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Abstract: We introduce Behavior from Language and Demonstration (BLADE), a1

framework for long-horizon robotic manipulation by integrating imitation learning2

and model-based planning. BLADE leverages language-annotated demonstrations,3

extracts abstract action knowledge from large language models (LLMs), and con-4

structs a library of structured, high-level action representations. These represen-5

tations include preconditions and effects grounded in visual perception for each6

high-level action, along with corresponding controllers implemented as neural7

network-based policies. BLADE can recover such structured representations auto-8

matically, without manually labeled states or symbolic definitions. BLADE shows9

significant capabilities in generalizing to novel situations, including novel initial10

states, external state perturbations, and novel goals. We validate the effectiveness11

of our approach both in simulation and on a real robot with a diverse set of objects12

with articulated parts, partial observability, and geometric constraints.13

Keywords: Manipulation, Planning Abstractions, Learning from Language14

1 Introduction15

Developing autonomous robots capable of completing long-horizon manipulation tasks that involve16

interacting with many objects is a significant milestone. We want to build robots that can directly17

perceive the world, operate over extended periods, generalize to various states and goals, and are18

robust to perturbations. A promising direction is to combine learned policies with model-based19

planners, allowing them to operate on different time scales. In particular, imitation learning-based20

methods have proven highly successful in learning policies for various “behaviors,” which usually21

operate over a short time span [e.g., 1]. To solve more complex and longer-horizon tasks, we can22

compose these behaviors by planning in explicit abstract action spaces [2–4], in latent spaces [5], or23

via large pre-trained models such as large language models [6].24

However, one of the key challenges of all high-level planning approaches is the automatic acquisition25

of an abstraction for the learned “behaviors” to support long-horizon planning. The goal of this26

behavior abstraction learning is to build representations that describe the preconditions and effects of27

behaviors, to enable chaining and search. These representations should depend on the environment, the28

set of possible goals, and the specifications of individual behaviors. Furthermore, these representations29

should be grounded on high-dimensional perception inputs and low-level robot control commands.30

Our insight into tackling this challenge is to leverage knowledge from two sources: the low-level,31

mechanical understanding of robot-object contact, and the high-level, abstract understanding of32

object-object interactions described in language that can be extracted from language models as the33

knowledge source. We bridge them by learning the grounding of abstract language terms on visual34

perception and robot actuation. Our framework, behavior from language and demonstration (BLADE),35

takes as input a small number of language-annotated demonstrations (Fig. 1a). It segments each36

trajectory based on which object is in contact with the robot. Then, it uses a large language model37

(LLM), conditioned on the contact sequences and the language annotations, to propose abstract38

behavior descriptions with preconditions and effects that best explain the demonstration trajectories.39
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(b) Generalizations
(c) Examples: Robust to Perturbations and Geometry Constraints
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Figure 1: BLADE, a robot manipulation framework combining imitation learning and model-based planning. (a)
BLADE takes language-annotated demonstrations as training data. (b) It generalizes to unseen initial conditions,
state perturbations, and geometric constraints. (c) In the depicted scenarios, BLADE recovers from perturbations
such as moving the kettle out of the sink, and resolves geometric constraints including a blocked stove.

During training, we extract the state abstraction terms from the preconditions and effects (e.g.,40

turned-on, aligned-with), and learn their groundings on perception inputs. We also learn the control41

policies associated with each behavior (e.g., turn on the faucet).42

Our model offers several advantages. First, unlike prior work that relies on manually defined state43

abstractions or additional state labels, our method automatically generates state abstraction labels44

based on the language annotations and LLM-proposed behavior descriptions. BLADE recovers the45

visual grounding of these abstractions without any additional label. Second, BLADE generalizes to46

novel states and goals by composing learned behaviors using a planner. Shown in Fig. 1b, it can47

handle various novel initial conditions and external perturbations that lead to unseen states. Third,48

our method can handle novel geometric constraints (Fig. 1c), novel goals expressed in learned state49

abstractions, and partial observability from articulated bodies like drawers.50

2 Related Work51

Composing skills for long-horizon manipulation. A large body of model-based planning methods52

use manually-defined transition models [2, 7–9] or models learned from data [10–15] to generate53

long-horizon plans. However, learning dynamics models with accurate long-term predictions and54

strong generalization remains challenging. Another related direction is to introduce hierarchical struc-55

tures into the policy models [16–20], where different methods have been introduced to decompose56

continuous demonstrations into segments for short-horizon skills [20–22]. Unable to model the de-57

pendencies between the skills, these methods are limited to following sequentially specified subgoals58

and struggle to generalize to unseen goals. Researchers have also used learned models to improve59

state estimation [23] and planning efficiency [24]. However, they still require manual definitions of60

planning knowledge. Some work addresses this issue by learning the dependencies between actions61

from data, but they still require large-scale supervised datasets [25–27]. In contrast, BLADE learns62

planning-compatible action representations from only language-annotated demonstrations.63

Using LLMs for planning. Many researchers have explored using LLMs for planning. Methods64

for direct generation of action sequences [28, 29] usually do not produce accurate plans [30, 31].65

Researchers have also leveraged LLMs as translators from natural language instructions to symbolic66

goals [32–35], as generalized solvers [36], as memory modules [37], and as world models [38, 39].67

To improve the planning accuracy of LLMs, prior work has explored techniques including learning68

affordance functions [6, 40], replanning [41], finetuning [42–44], and VLM-based decision-making69

[45, 46]. BLADE shares a similar spirit as methods using LLMs to generate planning-compatible action70

representations [47–49]. However, they all make assumptions on the availability of state abstractions,71

while BLADE automatically grounds LLM-generated action definitions without additional labels.72
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(:action open-cabinet-door 
 :precondition (not (is-door-open ?door)) 
 :effect (is-door-open ?door) 
 :body (then 
   (close-gripper) 
   (push ?door) 
   (open-gripper)))

(a) Annotated Human Demonstrations

“Open Cabinet Door”
“Grab Kettle”

(b) Structured Behavior Representations

Open Cabinet Door

...

...

Bi-Level Planning & Execution

Novel Goal States: in(teabag, kettle) 
closed(cabinet-door), closed(drawer) 

Novel Initial Condition

Contact Segmentation 
+ LLM Proposal

Learning Algorithms

...

Place Cut On Stove

Robot Actions
Diffusion 
Policy

“Open Drawer”
“is-open(drawer)”
“is-filled(cup)”
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...

“is-blocked(door)” Classifier 
Model False
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...

False
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(c) Generalization

Figure 2: Overview of BLADE. (a) It receives language-annotated human demonstrations, (b) segments
demonstrations into contact primitives, and learns a structured behavior representation. (c) It generalizes to
novel initial conditions, leveraging bi-level planning and execution to achieve goal states.

3 Problem Formulation73

We consider the problem of learning a language-conditioned goal-reaching manipulation policy.74

Formally, the environment is modeled as a tuple ⟨X ,U , T ⟩ where X is the raw state space, U is the75

low-level action space, and T : X × U → X is the transition function (which may be stochastic and76

unknown). Furthermore, the robot will receive observations o ∈ O that may be partially observable77

views of the states. At test time, the robot also receives a natural language instruction ℓt, which78

corresponds to a set of goal states. An oracle goal satisfaction function defines whether the language79

goal is reached, i.e., gℓt : X → {T, F}. Given an initial state x0 ∈ X and the instruction ℓt, the80

robot should generate a sequence of low-level actions {u1, u2, ..., uH} ∈ UH .81

In the language-annotated learning setting, the robot has a dataset of language-annotated demonstra-82

tions D. Each demonstration is a sequence of robot actions {u1, ..., uH} paired with observations83

{o0, ..., oH}. Each trajectory is segmented into M subtrajectories, and natural language descriptions84

{ℓ1, ..., ℓM} are associated with the segments (e.g., “place the kettle on the stove”). In this paper, we85

assume that there is a finite number of possible ℓ’s—each corresponding to a skill to learn.86

Directly learning a single goal-conditioned policy that can generalize to novel states and goals is87

challenging. Therefore, we recover an abstract state and action representation of the environment and88

combine online planning in abstract states and offline policy learning for low-level control to solve89

the task. In BLADE, behaviors are represented as temporally extended actions with preconditions and90

effects characterized by state predicates. Formally, we want to recover a set of predicates P that define91

an abstract state space S . We focus on a scenario where all predicates are binary. However, they are92

grounded on high-dimensional sensory inputs. Using P , a state can be described as a set of grounded93

atoms such as {kettle(A), stove(B), filled(A), on(A,B)} for a two-object scene. BLADE will learn a94

function Φ : O → S that maps observations to abstract states. In its current implementation, BLADE95

requires humans to additionally provide a list of predicate names in natural language, which we96

have found to be helpful for LLMs to generate action definitions. We provide additional ablations97

in the Appendix A.2. Based on S, we learn a library of behaviors (a.k.a., abstract actions). Each98

behavior a ∈ A is a tuple of ⟨name, args, pre, eff, π⟩. name is the name of the action. args is a list of99

variables related to the action, often denoted by ?x, ?y. pre and eff are the precondition and effect100

formula defined in terms of the variables args and the predicates P . A low-level policy π : O → U is101

also associated with a. The semantics of the preconditions and effects is: for any state x such that102

pre(Φ(x)) is satisfied, executing π at x will lead to a state x′ such that eff(Φ(x′)) [50].103

4 Behavior from Language and Demonstration104

BLADE is a method for learning abstract state and action representations from language-annotated105

demonstrations. It works in three steps, as illustrated in Fig. 2. First, we generate a symbolic behavior106

definition conditioned on the language annotations and contact sequences in the demonstration using107

a large language model (LLM). Next, we learn the classifiers associated with all state predicates and108

the control policies, all from the demonstration without additional annotations. At test time, we use a109

bi-level planning and execution strategy to generate robot actions.110
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(:action turn_on_faucet 
 :precondition (and (is-turned-off ?faucet-knob) 
                    (is-aligned ?kettle ?faucet-head) 
                    (is-placed-in ?kettle ?sink)) 
 :effect (and (is-turned-on ?faucet-knob)  
              (not (is-turned-off ?faucet-knob))) 
 :body   (then (close-gripper) (push ?faucet-knob) (open-gripper)))

(:action move_faucet_head_over_sink 
 :precondition (and (is-placed-in ?kettle ?sink)  
                    (is-turned-away ?faucet-head)   ...) 
 :effect (and (is-aligned ?kettle ?faucet-head)  
              (not (is-turned-away ?faucet-head))) 
 :body   (then (close-gripper) (push ?faucet-head) (open-gripper)))

Move Faucet Head Turn On Faucet

…
Place In Sink Wait to be Filled

push open-gripperclose-gripper

(a) Demonstrations

(b) Temporal Segmentation with Contact Primitives

push open-gripperclose-gripper

… …

…

transit

…
transit

(b) Temporal Segmentation with Contact Primitives

(c) Automatic Predicate Annotation

(d) Behavior Description Generation with LLMs

…

Figure 3: Behavior Descriptions Learning. Starting with (a) human demonstrations with language annotations,
BLADE segments (b) the demonstrations into contact primitives such as “close-gripper,” and “push.” Then,
BLADE (d) generates operators using an LLM, defining actions with specific preconditions and effects. (c) These
operators allow for automatic predicate annotation based on the preconditions and effects.

