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GNN Training Communication
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Figure 1: GNN Training Broadcast and Aggregation



Limitations of Existing Distributed GNN Frameworks

e Rely on socket-based communication, incurring high latency and
CPU overhead

e Follow the pull-based paradigm, leading to redundant
communication and blocking waits

e Communication overhead can take up to 80% of total training
time [1, 2, 3]



PINCH: Overview

e PINCH: A novel system to accelerate distributed GNN training

e Leverages eBPF and kernel hooks (XDP and TC) to optimize
communication

e Key techniques:

e In-kernel neighborhood aggregation via eBPF and XDP
e In-kernel broadcasting through eBPF and TC
e Caching and reusing aggregated embeddings with eBPF maps



eBPF and Kernel Hooks

e eBPF: Allows safely executing User space

custom code inside the Linux Socket Layer
kernel Kerel UDP/TCP Stack

e XDP: eBPF-based packet space Netfiter
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e TC: eBPF hook point for space NIC Priver
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Figure 2: Linux kernel networking
stack and eBPF XDP/TC hooks



PINCH Architecture
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Figure 3: PINCH system architecture



In-XDP Aggregation

e Performs neighbor embedding GNN Training
aggregation directly in the ~ --------- D B

kernel PINCH-XDP
e Implemented as an eBPF é

program attached to the XDP
hook

Network Interface Card

e leverages quantization and tail

calls to overcome eBPF RX
limitations Figure 4: In-XDP aggregation

o Caches aggregated embeddings workflow

in eBPF maps for reuse



In-TC Broadcasting

e Constructs and sends broadcast
packets containing node
embeddings

e |Implemented as an eBPF
program attached to the TC
hook

e |everages
bpf_clone_redirect() for
efficient packet cloning and
redirection
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Figure 5: In-TC broadcasting workflow



Kernel-User Crossings in PINCH

e Minimizes crossings by performing aggregation and broadcasting in
the kernel

In-XDP Aggregation: Aggregates node embeddings in the kernel

e In-TC Broadcasting: Constructs and sends broadcast packets in the
kernel

Caches and reuses aggregated embeddings in eBPF maps



Fault Tolerance

e Designed to be resilient to packet loss and duplication

e In-TC Broadcasting: Retransmission and sliding window for packet
loss

e In-XDP Aggregation: ldempotent processing using eBPF maps



Limitations and Future Work

o Flexible Aggregation:

e Limited aggregation functions
e Future: Extend eBPF VM or use approximate computing

e Communication Patterns:
e Tailored to message-passing GNNs
e Future: Support more GNNs and big data apps
e CPU and NUMA:
e No CPU affinity or NUMA impact consideration
e Future: Explore CPU pinning, NUMA-aware scheduling, cache-aware
data placement
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Related Work

e PipeGCN, Cluster-GCN, CAGNET

e CCP, BMC, Syrup, SPRIGHT, XRP, SynCord
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Conclusion

e PINCH optimizes distributed GNN training using eBPF and
kernel-level packet processing

e Employs in-kernel broadcasting, aggregation, caching, and fault
tolerance mechanisms

e Potential for integrating communication layer with kernel network
stack

e Future work: Advanced GNN models, eBPF for other distributed

system challenges
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