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Abstract
Large language models (LLMs) have per-001
formed impressively in various natural lan-002
guage processing tasks. However, their inher-003
ent hallucination phenomena seriously chal-004
lenge their credibility in complex reason-005
ing. Combining explainable knowledge graphs006
(KGs) with LLMs is a promising path to ad-007
dress this challenge. However, there is a huge008
representation gap between structured KGs and009
LLMs pre-trained from unstructured text, and010
how to make LLMs understand and utilize KGs011
for complex reasoning is a challenging topic.012
To tackle this challenge, we propose a com-013
prehensive method: improving retrieval capa-014
bilities for KG by integrating reasoning pro-015
cesses and subgraph information and enhanc-016
ing LLMs’ understanding and utilization of017
KG through an efficient yet effective KG rep-018
resentation and KG-related tuning. Extensive019
experiments on two KGQA datasets and vari-020
ous LLMs demonstrate that our method outper-021
forms existing strong KGQA methods1.022

1 Introduction023

Recently, the emergence and application of large024

language models (LLMs) (OpenAI, 2022, 2023;025

Bubeck et al., 2023; Yang et al., 2023) have at-026

tracted widespread attention from researchers and027

the general public. It demonstrates remarkable rea-028

soning capabilities, managing to solve complex029

reasoning problems through step-by-step thinking030

and planning (Wei et al., 2022; Khot et al., 2023).031

However, the reasoning of LLMs is not invariably032

reliable and may conflict with factual reality, a033

phenomenon known as hallucination (Wang et al.,034

2023; Huang et al., 2023). This will limit the appli-035

cation of LLMs in areas requiring high reliability,036

such as healthcare and science.037

The knowledge graph (KG) stores high-quality038

common sense or domain-specific knowledge in039

1All the code, data and model checkpoints will be publicly
available at https://anonymous.com

structured triplets. Due to its reliability and in- 040

terpretability, it is considered a promising method 041

to improve the reliability of LLM reasoning (Pan 042

et al., 2024). Therefore, researchers have never 043

ceased their attempts to integrate KGs with lan- 044

guage models (Zhang et al., 2019; Liu et al., 2020; 045

Lewis et al., 2020; Sun et al., 2021). Among them, 046

the knowledge graph question answering (KGQA) 047

is the critical task to incorporate the knowledge of 048

KG into reasoning models (Lan et al., 2021; Miller 049

et al., 2016; Sun et al., 2018; Jiang et al., 2023b). 050

KGQA faces two main challenges: (1) How 051

to retrieve specific knowledge from KGs to help 052

reasoning precisely; (2) How to make the reason- 053

ing model understand and utilize the structured 054

knowledge in KGs. For the first challenge, exist- 055

ing solutions include direct retrieval (Sun et al., 056

2019; Baek et al., 2023; Jiang et al., 2023b) and 057

semantic parsing (Sun et al., 2020; Lan and Jiang, 058

2020; Gu and Su, 2022; Ye et al., 2022; Yu et al., 059

2023). Direct retrieval involves taking the ques- 060

tion as a query and the knowledge triplets in the 061

KG as candidates, using either sparse or dense re- 062

trieval techniques to identify several candidates 063

most relevant to the query. Semantic parsing trans- 064

forms the question into an executable structured 065

query statement (e.g., SPARQL) and executes the 066

query in KGs. However, individual knowledge 067

in KGs has limited semantics, and direct retrieval 068

makes it difficult to model the semantic relevance, 069

especially in multi-hop question answering, where 070

knowledge that is semantically weakly relevant to 071

the question may instead be important intermediate 072

knowledge. Semantic parsing faces the problem 073

of non-executable or incorrectly executed gener- 074

ated queries (Yu et al., 2023). For the latter chal- 075

lenge, since current LLMs are primarily trained in 076

unstructured text, they may not effectively compre- 077

hend and utilize knowledge in the structured form. 078

Consequently, existing methods often convert KG 079

content to natural language (He et al., 2024; Ye 080
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et al., 2024) or linearized triplets (Luo et al., 2024).081

