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Abstract

Large language models (LLMs) have per-
formed impressively in various natural lan-
guage processing tasks. However, their inher-
ent hallucination phenomena seriously chal-
lenge their credibility in complex reason-
ing. Combining explainable knowledge graphs
(KGs) with LLMs is a promising path to ad-
dress this challenge. However, there is a huge
representation gap between structured KGs and
LLMs pre-trained from unstructured text, and
how to make LLMs understand and utilize KGs
for complex reasoning is a challenging topic.
To tackle this challenge, we propose a com-
prehensive method: improving retrieval capa-
bilities for KG by integrating reasoning pro-
cesses and subgraph information and enhanc-
ing LLMs’ understanding and utilization of
KG through an efficient yet effective KG rep-
resentation and KG-related tuning. Extensive
experiments on two KGQA datasets and vari-
ous LLMs demonstrate that our method outper-
forms existing strong KGQA methods’.

1 Introduction

Recently, the emergence and application of large
language models (LLMs) (OpenAl, 2022, 2023;
Bubeck et al., 2023; Yang et al., 2023) have at-
tracted widespread attention from researchers and
the general public. It demonstrates remarkable rea-
soning capabilities, managing to solve complex
reasoning problems through step-by-step thinking
and planning (Wei et al., 2022; Khot et al., 2023).
However, the reasoning of LLMs is not invariably
reliable and may conflict with factual reality, a
phenomenon known as hallucination (Wang et al.,
2023; Huang et al., 2023). This will limit the appli-
cation of LLMs in areas requiring high reliability,
such as healthcare and science.

The knowledge graph (KG) stores high-quality
common sense or domain-specific knowledge in
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structured triplets. Due to its reliability and in-
terpretability, it is considered a promising method
to improve the reliability of LLM reasoning (Pan
et al., 2024). Therefore, researchers have never
ceased their attempts to integrate KGs with lan-
guage models (Zhang et al., 2019; Liu et al., 2020;
Lewis et al., 2020; Sun et al., 2021). Among them,
the knowledge graph question answering (KGQA)
is the critical task to incorporate the knowledge of
KG into reasoning models (Lan et al., 2021; Miller
et al., 2016; Sun et al., 2018; Jiang et al., 2023b).
KGQA faces two main challenges: (1) How
to retrieve specific knowledge from KGs to help
reasoning precisely; (2) How to make the reason-
ing model understand and utilize the structured
knowledge in KGs. For the first challenge, exist-
ing solutions include direct retrieval (Sun et al.,
2019; Baek et al., 2023; Jiang et al., 2023b) and
semantic parsing (Sun et al., 2020; Lan and Jiang,
2020; Gu and Su, 2022; Ye et al., 2022; Yu et al.,
2023). Direct retrieval involves taking the ques-
tion as a query and the knowledge triplets in the
KG as candidates, using either sparse or dense re-
trieval techniques to identify several candidates
most relevant to the query. Semantic parsing trans-
forms the question into an executable structured
query statement (e.g., SPARQL) and executes the
query in KGs. However, individual knowledge
in KGs has limited semantics, and direct retrieval
makes it difficult to model the semantic relevance,
especially in multi-hop question answering, where
knowledge that is semantically weakly relevant to
the question may instead be important intermediate
knowledge. Semantic parsing faces the problem
of non-executable or incorrectly executed gener-
ated queries (Yu et al., 2023). For the latter chal-
lenge, since current LLMs are primarily trained in
unstructured text, they may not effectively compre-
hend and utilize knowledge in the structured form.
Consequently, existing methods often convert KG
content to natural language (He et al., 2024; Ye
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et al., 2024) or linearized triplets (Luo et al., 2024).
However, natural language renders KG knowledge
redundant, necessitating more tokens representing
the KG, while linearization undermines the struc-
tural information inherent within the KG.