4.1 Behavior Description Learning111

Given a finite set of behaviors with language descriptions {ℓ} and corresponding demonstration112

segments, we generate an abstract description for each ℓ by querying large language models. To113

facilitate LLM generation, we provide additional information on the list of objects with which the114

robot has contact. The generated operators are further refined with abstract verification.115

Temporal segmentation. We first segment each demonstration (Fig. 3a) into a sequence of contact-116

based primitives (Fig. 3b). In this paper we consider seven primitives describing the interactions117

between the robot and other objects: open/close grippers without holding objects, move-to(x) which118

moves the gripper to an object, grasp(x, y) and place(x, y) which grasp and place object x from/onto119

another object y, move(x) which moves the currently holding object x and push(x). We leverage120

proprioception, i.e., gripper open state, and object segmentation to automatically segment the con-121

tinuous trajectories into these basis segments. For example, pushing the faucet head away involves122

the sequence of {close-gripper, push, open-gripper}. This segmentation will be used for LLMs to123

generate operator definitions and for constructing training data for control policies.124

Behavior description generation with LLMs. Our behavior description language is based on125

PDDL [51]. We extend the PDDL definition to include a body section which is a sequence of contact126

primitives. It will be generated by the LLM based on the demonstration data.127

Our input to the LLM contains four parts: 1) a general description of the environment, 2) the natural128

language descriptions ℓ associated with the behavior itself and other behaviors that have appeared129

preceding ℓ in the dataset, 3) all possible sequence of contact primitive sequences associated with130

ℓ across the dataset, and 4) additional instructions on the PDDL syntax, including a single PDDL131

definition example. We find that the inclusion of previous behaviors and contact primitive sequences132

improves the overall generation quality. As shown in Fig. 3c, in addition to preconditions and effects133

of the operators, we also ask LLMs to predict a body of contact primitive sequence associated with134

the behavior, which we call body. We assume that each behavior has a single corresponding contact135

primitive sequence, and use this step to account for noises in the segmentation annotations. After136

LLM predicts the definition for all behavior, we will re-segment the demonstrations associated with137

each behavior based on the LLM-predicted body section.138

Behavior description refinement with abstract verification. Besides checking for syntax errors,139

we also verify the generated behavior descriptions by performing abstract verification on the demon-140

stration trajectories. In particular, given a segmented sequence of the trajectory where each segment141

is associated with a behavior, we verify whether the preconditions of each behavior can be satisfied142

4



by the accumulated effects of the previous behaviors. This verification does not require learning the143

grounding of state predicates and can be done at the behavior level to discover incorrect preconditions144

and effects, and at the contact primitive level to find missing or incorrect contact primitives (e.g.,145

grasp cannot be immediately followed by other grasp). We resample behavior definitions that do not146

pass the verification test.147

4.2 Classifier and Policy Learning148

Given the dataset of state-action segments associated with each behavior, we train the classifiers for149

different state predicates and the low-level controller for each behavior.150

Automatic predicate annotation. We leverage all behavior descriptions to automatically label an151

observation ō = {o1, ..., oH} based on its associated segmentation. In particular, at o0, we label all152

state predicates as “unknown.” Next, we unroll the sequence of behavior executed in ō. As illustrated153

in Fig. 3c, before applying a behavior a at step ot, we label all predicates in prea true. When a154

finishes at step ot′ , we label all predicates in effa. In addition, we will propagate the labels for state155

predicates to later time steps until they are explicitly altered by another behavior a. In contrast to156

earlier methods, such as Migimatsu and Bohg [52] and Mao et al. [53], which directly use the first157

and last state of state-action segments to train predicate classifiers, our method greatly increases the158

diversity of training data. After this step, for each predicate p ∈ P , we obtain a dataset of paired159

observations o and the predicate value of p at the corresponding time step.160

Classifier learning. Based on the state predicate dataset generated from behavior definitions, we train161

a set of state classifiers fθ(p) : O → {T, F}, which are implemented as standard neural networks for162

classification. We include implementation details in Appendix A.6. In real-world environments with163

strong data-efficiency requirements, we additionally use an open vocabulary object detector [54] to164

detect relevant objects for the state predicate and crop the observation images. For example, only165

pixels associated with the object faucet will be the input to the turned-on(faucet) classifier.166

Policy learning. For each behavior, we also train control policies πθ(a) : O → U , implemented as167

a diffusion policy [1]. In simulation, we use a combination of frame-mounted and wrist-mounted168

RGB-D cameras as the inputs to the diffusion policy, while in the real world, the policy takes raw169

camera images as input. The high-level planner orchestrates which of these low-level policies to170

deploy based on the scene and states. Once trained on these diverse demonstrations of different skills,171

the resulting low-level policies can adapt to local changes, such as variations in object poses.172

4.3 Bi-Level Planning and Execution173

At test time, given a novel state and a novel goal, BLADE first uses LLMs to translate the goal into a174

first-order logic formula based on the state predicates. Next, it leverages the learned state abstractions175

to perform planning in a symbolic space to produce a sequence of behaviors. Then, we execute176

the low-level policy associated with the first behavior, and we re-run the planner after the low-level177

policy finishes—this enables us to handle various types of uncertainties and perturbations, including178

execution failure, partial observability, and human perturbation.179

Visibility and geometric constraints are also modeled as preconditions, in addition to other object-180

state and relational conditions. For example, the behavior “opening the cabinet door” will have181

preconditions on the initial state of the door, a visibility constraint that the door is visible, and a182

geometric constraint that nothing is blocking the door. When those preconditions are not satisfied,183

the planner will automatically generate plans, such as actions that move obstacles away, to achieve184

them. Partial observability was handled by using the most-likely state assumption during planning185

and performing replanning. We include details in Appendix A.8.186

5 Experiments187

5.1 Simulation Experimental Setup188

We use the CALVIN benchmark [55] for simulation-based evaluations, which include teleoperated189

human-play data. We use the split D of the dataset, which consists of approximately 6 hours of190

interactions. Annotations of the play data are generated by a script that detects goal conditions on191
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Goal State
Abstract Goals
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Initial Condition Goal State

Language Goal: “Place All Blocks Inside Drawer”  
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blocking slider Slider on the leftDrawer closed 
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Figure 4: Generalization Tasks in CALVIN. Examples from the three generalization tasks in the CALVIN
simulation environment. Successfully completing these tasks require planning for and executing 3-7 actions.

Table 1: Generalization results in CALVIN. Mean success rates with STD from three seeds are reported.
BLADE outperforms latent planning, LLM, and VLM baselines in completing novel long-horizon tasks.

Method State
Classifier

Latent
Feasibility

Generalization Task

Abstract Goal Geometric Constraint Partial Observability

HULC [56] N/A N/A 2.78± 3.47 11.67± 11.55 0.00± 0.00
SayCan [6] N/A Short 0.00± 0.00 0.00± 0.00 0.00± 0.00
VILA [45] N/A N/A 18.38± 2.48 0.00± 0.00 4.17± 5.20
T2M-Shooting [40] Learned Long 57.78± 12.29 0.00± 0.00 13.33± 1.44
Ours Learned N/A 68.33± 10.14 26.67± 7.64 75.83± 3.82

T2M-Shooting [40] GT Long 61.67± 5.00 0.00± 0.00 0.83± 1.44
Ours GT N/A 76.11± 6.74 56.67± 16.07 70.00± 5.00

simulator states, and there are in total 34 types of behaviors. We use RGB-D images from the mounted192

camera for classifier learning and partial 3D point clouds recovered from the RGB-D cameras for193

policy learning. The original benchmark focuses only on evaluating individual skills. To evaluate the194

ability of different algorithms to compositionally combine previously learned policies to solve novel195

tasks, we design six new generalization tasks, as shown in Fig. 4. Each task has a language instruction,196

a sampler that generates random initial states, and a goal satisfaction function for evaluation. For197

each task, we sample 20 initial states and evaluate all methods with three different random seeds. See198

Appendix B.1 for more details on the benchmark setup.199

Baselines. We compare BLADE with two groups of baselines: hierarchical policies with planning in200

latent spaces and LLM/VLM-based methods for robotic planning. For the former, we use HULC [56],201

the state-of-the-art method in CALVIN, which learns a hierarchical policy from language-annotated202

play data using hindsight labeling. For the latter, we use SayCan [6], Robot-VILA [45], and203

Text2Motion [40]. Note that Text2Motion assumes access to ground-truth symbolic states. Hence we204

compare Text2Motion with BLADE in two settings: one with the ground-truth states and the other205

with the state classifiers learned by BLADE. See Appendix B.2 for more details on these methods.206

5.2 Results in Simulation207

Table 1 presents the performance of different models in all three types of generalization tasks.208

Structured behavior representations improve long-horizon planning. We first focus on the209

comparison with the hierarchical policy model HULC in Table. 1. BLADE with learned classifiers210

achieves a more than 65% improvement in the success rate for reaching abstract goals while using the211

same language-annotated play data. We attribute this to the particular implementation of hindsight212

labeling in HULC being not sufficient to achieve goals that require chaining together multiple high-213

level actions: for example, the task of placing all blocks in the closed drawer requires chaining214

together a minimum of 7 behaviors.215

Structured transition models learned by BLADE facilitate long-horizon planning. Both SayCan216

and T2M-Shooting learn a long-horizon transition and action feasibility model for planning. Shown217

in Table. 1, learning accurate feasibility models directly from raw demonstration data remains a218

significant challenge. In our experiment, we find that first, when the LLM does not take into account219

state information (SayCan), using the short-horizon feasibility model is not sufficient to produce220
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sound plans. Second, since our model learns a structured transition model, factorized into different221

state predicates, BLADE is capable of producing longer-horizon plans.222

Structured scene representations facilitate making feasible plans. Compared to the Robot-VILA223

method, which directly predicts action sequences based on the image state, BLADE first uses learned224

state classifiers to construct an abstract state representation. This contributes to a 49% improvement225

on the Abstract Goal tasks in Table 1. We observe that the pre-trained VLM used in Robot-VILA226

often predicts actions that are not feasible in the current state. For example, Robot-VILA consistently227

performs better in completing “placing all blocks in a closed drawer” than “placing all blocks in an228

open drawer” since it always predicts opening the drawer as the first step.229

Explicit modeling of geometric constraints and object visibility improves performance in these230

scenarios. BLADE can reason about these challenging situations without explicitly being trained231

in those settings. Table. 1 shows that our approach consistently outperforms baselines in these two232

settings. These generalization capabilities are built on the explicit modeling of geometric constraints233

and object visibility in behavior preconditions.234

BLADE can automatically propose operators for the specific environment given demonstrations.235

Our experiment shows that the LLM can automatically propose high-quality behavior descriptions236

that resemble the dependency structures among operators. For example, the LLM discovers from237

the given contact primitive sequences and language-paired demonstration that blocks can only be238

placed after the block is lifted and that a drawer needs to be opened before placing objects inside, etc.239

Some of these dependencies are unique to the CALVIN environment, therefore requiring the LLM to240

generate specifically for this domain. We provide more visualizations in the Appendix A.1.241

Table 2: Ablation on state classifier learning in CALVIN.