However, natural language renders KG knowledge082

redundant, necessitating more tokens representing083

the KG, while linearization undermines the struc-084

tural information inherent within the KG.085

To address these two challenges, this paper086

introduces a novel retrieval-augmented method.087

Our proposed retrieval model combines chain-of-088

thought (CoT) (Wei et al., 2022) and subgraphs,089

where subgraphs enrich the semantic information090

of candidate knowledge, and CoT offers interme-091

diate reasoning steps involved in multi-hop ques-092

tion answering, aiding the retrieval model in re-093

calling useful intermediary knowledge. We then094

represent the KG in YAML format to reduce input095

redundancy and enhance the LLM’s understand-096

ing of KGs by instruction tuning across three KG-097

level tasks and KG data pre-training. To further098

strengthen the reasoning capabilities of LLMs uti-099

lizing KGs, we generate explicit reasoning process100

data with larger open-source LLMs and train our101

reasoning models with these synthetic datasets. To102

evaluate the effectiveness of our proposed KGQA103

method, we conduct experiments on LLaMA2-7b-104

Chat on two KGQA datasets. Experimental results105

demonstrate our proposed method can perform bet-106

ter than existing strong baselines. Further analysis107

indicates the generalizability to other LLMs.108

Overall, our main contributions include:109

• We integrate the reasoning process and subgraph110

into knowledge retrieval, which aids in recalling111

useful intermediate knowledge for reasoning.112

• We propose a novel and efficient KG representa-113

tion method, the YAML format, which reduces114

token redundancy by approximately 25% com-115

pared to the traditional triple format. Combined116

with our proposed KG-related tuning, LLM is117

able to understand and utilize YAML-format KG118

to accomplish complex reasoning tasks.119

• Extensive experiments show that our method out-120

performs the existing strong baselines in two121

challenging datasets.122

2 Related Work123

Knowledge graph question answering (KGQA)124

enables models to answer questions by integrat-125

ing common sense or domain-specific knowledge126

from knowledge graphs. Current approaches127

to KGQA can be categorized into three types:128

embedding-based, semantic parsing-based and129

retrieval-augmented. Embedding-based methods130

project entities and relations from knowledge 131

graphs into an embedding space, and utilize key- 132

value memory networks (Miller et al., 2016), se- 133

quence modeling (He et al., 2021), or graph neu- 134

ral networks (Yasunaga et al., 2021) to learn the 135

reasoning process between questions and the enti- 136

ties and relations. Semantic parsing-based meth- 137

ods utilize the semantic parsing model to con- 138

vert questions into structured query language ori- 139

ented towards the knowledge base (e.g. SPARQL), 140

and then execute it to search answers from the 141

knowledge graph (Sun et al., 2020; Lan and Jiang, 142

2020; Gu and Su, 2022; Ye et al., 2022; Yu et al., 143

2023). However, semantic parsing-based meth- 144

ods rely on retrieving answers from knowledge 145

bases, overlooking the reasoning capabilities of 146

models. Retrieval-augmented methods combine 147

knowledge graphs with the intrinsic reasoning ca- 148

pabilities of models. They first retrieve question- 149

relevant knowledge triples or subgraphs from the 150

knowledge graphs, and then leverage this retrieved 151

knowledge to enhance the factualness of the reason- 152

ing. Sun et al. (2018) propose the GraftNet which 153

utilizes entity linking to retrieve subgraphs. Subse- 154

quently, many works adopt effective dense retrieval 155

models as their retrieval modules, such as PullNet 156

(Sun et al., 2019), SR (Zhang et al., 2022), DiFar 157

(Baek et al., 2023), UniKGQA (Jiang et al., 2023b), 158

etc. Today, natural language processing has entered 159

the era of large language models, where retrieval- 160

augmented generation (RAG) enables these models 161

to effectively leverage external knowledge to ac- 162

complish various tasks (Lewis et al., 2020; Gao 163

et al., 2024). Wang et al. (2023) retrieve knowl- 164

edge from knowledge graphs to verify and correct 165

the factual within chain-of-thought, resulting in the 166

generation of more precision responses. Yu et al. 167

(2023) utilize a larger-scale retriever to enhance 168

retrieval performance and generate both seman- 169

tic parsing expressions and inference results in the 170

generation phase, compensating for their respective 171

shortcomings by integrating the two approaches. 172

3 Methodology 173

In this section, we present our proposed 174

KGQA method, which is based on the retrieval- 175

augmentation generation paradigm. First, we intro- 176

duce the overall inference process of our method, 177

including the KG retrieval module and the KG rea- 178

soning module. Then, we detail the training pro- 179

cesses for the two modules. 180
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KG reasoning LLM

KG Retrieval

What is the name of 
Justin Bieber brother?