To address these two challenges, this paper
introduces a novel retrieval-augmented method.
Our proposed retrieval model combines chain-of-
thought (CoT) (Wei et al., 2022) and subgraphs,
where subgraphs enrich the semantic information
of candidate knowledge, and CoT offers interme-
diate reasoning steps involved in multi-hop ques-
tion answering, aiding the retrieval model in re-
calling useful intermediary knowledge. We then
represent the KG in YAML format to reduce input
redundancy and enhance the LL.M’s understand-
ing of KGs by instruction tuning across three KG-
level tasks and KG data pre-training. To further
strengthen the reasoning capabilities of LL.Ms uti-
lizing KGs, we generate explicit reasoning process
data with larger open-source LLMs and train our
reasoning models with these synthetic datasets. To
evaluate the effectiveness of our proposed KGQA
method, we conduct experiments on LLaMA2-7b-
Chat on two KGQA datasets. Experimental results
demonstrate our proposed method can perform bet-
ter than existing strong baselines. Further analysis
indicates the generalizability to other LLMs.

Overall, our main contributions include:

* We integrate the reasoning process and subgraph
into knowledge retrieval, which aids in recalling
useful intermediate knowledge for reasoning.

* We propose a novel and efficient KG representa-
tion method, the YAML format, which reduces
token redundancy by approximately 25% com-
pared to the traditional triple format. Combined
with our proposed KG-related tuning, LLM is
able to understand and utilize YAML-format KG
to accomplish complex reasoning tasks.

* Extensive experiments show that our method out-
performs the existing strong baselines in two
challenging datasets.

2 Related Work

Knowledge graph question answering (KGQA)
enables models to answer questions by integrat-
ing common sense or domain-specific knowledge
from knowledge graphs. Current approaches
to KGQA can be categorized into three types:
embedding-based, semantic parsing-based and
retrieval-augmented. Embedding-based methods

project entities and relations from knowledge
graphs into an embedding space, and utilize key-
value memory networks (Miller et al., 2016), se-
quence modeling (He et al., 2021), or graph neu-
ral networks (Yasunaga et al., 2021) to learn the
reasoning process between questions and the enti-
ties and relations. Semantic parsing-based meth-
ods utilize the semantic parsing model to con-
vert questions into structured query language ori-
ented towards the knowledge base (e.g. SPARQL),
and then execute it to search answers from the
knowledge graph (Sun et al., 2020; Lan and Jiang,
2020; Gu and Su, 2022; Ye et al., 2022; Yu et al.,
2023). However, semantic parsing-based meth-
ods rely on retrieving answers from knowledge
bases, overlooking the reasoning capabilities of
models. Retrieval-augmented methods combine
knowledge graphs with the intrinsic reasoning ca-
pabilities of models. They first retrieve question-
relevant knowledge triples or subgraphs from the
knowledge graphs, and then leverage this retrieved
knowledge to enhance the factualness of the reason-
ing. Sun et al. (2018) propose the GraftNet which
utilizes entity linking to retrieve subgraphs. Subse-
quently, many works adopt effective dense retrieval
models as their retrieval modules, such as PullNet
(Sun et al., 2019), SR (Zhang et al., 2022), DiFar
(Baek et al., 2023), UniKGQA (Jiang et al., 2023b),
etc. Today, natural language processing has entered
the era of large language models, where retrieval-
augmented generation (RAG) enables these models
to effectively leverage external knowledge to ac-
complish various tasks (Lewis et al., 2020; Gao
et al., 2024). Wang et al. (2023) retrieve knowl-
edge from knowledge graphs to verify and correct
the factual within chain-of-thought, resulting in the
generation of more precision responses. Yu et al.
(2023) utilize a larger-scale retriever to enhance
retrieval performance and generate both seman-
tic parsing expressions and inference results in the
generation phase, compensating for their respective
shortcomings by integrating the two approaches.

