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GNN Training Communication
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Figure 1: GNN Training Broadcast and Aggregation
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Limitations of Existing Distributed GNN Frameworks

• Rely on socket-based communication, incurring high latency and

CPU overhead

• Follow the pull-based paradigm, leading to redundant

communication and blocking waits

• Communication overhead can take up to 80% of total training

time [1, 2, 3]
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PINCH: Overview

• PINCH: A novel system to accelerate distributed GNN training

• Leverages eBPF and kernel hooks (XDP and TC) to optimize

communication

• Key techniques:

• In-kernel neighborhood aggregation via eBPF and XDP

• In-kernel broadcasting through eBPF and TC

• Caching and reusing aggregated embeddings with eBPF maps
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eBPF and Kernel Hooks

• eBPF: Allows safely executing

custom code inside the Linux

kernel

• XDP: eBPF-based packet

processing framework for low

latency and high throughput

• TC: eBPF hook point for

classifying, filtering, and

manipulating packets
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Figure 2: Linux kernel networking

stack and eBPF XDP/TC hooks
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PINCH Architecture
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Figure 3: PINCH system architecture
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In-XDP Aggregation

• Performs neighbor embedding

aggregation directly in the

kernel

• Implemented as an eBPF

program attached to the XDP

hook

• Leverages quantization and tail

calls to overcome eBPF

limitations

• Caches aggregated embeddings

in eBPF maps for reuse
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In-TC Broadcasting

• Constructs and sends broadcast

packets containing node

embeddings

• Implemented as an eBPF

program attached to the TC

hook

• Leverages

bpf clone redirect() for

efficient packet cloning and

redirection
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Kernel-User Crossings in PINCH

• Minimizes crossings by performing aggregation and broadcasting in

the kernel

• In-XDP Aggregation: Aggregates node embeddings in the kernel

• In-TC Broadcasting: Constructs and sends broadcast packets in the

kernel

• Caches and reuses aggregated embeddings in eBPF maps
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Fault Tolerance

• Designed to be resilient to packet loss and duplication

• In-TC Broadcasting: Retransmission and sliding window for packet

loss

• In-XDP Aggregation: Idempotent processing using eBPF maps
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Limitations and Future Work

• Flexible Aggregation:

• Limited aggregation functions

• Future: Extend eBPF VM or use approximate computing

• Communication Patterns:

• Tailored to message-passing GNNs

• Future: Support more GNNs and big data apps

• CPU and NUMA:

• No CPU affinity or NUMA impact consideration

• Future: Explore CPU pinning, NUMA-aware scheduling, cache-aware

data placement
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Related Work

• PipeGCN, Cluster-GCN, CAGNET

• CCP, BMC, Syrup, SPRIGHT, XRP, SynCord
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Conclusion

• PINCH optimizes distributed GNN training using eBPF and

kernel-level packet processing

• Employs in-kernel broadcasting, aggregation, caching, and fault

tolerance mechanisms

• Potential for integrating communication layer with kernel network

stack

• Future work: Advanced GNN models, eBPF for other distributed

system challenges
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Thank You!
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