Question ⓵
Let’s think step by step:

1. Identify Justin Bieber's 
Siblings …

2. Find the Brother …

Question

Question

Question

…
Step 1

Step 1 Step n…

Justin Bieber:
sibling_s:
- m.0gxnnwc
- m.0gxnnwp

Jaxon Bieber:
sibling_s: m.0gxnnwp

Instruction Tuning

Entity-level Task
Please predict the entity [...]
Relation-level Task
Please recognize the relationship […]
Graph-level Task
Please convert them into sentences 
[…]

Knowledge Graph Pretraining

Justin Bieber:
profession:
- Musician
- Record producer
album:
- All Bad
- Believe Acoustic [… …]

Here is a problem, 
along with clues from 
KGs and answers. 
Please provide the
corresponding 
reasoning process.

🤖

Answer 

Jaxon Bieber

KG Reasoning Training

Figure 1: llustration of our KGQA method. It contains two modules, Knowledge Graph Retrieval Model and
Knowledge Graph Reasoning LLM.

Prompt 1: Generating CoT for Retrieval
Please think step by step and then answer the given
question.

Here are some examples:
Input: <Demonstration Question>
CoT: Let’s think step by step. <Demonstration CoT>
### Output: <Demonstration Answer>

Input: <Question>
CoT: Let’s think step by step.

181

3.1 Overview182

As Fig. 1 shows, our KGQA method includes two183

modules: KG retrieval model and KG reasoning184

LLM. Given a question q and a knowledge graph185

G = {ti}ni , where ti = (eih, r
i, eit) ∈ E ×R× E186

is a knowledge triple; E ,R are the set of entities187

and relationships; eh, r, et are the head entity, re-188

lationship and tail entity, respectively. After we189

complete training the KG retrieval model Rϕ and190

the KG reasoning LLM Mθ, in the inference stage,191

the LLM Mθ first plans the problem and generates192

a reasoning process with chain-of-thought (CoT)193

prompting:194

{c1, ..., cj} = Mθ(pcot ⊕ q), (1)195

where cj is the j-th step reasoning process and pcot196

is the CoT prompting as shown in Prompt 1, ⊕197

means the concatenation operator. Then, we pro-198

gressively concatenate the reasoning process with199

the question as queries to retrieve knowledge: qj =200

q⊕c1⊕...⊕cj (q0 = q). For each candidate knowl-201

edge t, we integrate the surrounding subgraph in-202

formation Gt = {(eh, r, et)|eh = eth ∨ et = ett}.203

The retrieval can be formalized as follows: 204

T = Topk
∑
j

f(Rϕ(q
j), Rϕ(t⊕ Gt)), (2) 205

where f is the similarity function between the 206

query representation and the candidate represen- 207

tation (e.g. cosine similarity or dot-product similar- 208

ity), T is the set of top-k candidates retrieved that 209

are most relevant to the query. 210

Prompt 2: Utilizing KG to Reason
Please think step by step and then answer the given
question. Please keep the answer as simple as
possible and return all the possible answers as a list.
If there are hints, please combine this information to
answer.

Here are some examples:
Input: <Demonstration Question>
Hints: <Demonstration Knowledge Graph>
CoT: Let’s think step by step. <Demonstration CoT>
### Output: <Demonstration Answer>

Input: <Question>
Hints: <Knowledge Graph>
CoT: Let’s think step by step.

211

After retrieval, the candidate set is transformed 212

into YAML format and serves as part of the input 213

for the KG reasoning LLM, which reasons and 214

outputs the final answer through Prompt 2. 215

3.2 Knowledge Retrieval with 216

Chain-of-thoughts and Subgraphs 217

Retrieving relevant and useful knowledge from 218

knowledge graphs is critical for the performance of 219

KGQA. Benefiting from the increasingly advanced 220

dense retrieval, we can obtain relevant knowledge 221
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through direct retrieval, without the need for elabo-222