3 Methodology

In this section, we present our proposed
KGQA method, which is based on the retrieval-
augmentation generation paradigm. First, we intro-
duce the overall inference process of our method,
including the KG retrieval module and the KG rea-
soning module. Then, we detail the training pro-
cesses for the two modules.
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Figure 1: llustration of our KGQA method. It contains two modules, Knowledge Graph Retrieval Model and

Knowledge Graph Reasoning LLM.

Prompt 1: Generating CoT for Retrieval

Please think step by step and then answer the given
question.

Here are some examples:

Input: <Demonstration Question>

CoT: Let’s think step by step. <Demonstration CoT>
### Output: <Demonstration Answer>

Input: <Question>
CoT: Let’s think step by step.

\.

3.1 Overview

As Fig. 1 shows, our KGQA method includes two
modules: KG retrieval model and KG reasoning
LLM. Given a question ¢ and a knowledge graph
G = {t;}7, where t; = (e}, r',e}) € EXR x E
is a knowledge triple; £, R are the set of entities
and relationships; ey, r, e; are the head entity, re-
lationship and tail entity, respectively. After we
complete training the KG retrieval model 74 and
the KG reasoning LLM My, in the inference stage,
the LLM My first plans the problem and generates
a reasoning process with chain-of-thought (CoT)
prompting:

{cl,...,cj} = My(peot ® q), (D

where ¢/ is the j-th step reasoning process and P
is the CoT prompting as shown in Prompt 1, &
means the concatenation operator. Then, we pro-
gressively concatenate the reasoning process with
the question as queries to retrieve knowledge: ¢/ =
q@ct®...®c (¢° = ). For each candidate knowl-
edge ¢, we integrate the surrounding subgraph in-
formation G, = {(ep, 7, et)len, = €} Ve, = ef}.

The retrieval can be formalized as follows:

T =Topx ) f(Ro(d), Ro(t ®Gr)), (2
;

where f is the similarity function between the
query representation and the candidate represen-
tation (e.g. cosine similarity or dot-product similar-
ity), T is the set of top-k candidates retrieved that
are most relevant to the query.

Prompt 2: Utilizing KG to Reason

Please think step by step and then answer the given
question. Please keep the answer as simple as
possible and return all the possible answers as a list.
If there are hints, please combine this information to
answer.

Here are some examples:

Input: <Demonstration Question>

Hints: <Demonstration Knowledge Graph>

CoT: Let’s think step by step. <Demonstration CoT>
### Output: <Demonstration Answer>

Input: <Question>
Hints: <Knowledge Graph>
CoT: Let’s think step by step.

After retrieval, the candidate set is transformed
into YAML format and serves as part of the input
for the KG reasoning LLLM, which reasons and
outputs the final answer through Prompt 2.

3.2 Knowledge Retrieval with
Chain-of-thoughts and Subgraphs

Retrieving relevant and useful knowledge from
knowledge graphs is critical for the performance of
KGOQA. Benefiting from the increasingly advanced
dense retrieval, we can obtain relevant knowledge



through direct retrieval, without the need for elabo-
rate techniques such as semantic parsing and entity
linking (Baek et al., 2023). However, the semantic
expression of individual knowledge in knowledge
graphs is limited, and the semantic relationship
between knowledge and questions is not directly
related in multi-hop question answering. Therefore,
we consider incorporating neighboring knowledge
information and reasoning processes when retriev-
ing knowledge.

We employ the contrastive learning to train our
retrieval model, the training loss is:

exp(f(Ry(¢’), Ry(t" @ Gi1)))

2ter xp(f(Ry(¢?), Ry (t @ Qt)))(;)
where 7 contains all triplets in the same batch, ¢t is
the positive sample and others are negative samples.
In our method, we take all the knowledge triples
on the path from the entity in the question to the
answer entity in the knowledge graph as positive
samples, and randomly sample from the remaining
triples as negative samples.