Method Abstract Geometric Partial Obs.

[52] 33.89± 5.85 9.17± 5.20 3.33± 2.89
BLADE 68.33± 10.14 26.67± 7.64 75.83± 3.82

BLADE’s automatic predicate annotation242

enables better classifier learning. From243

Table 1, we observe that having accurate244

state classifier models is critical for algo-245

rithms’ performance (GT vs. Learned).246

Hence, we perform additional ablation stud-247

ies on classifier learning. Migimatsu and248

Bohg [52] also presented a method for learning the preconditions and effects of actions from seg-249

mented trajectories and symbolic action descriptions. The key difference between BLADE and theirs is250

that they only use the first and last frame of each segment to supervise the learning of state classifiers.251

We compare the two classifier learning algorithms, given the same LLM-generated behavior defini-252

tions, by evaluating the classifier accuracy on held-out states. BLADE shows a 20.7% improvement in253

F1 (16.3% improvement for classifying object states and 38.6% improvement for classifying spatial254

relations) compared to the baseline model. This also translates into significant improvements in the255

planning success rate, as shown in Table 2,256

5.3 Real World Experiments257

Environments. We use a Franka Emika robot arm with a parallel jaw gripper. The setup includes258

five RealSense RGB-D cameras, with one being wrist-mounted on the robot and the remaining259

positioned around the workspace. Fig. 5 shows the two domains: Make Tea and Boil Water. For260

each domain, we collect 85 language-annotated demonstrations using teleoperation with a 3D mouse.261

After segmenting the demonstrations using proprioception sensor data, an LLM is used to generate262

behavior descriptions. These descriptions are subsequently used for policy and classifier learning.263

Setup. We compare BLADE against the VLM-based baseline Robot-VILA. We omit SayCan and264

T2M-Shooting since they require additional training data. We first test the original action sequences265

seen in the demonstrations for each domain. We then test on tasks that require novel compositions of266

behaviors for four types of generalizations, i.e., unseen initial condition, state perturbation, geometric267

constraints, and partial observability. For each generalization type, we run six experiments and report268

the number of experiments that have been successfully completed.269

Results. In Fig. 5, we show that our model is able to successfully complete at least 4/6 tasks for all270

generalization types in the two different domains. In comparison, Robot-VILA struggles to generate271
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Figure 5: Domains and Results in Real World. Make Tea features a toy kitchen designed to simulate boiling
water on a stove. The robot must assess the available space on the stove for the kettle. It also needs to manage
the dependencies between actions, such as the faucet must be turned away before the kettle can be placed into
the sink to avoid collisions. Boil Water involves a tabletop task aimed at preparing tea, incorporating a cabinet,
a drawer, and a stove. The robot must locate the kettle, potentially hidden within the cabinet, and a teabag in the
drawer. Additionally, it must consider geometric constraints by removing obstacles that block the cabinet doors.
In both environments, our model significantly outperforms the VLM-based planner Robot-VILA.

Open Left Door Place On Stove Open Drawer

BL
AD

E
Ro

bo
t-V

ila Plan: “open-drawer”, “place-teabag” … 
(Policy cannot achieve the goal, teabag is on the stove)

Open Right DoorInitial Condition Place Teabag

Grab TeabagOpen Drawer

Plan: “grab-kettle”,  “grab-kettle”,  “grab-kettle” … 
(Policy unable to achieve the goal, resulting in a loop)

Grab Kettle

BL
AD

E
Ro

bo
t-V

ila

Goal Achieved

Goal Achieved

Open Left DoorUnblock Doors Place On Stove Place Teabag

Cup Not Visible Cup Not Visible Cup is Visible

(b)

Left & Right  
Doors Blocked

Drawer Open

Geometric Constraint:  
Kettle blocking the doors

Cup Not Visible
Initial Condition

Initial Condition

(a)

Figure 6: Real World Planning and Execution. We show the execution traces from BLADE and Robot-VILA
for two generalization tasks: (a) partial observability and (b) geometric constraints.

correct plans to complete the tasks. In Fig. 6, we visualize the generated plans and execution traces272

of both models. In example A, we show that BLADE can find the kettle initially hidden in the cabinet273

and then complete the rest of the task. In comparison, Robot-VILA directly predicts placing the274

teabag in the kettle when the kettle is not visible, resulting in a failure.275

6 Conclusion and Discussion276

BLADE is a novel framework for long-horizon manipulation by integrating model-based planning and277

imitation learning. BLADE uses an LLM to generate behavior descriptions with preconditions and278

effects from language-annotated demonstrations and automatically generates state abstraction labels279

based on behavior descriptions for learning state classifiers. At performance time, BLADE generalizes280

to novel states and goals by composing learned behaviors with a planner. Compared to latent-space281

and LLM/VLM-based planners, BLADE successfully completes significantly more long-horizon tasks282

with various types of generalizations.283

Limitations. One limitation of BLADE is that the automatic segmentation of demonstrations is based284

on gripper states; more advanced contact detection techniques might be required for certain tasks such285

as caging grasps. We also assume the knowledge of a given set of predicate names in natural language286

and focus on learning dependencies between actions using the given predicates. Automatically287

inventing task-specific predicates from demonstrations and language annotations, possibly with the288

integration of vision-language models (VLMs) is an important future direction. In our experiments,289

we also found that noisy state classification led to some planning failures. Therefore, developing290

planners that are more robust to noises in state estimation is necessary. Finally, achieving novel291

compositions of behaviors also requires policies with strong generalization to novel environmental292

states, which remain a challenge for skills learned from a limited amount of demonstration data.293
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Supplementary Material for Learning Compositional430

Behaviors from Demonstration and Language431

This supplementary material provides additional details on the BLADE model, the simulation exper-432

iments, and qualitative examples. Section A provides a detailed description of the BLADE model,433

including the behavior description generation, predicate generation, abstract verification, automatic434

predicate annotation, classifier implementation, and policy implementation. Section B provides435

details on the simulation experiments, including the task design and baseline implementations. Sec-436

tion C provides qualitative examples of our method and baselines. Section D provides details of437

our setup of the real-robot experiment. Finally, Section E includes a full list of the prompts for the438

baselines used in the simulation experiments.439

A BLADE Details440

A.1 Behavior Description Generation with LLMs441

In Listing 2, we show the behavior descriptions automatically generated by the LLM for the CALVIN442

domain. We also show the detailed prompt to the LLM for generating the behavior description. We443

break down the system prompt into four parts: definitions of primitive actions (Listings 3), definitions444

of predicates and environment context (Listings 4), an in-context example (Listings 5), and additional445

instructions (Listings 6). In Listings 7, we show one example of the specific user prompt that is used446

to generate the behavior description for place-in-drawer.447

A.2 Predicate Generation with LLMs448

In our main experiment, we assume that the predicates for each task domain are provided in natural449

language. Here, we show that given the task definition and the environment context, a LLM can450

automatically generate the relevant predicates for the domain. Listing 8 shows the prompt for451

generating predicates; Listing 1 shows the generated predicates and the relevant actions for them. In452

Table A1, we compare the generated predicates with the predicates defined by the domain expert.453

We observe that the LLM is able to generate 13 out of 15 predicates that match closely with the454

expert-designed predicates. These predicates provide abstract representations for object states (e.g.,455

is-open, light-on), relations between objects (e.g., in-slider, in), and robot-centric states (e.g., holding).456

The LLM incorrectly generates the predicate next-to(?x, ?y) to characterize the effects of the push-left457

and push-right actions, possibly due to ambiguities in the definition of the actions. Future work can458

explore interactive generation and refinement of predicates. Our algorithms are agnostic to the source459

of predicates and can flexibly generate action descriptions based on the given predicates and learn460

their groundings.461

Listing 1: LLM Response for Predicate Generation.
462

### Unary Predicates463
1. **(on-table ?x)** - Indicates that object ?x is on the table.464

- Relevant Actions: lift_red_block_table, lift_blue_block_table, lift_pink_block_table,465
place_on_table466

2. **(in-slider ?x)** - Indicates that object ?x is inside the slider.467
- Relevant Actions: lift_red_block_slider, lift_blue_block_slider, lift_pink_block_slider,468
place_in_slider469

3. **(in-drawer ?x)** - Indicates that object ?x is inside the drawer.470
- Relevant Actions: lift_red_block_drawer, lift_blue_block_drawer, lift_pink_block_drawer,471
place_in_drawer472

4. **(is-open ?x)** - Indicates that container ?x (drawer or slider) is open.473
- Relevant Actions: open_drawer, close_drawer, place_in_drawer474

5. **(is-closed ?x)** - Indicates that container ?x (drawer or slider) is closed.475
- Relevant Actions: close_drawer476

6. **(light-on ?x)** - Indicates that the light (lightbulb or led) is turned on.477
- Relevant Actions: turn_off_lightbulb, turn_off_led478

7. **(light-off ?x)** - Indicates that the light (lightbulb or led) is turned off.479
- Relevant Actions: turn_on_lightbulb, turn_on_led480

8. **(holding ?x)** - Indicates that the robot is currently holding object ?x.481
- Relevant Actions: grasp, place, move, stack_block, unstack_block482

9. **(clear ?x)** - Indicates that there is no object on top of ?x.483
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- Relevant Actions: stack_block, unstack_block, place_on_table484
10. **(rotated-right ?x)** - Indicates that block ?x is rotated to the right.485

- Relevant Actions: rotate_red_block_left, rotate_blue_block_left, rotate_pink_block_left486
11. **(rotated-left ?x)** - Indicates that block ?x is rotated to the left.487

- Relevant Actions: rotate_red_block_right, rotate_blue_block_right,488
rotate_pink_block_right489

12. **(slider-left ?x)** - Indicates that the slider ?x is in the leftmost position.490
13. **(slider-right ?x)** - Indicates that the slider ?x is in the rightmost position.491

492
### Binary Relations493
1. **(on ?x ?y)** - Indicates that object ?x is on top of object ?y.494

- Relevant Actions: stack_block, unstack_block495
2. **(next-to ?x ?y)** - Indicates that object ?x is next to object ?y.496

- Relevant Actions: push_red_block_right, push_red_block_left, push_blue_block_right,497
push_blue_block_left, push_pink_block_right, push_pink_block_left498499