rate techniques such as semantic parsing and entity223

linking (Baek et al., 2023). However, the semantic224

expression of individual knowledge in knowledge225

graphs is limited, and the semantic relationship226

between knowledge and questions is not directly227

related in multi-hop question answering. Therefore,228

we consider incorporating neighboring knowledge229

information and reasoning processes when retriev-230

ing knowledge.231

We employ the contrastive learning to train our232

retrieval model, the training loss is:233

L = − log
exp(f(Rϕ(q

j), Rϕ(t
+ ⊕ Gt+)))∑

t∈τ exp(f(Rϕ(qj), Rϕ(t⊕ Gt)))
,

(3)234

where τ contains all triplets in the same batch, t+ is235

the positive sample and others are negative samples.236

In our method, we take all the knowledge triples237

on the path from the entity in the question to the238

answer entity in the knowledge graph as positive239

samples, and randomly sample from the remaining240

triples as negative samples.241

Different from the inference stage, We only use242

the LLaMA-7b-Chat model, which has not been243

specifically trained for knowledge graph tasks, to244

generate the reasoning process for training (This245

method allows for the complete decoupling of the246

training of the retrieval and reasoning models, en-247

abling them to be trained independently and in par-248

allel). To address the inconsistency in CoT quality249

during training and inference, we employ ratio-250

nalization prompting (Prompt 3 2) during training,251

providing the answer in the prompt so that the LLM252

can generate a reasonable reasoning process based253

on the answer.254

Prompt 3: Generating CoT for Training
Here is a problem, along with (clues from a
knowledge graph and) the answer. Please provide the
corresponding reasoning process.

Here are some examples:
Input: <Demonstration Question>
(Clues: <Demonstration Knowledge Graph>)
Answer: <Demonstration Answer>
Output: <Demonstration CoT>

Input: <Question>
(Clues: <Knowledge Triples>)
Answer: <Answer>
Output:

255
2Prompt 3 applies to both retrieval training and reasoning

training, and KG information is only provided during reason-
ing training (in section 3.4).

Justin Bieber:
profession:

- Musician
- Record producer

album:
- All Bad
- Believe Acoustic

[… …]

(Justin Bieber, profession, Musician), 
(Justin Bieber, profession, Record 
producer), (Justin Bieber, album, All 
Bad), (Justin Bieber, album, Believe 
Acoustic), [… …]

Triple format

YAML format

Figure 2: An example of triple and YAML format KG.

3.3 Utilizing Knowledge Graphs Effectively 256

and Efficiently in LLMs 257

Knowledge graphs are essentially structured knowl- 258

edge, while LLMs are typically pretrained on un- 259

structured text. To bridge this gap and enable 260

LLMs to better understand and utilize the struc- 261

tured knowledge, we propose a simplified represen- 262

tation for knowledge graphs. Additionally, we em- 263

ploy instruction tuning and continual pre-training 264

to ensure that LLMs internalize both the knowledge 265

and this representation form. 266

YAML Format KG In general, the retrieved 267

knowledge triples may exhibit many literal sim- 268

ilarities, such as having the same head entity or re- 269

lation across multiple triples. If we linearize these 270

triples directly as input for the reasoning LLM, it 271

will result in significant token redundancy, thereby 272

impacting the efficiency of the model’s inference. 273

Therefore, we try to represent the knowledge graph 274

in a more efficient format. Our approach uses the 275

YAML format, a data serialization language with a 276

simple syntax. As shown in Figure 2, YAML uses 277

indentation to represent hierarchical relationships. 278

We treat different head entities as the first-level re- 279

lationship, different relationships under the same 280

head entity as the second level, and different tail 281

entities under the same head entity and relationship 282

as the final level. 283

KG Instruction For general-purpose LLMs, rep- 284

resenting knowledge graphs in YAML format is 285
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unfamiliar and infrequently encountered in their286