Different from the inference stage, We only use
the LLaMA-7b-Chat model, which has not been
specifically trained for knowledge graph tasks, to
generate the reasoning process for training (This
method allows for the complete decoupling of the
training of the retrieval and reasoning models, en-
abling them to be trained independently and in par-
allel). To address the inconsistency in CoT quality
during training and inference, we employ ratio-
nalization prompting (Prompt 3 ?) during training,
providing the answer in the prompt so that the LLM
can generate a reasonable reasoning process based
on the answer.

Prompt 3: Generating CoT for Training

Here is a problem, along with (clues from a
knowledge graph and) the answer. Please provide the
corresponding reasoning process.

L= —log

Here are some examples:

Input: <Demonstration Question>

(Clues: <Demonstration Knowledge Graph>)
Answer: <Demonstration Answer>

Output: <Demonstration CoT>

Input: <Question>

(Clues: <Knowledge Triples>)
Answer: <Answer>

Output:

Prompt 3 applies to both retrieval training and reasoning
training, and KG information is only provided during reason-
ing training (in section 3.4).

Triple format

(Justin Bieber, profession, Musician),
(Justin Bieber, profession, Record
producer), (Justin Bieber, aloum, All
Bad), (Justin Bieber, album, Believe
Acoustic), [... ...]

Justin Bieber:
profession:
- Musician
- Record producer
album:
- All Bad
- Believe Acoustic

—— = = ———

—— e = = = = =

Figure 2: An example of triple and YAML format KG.

3.3 Utilizing Knowledge Graphs Effectively
and Efficiently in LLMs

Knowledge graphs are essentially structured knowl-
edge, while LLMs are typically pretrained on un-
structured text. To bridge this gap and enable
LLMs to better understand and utilize the struc-
tured knowledge, we propose a simplified represen-
tation for knowledge graphs. Additionally, we em-
ploy instruction tuning and continual pre-training
to ensure that LLMs internalize both the knowledge
and this representation form.

YAML Format KG In general, the retrieved
knowledge triples may exhibit many literal sim-
ilarities, such as having the same head entity or re-
lation across multiple triples. If we linearize these
triples directly as input for the reasoning LLM, it
will result in significant token redundancy, thereby
impacting the efficiency of the model’s inference.
Therefore, we try to represent the knowledge graph
in a more efficient format. Our approach uses the
YAML format, a data serialization language with a
simple syntax. As shown in Figure 2, YAML uses
indentation to represent hierarchical relationships.
We treat different head entities as the first-level re-
lationship, different relationships under the same
head entity as the second level, and different tail
entities under the same head entity and relationship
as the final level.

KG Instruction For general-purpose LLMs, rep-
resenting knowledge graphs in YAML format is



unfamiliar and infrequently encountered in their
pre-training corpora. Therefore, to enable LLMs
to understand knowledge graphs in YAML, we de-
sign three types of graph-related instruction-tuning
tasks: (1) entity-level tasks, where the LLM is
required to reason the entity according to neigh-
bors; (2) relationship-level tasks, where the task
is to reason the relationship between entities; (3)
graph-level tasks, where the LLM needs to un-
derstand the semantic of knowledge graphs and
converts to natural language. We design three dif-
ferent instructions for each type of task (shown in
Table 1) and denote the instruction prompt as Z .
For entity-level and relationship-level instruction
tasks, we automatically construct them based on
the data in the knowledge graph without the need
for additional manual annotation. For graph-level
instruction tasks, we utilize existing high-quality
KG-to-text datasets (Gardent et al., 2017). The
training loss of KG instruction is:

L
Einstruct = - Z yllogpQ)l ’I(:B), y<l)7 (4)
l

where (x, y) is the input-output pair, L is the length
of y, y is y’s I-th token, y<! means tokens before
I-th token, ¢! is the predicted [-th token.
Continual KG Pre-training To further learn the
structured knowledge embedded in knowledge
graphs, we propose the continual KG pre-training
method. We serialize the entire knowledge graph
in YAML format and train it by the next token
prediction:

L
Epretrain = - Z $llogp(i'l‘x<l)a (5)
l

where x is the pretraining data.