A.3 Temporal Segmentation500

Before the generation of behavior description, we segment each demonstration into a sequence of501

contact-based primitives. We consider seven primitives describing the interactions between the robot502

and other objects: open/close grippers without holding objects, move-to(x) which moves the gripper503

to an object, grasp(x, y) and place(x, y) which grasp and place object x from/onto another object y,504

move(x) which moves the currently holding object x and push(x).505

We use a set of heuristics to automatically segment the continuous trajectories using proprioception,506

i.e., gripper open state, and object segmentation. Specifically, open and close are directly detected by507

checking whether the gripper width is at the maximum or minimum value. grasp(x, y) and place(x, y)508

correspond to the other closing and opening gripper actions. move(x), push(x) and move-to(x) are509

matched to temporal segments between pairs of gripper actions. Their type can be inferred based on510

the preceding and following gripper actions. We make a simplifying assumption that the robot moves511

freely in space only when the gripper is fully open and pushes objects only when the gripper is fully512

closed. These are given as instructions to the human demonstrators. In the simulator, the arguments513

of the primitives are obtained from the contact state. In the real world, they are inferred from the514

language annotations of the actions (e.g.,“place the kettle on the stove” corresponds to place(kettle,515

stove)) procedurally or by the LLMs.516

In Section 4.1, we discuss that we use LLMs to predict a body of contact primitive sequence associated517

with each behavior description. This additional step helps account for noises in the segmentation anno-518

tations, which are prevalent in CALVIN’s language-annotated demonstrations. For example, the lan-519

guage annotation “lift-block-table” correspond to the contact sequence {move-to, grasp,move, place}.520

Based on the generated body, the behavior can be correctly mapped to {grasp,move} and the demon-521

Table A1: Comparison of Predicates Defined by Domain Expert and Predicates Generated by an LLM.
Manually Defined Automatically Generated

rotated-left(?x) rotated-left(?x)
rotated-right(?x) rotated-right(?x)
lifted(?x) holding(?x)
is-open(?x) is-open(?x)
is-close(?x) is-closed(?x)
is-turned-on(?x) light-on(?x)
is-turned-off(?x) light-off(?x)
is-slider-left(?x) slider-left(?x)
is-slider-right(?x) slider-right(?x)
is-on(?x, ?y) on-table(?x)
is-in(?x, ?y) in-slider(?x), in-drawer(?x)
stacked(?x, ?y) on(?x, ?y)
unstacked(?x, ?y) clear(?x)
pushed-left(?x) -
pushed-right(?x) -
- next-to(?x, ?y)

14



stration trajectories can then be re-segmented. This additional step is crucial for learning accurate522

groundings of the states and actions.523

In our preliminary studies, we also experiment with other vision-based temporal segmentation524

methods including UVD [57] and Lotus [58]. A main issue for incorporating these methods is that525

they provide less consistent segmentations for different occurrences of the same behavior. As we526

discussed in Section 6, more advanced contact detection techniques will be an important future527

direction for using contact primitives as a meaningful interface between actions and language.528

A.4 Abstract Verification529

After the generation of the behavior descriptions, we verify the generated behavior descriptions by530

performing abstract verification on the demonstration trajectories. Given a segmented sequence of531

the trajectory where each segment is associated with a behavior, we verify whether the preconditions532

of each behavior can be satisfied by the accumulated effects of the previous behaviors. Pseudocode533

for this algorithm is shown in Algorithm 1.534

Algorithm 1 Abstract Verification

Input: Dataset D, Behavior descriptions A
1: error counter← a counter for sequencing errors related to each behavior
2: counter← a counter for storing the occurrences of each behavior
3: for i← 1 to K do
4: obtain a behavior sequence Di ← {ai1, ..., aiN}
5: initialize a dictionary for predicate state pred← {}
6: for t← 1 to N do
7: for each exp in preai

t
do

8: (p, v)← EXTRACTPREDICATEANDBOOL(exp)
9: if p not in pred then

10: pred[p]← v
11: else
12: if pred[p] ̸= v then
13: increment error counter[ait]
14: for each exp in effai

t
do

15: (p, v)← EXTRACTPREDICATEANDBOOL(exp)
16: pred[p]← v

17: increment counter[ait]
18: for each a in error counter do
19: if error counter[a]/counter[a] > threshold then
20: regenerate the behavior description for a

A.5 Automatic Predicate Annotation535

We leverage all behavior descriptions to automatically label an observation ō = {o1, ..., oH} based536

on its associated segmentation. In particular, at o0, we label all state predicates as “unknown.” Next,537

we unroll the sequence of behavior executed in ō. As illustrated in Fig. 3c, before applying a behavior538

a at step ot, we label all predicates in prea true. When a finishes at step ot′ , we label all predicates in539

effa. In addition, we will propagate the labels for state predicates to later time steps until they are540

explicitly altered by another behavior a. Pseudocode for this algorithm is shown in Algorithm 2.541

A.6 Classifier Implementation542

Based on the state predicate dataset generated from behavior definitions, we train a set of state543

classifiers fθ(p) : O → {T, F}, which are implemented as standard neural networks for classification.544

In the simulation experiment, the classifier model is based on a pre-trained CLIP model (ViT-B/32).545

We use the image pre-processing pipeline from the CLIP model to process the input images. We546
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Algorithm 2 Predicate Annotation

Input: Behavior sequence {a1, ..., aN}, Observation sequence {o1, ..., oH}, Descriptions A
1: propagated← an empty list of propagated predicates
2: prev effs← a list for storing effects from previous step
3: timed preds← an empty list of predicates associated with time steps
4: pred obs← an empty list for storing predicates paired with observations
5: for t← 1 to N do
6: // Precondition
7: timed preds← timed preds ∪ GETTIMEDPREDICATES(preat

, t)
8: timed preds← timed preds ∪ GETTIMEDPREDICATES(¬effat

, t)
9: // Propagated

10: for each p in propagated do
11: if not ALTERED(p, at) then
12: UPDATETIME(p, t)
13: else
14: propagated.remove(p)
15: timed preds.add(p)
16: // Previous effects
17: for each p in prev effs do
18: if not ALTERED(p, at) then
19: propagated.add(p)
20: else
21: timed preds.add(p)
22: // Store effects for next step
23: prev effs← GETTIMEDPREDICATES(effat

, t)

24: timed preds.update(propagated)
25: timed preds.update(prev effs)
26: for each p in timed preds do
27: pred obs.update(MATCHTIMEDPREDICATEWITHOBSERVATION(p, {o1, ..., oH}))
28: return pred obs

use images from the static camera in the simulation. We perform one additional step of image547

processing to mask out the robot arm, which we find in our preliminary experiment to help avoid548

overfitting. We do not use the global image embedding from the CLIP model, instead we extract the549

patch tokens from the output of the vision transformer. We downsize the concatenated patch tokens550

with a multilayer perceptron (MLP) and then concatenate with word embeddings of the predicate551

arguments (e.g., red-block, table). The final embedding is then passed through a predicate-specific552

MLP to output the logit for binary classification. The CLIP model is frozen, while all other learnable553

parameters are trained.554

In the real-world experiment, we find that, with more limited data than simulation, the pre-trained555

CLIP model often overfits to spurious relations in the training images (e.g., the state of the faucet556

is entangled with the location of the kettle). We also experiment with a ResNet-50 model pre-557

trained on ImageNet and find similar behavior. To improve generalization, we choose to focus on558

relevant objects and regions. We achieve this by using segmented object point clouds. We use open559

vocabulary object detector Grounding-Dino [54] to detect objects given object names. The predicted560

2D bounding boxes are projected into 3D and used to extract regions of the point cloud surrounding561

each object. The point-cloud-based classifier is based on the shape classification model from the562

Point Cloud Transformer (PCT) [59]. We concatenate the segmented object point clouds and include563

one additional channel to indicate the identity of each point. The PCT is used to encode the combined564

point cloud and output the final logit. The PCT model is trained from scratch.565
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A.7 Policy Implementation566

For each behavior, we train control policies πθ(a) : O → U , implemented as a diffusion policy [1].567

We make three changes to the original implementation to facilitate chaining the learned behaviors.568

First, when training the model to predict the first raw action for each skill, we replace the history569

observations with observations sampled randomly from a temporal window prior to when the skill is570

executed, to avoid bias in the starting positions of the robot arm. Second, we perform biased sampling571

of the training sequences to ensure that the policy is trained on a diverse set of starting positions.572

Third, at the end of each training sequence, we append a sequence of zeros actions so the learned573

policy can learned to predicate termination. These strategies are implemented for both the simulation574

and the real world.575

In simulation, we construct the point cloud of the scene using the RGB-D image from the frame-576

mounted camera. We then obtain segmented object point clouds for the relevant objects of each577

behavior (e.g., table and block for pick-block-table) with groundtruth segmentation masks from the578

PyBullet simulator. The segmented point clouds of the objects are concatenated to form the input579

point cloud observation. The model uses the PCT to encode a sequence of point clouds as history580

observations and uses another time-series transformer encoder to reason over the history observations581

and predict the next actions. The time-series transformer is similar in design to the transformer-based582

diffusion policy [1].583

In the real world, we use RGB images from four stationary cameras mounted around the workspace584

and a wrist-mounted camera as input to an image-based diffusion policy model. The input is processed585

using five separate ResNet-34 encoder heads. The policy directly predicts the gripper pose in the586

world frame. We found the wrist-mounted camera to be particularly helpful in the real-world setup.587

A.8 Planner Implementation588

Planning over geometric constraints. Geometric constraints, specifically the collision-free con-589

straints for each action, are handled “in the now,” right before an action is executed. This is because590

in order to classify the geometric constraints, we would need to know the exact pose of all objects in591

the environments. However, we do not explicitly learn models for predicting the exact location of592

objects after executing certain behaviors.593

Our approach to handle this is to process them in the now. It follows the hierarchical planning594

strategy [60]. In particular, the precondition for actions is an ordered list. In our case, there are two595

levels: the second level contains the geometric constraint preconditions and the first level contains the596

rest of the semantic preconditions. During planning, only the first set of preconditions will be added597

to the subgoal list. After we have finished planning for the first-level preconditions, we consider598

the second-level precondition for the first behavior in the resulting plan, by possibly moving other599

obstacles away.600

As an example, let us consider the skill of opening the cabinet door. Its first-level precondition601

only considers the initial state of the cabinet door (i.e., it should be initially closed). It also has a602

second-level precondition stating that nothing else should be blocking the door. In the beginning, the603

planner only considers the first-level preconditions. When this behavior is selected to be executed604

next, the planner checks for the second-level precondition. If this non-blocking precondition is not605

satisfied in the current state, we will recursively call the planner to achieve it (which will generate606

actions that move the blocking obstacles away). If this precondition has already been satisfied, we607

will proceed to execute the policy associated with this opening-cabinet-door skill.608

This strategy will work for scenarios where there is enough space for moving obstacles around and609

the robot does not need to make dedicated plans for arranging objects. In scenarios where space is610

tight and dedicated object placement planning is required, we can extend our framework to include611

the prediction of object poses after each skill execution.612

Planning over partial observability. Partial observability is handled assuming the most likely state.613