pre-training corpora. Therefore, to enable LLMs287

to understand knowledge graphs in YAML, we de-288

sign three types of graph-related instruction-tuning289

tasks: (1) entity-level tasks, where the LLM is290

required to reason the entity according to neigh-291

bors; (2) relationship-level tasks, where the task292

is to reason the relationship between entities; (3)293

graph-level tasks, where the LLM needs to un-294

derstand the semantic of knowledge graphs and295

converts to natural language. We design three dif-296

ferent instructions for each type of task (shown in297

Table 1) and denote the instruction prompt as I .298

For entity-level and relationship-level instruction299

tasks, we automatically construct them based on300

the data in the knowledge graph without the need301

for additional manual annotation. For graph-level302

instruction tasks, we utilize existing high-quality303

KG-to-text datasets (Gardent et al., 2017). The304

training loss of KG instruction is:305

Linstruct = −
L∑
l

yllogp(ŷl|I(x), y<l), (4)306

where (x, y) is the input-output pair, L is the length307

of y, yl is y’s l-th token, y<l means tokens before308

l-th token, ŷl is the predicted l-th token.309

Continual KG Pre-training To further learn the310

structured knowledge embedded in knowledge311

graphs, we propose the continual KG pre-training312

method. We serialize the entire knowledge graph313

in YAML format and train it by the next token314

prediction:315

Lpretrain = −
L∑
l

xllogp(x̂l|x<l), (5)316

where x is the pretraining data.317

3.4 KG-based Reasoning Training318

In Section 3.3, we enhance the LLM’s understand-319

ing of the specialized structured representation of320

KG, without explicitly teaching the LLM to use KG321

for reasoning. In practical scenarios, we need to322

address two issues: (1) How to utilize KG for multi-323

hop reasoning; (2) How to manage the retrieved324

noisy knowledge that lacks crucial task-related in-325

formation or contains irrelevant redundant informa-326

tion. To address these two issues, we use a retrieval327

model that has not been fine-tuned for KGQA tasks328

to retrieve noisy knowledge, and a more powerful329

LLM to generate high-quality reasoning processes330

for questions based on retrieved knowledge and an- 331

swers with Prompt 3. After obtain the knowledge 332

and reasoning processes, we train our reasoning 333

LLM with the loss function defined in Equation 4. 334

4 Experiments 335

4.1 Baseline Methods 336

We compare our method with the following com- 337

petitive KBQA baselines. 338

NSM (He et al., 2021) proposes a teacher-student 339

framework where the teacher model learns supervi- 340

sion signals for intermediate reasoning processes 341

through forward and backward reasoning, which 342

are then conveyed to the student model for multi- 343

hop inference. 344

Transfernet (Shi et al., 2021) utilizes the graph at- 345

tention mechanism to capture the relevance among 346

questions, entities, and relationships, guiding a 347

step-by-step traversal on the knowledge graph to- 348

wards the answer. 349

SR+NSM (+E2E) (Zhang et al., 2022) proposes a 350

effective subgraph retriever to retrieve the most rel- 351

evant relation-path for reasoning and then utilizes 352

the NSM to reason. E2E denotes further jointly 353

finetuning the SR+NSM. 354

QGG (Lan and Jiang, 2020) is a semantic parsing 355

based approach that incorporates constraints and 356

extends relational paths in the process of generating 357

query graphs. 358

UniKGQA (Jiang et al., 2023b) unifies the retriever 359

and reasoning module into a single model. 360

DECAF (Yu et al., 2023) proposes a method for 361

joint generating semantic parsing forms and direct 362

answers, significantly improving the executability 363

of semantic parsing forms. 364

StructGPT (Jiang et al., 2023a) utilizes LLMs’ 365

tool-using capabilities to interactive between LLMs 366

and knowledge bases, which facilitates multi-hop 367

reasoning through iterative interactions. 368

KD-CoT (Wang et al., 2023) retrieves relevant 369

knowledge from the KG during the reasoning pro- 370

cess, progressively verifying and correcting facts 371

in the reasoning process. 372

RoG (Luo et al., 2024) RoG leverages the power- 373

ful generative and planning capabilities of LLMs 374

to generate reasoning paths. It retrieves corre- 375

sponding knowledge from knowledge graphs based 376

on these paths and synthesizes various reasoning 377

paths to deduce the final answer. RoG is based on 378

LLaMA2-7b-chat. 379
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Task Instruction

Entity
Please predict the entity represented by <mask> based on the one-hop relationships in the knowledge graph. \n Input: {Input}
Based on the one-hop relationships in the knowledge graph, infer the entity represented by <mask>. \n Input: {Input}
Make a prediction about the masked entity, using the one-hop relationships in the knowledge graph as a reference. \n Input: {Input}

Relationship
Please recognize the relationship between the two entities.\n Knowledge Graph: {KG} \n Input: {Input}
Please predict the relationship between the two entities.There are some one-hop information of these entities: {KG} \n Input: {Input}
Make a prediction about the relationship, using the one-hop relationships in the knowledge graph as a reference. \n {KG} \n Input: {Input}

Graph2text
Please deeply understand the following knowledge graph, and then convert them into a coherent sentence. \n Input: {Input}
Given these knowledge graph, please deeply write a paragraph that integrates the information contained in them. \n Input: {Input}
Compose an informative report using the information from these knowledge graph. \n Input: {Input}

Text2graph
Please extract all entities and relationships in the sentence. \n Input: {Input}
Given the sentence, please extract a knowledge graph that integrates the information contained in them. \n Input: {Input}
Please deeply understand the following sentence, and then generate a knowledge graph. \n Input: {Input}

Table 1: Instructions of knowledge graph related tasks.

