the graph to be correct. In order to recover a unique graph, structural learns generally
assume certain graph, or distributions, or relationships between variables.

Our objective is to learn an approximate graph that models associational dependence and can guide
generation. Therefore, we do not need to make similar assumptions that unnecessarily restrict the
class of learnable distributions and can lead to a miss-specified model. Additionally, we emphasize
that our proposed method is not designed to perform sampling-based probabilistic inference. Due to
the different objectives, we make minimal assumptions on the graph type, variable distribution, and
functional relations.

Probabilistic Graph Discovery GOGGLE

Commonality Edges reflect allowed conditional dependencies between variables

Objective Recover unique probabilistic graph
underlying observed data

Learn approximate graph describing
dependencies between variables

Evaluation

Metric

Quality of discovered graph: graph
distance measure (Peters & Bühlmann,

2015; Shimizu et al., 2011), edge
classification metric

Quality of synthetic data: diversity,
fidelity, and utility (Alaa et al., 2021)

Application Probabilistic inference P (Y |X = x) Generate conditional synthetic data
x ⇠ P✓(X)

Specific graph types (i.e. directed or
undirected)

Arbitrary graph types (i.e. mixed, directed,
or undirected)

Distributional assumptions on variables
(e.g. Gaussian)

No assumptions on variable distribution

Assumptions

Assumptions on functional relationships
between variables (e.g. Linear with

Gaussian additive noise)

No assumptions on functional
relationships model

Representative

Works

UGM: Chow-Liu algorithm (Chow & Liu,
1968), graphical LASSO (Banerjee et al.,

2008), neighborhood selection
(Meinshausen & Bühlmann, 2006). DGM:

score-based (Chickering, 2002),
constraint-based (Spirtes et al., 2000),

hybrid (Tsamardinos et al., 2006)

Deep generative: GAN-based (Xu et al.,
2019), VAE-based (Xu &

Veeramachaneni, 2018). Non-neural: BN,
mixture models, copula

21