In particular, the effect definitions for all behaviors are deterministic. It denotes the most likely614
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state that it will result in. For example, in the definition of behaviors for finding objects (e.g., the615

find-object-in-left-cabinet), we have a deterministic and “optimistic” effect statement that the object616

will be visible after executing this action.617

At performance time, since we will replan after executing each behavior, if the object is not visible618

after we have opened the left cabinet, the planner will automatically plan for other actions to achieve619

this visibility subgoal.620

This strategy works for simple partially observable Markov decision processes (POMDPs). A621

potential extension to it is to model a belief state (e.g., representing a distribution of possible object622

poses) and execute belief updates on it. Planners can then use more advanced algorithms such as623

observation-based planning to generate plans. Such strategies have been studied in task and motion624

planning literature [60, 61].625

B Simulation Experiment Details626

B.1 Task Design627

To evaluate generalization to new long-horizon manipulation tasks, we designed six tasks that fall628

into three categories: Abstract Goal, Geometric Constraint, and Partial Observability. Each task has a629

language instruction, a sampler that generates random initial states, and a goal satisfaction function630

for evaluation. We provide details for each task below.631

Task-1632

• Task Category: Abstract Goal633

• Language Instruction: turn off all lights.634

• Logical Goal: (and (is-turned-off led) (is-turned-off lightbulb))635

• Initial State: Both the led and the lightbulb are initially turned on.636

• Goal Satisfaction: The logical states of both the lightbulb and the led are off.637

• Variation: The initial states of the led and the lightbulb are both on and the goal is to turn them638

off.639

Task-2640

• Task Category: Abstract Goal641

• Language Instruction: move all blocks to the closed drawer.642

• Logical Goal: (and (is-in red-block drawer) (is-in blue-block drawer) (is-in pink-block drawer))643

• Initial State: The blocks are visible and not in the drawer. The drawer is closed.644

• Goal Satisfaction: The blocks are in the drawer.645

Task-3646

• Task Category: Abstract Goal647

• Language Instruction: move all blocks to the open drawer.648

• Logical Goal: (and (is-in red-block drawer) (is-in blue-block drawer) (is-in pink-block drawer))649

• Initial State: The blocks are visible and not in the drawer. The drawer is open.650

• Goal Satisfaction: The blocks are in the drawer.651

Task-4652

• Task Category: Partial Observability653

• Language Instruction: place a red block on the table.654

• Logical Goal: (is-on red-block table)655

• Initial State: The red block is in the drawer and the drawer is closed.656

• Goal Satisfaction: The red block is placed on the table.657

• Variations: Find the blue block or the pink block.658

Task-5659

• Task Category: Partial Observability660

• Language Instruction: place a red block on the table.661
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• Logical Goal: (is-on red-block table)662

• Initial State: The red block is behind the sliding door.663

• Goal Satisfaction: The red block is placed on the table.664

• Variations: Find the blue block or the pink block.665

Task-6666

• Task Category: Geometric Constraint667

• Language Instruction: open the slider.668

• Logical Goal: (is-slider-left slider)669

• Initial State: The sliding door is on the right and there is a pink block on the path of the sliding670

door to the left.671

• Goal Satisfaction: The sliding door is within 5cm of the left end.672

• Variations: Move the slider to the right.673

B.2 Baseline Implementation674

HULC. This baseline is a hierarchical policy learning method that learns from language-annotated675

play data using hindsight labeling [56]. It’s one of the best-performing models on the D → D split of676

the CALVIN benchmark. We omit the comparison to the HULC++ method [62], the follow-up work677

of HULC that leverages affordance prediction and motion planning to improve the low-level skills,678

because our evaluation is focused on the task planning ability of the learned hierarchical model.679

SayCan. This baseline combines an LLM-based planner that takes the language instruction and680

learned feasibility functions for skills to perform task planning. We adopt SayCan to our learning-681

from-play-data setting by training our own skill feasibility function by predicting possible next actions682

to be executed at each state. The prompt of the model is listed in Listing 9.683

Robot-VILA. This baseline performs task planning with a VLM. We adopt the prompts pro-684

vided in the original paper to the CALVIN environment. The prompts are divided into the initial685

prompt that is used to generate the task plan given the initial observation (shown in Listing 10)686

and the follow-up prompt that is used for all subsequent steps (shown in Listing 11). We use687

gpt-4-turbo-2024-04-09 as the VLM. Because the model does not memorize the history. We688

store the history dialogue, including the text input and the image input, and concatenate the history689

dialogue with the current dialogue as the input to the VLM.690

T2M-Shooting. This baseline (in particular, the shooting-based algorithm) is similar to the SayCan691

algorithm except that: 1) it uses a multi-step feasibility model in contrast to the single-step feasibility692

model used by SayCan; 2) the LLM additionally takes a symbolic state description of object states693

and relationships. The original Text2Motion method assumes access to ground-truth symbolic states.694

For comparison, in this paper, we compare Text2Motion with BLADE in two settings: one with the695

ground-truth states and the other with the state classifiers learned by BLADE. The prompt of the696

model is listed in Listing 12.697

C Qualitative Examples698

In this section, we include three qualitative examples from the CALVIN experiments to compare the699

generalization capabilities of BLADE with baselines. Specifically, Fig. A2 shows generalization to700

abstract goal, Fig. A3 shows generalization to partial observability, and Fig. A4 shows generalization701

to geometric constraint. In summary, BLADE is able to generate accurate long-horizon manipulation702

plans for novel situations while latent planning, LLM, and VLM baselines fail.703

D Real World Experiment Details704

As shown in Fig. A1, we employ a 7-degree of freedom (DOF) Franka Emika robotic arm equipped705

with a parallel jaw gripper. A total of Five Intel RealSense RGB-D cameras are used to provide706
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(Wrist-mounted)

Franka Emika Robot

Figure A1: We use a 7-degree of freedom (DOF) Franka Emika robotic arm with a parallel jaw gripper for our
real-world experiment. A total of Five Intel RealSense RGB-D cameras are used to provide observation for our
policies and state classifiers. Four cameras are mounted on the frame and an additional one is mounted to the
robot’s wrist.

observation for our policies and state classifiers. Four cameras are mounted on the frame and one707

additional camera is mounted on the robot’s wrist.708

We use a teleoperation system with a 3DConnexion SpaceMouse for control. During the collection of709

demonstrations, we record the robot’s joint configurations, the pose of the end effector, the gripper710

width, and the RGB-D images from the five cameras. We collected approximately 80 demonstrations711

for each of the two real-world domains, which provide the training data for the diffusion policy712

models and the state classifiers.713

Similar to our simulation experiments, our evaluation protocol includes the design of six tasks aimed714

at assessing the model’s generalization capabilities across new long-horizon tasks. These tasks are715

specifically crafted to test the model’s proficiency for four types of generalization: Unseen Initial716

Condition, State Perturbation, Partial Observability, and Geometric Constraint.717

Task-1718

• Domain: Boil Water719

• Task Category: Unseen Initial Condition720

• Language Instruction: Fill the kettle with water and place it on the stove721

• Logical Goal: (and (is-filled kettle) (is-placed-on kettle stove) (is-turned-off faucet-knob))722

• Initial State: The kettle is placed inside the sink, and the stove is not blocked. The faucet is723

turned off with the faucet head turned away.724

Task-2725

• Domain: Boil Water726

• Task Category: State Perturbation727

• Language Instruction: Fill the kettle with water and place it on the stove728

• Logical Goal: (and (is-filled kettle) (is-placed-on kettle stove) (is-turned-off faucet-knob))729

• Initial State: The kettle is placed inside the sink and the stove is blocked.730

• Perturbation: The human user moves the kettle from the sink to the table after the robot turns731

the faucet head towards the sink. The robot needs to replan to move the kettle back to the sink.732

Task-3733

• Domain: Boil Water734

• Task Category: Geometric Constraint735

• Language Instruction: Fill the kettle with water and place it on the stove736
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• Logical Goal: (and (is-filled kettle) (is-placed-on kettle stove) (is-turned-off faucet-knob))737

• Initial State: The kettle is placed inside the sink and the stove is blocked, creating a geometric738

constraint.739

Task-4740

• Domain: Make Tea741

• Task Category: Unseen Initial Condition742

• Language Instruction: Place the kettle on the stove and place the teabag inside the kettle.743

• Logical Goal: (and (is-placed-on kettle stove) (is-placed-inside teabag kettle))744

• Initial State: The kettle is placed inside a cabinet. The cabinet doors are open. The drawer is745

closed.746

Task-5747

• Domain: Make Tea748

• Task Category: State Perturbation749

• Language Instruction: Place the kettle on the stove and place the teabag inside the kettle.750

• Logical Goal: (and (is-placed-on kettle stove) (is-placed-inside teabag kettle))751

• Initial State: The kettle is placed inside the cabinet and the cabinet door is open. The drawer is752

initially closed.753

• Perturbation: Once the robot opens the drawer, a human user closes the drawer.754

Task-6755

• Domain: Make Tea756

• Task Category: Geometric Constraint757

• Language Instruction: Place the kettle on the stove and place the teabag inside the kettle.758

• Logical Goal: (and (is-placed-on kettle stove) (is-placed-inside teabag kettle))759

• Initial State: There is a teapot blocking the cabinet doors. The kettle is inside the cabinet. The760

drawer is open with the teabag visible.761

Task-7762

• Domain: Make Tea763

• Task Category: Partial Observability764

• Language Instruction: Place the kettle on the stove and place the teabag inside the kettle.765

• Logical Goal: (and (is-placed-on kettle stove) (is-placed-inside teabag kettle))766

• Initial State: The kettle is placed inside a cabinet and is not visible.767

E Prompts for Baselines768

In this section, we provide the prompts for the baselines used in the simulation experiments. We769

provide the prompts for SayCan in Listing 9, Robot-VILA in Listing 10 and Listing 11, and T2M-770

Shooting in Listing 12.771
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Figure A2: BLADE and baseline performance on an Abstract Goal generalization task in the CALVIN environ-
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Figure A3: BLADE and baseline performance on the Partial Observability generalization task in the CALVIN
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Listing 2: Behavior descriptions generated by the LLM for the CALVIN domain.
772

;; lift_block_table773
(:action lift-block-table774
:parameters (?block - item ?table - item)775
:precondition (and (is-block ?block) (is-table ?table) (is-on ?block ?table) (not (is-lifted776
?block)))777
:effect (and (lifted ?block) (not (is-on ?block ?table)))778
:body (then779

(grasp ?block ?table)780
(move ?block)781

)782
)783

784
;; lift_block_slider785
(:action lift_block_slider786
:parameters (?block - item ?slider - item)787
:precondition (and (is-block ?block) (is-slider ?slider) (is-in ?block ?slider))788
:effect (and (lifted ?block) (not (is-in ?block ?slider)))789
:body (then790