Dataset WebQSP CWQ

#Train 2,848 27,639
#Valid 250 3,519
#Test 1,639 3,519
#Max hop 2 5

Table 2: Characteristics of datasets

4.2 Datasets and Evaluation Metrics380

To evaluate the effectiveness of our proposed381

KGQA method, we conduct experiments on two382

popular and challenging dataset: WebQuestionsSP383

(WebQSP) (Yih et al., 2015) and Complex We-384

bQuestions 1.1 (CWQ) (Talmor and Berant, 2018).385

Both two datasets are created from the Freebase386

knowledge graph (Bollacker et al., 2008). We re-387

port more details in Table 2.388

Following previous work (Jiang et al., 2023b),389

we take the Hits@1 and F1 as evaluation metrics390

for WebQSP and CWQ. Hits@1 is a metric for391

measuring the accuracy of the top-1 answer. For392

generative LLMs, we consider the first answer gen-393

erated as the top-1 answer. Given a question may394

have multiple answers, F1 balances precision and395

recall of the predicted answers, and is used to assess396

the overall coverage of the model’s predictions.397

4.3 Experimental Details398

In our main experiments, we take LLaMA2-7b-399

Chat 3 as the reasoning backbone model and BGE-400

1.5-en-base 4 as the retrieval backbone model. We401

finetune the retrieval model on the training set of402

WebQSP and CWQ for 5 epochs. The learning rate403

is set to 1e-5 and the batch size is set to 64. We404

search for a path in Freebase that starts with a ques-405

tion entity and ends with an answer entity (limiting406

3https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
4https://huggingface.co/BAAI/bge-base-en-v1.5

the length of the path to no more than 5), treating 407

all entities in the path as positive samples of the 408

query, and randomly sampling 6 triples as negative 409

samples. We construct 270k entity-level and 540k 410

relationship-level instruction data from Freebase, 411

and the WebNLG dataset (Gardent et al., 2017) as 412

graph-level instruction data. We tune the reasoning 413

model for 2 epochs with the learning rate set to 414

2e-6 and batch size set to 64. Then, we perform 415

continual pre-training on the Freebase data using 416

the same setting. For KG-based reasoning train- 417

ing, we use the WebQSP and CWQ training sets 418

as queries to retrieve knowledge from KG using 419

BGE-1.5-en-base. Then, we employ Llama2-70b- 420

Chat 5 to generate high-quality reasoning processes, 421

which are subsequently used to train our reasoning 422

model. The training is conducted for 5 epochs with 423

the learning rate set to 2e-6 and batch size set to 424

64. In the inference stage, the first 3 samples from 425

the WebQSP training set are added as demonstra- 426

tions before each question. For each question, we 427

use our retriever to retrieve the top-20 triples most 428

relevant to it. For generation, we adopt top-p sam- 429

pling with the temperature set to 0.85 and p set to 430

0.9, and the generation length is 512 tokens. To 431

enhance inference speed, model inference is based 432

on the vLLM library (Kwon et al., 2023). 433

4.4 Main Results 434

Table 3 shows the results of our KGQA model 435

and other baselines on WebQSP and CWQ. Firstly, 436

general-purpose LLMs do not perform well on 437

KGQA tasks, with neither LLaMA2-7b-Chat nor 438

the ChatGPT able to match the performance of 439

KGQA-specific models, especially in the more 440

challenging CWQ dataset. This means that LLMs 441

still have significant room for improvement in their 442

ability to understand and utilize structured knowl- 443

5https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
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Models WebQSP CWQ