3.4 KG-based Reasoning Training

In Section 3.3, we enhance the LLM’s understand-
ing of the specialized structured representation of
KG, without explicitly teaching the LLM to use KG
for reasoning. In practical scenarios, we need to
address two issues: (1) How to utilize KG for multi-
hop reasoning; (2) How to manage the retrieved
noisy knowledge that lacks crucial task-related in-
formation or contains irrelevant redundant informa-
tion. To address these two issues, we use a retrieval
model that has not been fine-tuned for KGQA tasks
to retrieve noisy knowledge, and a more powerful
LLM to generate high-quality reasoning processes

for questions based on retrieved knowledge and an-
swers with Prompt 3. After obtain the knowledge
and reasoning processes, we train our reasoning
LLM with the loss function defined in Equation 4.

4 Experiments

4.1 Baseline Methods

We compare our method with the following com-
petitive KBQA baselines.

NSM (He et al., 2021) proposes a teacher-student
framework where the teacher model learns supervi-
sion signals for intermediate reasoning processes
through forward and backward reasoning, which
are then conveyed to the student model for multi-
hop inference.

Transfernet (Shi et al., 2021) utilizes the graph at-
tention mechanism to capture the relevance among
questions, entities, and relationships, guiding a
step-by-step traversal on the knowledge graph to-
wards the answer.

SR+NSM (+E2E) (Zhang et al., 2022) proposes a
effective subgraph retriever to retrieve the most rel-
evant relation-path for reasoning and then utilizes
the NSM to reason. E2E denotes further jointly
finetuning the SR+NSM.

QGG (Lan and Jiang, 2020) is a semantic parsing
based approach that incorporates constraints and
extends relational paths in the process of generating
query graphs.

UniKGQA (Jiang et al., 2023b) unifies the retriever
and reasoning module into a single model.
DECAF (Yu et al., 2023) proposes a method for
joint generating semantic parsing forms and direct
answers, significantly improving the executability
of semantic parsing forms.

StructGPT (Jiang et al., 2023a) utilizes LLMs’
tool-using capabilities to interactive between LLMs
and knowledge bases, which facilitates multi-hop
reasoning through iterative interactions.

KD-CoT (Wang et al., 2023) retrieves relevant
knowledge from the KG during the reasoning pro-
cess, progressively verifying and correcting facts
in the reasoning process.

RoG (Luo et al., 2024) RoG leverages the power-
ful generative and planning capabilities of LLMs
to generate reasoning paths. It retrieves corre-
sponding knowledge from knowledge graphs based
on these paths and synthesizes various reasoning
paths to deduce the final answer. RoG is based on
LLaMAZ2-7b-chat.



Task Instruction

Please predict the entity represented by <mask> based on the one-hop relationships in the knowledge graph. \n Input: {Input}

Entity

Based on the one-hop relationships in the knowledge graph, infer the entity represented by <mask>. \n Input: {Input}

Make a prediction about the masked entity, using the one-hop relationships in the knowledge graph as a reference. \n Input: {Input}

Please recognize the relationship between the two entities.\n Knowledge Graph: {KG} \n Input: {Input}

Relationship

Please predict the relationship between the two entities. There are some one-hop information of these entities: {KG} \n Input: {Input}

Make a prediction about the relationship, using the one-hop relationships in the knowledge graph as a reference. \n {KG} \n Input: {Input}

Please deeply understand the following knowledge graph, and then convert them into a coherent sentence. \n Input: {Input}

Graph2text

Given these knowledge graph, please deeply write a paragraph that integrates the information contained in them. \n Input: {Input}

Compose an informative report using the information from these knowledge graph. \n Input: {Input}

Please extract all entities and relationships in the sentence. \n Input: {Input}

Text2graph

Given the sentence, please extract a knowledge graph that integrates the information contained in them. \n Input: {Input}

Please deeply understand the following sentence, and then generate a knowledge graph. \n Input: {Input}

Table 1: Instructions of knowledge graph related tasks.