(grasp ?block ?slider)791
(move ?block)792

)793
)794

795
;; lift_block_drawer796
(:action lift-block-drawer797
:parameters (?block - item ?drawer - item)798
:precondition (and (is-block ?block) (is-drawer ?drawer) (is-in ?block ?drawer) (is-open ?799
drawer))800
:effect (and (lifted ?block) (not (is-in ?block ?drawer)))801
:body (then802

(grasp ?block ?drawer)803
(move ?block)804

)805
)806

807
;; place_in_slider808
(:action place-in-slider809
:parameters (?block - item ?slider - item)810
:precondition (and (is-block ?block) (is-slider ?slider) (is-lifted ?block))811
:effect (and (is-in ?block ?slider) (not (is-lifted ?block)))812
:body (then813

(place ?block ?slider)814
)815
)816

817
;; place_in_drawer818
(:action place-in-drawer819
:parameters (?block - item ?drawer - item)820
:precondition (and (is-block ?block) (is-drawer ?drawer) (is-lifted ?block) (is-open ?drawer)821
)822
:effect (and (is-in ?block ?drawer) (not (is-lifted ?block)))823
:body (then824

(place ?block ?drawer)825
)826
)827

828
;; place_on_table829
(:action place-on-table830
:parameters (?block - item ?table - item)831
:precondition (and (is-block ?block) (is-table ?table) (is-lifted ?block))832
:effect (and (is-on ?block ?table) (not (is-lifted ?block)))833
:body (then834

(place ?block ?table)835
)836
)837

838
;; stack_block839
(:action stack_block840
:parameters (?block - item ?target - item)841
:precondition (and (is-block ?block) (is-block ?target) (is-lifted ?block))842
:effect (and (stacked ?block ?target) (not (is-lifted ?block)))843
:body (then844

(place ?block ?target)845
)846
)847

848
849

;; unstack_block850
(:action unstack_block851
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:parameters (?block1 - item ?block2 - item)852
:precondition (and (is-block ?block1) (is-block ?block2) (stacked ?block1 ?block2))853
:effect (and (unstacked ?block1 ?block2) (is-lifted ?block1) (not (stacked ?block1 ?block2)))854
:body (then855

(grasp ?block1 ?block2)856
(move ?block1)857

)858
)859

860
;; rotate_block_right861
(:action rotate-block-right862
:parameters (?block - item ?table - item)863
:precondition (and (is-block ?block) (is-table ?table) (is-on ?block ?table))864
:effect (and865

(rotated-right ?block)866
(not (rotated-left ?block)))867

:body (then868
(grasp ?block ?table)869
(move ?block)870
(place ?block ?table)871

)872
)873

874
;; rotate_block_left875
(:action rotate_block_left876
:parameters (?block - item ?table - item)877
:precondition (and (is-block ?block) (is-table ?table) (is-on ?block ?table))878
:effect (and (rotated-left ?block))879
:body (then880

(grasp ?block)881
(move ?block)882
(place ?block)883

)884
)885

886
;; push_block_right887
(:action push_block_right888
:parameters (?block - item ?table - item)889
:precondition (and (is-block ?block) (is-table ?table) (is-on ?block ?table))890
:effect (and (pushed-right ?block) (not (pushed-left ?block)))891
:body (then892

(close)893
(push ?block)894
(open)895

)896
)897

898
;; push_block_left899
(:action push-block-left900
:parameters (?block - item)901
:precondition (and (is-block ?block))902
:effect (and (pushed-left ?block))903
:body (then904

(close)905
(push ?block)906
(open)907

)908
)909

910
;; move_slider_left911
(:action move_slider_left912
:parameters (?slider - item)913
:precondition (and (is-slider ?slider) (is-slider-right ?slider))914
:effect (and (is-slider-left ?slider) (not (is-slider-right ?slider)))915
:body (then916

(grasp ?slider)917
(move ?slider)918
(place ?slider)919

)920
)921

922
;; move_slider_right923
(:action move-slider-right924
:parameters (?slider - item)925
:precondition (and (is-slider ?slider) (not (is-slider-right ?slider)))926
:effect (and (is-slider-right ?slider))927
:body (then928

(grasp ?slider)929
(move ?slider)930
(place ?slider)931

)932
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)933
934

;; open_drawer935
(:action open-drawer936
:parameters (?drawer - item)937
:precondition (and (is-drawer ?drawer) (is-close ?drawer))938
:effect (and (is-open ?drawer) (not (is-close ?drawer)))939
:body (then940

(close)941
(push ?drawer)942
(open)943

)944
)945

946
;; close_drawer947
(:action close-drawer948
:parameters (?drawer - item)949
:precondition (and (is-drawer ?drawer) (is-open ?drawer))950
:effect (and (is-close ?drawer) (not (is-open ?drawer)))951
:body (then952

(close)953
(push ?drawer)954
(open)955

)956
)957

958
;; turn_on_lightbulb959
(:action turn-on-lightbulb960
:parameters (?lightbulb - item)961
:precondition (and (is-lightbulb ?lightbulb) (is-turned-off ?lightbulb))962
:effect (and (is-turned-on ?lightbulb) (not (is-turned-off ?lightbulb)))963
:body (then964

(close)965
(push ?lightbulb)966
(open)967

)968
)969

970
;; turn_off_lightbulb971
(:action turn-off-lightbulb972
:parameters (?lightbulb - item)973
:precondition (and (is-lightbulb ?lightbulb) (is-turned-on ?lightbulb))974
:effect (and (is-turned-off ?lightbulb) (not (is-turned-on ?lightbulb)))975
:body (then976

(close) (push ?lightbulb) (open)977
)978
)979

980
;; turn_on_led981
(:action turn-on-led982
:parameters (?led - item)983
:precondition (is-led ?led)984
:effect (and (is-turned-on ?led) (not (is-turned-off ?led)))985
:body (then986

(close)987
(push ?led)988
(open)989

)990
)991

992
;; turn_off_led993
(:action turn-off-led994
:parameters (?led - item)995
:precondition (and (is-led ?led) (is-turned-on ?led))996
:effect (and (is-turned-off ?led) (not (is-turned-on ?led)))997
:body (then998

(close)999
(push ?led)1000
(open)1001

)1002
)1003

1004
;; push_into_drawer1005
(:action push-into-drawer1006
:parameters (?block - item ?drawer - item)1007
:precondition (and (is-block ?block) (is-drawer ?drawer) (is-open ?drawer))1008
:effect (and (is-in ?block ?drawer))1009
:body (then1010

(close)1011
(push ?block)1012
(open)1013
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)1014
)10151016

Listing 3: Example Prompt for CALVIN–Contact Primitives.
1017

**Primitive Actions:**1018
There are seven primitive actions that the robot can perform. They are:1019
- (grasp ?x ?y): ?x and ?y are two object variables. ?x is the object that the robot will be1020
grasping, ?y is the object that ?x is currently on or in.1021
- (place ?x ?y): ?x and ?y are two object variables. ?x is the object that the robot is1022
currently holding, ?y is the object that ?x will be placed on or in.1023
- (move ?x): ?x is the object that the robot is currently holding and will be moved by the1024
robot.1025
- (push ?x): ?x is the object that the robot will be pushing.1026
- (move-to ?x): the robot arm will move without holding any object or pushing any object.1027
- (open): the robot gripper will open fully.1028
- (close): the robot gripper will close without grasping any object.1029

1030
**Combined Primitives:**1031
The primitive actions can be combined into a high-level routine. For example, (then (grasp ?x1032
?y) (move ?x) (place ?x ?y)) means the robot will pick up ?x from ?y, move ?x, and place ?x to1033
?z. The possible combination of primitives are:1034
A. (then (grasp ?x ?y) (move ?x))1035
B. (then (place ?x ?y))1036
C. (then (grasp ?x ?y) (move ?x) (place ?x ?z))1037
D. (then (close) (push ?x) (open))10381039

Listing 4: Example Prompt for CALVIN–Environment.
1040

**Predicates for Preconditions and Effects:**1041
The list of all possible predicates for defining the preconditions and effects of the high-1042
level routine are listed below:1043

1044
For specifying the type of the object:1045
- (is-table ?x - item): ?x is a table.1046
- (is-slider ?x - item): ?x is a slider.1047
- (is-drawer ?x - item): ?x is a drawer.1048
- (is-lightbulb ?x - item): ?x is a lightbulb.1049
- (is-led ?x - item): ?x is a led.1050
- (is-block ?x - item): ?x is a block.1051

1052
For specifying the attributes of the object:1053
- (is-red ?x - item): ?x is red. This predicate applies to a block.1054
- (is-blue ?x - item): ?x is blue. This predicate applies to a block.1055
- (is-pink ?x - item): ?x is pink. This predicate applies to a block.1056

1057
For specifying the state of the object:1058
- (rotated-left ?x - item): ?x is rotated left. This predicate applies to a block.1059
- (rotated-right ?x - item): ?x is rotated right. This predicate applies to a block.1060
- (pushed-left ?x - item): ?x is pushed left. This predicate applies to a block.1061
- (pushed-right ?x - item): ?x is pushed right. This predicate applies to a block.1062
- (lifted ?x - item): ?x is lifted in the air. This predicate applies to a block.1063
- (is-open ?x - item): ?x is open. This predicate applies to a drawer.1064
- (is-close ?x - item): ?x is close. This predicate applies to a drawer.1065
- (is-turned-on ?x - item): ?x is turned on. This predicate applies to a lightbulb or a led.1066
- (is-turned-off ?x - item): ?x is turned off. This predicate applies to a lightbulb or a led.1067
- (is-slider-left ?x - item): the sliding door of the slider ?x is on the left.1068
- (is-slider-right ?x - item): the sliding door of the slider ?x is on the right.1069

1070
For specifying the relationship between objects:1071
- (is-on ?x - item ?y - item): ?x is on top of ?y. This predicate applies when ?x is a block1072
and ?y is a table.1073
- (is-in ?x - item ?y - item): ?x is inside of ?y. This predicate applies when ?x is a block1074
and ?y is a drawer or a slider.1075
- (stacked ?x - item ?y - item): ?x is stacked on top of ?y. This predicate applies when ?x1076
and ?y are blocks.1077
- (unstacked ?x - item ?y - item): ?x is unstacked from ?y. This predicate applies when ?x and1078
?y are blocks.1079

1080
**Task Environment:**1081
In the environment where the demonstrations are being performed, there are the following1082
objects:1083
- A table. Objects can be placed on the table.1084
- A drawer that can be opened. Objects can be placed into the drawer when it is open.1085
- A slider which is a cabinet with a sliding door. The sliding door can be moved to the left1086
or to the right. Objects can be placed into the slider no matter the position of the sliding1087
door.1088
- A lightbulb that be can turned on/off with a button.1089
- A led that can be turned on/off with a button.1090
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- Three blocks that can be rotated, pushed, lifted, and placed.10911092