Hits@1 F1 Hits@1 F1

NSM 68.7 62.8 47.6 42.4
TransferNet 71.4 - 48.6 -
SR+NSM 68.9 64.1 50.2 47.1
SR+NSM+E2E 69.5 64.1 49.3 46.3
QGG 73.0 73.8 36.9 37.4
UniKGQA 77.2 72.2 51.2 49.0
DECAF 82.1 78.8 - -
LLaMA2-7b-chat 59.5 34.0 34.0 22.7
StructGPT 69.6 - - -
ChatGPT 75.6 - 48.9 -
KD-CoT 68.6 52.5 55.7 -
RoG 85.7 70.8 62.6 56.2
Ours 91.5 74.0 68.7 55.6

Table 3: Experimental results of our KGQA method and
strong baselines on the two dataset. Bold and underline
denote the best and the second best result, respectively.

edge graphs for complex reasoning. Our approach444

improves Hits@1 by 15-20% on the two KGQA445

tasks compared to these strong general-purpose446

LLMs. Currently, the state-of-the-art (SOTA) mod-447

els for KGQA are RoG and DECAF, which are448

based on retrieval-augmentation and semantic pars-449

ing respectively, with backbone models that have450

over a billion parameters. In terms of the Hits@1451

metric, our method comprehensively surpasses the452

existing SOTA, especially in the WebQSP dataset,453

where we achieve a breakthrough of more than 90%454

for the first time. Compared to RoG, our method455

shows a significant improvement in 6% Hits@1 on456

both WebQSP and CWQ. Overall, our method is457

comparable to the SOTA models in terms of the F1458

score. On WebQSP, it falls short of DECAF but459

outperforms RoG by 3%, and on CWQ, it is on par460

with RoG.461

5 Analysis and Discussion462

5.1 Ablation Study463

We conduct ablation experiments on CWQ to ana-464

lyze the contributions of KG retrieval module and465

KG reasoning module. As shown in the experimen-466

tal results in Table 4, each module in our method is467

indispensable. The most crucial component is KG468

reasoning training; without it, the model’s perfor-469

mance plummets from 68.7% to 42.6% in Hits@1.470

This indicates that even if LLMs encode KG infor-471

mation and understand its semantics, it is in vain if472

LLMs fail to utilize KG for reasoning. The second473

Models Hits@1 Precision Recall F1

Ours 68.7 56.4 63.0 55.6

- w/o SubKG-R 65.4 52.9 59.7 52.2
- w/o CoT-R 66.1 52.8 60.3 52.5

- w/o KG-IT 68.0 55.8 62.3 55.1
- w/o KG-PT 69.4 53.8 63.9 54.1
- w/o KG-RT 42.6 34.0 37.0 32.3

Table 4: Ablation results on CWQ. R denotes retrieval,
IT denotes instruction tuning, PT denotes continual
pretraining and RT denotes reasoning training.
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Figure 3: Comparison of recall ability of different re-
trieval models.

key component is the retrieval module. Experi- 474

ments show that the roles of subgraph information 475

and the reasoning process are complementary, and 476

their combined use maximizes effectiveness. Lack- 477

ing either can lead to a 3% reduction in the model’s 478

performance. Compared to the reasoning process, 479

subgraph information is more crucial, indicating 480

that effectively encoding the semantic information 481

of KG in the retrieval model remains the key is- 482

sue. Finally, command fine-tuning and continued 483

pre-training also have a positive impact on model 484

performance. Instruction tuning can improve the 485

model’s performance by about 0.7% across all met- 486

rics. Continued pre-training enhances the model’s 487

understanding of KG semantics, which helps to 488

filter out irrelevant knowledge, thereby improving 489

the model’s precision and F1 score. 490

5.2 Retrieval Evaluation 491

The performance of retrieval-augmented KGQA 492

models is largely dependent on the quality of the 493

retrieval process (Jiang et al., 2023b). We expect 494

retrieval models to exhibit exceptional recall capa- 495

bilities to cover as much useful intermediate knowl- 496

edge as possible. This is because while reasoning 497
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LLMs may learn to filter out irrelevant information498