Dataset WebQSP CWQ
#Train 2,848 27,639
#Valid 250 3,519
#Test 1,639 3,519
#Max hop 2 5

Table 2: Characteristics of datasets

4.2 Datasets and Evaluation Metrics

To evaluate the effectiveness of our proposed
KGQA method, we conduct experiments on two
popular and challenging dataset: WebQuestionsSP
(WebQSP) (Yih et al., 2015) and Complex We-
bQuestions 1.1 (CWQ) (Talmor and Berant, 2018).
Both two datasets are created from the Freebase
knowledge graph (Bollacker et al., 2008). We re-
port more details in Table 2.

Following previous work (Jiang et al., 2023b),
we take the Hits@1 and F1 as evaluation metrics
for WebQSP and CWQ. Hits@1 is a metric for
measuring the accuracy of the top-1 answer. For
generative LLMs, we consider the first answer gen-
erated as the top-1 answer. Given a question may
have multiple answers, F1 balances precision and
recall of the predicted answers, and is used to assess
the overall coverage of the model’s predictions.

4.3 Experimental Details

In our main experiments, we take LLaMA2-7b-
Chat 3 as the reasoning backbone model and BGE-
1.5-en-base * as the retrieval backbone model. We
finetune the retrieval model on the training set of
WebQSP and CWQ for 5 epochs. The learning rate
is set to le-5 and the batch size is set to 64. We
search for a path in Freebase that starts with a ques-
tion entity and ends with an answer entity (limiting

*https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
*https://huggingface.co/BAAI/bge-base-en-v1.5

the length of the path to no more than 5), treating
all entities in the path as positive samples of the
query, and randomly sampling 6 triples as negative
samples. We construct 270k entity-level and 540k
relationship-level instruction data from Freebase,
and the WebNLG dataset (Gardent et al., 2017) as
graph-level instruction data. We tune the reasoning
model for 2 epochs with the learning rate set to
2e-6 and batch size set to 64. Then, we perform
continual pre-training on the Freebase data using
the same setting. For KG-based reasoning train-
ing, we use the WebQSP and CWQ training sets
as queries to retrieve knowledge from KG using
BGE-1.5-en-base. Then, we employ Llama2-70b-
Chat > to generate high-quality reasoning processes,
which are subsequently used to train our reasoning
model. The training is conducted for 5 epochs with
the learning rate set to 2e-6 and batch size set to
64. In the inference stage, the first 3 samples from
the WebQSP training set are added as demonstra-
tions before each question. For each question, we
use our retriever to retrieve the top-20 triples most
relevant to it. For generation, we adopt top-p sam-
pling with the temperature set to 0.85 and p set to
0.9, and the generation length is 512 tokens. To
enhance inference speed, model inference is based
on the vLLM library (Kwon et al., 2023).

4.4 Main Results

Table 3 shows the results of our KGQA model
and other baselines on WebQSP and CWQ. Firstly,
general-purpose LLMs do not perform well on
KGQA tasks, with neither LLaMA2-7b-Chat nor
the ChatGPT able to match the performance of
KGQA-specific models, especially in the more
challenging CWQ dataset. This means that LL.Ms
still have significant room for improvement in their
ability to understand and utilize structured knowl-