Listing 5: Example Prompt for CALVIN–In-Context Example.
1093

**Demonstration Parsing:**1094
Now, you will help to parse several human demonstrations of the robot performing a task and1095
generate a lifted description of how to accomplish this task.1096
For each demonstration, a sequence of performed primitives will be given, with actual object1097
names. Three demonstrations for the task of "place_in_slider" is:1098

1099
<code name="primitive_sequence">1100
primitives = [1101

{"name": "grasp", "arguments": ["red_block", "table"]}1102
{"name": "move", "arguments": ["red_block"]}1103
{"name": "place", "arguments": ["red_block", "slider"]}1104
{"name": "move-to", "arguments": [""]}1105

]1106
</code>1107

1108
<code name="primitive_sequence">1109
primitives = [1110

{"name": "grasp", "arguments": ["blue_block", "table"]}1111
{"name": "move", "arguments": ["blue_block"]}1112
{"name": "place", "arguments": ["blue_block", "slider"]}1113
{"name": "move-to", "arguments": [""]}1114

]1115
</code>1116

1117
<code name="primitive_sequence">1118
primitives = [1119

{"name": "grasp", "arguments": ["pink_block", "table"]}1120
{"name": "move", "arguments": ["pink_block"]}1121
{"name": "place", "arguments": ["pink_block", "slider"]}1122
{"name": "move-to", "arguments": [""]}1123

]1124
</code>1125

1126
**Previous Tasks:**1127
A list of tasks that can be performed before the current task will also be provided as context1128
. For the task of "place_in_slider", the possible previous tasks are:1129
lift_block_table, lift_block_drawer, move_slider_right1130

1131
**Example Output:**1132
You should generate a lifted description, treating all objects as variables. For example, the1133
lifted description for "place_in_slider" is:1134
<code name="mechanism">1135
(:mechanism place-in-slider1136
:parameters (?block - item ?slider - item)1137
:precondition (and (is-block ?block) (is-slider ?slider) (is-lifted ?block))1138
:effect (and (is-in ?block ?slider) (not (is-lifted ?block)))1139
:body (then1140

(place ?block ?slider)1141
)1142
)1143
</code>11441145

Listing 6: Example Prompt for CALVIN–Instructions.
1146

**Think Step-by-Step:**1147
To generate the lifted description, you should think through the task in natural language in1148
the following steps. Be EXTREMELY CAREFUL to think through step 3a, 3b, and 4a, 4b.1149
1. Parse the goal. For example "place_in_slider", the goal is to place a block into the slider1150
.1151
2. Think about the possible effects achieved by previous tasks and the previous actions that1152
have been performed. For "lift_block_table", a block is lifted from the table and the effect1153
is that the block is lifted. For "lift_block_drawer", a block is lifted from the drawer and1154
the effect is that the block is lifted. For "move_slider_right", the sliding door of the1155
slider is moved to the right and the effect is that the sliding door is on the right.1156
3. Parse the demonstrations and choose the combination of primitives for the current task. The1157
demonstrations are noisy so that the demonstrated primitive sequences may include extra1158
primitive actions that are not necessary for the current task at the beginning or end. The1159
extra primitive actions can be for the previous tasks. Combining with the understanding of the1160
task and previous task to infer the correct combination of primitives for the current task.1161
3a. In this case, the previous tasks are relevant to the current task. We should think about1162
how to sequence the previous tasks with the current task. The primitive combination for the1163
current task should not include primitive actions that have been performed. The above example1164
for "place_in_slider" is this case. We can infer that "grasp" in the demonstrated sequences is1165
likely to be for the previous tasks and should not be included in the primitive combination1166
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for the current task. We therefore choose B. (then (place ?x ?y)). The semantics is that the1167
robot place the lifted block in the slider.1168
3b. In this case, the previous tasks are not relevant to the current task.1169
4. Think about the preconditions. Also specify the types of all relevant objects in the1170
preconditions.1171
4a. In this case, previous tasks are relevant to the current task. We should think about the1172
effects of the previous tasks. For "place_in_slider", the effects of previous tasks include1173
the block is already lifted. So we should specify that the block is lifted in the1174
preconditions for the current task.1175
4b. In this case, previous tasks are not relevant to the current task.1176
5. Think about the effects. For "place_in_slider", the effects are that the block is in the1177
slider and the block is not lifted.1178
6. Write down the mechanism in the format of the example.1179

1180
**Additional Instructions:**1181
1. Make sure the generated lifted description starts with <code name="mechanism"> and ends1182
with </code>.1183
2. Please do not invent any new predicates for the precondition and effect. You can only use1184
the predicates listed above.1185
3. Consider the physical constraints of the objects. For example, a robot arm can not go1186
through a closed door.1187
4. For each parameter in :parameters, you should use one of the predicates for specifying the1188
type of the object to indicate its type (e.g., is-drawer, is-block, and etc).11891190

Listing 7: Example Prompt for CALVIN–Task Input.
1191

**Current Task:** place_in_drawer1192
1193

**Example Sequences:**1194
<code name="primitive_sequence">1195
primitives = [1196

{"name": "grasp", "arguments": ["blue_block", "table"]}1197
{"name": "move", "arguments": ["blue_block"]}1198
{"name": "place", "arguments": ["blue_block", "drawer"]}1199
{"name": "move-to", "arguments": [""]}1200

]1201
</code>1202

1203
<code name="primitive_sequence">1204
primitives = [1205

{"name": "grasp", "arguments": ["red_block", "table"]}1206
{"name": "move", "arguments": ["red_block"]}1207
{"name": "place", "arguments": ["red_block", "drawer"]}1208
{"name": "move-to", "arguments": [""]}1209

]1210
</code>1211

1212
<code name="primitive_sequence">1213
primitives = [1214

{"name": "grasp", "arguments": ["pink_block", "table"]}1215
{"name": "move", "arguments": ["pink_block"]}1216
{"name": "place", "arguments": ["pink_block", "drawer"]}1217
{"name": "move-to", "arguments": [""]}1218

]1219
</code>1220

1221
**Previous Tasks:** push_into_drawer, lift_block_table, lift_block_slider12221223

Listing 8: Example Prompt for Predicate Generation.
1224

You are a helpful agent in helping a robot interpret human demonstrations and discover a1225
generalized high-level routine to accomplish a given task.1226
**Primitive Actions:**1227
There are seven primitive actions that the robot can perform. They are:1228
- (grasp ?x ?y): ?x and ?y are two object variables. ?x is the object that the robot will be1229
grasping, ?y is the object that ?x is currently on or in.1230
- (place ?x ?y): ?x and ?y are two object variables. ?x is the object that the robot is1231
currently holding, ?y is the object that ?x will be placed on or in.1232
- (move ?x): ?x is the object that the robot is currently holding and will be moved by the1233
robot.1234
- (push ?x): ?x is the object that the robot will be pushing.1235
- (move-to ?x): the robot arm will move without holding any object or pushing any object.1236
- (open): the robot gripper will open fully.1237
- (close): the robot gripper will close without grasping any object.1238

1239
**Task Environment:**1240
In the environment where the demonstrations are being performed, there are the following1241
objects:1242
- A table. Objects can be placed on the table.1243
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- A drawer that can be opened. Objects can be placed into the drawer when it is open.1244
- A slider which is a cabinet with a sliding door. The sliding door can be moved to the left1245
or to the right. Objects can be placed into the slider no matter the position of the sliding1246
door.1247
- A lightbulb that be can turned on/off with a button.1248
- A led that can be turned on/off with a button.1249
- Three blocks that can be rotated, pushed, lifted, and placed.1250

1251
**Task**1252
You will help the robot to write PDDL definitions for the following actions:1253
1. lift_red_block_table1254
2. lift_red_block_slider1255
3. lift_red_block_drawer1256
4. lift_blue_block_table1257
5. lift_blue_block_slider1258
6. lift_blue_block_drawer1259
7. lift_pink_block_table1260
8. lift_pink_block_slider1261
9. lift_pink_block_drawer1262
10. stack_block1263
11. unstack_block1264
12. place_in_slider1265
13. place_in_drawer1266
14. place_on_table1267
15. rotate_red_block_right1268
16. rotate_red_block_left1269
17. rotate_blue_block_right1270
18. rotate_blue_block_left1271
19. rotate_pink_block_right1272
20. rotate_pink_block_left1273
21. push_red_block_right1274
22. push_red_block_left1275
23. push_blue_block_right1276
24. push_blue_block_left1277
25. push_pink_block_right1278
26. push_pink_block_left1279
27. move_slider_left1280
28. move_slider_right1281
29. open_drawer1282
30. close_drawer1283
31. turn_on_lightbulb1284
32. turn_off_lightbulb1285
33. turn_on_led1286
34. turn_off_led1287

1288
Before writing the operators, define the predicates that should be used to write the1289
preconditions and effects of the operators. Group the predicates into unary predicates that1290
define the states of objects and binary relations that specify relations between two objects.1291
For each predicate, list actions that are relevant.12921293

Listing 9: Prompt for SayCan.
1294

**Objective:**1295
You are a helpful agent in helping a robot plan a sequence of actions to accomplish a given1296
task.1297
I will first provide context and then provide an example of how to perform the task.1298

1299
**Task Environment:**1300
In the robot’s environment, there are the following objects:1301
- A table. Objects can be placed on the table.1302
- A drawer that can be opened. Objects can be placed into the drawer when it is open.1303
- A slider which is a cabinet with a sliding door. The sliding door can be moved to the left1304
or to the right. Objects can be placed into the slider no matter the position of the sliding1305
door.1306
- A lightbulb that be can turned on/off with a button.1307
- A led that can be turned on/off with a button.1308
- Three blocks that can be rotated, pushed, lifted, and placed.1309

1310
**Actions:**1311
There are the following actions that the robot can perform. They are:1312
- lift_red_block_table: lift the red block from the table.1313
- lift_red_block_slider: lift the red block from the slider.1314
- lift_red_block_drawer: lift the red block from the drawer.1315
- lift_blue_block_table: lift the blue block from the table.1316
- lift_blue_block_slider: lift the blue block from the slider.1317
- lift_blue_block_drawer: lift the blue block from the drawer.1318
- lift_pink_block_table: lift the pink block from the table.1319
- lift_pink_block_slider: lift the pink block from the slider.1320
- lift_pink_block_drawer: lift the pink block from the drawer.1321
- stack_block: stack the blocks.1322
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- place_in_slider: place the block in the slider.1323
- place_in_drawer: place the block in the drawer.1324
- place_on_table: place the block on the table.1325
- rotate_red_block_right: rotate the red block to the right.1326
- rotate_red_block_left: rotate the red block to the left.1327
- rotate_blue_block_right: rotate the blue block to the right.1328
- rotate_blue_block_left: rotate the blue block to the left.1329
- rotate_pink_block_right: rotate the pink block to the right.1330
- rotate_pink_block_left: rotate the pink block to the left.1331
- push_red_block_right: push the red block to the right.1332
- push_red_block_left: push the red block to the left.1333
- push_blue_block_right: push the blue block to the right.1334
- push_blue_block_left: push the blue block to the left.1335
- push_pink_block_right: push the pink block to the right.1336
- push_pink_block_left: push the pink block to the left.1337
- move_slider_left: move the slider to the left.1338
- move_slider_right: move the slider to the right.1339
- open_drawer: open the drawer.1340
- close_drawer: close the drawer.1341
- turn_on_lightbulb: turn on the lightbulb.1342
- turn_off_lightbulb: turn off the lightbulb.1343
- turn_on_led: turn on the led.1344
- turn_off_led: turn off the led.1345
- do_nothing: do nothing.1346