through training, they struggle to compensate for499

the absence of crucial information. Therefore, we500

compare the recall ability of our retrieval model,501

ours w/o subgraph, ours w/o CoT, and the BGE502

model (results are shown in Figure 3). It is evi-503

dent that our retrieval model has a higher recall rate504

from top-5 to top-30 than the other three models,505

significantly surpassing the original BGE model.506

Comparing the performance of our model without507

CoT and without subgraph information, we find508

that subgraph information is more crucial for the509

retrieval model, consistent with the results of the510

ablation study in Section 5.1.511

5.3 The Efficiency of YAML Format KG512

As analyzed in Section 3.3, adopting the YAML513

format with simple syntax to represent KGs instead514

of the traditional triplet format can reduce token515

redundancy. To quantitatively assess how much516

redundancy YAML can eliminate, we have calcu-517

lated the average number of KG tokens required518

per question by selecting knowledge graphs con-519

structed from knowledge retrieved by our search520

engine on both WebQSP and CWQ datasets. For521

WebQSP, using triples to represent the KG requires522

an average of 532.6 tokens per question; if we523

use the YAML format, the average token drops to524

384.2, thus reducing token redundancy by nearly525

28%. For CWQ, replacing triples with YAML re-526

duces the average token count of KGs from 534.3 to527

401.4, a compression of nearly 25%. In a scenario528

where budget resources are constrained, minimiz-529

ing the representation of tokens in a knowledge530

graph by using YAML allows those resources to be531

repurposed towards combining additional examples532

or recalling more retrieved information, aiming to533

achieve further performance enhancements.534

5.4 Applying to Other Models535

To verify the generalizability of our proposed536

method, we apply our method on two other dif-537

ferent models, CodeLLaMA-7b-Instruct6 (Rozière538

et al., 2024) and Phi2-3b7 (Li et al., 2023). As539

shown in Figure 4, our method has significantly540

improved the performance of these two models541

on the KGQA task. For Phi2 and CodeLLaMA,542

our method has achieved an average improvement543

of 30% and 40% on the two datasets, respec-544

6https://huggingface.co/codellama/CodeLlama-7b-
Instruct-hf

7https://huggingface.co/microsoft/phi-2

WebQSP CWQ20

40

60

80

100

Hi
ts

@
1

Phi-3b
Phi-3b+ours
CodeLLaMA-7b
CodeLLaMA-7b+ours

Figure 4: Experimental results on Phi2 and CodeL-
LaMA models.

tively. Although CodeLLaMA is slightly inferior 545

to LLaMA2-7b-chat, it still achieves performance 546

comparable to RoG. Phi2, with only half the num- 547

ber of parameters compared to the other two mod- 548

els, lags significantly behind in performance, only 549

reaching the level of UniKGQA and ChatGPT. 550

We observe that the performance differences 551

among the original three models on KGQA tasks 552

are not significant. The original Phi2 and codel- 553

lama exhibit a mere 1% difference on KGQA 554

tasks; however, when combined with our approach, 555

this margin increases to approximately 10%. Our 556

method amplifies these differences, which may be 557

due to understanding and exploiting KG to reason 558

is a new skill for general-purpose LLMs. Phi2, with 559

its smaller model size, may not allocate sufficient 560

capacity to learn this skill. This phenomenon offers 561

new insights for selecting a foundational model for 562

KGQA in practice: firstly, within resource limits, 563

choose models with larger parameters to fully learn 564

and utilize KG capabilities; secondly, choose mod- 565

els with stronger reasoning abilities. 566

6 Conclusion 567

In this paper, we propose a method combining ex- 568

plainable knowledge graphs with large language 569

models to enhance complex reasoning capabilities. 570

Our method includes a KG retrieval model and 571

a KG reasoning model. We integrate reasoning 572

processes and subgraph information for better KG 573

retrieval. We employ a novel KG representation 574

and KG-related tuning for the reasoning model to 575

learn to understand and reason with KG. Exper- 576

imental results on two challenging KGQA tasks 577

show that our method outperforms existing strong 578

baselines and the SOTA model. 579
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Limitations580

Although our proposed method has made signifi-581

cant progress in KGQA, there are still some limita-582

tions:583

• Due to computational resource constraints, we584

only conduct experiments on LLMs below 10B585

parameters, lacking investigation into larger mod-586

els (such as LLaMA2-13B and 70B), other archi-587

tectures (such as RWKV and Mixtral families).588

• Our method fine-tunes LLMs with full-parameter,589

which is impractical in many low-resource set-590

tings. In future work, we plan to utilize efficient591

fine-tuning techniques such as LoRA, and com-592

pare its effectiveness with the current results.593

• We only validate the efficacy of our method on594

two KGQA tasks. To more convincingly demon-595

strate that our approach enables LLMs to lever-596

age KG for reasoning, we will incorporate addi-597

tional tasks and datasets in our future work.598
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