Shttps://huggingface.co/meta-llama/Llama-2-70b-chat-hf



Models WebQSP CWQ Models Hits@1 Precision Recall Fl
Hits@l F1 Hits@l F1 Ours 68.7 56.4 63.0 556
NSM 68.7 62.8 47.6 42.4 - w/o SubKG-R 65.4 529 59.7 522
TransferNet 71.4 _ 48.6 _ - w/o CoT-R 66.1 52.8 60.3 525
SR+NSM 68.9 64.1 50.2 47.1 - w/o KG-IT 68.0 55.8 623 55.1
SR+NSM+E2E 69.5 64.1 49.3 46.3 - w/o KG-PT 69.4 53.8 639 54.1
QGG 73.0 73.8 36.9 37.4 - w/o KG-RT 42.6 34.0 37.0 323
UniKGQA 77.2 72.2 51.2 49.0
DECAF 82.1 78.8 - - Table 4: Ablation results on CWQ. R denotes retrieval,
LLaMAZ2-7b-chat 59.5 34.0 34.0 22.7  IT denotes instruction tuning, PT denotes continual
StructGPT 69.6 - - - pretraining and RT denotes reasoning training.
ChatGPT 75.6 - 48.9 -
KD-CoT 68.6 52.5 55.7 - 70
RoG 857 708 62.6  56.2 -
Ours 915 740 687 556 60
. 50
Table 3: Experimental results of our KGQA method and
strong baselines on the two dataset. Bold and underline D 40
denote the best and the second best result, respectively. e —e— BGE —
30 Ours w/o subgraph
—<&— Ours w/o CoT
edge graphs for complex reasoning. Our approach 20 —— Ours
improves Hits@1 by 15-20% on the two KGQA 5 10 15 20 25 30
tasks compared to these strong general-purpose Top-k

LLMs. Currently, the state-of-the-art (SOTA) mod-
els for KGQA are RoG and DECAF, which are
based on retrieval-augmentation and semantic pars-
ing respectively, with backbone models that have
over a billion parameters. In terms of the Hits@1
metric, our method comprehensively surpasses the
existing SOTA, especially in the WebQSP dataset,
where we achieve a breakthrough of more than 90%
for the first time. Compared to RoG, our method
shows a significant improvement in 6% Hits@1 on
both WebQSP and CWQ. Overall, our method is
comparable to the SOTA models in terms of the F1
score. On WebQSP, it falls short of DECAF but
outperforms RoG by 3%, and on CWQ, it is on par
with RoG.

5 Analysis and Discussion

5.1 Ablation Study

We conduct ablation experiments on CWQ to ana-
lyze the contributions of KG retrieval module and
KG reasoning module. As shown in the experimen-
tal results in Table 4, each module in our method is
indispensable. The most crucial component is KG
reasoning training; without it, the model’s perfor-
mance plummets from 68.7% to 42.6% in Hits@1.
This indicates that even if LLMs encode KG infor-
mation and understand its semantics, it is in vain if
LLMs fail to utilize KG for reasoning. The second

Figure 3: Comparison of recall ability of different re-
trieval models.

key component is the retrieval module. Experi-
ments show that the roles of subgraph information
and the reasoning process are complementary, and
their combined use maximizes effectiveness. Lack-
ing either can lead to a 3% reduction in the model’s
performance. Compared to the reasoning process,
subgraph information is more crucial, indicating
that effectively encoding the semantic information
of KG in the retrieval model remains the key is-
sue. Finally, command fine-tuning and continued
pre-training also have a positive impact on model
performance. Instruction tuning can improve the
model’s performance by about 0.7% across all met-
rics. Continued pre-training enhances the model’s
understanding of KG semantics, which helps to
filter out irrelevant knowledge, thereby improving
the model’s precision and F1 score.

5.2 Retrieval Evaluation

The performance of retrieval-augmented KGQA
models is largely dependent on the quality of the
retrieval process (Jiang et al., 2023b). We expect
retrieval models to exhibit exceptional recall capa-
bilities to cover as much useful intermediate knowl-
edge as possible. This is because while reasoning



LLMs may learn to filter out irrelevant information
through training, they struggle to compensate for
the absence of crucial information. Therefore, we
compare the recall ability of our retrieval model,
ours w/o subgraph, ours w/o CoT, and the BGE
model (results are shown in Figure 3). It is evi-
dent that our retrieval model has a higher recall rate
from top-5 to top-30 than the other three models,
significantly surpassing the original BGE model.
Comparing the performance of our model without
CoT and without subgraph information, we find
that subgraph information is more crucial for the
retrieval model, consistent with the results of the
ablation study in Section 5.1.