1347
**Example Task:**1348
Now, you will help to parse the goal predicate and generate a list of candidate actions the1349
robot can potentially take to accomplish the task. You should rank the actions in terms of how1350
likely they are to be performed next.1351
Goal predicate: (is-turned-off led)1352
Task output:1353
‘‘‘python1354
[’turn_off_led’, ’do_nothing’]1355
‘‘‘1356
In this example above, if the led is on, the robot should turn it off. If the led is already1357
off, the robot should do nothing.1358

1359
**Additional Instructions:**1360
1. Make sure the generated plan is a list of actions. Place the list between ‘‘‘python and1361
ends with ‘‘‘.1362
2. Think Step-by-Step.13631364

Listing 10: Initial Prompt for Robot-VILA.
1365

You are highly skilled in robotic task planning, breaking down intricate and long-term tasks1366
into distinct primitive actions.1367
If the object is in sight, you need to directly manipulate it. If the object is not in sight,1368
you need to use primitive skills to find the object1369
first. If the target object is blocked by other objects, you need to remove all the blocking1370
objects before picking up the target object. At1371
the same time, you need to ignore distracters that are not related to the task. And remember1372
your last step plan needs to be "done".1373

1374
Consider the following skills a robotic arm can perform.1375
- lift_red_block_table: lift the red block from the table.1376
- lift_red_block_slider: lift the red block from the slider.1377
- lift_red_block_drawer: lift the red block from the drawer.1378
- lift_blue_block_table: lift the blue block from the table.1379
- lift_blue_block_slider: lift the blue block from the slider.1380
- lift_blue_block_drawer: lift the blue block from the drawer.1381
- lift_pink_block_table: lift the pink block from the table.1382
- lift_pink_block_slider: lift the pink block from the slider.1383
- lift_pink_block_drawer: lift the pink block from the drawer.1384
- stack_block: stack the blocks.1385
- place_in_slider: place the block in the slider.1386
- place_in_drawer: place the block in the drawer.1387
- place_on_table: place the block on the table.1388
- rotate_red_block_right: rotate the red block to the right.1389
- rotate_red_block_left: rotate the red block to the left.1390
- rotate_blue_block_right: rotate the blue block to the right.1391
- rotate_blue_block_left: rotate the blue block to the left.1392
- rotate_pink_block_right: rotate the pink block to the right.1393
- rotate_pink_block_left: rotate the pink block to the left.1394
- push_red_block_right: push the red block to the right.1395
- push_red_block_left: push the red block to the left.1396
- push_blue_block_right: push the blue block to the right.1397
- push_blue_block_left: push the blue block to the left.1398
- push_pink_block_right: push the pink block to the right.1399
- push_pink_block_left: push the pink block to the left.1400
- move_slider_left: move the slider to the left.1401
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- move_slider_right: move the slider to the right.1402
- open_drawer: open the drawer.1403
- close_drawer: close the drawer.1404
- turn_on_lightbulb: turn on the lightbulb.1405
- turn_off_lightbulb: turn off the lightbulb.1406
- turn_on_led: turn on the led.1407
- turn_off_led: turn off the led.1408
- done: the goal has reached.1409

1410
You are only allowed to use the provided skills. You can first itemize the task-related1411
objects to help you plan.1412
For the actions you choose, list them as a list in the following format.1413

1414
<code>1415
[’turn_off_led’, ’open_drawer’, ’done’]1416
</code>14171418

Listing 11: Follow-Up Prompt for Robot-VILA.
1419

This image displays a scenario after you have executed some steps from the plan generated1420
earlier. When interacting with people,1421
sometimes the robotic arm needs to wait for the person’s action. If you do not find the target1422
object in the current image, you need to1423
continue searching elsewhere. Continue to generate the plan given the updated environment1424
state.14251426

Listing 12: Prompt for Text2Motion.
1427

**Objective:**1428
You are a helpful agent in helping a robot plan a sequence of actions to accomplish a given1429
task.1430
I will first provide context and then provide an example of how to perform the task.1431

1432
**Task Environment:**1433
In the robot’s environment, there are the following objects:1434
- A table. Objects can be placed on the table.1435
- A drawer that can be opened. Objects can be placed into the drawer when it is open.1436
- A slider which is a cabinet with a sliding door. The sliding door can be moved to the left1437
or to the right. Objects can be placed into the slider no matter the position of the1438
sliding door.1439
- A lightbulb that be can turned on/off with a button.1440
- A led that can be turned on/off with a button.1441
- Three blocks that can be rotated, pushed, lifted, and placed.1442

1443
**Predicates for symbolic state:**1444
The list of all possible predicates for defining the symbolic state are listed below:1445
- (rotated-left ?x - item): ?x is rotated left. This predicate applies to a block.1446
- (rotated-right ?x - item): ?x is rotated right. This predicate applies to a block.1447
- (pushed-left ?x - item): ?x is pushed left. This predicate applies to a block.1448
- (pushed-right ?x - item): ?x is pushed right. This predicate applies to a block.1449
- (lifted ?x - item): ?x is lifted in the air. This predicate applies to a block.1450
- (is-open ?x - item): ?x is open. This predicate applies to a drawer.1451
- (is-close ?x - item): ?x is close. This predicate applies to a drawer.1452
- (is-turned-on ?x - item): ?x is turned on. This predicate applies to a lightbulb or a led.1453
- (is-turned-off ?x - item): ?x is turned off. This predicate applies to a lightbulb or a1454
led.1455
- (is-slider-left ?x - item): the sliding door of the slider ?x is on the left.1456
- (is-slider-right ?x - item): the sliding door of the slider ?x is on the right.1457
- (is-on ?x - item ?y - item): ?x is on top of ?y. This predicate applies when ?x is a block1458
and ?y is a table.1459
- (is-in ?x - item ?y - item): ?x is inside of ?y. This predicate applies when ?x is a block1460
and ?y is a drawer or a slider.1461
- (stacked ?x - item ?y - item): ?x is stacked on top of ?y. This predicate applies when ?x1462
and ?y are blocks.1463
- (unstacked ?x - item ?y - item): ?x is unstacked from ?y. This predicate applies when ?x1464
and ?y are blocks.1465

1466
**Actions:**1467
There are the following actions that the robot can perform. They are:1468
- lift_red_block_table: lift the red block from the table.1469
- lift_red_block_slider: lift the red block from the slider.1470
- lift_red_block_drawer: lift the red block from the drawer.1471
- lift_blue_block_table: lift the blue block from the table.1472
- lift_blue_block_slider: lift the blue block from the slider.1473
- lift_blue_block_drawer: lift the blue block from the drawer.1474
- lift_pink_block_table: lift the pink block from the table.1475
- lift_pink_block_slider: lift the pink block from the slider.1476
- lift_pink_block_drawer: lift the pink block from the drawer.1477
- stack_block: stack the blocks.1478
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- place_in_slider: place the block in the slider.1479
- place_in_drawer: place the block in the drawer.1480
- place_on_table: place the block on the table.1481
- rotate_red_block_right: rotate the red block to the right.1482
- rotate_red_block_left: rotate the red block to the left.1483
- rotate_blue_block_right: rotate the blue block to the right.1484
- rotate_blue_block_left: rotate the blue block to the left.1485
- rotate_pink_block_right: rotate the pink block to the right.1486
- rotate_pink_block_left: rotate the pink block to the left.1487
- push_red_block_right: push the red block to the right.1488
- push_red_block_left: push the red block to the left.1489
- push_blue_block_right: push the blue block to the right.1490
- push_blue_block_left: push the blue block to the left.1491
- push_pink_block_right: push the pink block to the right.1492
- push_pink_block_left: push the pink block to the left.1493
- move_slider_left: move the slider to the left.1494
- move_slider_right: move the slider to the right.1495
- open_drawer: open the drawer.1496
- close_drawer: close the drawer.1497
- turn_on_lightbulb: turn on the lightbulb.1498
- turn_off_lightbulb: turn off the lightbulb.1499
- turn_on_led: turn on the led.1500
- turn_off_led: turn off the led.1501

1502
**Example Task:**1503
Now, you will help to parse the goal predicate and generate a sequence of actions to1504
accomplish this task.1505
Goal predicate: (is-turned-off led)1506
Symbolic state: is-turned-on(led), is-turned-on(lightbulb), not(is-turned-off(led)), not(is-1507
turned-off(lightbulb))1508
Task output:1509
‘‘‘python1510
[’turn_off_led’]1511
‘‘‘1512

1513
**Example Task:**1514
Goal predicate: (is-turned-on led)1515
Symbolic state: is-turned-on(led), is-turned-on(lightbulb), not(is-turned-off(led)), not(is-1516
turned-off(lightbulb))1517
Task output:1518
‘‘‘python1519
[]1520
‘‘‘1521

1522
**Example Task:**1523
Goal predicate: (is-in red_block drawer)1524
Symbolic state: not(is-in(red_block, drawer)), not(is-in(red_block, slider)), is-on(1525
red_block, table), not(is-open(drawer)), is-close(drawer), is-slider-left(slider), not(is-1526
slider-right(slider)), not(lifted(red_block))1527
Task output:1528
‘‘‘python1529
[’open_drawer’, ’lift_red_block_table’, ’place_in_drawer’]1530
‘‘‘1531

1532
**Example Task:**1533
Goal predicate: (is-in red_block drawer)1534
Symbolic state: not(is-in(red_block, drawer)), not(is-in(red_block, slider)), not(is-on(1535
red_block, table)), is-open(drawer), not(is-close(drawer)), is-slider-left(slider), not(is-1536
slider-right(slider)), lifted(red_block)1537
Task output:1538
‘‘‘python1539
[’place_in_drawer’]1540
‘‘‘1541

1542
**Example Task:**1543
Goal predicate: (and (is-turned-on lightbulb) (is-slider-right slider))1544
Symbolic state: is-slider-left(slider), not(is-slider-right(slider)), is-turned-off(1545
lightbulb), not(is-turned-on(lightbulb))1546
Task output:1547
‘‘‘python1548
[’turn_on_lightbulb’, ’move_slider_right’]1549
‘‘‘1550

1551
**Additional Instructions:**1552
1. Make sure the generated plan is a list of actions. Place the list between ‘‘‘python and1553
ends with ‘‘‘.1554
2. Think Step-by-Step.15551556
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