5.3 The Efficiency of YAML Format KG

As analyzed in Section 3.3, adopting the YAML
format with simple syntax to represent KGs instead
of the traditional triplet format can reduce token
redundancy. To quantitatively assess how much
redundancy YAML can eliminate, we have calcu-
lated the average number of KG tokens required
per question by selecting knowledge graphs con-
structed from knowledge retrieved by our search
engine on both WebQSP and CWQ datasets. For
WebQSP, using triples to represent the KG requires
an average of 532.6 tokens per question; if we
use the YAML format, the average token drops to
384.2, thus reducing token redundancy by nearly
28%. For CWQ, replacing triples with YAML re-
duces the average token count of KGs from 534.3 to
401.4, a compression of nearly 25%. In a scenario
where budget resources are constrained, minimiz-
ing the representation of tokens in a knowledge
graph by using YAML allows those resources to be
repurposed towards combining additional examples
or recalling more retrieved information, aiming to
achieve further performance enhancements.

5.4 Applying to Other Models

To verify the generalizability of our proposed
method, we apply our method on two other dif-
ferent models, CodeLLaMA-7b-Instruct® (Roziére
et al., 2024) and Phi2-3b’ (Li et al., 2023). As
shown in Figure 4, our method has significantly
improved the performance of these two models
on the KGQA task. For Phi2 and CodeLLaMA,
our method has achieved an average improvement
of 30% and 40% on the two datasets, respec-

®https://huggingface.co/codellama/Codellama-7b-
Instruct-hf
"https://huggingface.co/microsoft/phi-2
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Figure 4: Experimental results on Phi2 and CodeL-
LaMA models.

tively. Although CodeLLaMA is slightly inferior
to LLaMA2-7b-chat, it still achieves performance
comparable to RoG. Phi2, with only half the num-
ber of parameters compared to the other two mod-
els, lags significantly behind in performance, only
reaching the level of UniKGQA and ChatGPT.

We observe that the performance differences
among the original three models on KGQA tasks
are not significant. The original Phi2 and codel-
lama exhibit a mere 1% difference on KGQA
tasks; however, when combined with our approach,
this margin increases to approximately 10%. Our
method amplifies these differences, which may be
due to understanding and exploiting KG to reason
is a new skill for general-purpose LLMs. Phi2, with
its smaller model size, may not allocate sufficient
capacity to learn this skill. This phenomenon offers
new insights for selecting a foundational model for
KGQA in practice: firstly, within resource limits,
choose models with larger parameters to fully learn
and utilize KG capabilities; secondly, choose mod-
els with stronger reasoning abilities.

6 Conclusion

In this paper, we propose a method combining ex-
plainable knowledge graphs with large language
models to enhance complex reasoning capabilities.
Our method includes a KG retrieval model and
a KG reasoning model. We integrate reasoning
processes and subgraph information for better KG
retrieval. We employ a novel KG representation
and KG-related tuning for the reasoning model to
learn to understand and reason with KG. Exper-
imental results on two challenging KGQA tasks
show that our method outperforms existing strong
baselines and the SOTA model.



Limitations

Although our proposed method has made signifi-
cant progress in KGQA, there are still some limita-
tions:

* Due to computational resource constraints, we
only conduct experiments on LL.Ms below 10B
parameters, lacking investigation into larger mod-
els (such as LLaMA2-13B and 70B), other archi-
tectures (such as RWKYV and Mixtral families).

* Our method fine-tunes LL.Ms with full-parameter,
which is impractical in many low-resource set-
tings. In future work, we plan to utilize efficient
fine-tuning techniques such as LoRA, and com-
pare its effectiveness with the current results.

* We only validate the efficacy of our method on
two KGQA tasks. To more convincingly demon-
strate that our approach enables LLMs to lever-
age KG for reasoning, we will incorporate addi-
tional tasks and datasets in our future work.
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